880 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			880 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/MustExecute.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/Passes.h"
 | |
| #include "llvm/Analysis/PostDominators.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/AssemblyAnnotationWriter.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/FormattedStream.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "must-execute"
 | |
| 
 | |
| const DenseMap<BasicBlock *, ColorVector> &
 | |
| LoopSafetyInfo::getBlockColors() const {
 | |
|   return BlockColors;
 | |
| }
 | |
| 
 | |
| void LoopSafetyInfo::copyColors(BasicBlock *New, BasicBlock *Old) {
 | |
|   ColorVector &ColorsForNewBlock = BlockColors[New];
 | |
|   ColorVector &ColorsForOldBlock = BlockColors[Old];
 | |
|   ColorsForNewBlock = ColorsForOldBlock;
 | |
| }
 | |
| 
 | |
| bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
 | |
|   (void)BB;
 | |
|   return anyBlockMayThrow();
 | |
| }
 | |
| 
 | |
| bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
 | |
|   return MayThrow;
 | |
| }
 | |
| 
 | |
| void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
 | |
|   assert(CurLoop != nullptr && "CurLoop can't be null");
 | |
|   BasicBlock *Header = CurLoop->getHeader();
 | |
|   // Iterate over header and compute safety info.
 | |
|   HeaderMayThrow = !isGuaranteedToTransferExecutionToSuccessor(Header);
 | |
|   MayThrow = HeaderMayThrow;
 | |
|   // Iterate over loop instructions and compute safety info.
 | |
|   // Skip header as it has been computed and stored in HeaderMayThrow.
 | |
|   // The first block in loopinfo.Blocks is guaranteed to be the header.
 | |
|   assert(Header == *CurLoop->getBlocks().begin() &&
 | |
|          "First block must be header");
 | |
|   for (Loop::block_iterator BB = std::next(CurLoop->block_begin()),
 | |
|                             BBE = CurLoop->block_end();
 | |
|        (BB != BBE) && !MayThrow; ++BB)
 | |
|     MayThrow |= !isGuaranteedToTransferExecutionToSuccessor(*BB);
 | |
| 
 | |
|   computeBlockColors(CurLoop);
 | |
| }
 | |
| 
 | |
| bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock *BB) const {
 | |
|   return ICF.hasICF(BB);
 | |
| }
 | |
| 
 | |
| bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
 | |
|   return MayThrow;
 | |
| }
 | |
| 
 | |
| void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop *CurLoop) {
 | |
|   assert(CurLoop != nullptr && "CurLoop can't be null");
 | |
|   ICF.clear();
 | |
|   MW.clear();
 | |
|   MayThrow = false;
 | |
|   // Figure out the fact that at least one block may throw.
 | |
|   for (auto &BB : CurLoop->blocks())
 | |
|     if (ICF.hasICF(&*BB)) {
 | |
|       MayThrow = true;
 | |
|       break;
 | |
|     }
 | |
|   computeBlockColors(CurLoop);
 | |
| }
 | |
| 
 | |
| void ICFLoopSafetyInfo::insertInstructionTo(const Instruction *Inst,
 | |
|                                             const BasicBlock *BB) {
 | |
|   ICF.insertInstructionTo(Inst, BB);
 | |
|   MW.insertInstructionTo(Inst, BB);
 | |
| }
 | |
| 
 | |
| void ICFLoopSafetyInfo::removeInstruction(const Instruction *Inst) {
 | |
|   ICF.removeInstruction(Inst);
 | |
|   MW.removeInstruction(Inst);
 | |
| }
 | |
| 
 | |
| void LoopSafetyInfo::computeBlockColors(const Loop *CurLoop) {
 | |
|   // Compute funclet colors if we might sink/hoist in a function with a funclet
 | |
|   // personality routine.
 | |
|   Function *Fn = CurLoop->getHeader()->getParent();
 | |
|   if (Fn->hasPersonalityFn())
 | |
|     if (Constant *PersonalityFn = Fn->getPersonalityFn())
 | |
|       if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn)))
 | |
|         BlockColors = colorEHFunclets(*Fn);
 | |
| }
 | |
| 
 | |
| /// Return true if we can prove that the given ExitBlock is not reached on the
 | |
| /// first iteration of the given loop.  That is, the backedge of the loop must
 | |
| /// be executed before the ExitBlock is executed in any dynamic execution trace.
 | |
| static bool CanProveNotTakenFirstIteration(const BasicBlock *ExitBlock,
 | |
|                                            const DominatorTree *DT,
 | |
|                                            const Loop *CurLoop) {
 | |
|   auto *CondExitBlock = ExitBlock->getSinglePredecessor();
 | |
|   if (!CondExitBlock)
 | |
|     // expect unique exits
 | |
|     return false;
 | |
|   assert(CurLoop->contains(CondExitBlock) && "meaning of exit block");
 | |
|   auto *BI = dyn_cast<BranchInst>(CondExitBlock->getTerminator());
 | |
|   if (!BI || !BI->isConditional())
 | |
|     return false;
 | |
|   // If condition is constant and false leads to ExitBlock then we always
 | |
|   // execute the true branch.
 | |
|   if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition()))
 | |
|     return BI->getSuccessor(Cond->getZExtValue() ? 1 : 0) == ExitBlock;
 | |
|   auto *Cond = dyn_cast<CmpInst>(BI->getCondition());
 | |
|   if (!Cond)
 | |
|     return false;
 | |
|   // todo: this would be a lot more powerful if we used scev, but all the
 | |
|   // plumbing is currently missing to pass a pointer in from the pass
 | |
|   // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
 | |
|   auto *LHS = dyn_cast<PHINode>(Cond->getOperand(0));
 | |
|   auto *RHS = Cond->getOperand(1);
 | |
|   if (!LHS || LHS->getParent() != CurLoop->getHeader())
 | |
|     return false;
 | |
|   auto DL = ExitBlock->getModule()->getDataLayout();
 | |
|   auto *IVStart = LHS->getIncomingValueForBlock(CurLoop->getLoopPreheader());
 | |
|   auto *SimpleValOrNull = SimplifyCmpInst(Cond->getPredicate(),
 | |
|                                           IVStart, RHS,
 | |
|                                           {DL, /*TLI*/ nullptr,
 | |
|                                               DT, /*AC*/ nullptr, BI});
 | |
|   auto *SimpleCst = dyn_cast_or_null<Constant>(SimpleValOrNull);
 | |
|   if (!SimpleCst)
 | |
|     return false;
 | |
|   if (ExitBlock == BI->getSuccessor(0))
 | |
|     return SimpleCst->isZeroValue();
 | |
|   assert(ExitBlock == BI->getSuccessor(1) && "implied by above");
 | |
|   return SimpleCst->isAllOnesValue();
 | |
| }
 | |
| 
 | |
| /// Collect all blocks from \p CurLoop which lie on all possible paths from
 | |
| /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
 | |
| /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
 | |
| static void collectTransitivePredecessors(
 | |
|     const Loop *CurLoop, const BasicBlock *BB,
 | |
|     SmallPtrSetImpl<const BasicBlock *> &Predecessors) {
 | |
|   assert(Predecessors.empty() && "Garbage in predecessors set?");
 | |
|   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
 | |
|   if (BB == CurLoop->getHeader())
 | |
|     return;
 | |
|   SmallVector<const BasicBlock *, 4> WorkList;
 | |
|   for (auto *Pred : predecessors(BB)) {
 | |
|     Predecessors.insert(Pred);
 | |
|     WorkList.push_back(Pred);
 | |
|   }
 | |
|   while (!WorkList.empty()) {
 | |
|     auto *Pred = WorkList.pop_back_val();
 | |
|     assert(CurLoop->contains(Pred) && "Should only reach loop blocks!");
 | |
|     // We are not interested in backedges and we don't want to leave loop.
 | |
|     if (Pred == CurLoop->getHeader())
 | |
|       continue;
 | |
|     // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
 | |
|     // blocks of this inner loop, even those that are always executed AFTER the
 | |
|     // BB. It may make our analysis more conservative than it could be, see test
 | |
|     // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
 | |
|     // We can ignore backedge of all loops containing BB to get a sligtly more
 | |
|     // optimistic result.
 | |
|     for (auto *PredPred : predecessors(Pred))
 | |
|       if (Predecessors.insert(PredPred).second)
 | |
|         WorkList.push_back(PredPred);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop *CurLoop,
 | |
|                                              const BasicBlock *BB,
 | |
|                                              const DominatorTree *DT) const {
 | |
|   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
 | |
| 
 | |
|   // Fast path: header is always reached once the loop is entered.
 | |
|   if (BB == CurLoop->getHeader())
 | |
|     return true;
 | |
| 
 | |
|   // Collect all transitive predecessors of BB in the same loop. This set will
 | |
|   // be a subset of the blocks within the loop.
 | |
|   SmallPtrSet<const BasicBlock *, 4> Predecessors;
 | |
|   collectTransitivePredecessors(CurLoop, BB, Predecessors);
 | |
| 
 | |
|   // Make sure that all successors of, all predecessors of BB which are not
 | |
|   // dominated by BB, are either:
 | |
|   // 1) BB,
 | |
|   // 2) Also predecessors of BB,
 | |
|   // 3) Exit blocks which are not taken on 1st iteration.
 | |
|   // Memoize blocks we've already checked.
 | |
|   SmallPtrSet<const BasicBlock *, 4> CheckedSuccessors;
 | |
|   for (auto *Pred : Predecessors) {
 | |
|     // Predecessor block may throw, so it has a side exit.
 | |
|     if (blockMayThrow(Pred))
 | |
|       return false;
 | |
| 
 | |
|     // BB dominates Pred, so if Pred runs, BB must run.
 | |
|     // This is true when Pred is a loop latch.
 | |
|     if (DT->dominates(BB, Pred))
 | |
|       continue;
 | |
| 
 | |
|     for (auto *Succ : successors(Pred))
 | |
|       if (CheckedSuccessors.insert(Succ).second &&
 | |
|           Succ != BB && !Predecessors.count(Succ))
 | |
|         // By discharging conditions that are not executed on the 1st iteration,
 | |
|         // we guarantee that *at least* on the first iteration all paths from
 | |
|         // header that *may* execute will lead us to the block of interest. So
 | |
|         // that if we had virtually peeled one iteration away, in this peeled
 | |
|         // iteration the set of predecessors would contain only paths from
 | |
|         // header to BB without any exiting edges that may execute.
 | |
|         //
 | |
|         // TODO: We only do it for exiting edges currently. We could use the
 | |
|         // same function to skip some of the edges within the loop if we know
 | |
|         // that they will not be taken on the 1st iteration.
 | |
|         //
 | |
|         // TODO: If we somehow know the number of iterations in loop, the same
 | |
|         // check may be done for any arbitrary N-th iteration as long as N is
 | |
|         // not greater than minimum number of iterations in this loop.
 | |
|         if (CurLoop->contains(Succ) ||
 | |
|             !CanProveNotTakenFirstIteration(Succ, DT, CurLoop))
 | |
|           return false;
 | |
|   }
 | |
| 
 | |
|   // All predecessors can only lead us to BB.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Returns true if the instruction in a loop is guaranteed to execute at least
 | |
| /// once.
 | |
| bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
 | |
|                                                  const DominatorTree *DT,
 | |
|                                                  const Loop *CurLoop) const {
 | |
|   // If the instruction is in the header block for the loop (which is very
 | |
|   // common), it is always guaranteed to dominate the exit blocks.  Since this
 | |
|   // is a common case, and can save some work, check it now.
 | |
|   if (Inst.getParent() == CurLoop->getHeader())
 | |
|     // If there's a throw in the header block, we can't guarantee we'll reach
 | |
|     // Inst unless we can prove that Inst comes before the potential implicit
 | |
|     // exit.  At the moment, we use a (cheap) hack for the common case where
 | |
|     // the instruction of interest is the first one in the block.
 | |
|     return !HeaderMayThrow ||
 | |
|            Inst.getParent()->getFirstNonPHIOrDbg() == &Inst;
 | |
| 
 | |
|   // If there is a path from header to exit or latch that doesn't lead to our
 | |
|   // instruction's block, return false.
 | |
|   return allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
 | |
| }
 | |
| 
 | |
| bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction &Inst,
 | |
|                                               const DominatorTree *DT,
 | |
|                                               const Loop *CurLoop) const {
 | |
|   return !ICF.isDominatedByICFIFromSameBlock(&Inst) &&
 | |
|          allLoopPathsLeadToBlock(CurLoop, Inst.getParent(), DT);
 | |
| }
 | |
| 
 | |
| bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock *BB,
 | |
|                                                  const Loop *CurLoop) const {
 | |
|   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
 | |
| 
 | |
|   // Fast path: there are no instructions before header.
 | |
|   if (BB == CurLoop->getHeader())
 | |
|     return true;
 | |
| 
 | |
|   // Collect all transitive predecessors of BB in the same loop. This set will
 | |
|   // be a subset of the blocks within the loop.
 | |
|   SmallPtrSet<const BasicBlock *, 4> Predecessors;
 | |
|   collectTransitivePredecessors(CurLoop, BB, Predecessors);
 | |
|   // Find if there any instruction in either predecessor that could write
 | |
|   // to memory.
 | |
|   for (auto *Pred : Predecessors)
 | |
|     if (MW.mayWriteToMemory(Pred))
 | |
|       return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction &I,
 | |
|                                                  const Loop *CurLoop) const {
 | |
|   auto *BB = I.getParent();
 | |
|   assert(CurLoop->contains(BB) && "Should only be called for loop blocks!");
 | |
|   return !MW.isDominatedByMemoryWriteFromSameBlock(&I) &&
 | |
|          doesNotWriteMemoryBefore(BB, CurLoop);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| struct MustExecutePrinter : public FunctionPass {
 | |
| 
 | |
|   static char ID; // Pass identification, replacement for typeid
 | |
|   MustExecutePrinter() : FunctionPass(ID) {
 | |
|     initializeMustExecutePrinterPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesAll();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addRequired<LoopInfoWrapperPass>();
 | |
|   }
 | |
|   bool runOnFunction(Function &F) override;
 | |
| };
 | |
| struct MustBeExecutedContextPrinter : public ModulePass {
 | |
|   static char ID;
 | |
| 
 | |
|   MustBeExecutedContextPrinter() : ModulePass(ID) {
 | |
|     initializeMustBeExecutedContextPrinterPass(
 | |
|         *PassRegistry::getPassRegistry());
 | |
|   }
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesAll();
 | |
|   }
 | |
|   bool runOnModule(Module &M) override;
 | |
| };
 | |
| }
 | |
| 
 | |
| char MustExecutePrinter::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(MustExecutePrinter, "print-mustexecute",
 | |
|                       "Instructions which execute on loop entry", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(MustExecutePrinter, "print-mustexecute",
 | |
|                     "Instructions which execute on loop entry", false, true)
 | |
| 
 | |
| FunctionPass *llvm::createMustExecutePrinter() {
 | |
|   return new MustExecutePrinter();
 | |
| }
 | |
| 
 | |
| char MustBeExecutedContextPrinter::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(MustBeExecutedContextPrinter,
 | |
|                       "print-must-be-executed-contexts",
 | |
|                       "print the must-be-executed-context for all instructions",
 | |
|                       false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(MustBeExecutedContextPrinter,
 | |
|                     "print-must-be-executed-contexts",
 | |
|                     "print the must-be-executed-context for all instructions",
 | |
|                     false, true)
 | |
| 
 | |
| ModulePass *llvm::createMustBeExecutedContextPrinter() {
 | |
|   return new MustBeExecutedContextPrinter();
 | |
| }
 | |
| 
 | |
| bool MustBeExecutedContextPrinter::runOnModule(Module &M) {
 | |
|   // We provide non-PM analysis here because the old PM doesn't like to query
 | |
|   // function passes from a module pass.
 | |
|   SmallVector<std::unique_ptr<PostDominatorTree>, 8> PDTs;
 | |
|   SmallVector<std::unique_ptr<DominatorTree>, 8> DTs;
 | |
|   SmallVector<std::unique_ptr<LoopInfo>, 8> LIs;
 | |
| 
 | |
|   GetterTy<LoopInfo> LIGetter = [&](const Function &F) {
 | |
|     DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function &>(F)));
 | |
|     LIs.push_back(std::make_unique<LoopInfo>(*DTs.back()));
 | |
|     return LIs.back().get();
 | |
|   };
 | |
|   GetterTy<DominatorTree> DTGetter = [&](const Function &F) {
 | |
|     DTs.push_back(std::make_unique<DominatorTree>(const_cast<Function&>(F)));
 | |
|     return DTs.back().get();
 | |
|   };
 | |
|   GetterTy<PostDominatorTree> PDTGetter = [&](const Function &F) {
 | |
|     PDTs.push_back(
 | |
|         std::make_unique<PostDominatorTree>(const_cast<Function &>(F)));
 | |
|     return PDTs.back().get();
 | |
|   };
 | |
|   MustBeExecutedContextExplorer Explorer(
 | |
|       /* ExploreInterBlock */ true,
 | |
|       /* ExploreCFGForward */ true,
 | |
|       /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter);
 | |
| 
 | |
|   for (Function &F : M) {
 | |
|     for (Instruction &I : instructions(F)) {
 | |
|       dbgs() << "-- Explore context of: " << I << "\n";
 | |
|       for (const Instruction *CI : Explorer.range(&I))
 | |
|         dbgs() << "  [F: " << CI->getFunction()->getName() << "] " << *CI
 | |
|                << "\n";
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isMustExecuteIn(const Instruction &I, Loop *L, DominatorTree *DT) {
 | |
|   // TODO: merge these two routines.  For the moment, we display the best
 | |
|   // result obtained by *either* implementation.  This is a bit unfair since no
 | |
|   // caller actually gets the full power at the moment.
 | |
|   SimpleLoopSafetyInfo LSI;
 | |
|   LSI.computeLoopSafetyInfo(L);
 | |
|   return LSI.isGuaranteedToExecute(I, DT, L) ||
 | |
|     isGuaranteedToExecuteForEveryIteration(&I, L);
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// An assembly annotator class to print must execute information in
 | |
| /// comments.
 | |
| class MustExecuteAnnotatedWriter : public AssemblyAnnotationWriter {
 | |
|   DenseMap<const Value*, SmallVector<Loop*, 4> > MustExec;
 | |
| 
 | |
| public:
 | |
|   MustExecuteAnnotatedWriter(const Function &F,
 | |
|                              DominatorTree &DT, LoopInfo &LI) {
 | |
|     for (auto &I: instructions(F)) {
 | |
|       Loop *L = LI.getLoopFor(I.getParent());
 | |
|       while (L) {
 | |
|         if (isMustExecuteIn(I, L, &DT)) {
 | |
|           MustExec[&I].push_back(L);
 | |
|         }
 | |
|         L = L->getParentLoop();
 | |
|       };
 | |
|     }
 | |
|   }
 | |
|   MustExecuteAnnotatedWriter(const Module &M,
 | |
|                              DominatorTree &DT, LoopInfo &LI) {
 | |
|     for (auto &F : M)
 | |
|     for (auto &I: instructions(F)) {
 | |
|       Loop *L = LI.getLoopFor(I.getParent());
 | |
|       while (L) {
 | |
|         if (isMustExecuteIn(I, L, &DT)) {
 | |
|           MustExec[&I].push_back(L);
 | |
|         }
 | |
|         L = L->getParentLoop();
 | |
|       };
 | |
|     }
 | |
|   }
 | |
| 
 | |
| 
 | |
|   void printInfoComment(const Value &V, formatted_raw_ostream &OS) override {
 | |
|     if (!MustExec.count(&V))
 | |
|       return;
 | |
| 
 | |
|     const auto &Loops = MustExec.lookup(&V);
 | |
|     const auto NumLoops = Loops.size();
 | |
|     if (NumLoops > 1)
 | |
|       OS << " ; (mustexec in " << NumLoops << " loops: ";
 | |
|     else
 | |
|       OS << " ; (mustexec in: ";
 | |
| 
 | |
|     bool first = true;
 | |
|     for (const Loop *L : Loops) {
 | |
|       if (!first)
 | |
|         OS << ", ";
 | |
|       first = false;
 | |
|       OS << L->getHeader()->getName();
 | |
|     }
 | |
|     OS << ")";
 | |
|   }
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| bool MustExecutePrinter::runOnFunction(Function &F) {
 | |
|   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
| 
 | |
|   MustExecuteAnnotatedWriter Writer(F, DT, LI);
 | |
|   F.print(dbgs(), &Writer);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if \p L might be an endless loop.
 | |
| static bool maybeEndlessLoop(const Loop &L) {
 | |
|   if (L.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn))
 | |
|     return false;
 | |
|   // TODO: Actually try to prove it is not.
 | |
|   // TODO: If maybeEndlessLoop is going to be expensive, cache it.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool llvm::mayContainIrreducibleControl(const Function &F, const LoopInfo *LI) {
 | |
|   if (!LI)
 | |
|     return false;
 | |
|   using RPOTraversal = ReversePostOrderTraversal<const Function *>;
 | |
|   RPOTraversal FuncRPOT(&F);
 | |
|   return containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
 | |
|                                 const LoopInfo>(FuncRPOT, *LI);
 | |
| }
 | |
| 
 | |
| /// Lookup \p Key in \p Map and return the result, potentially after
 | |
| /// initializing the optional through \p Fn(\p args).
 | |
| template <typename K, typename V, typename FnTy, typename... ArgsTy>
 | |
| static V getOrCreateCachedOptional(K Key, DenseMap<K, Optional<V>> &Map,
 | |
|                                    FnTy &&Fn, ArgsTy&&... args) {
 | |
|   Optional<V> &OptVal = Map[Key];
 | |
|   if (!OptVal.hasValue())
 | |
|     OptVal = Fn(std::forward<ArgsTy>(args)...);
 | |
|   return OptVal.getValue();
 | |
| }
 | |
| 
 | |
| const BasicBlock *
 | |
| MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock *InitBB) {
 | |
|   const LoopInfo *LI = LIGetter(*InitBB->getParent());
 | |
|   const PostDominatorTree *PDT = PDTGetter(*InitBB->getParent());
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB->getName()
 | |
|                     << (LI ? " [LI]" : "") << (PDT ? " [PDT]" : ""));
 | |
| 
 | |
|   const Function &F = *InitBB->getParent();
 | |
|   const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
 | |
|   const BasicBlock *HeaderBB = L ? L->getHeader() : InitBB;
 | |
|   bool WillReturnAndNoThrow = (F.hasFnAttribute(Attribute::WillReturn) ||
 | |
|                                (L && !maybeEndlessLoop(*L))) &&
 | |
|                               F.doesNotThrow();
 | |
|   LLVM_DEBUG(dbgs() << (L ? " [in loop]" : "")
 | |
|                     << (WillReturnAndNoThrow ? " [WillReturn] [NoUnwind]" : "")
 | |
|                     << "\n");
 | |
| 
 | |
|   // Determine the adjacent blocks in the given direction but exclude (self)
 | |
|   // loops under certain circumstances.
 | |
|   SmallVector<const BasicBlock *, 8> Worklist;
 | |
|   for (const BasicBlock *SuccBB : successors(InitBB)) {
 | |
|     bool IsLatch = SuccBB == HeaderBB;
 | |
|     // Loop latches are ignored in forward propagation if the loop cannot be
 | |
|     // endless and may not throw: control has to go somewhere.
 | |
|     if (!WillReturnAndNoThrow || !IsLatch)
 | |
|       Worklist.push_back(SuccBB);
 | |
|   }
 | |
|   LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist.size() << "\n");
 | |
| 
 | |
|   // If there are no other adjacent blocks, there is no join point.
 | |
|   if (Worklist.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   // If there is one adjacent block, it is the join point.
 | |
|   if (Worklist.size() == 1)
 | |
|     return Worklist[0];
 | |
| 
 | |
|   // Try to determine a join block through the help of the post-dominance
 | |
|   // tree. If no tree was provided, we perform simple pattern matching for one
 | |
|   // block conditionals and one block loops only.
 | |
|   const BasicBlock *JoinBB = nullptr;
 | |
|   if (PDT)
 | |
|     if (const auto *InitNode = PDT->getNode(InitBB))
 | |
|       if (const auto *IDomNode = InitNode->getIDom())
 | |
|         JoinBB = IDomNode->getBlock();
 | |
| 
 | |
|   if (!JoinBB && Worklist.size() == 2) {
 | |
|     const BasicBlock *Succ0 = Worklist[0];
 | |
|     const BasicBlock *Succ1 = Worklist[1];
 | |
|     const BasicBlock *Succ0UniqueSucc = Succ0->getUniqueSuccessor();
 | |
|     const BasicBlock *Succ1UniqueSucc = Succ1->getUniqueSuccessor();
 | |
|     if (Succ0UniqueSucc == InitBB) {
 | |
|       // InitBB -> Succ0 -> InitBB
 | |
|       // InitBB -> Succ1  = JoinBB
 | |
|       JoinBB = Succ1;
 | |
|     } else if (Succ1UniqueSucc == InitBB) {
 | |
|       // InitBB -> Succ1 -> InitBB
 | |
|       // InitBB -> Succ0  = JoinBB
 | |
|       JoinBB = Succ0;
 | |
|     } else if (Succ0 == Succ1UniqueSucc) {
 | |
|       // InitBB ->          Succ0 = JoinBB
 | |
|       // InitBB -> Succ1 -> Succ0 = JoinBB
 | |
|       JoinBB = Succ0;
 | |
|     } else if (Succ1 == Succ0UniqueSucc) {
 | |
|       // InitBB -> Succ0 -> Succ1 = JoinBB
 | |
|       // InitBB ->          Succ1 = JoinBB
 | |
|       JoinBB = Succ1;
 | |
|     } else if (Succ0UniqueSucc == Succ1UniqueSucc) {
 | |
|       // InitBB -> Succ0 -> JoinBB
 | |
|       // InitBB -> Succ1 -> JoinBB
 | |
|       JoinBB = Succ0UniqueSucc;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!JoinBB && L)
 | |
|     JoinBB = L->getUniqueExitBlock();
 | |
| 
 | |
|   if (!JoinBB)
 | |
|     return nullptr;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB->getName() << "\n");
 | |
| 
 | |
|   // In forward direction we check if control will for sure reach JoinBB from
 | |
|   // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control
 | |
|   // are: infinite loops and instructions that do not necessarily transfer
 | |
|   // execution to their successor. To check for them we traverse the CFG from
 | |
|   // the adjacent blocks to the JoinBB, looking at all intermediate blocks.
 | |
| 
 | |
|   // If we know the function is "will-return" and "no-throw" there is no need
 | |
|   // for futher checks.
 | |
|   if (!F.hasFnAttribute(Attribute::WillReturn) || !F.doesNotThrow()) {
 | |
| 
 | |
|     auto BlockTransfersExecutionToSuccessor = [](const BasicBlock *BB) {
 | |
|       return isGuaranteedToTransferExecutionToSuccessor(BB);
 | |
|     };
 | |
| 
 | |
|     SmallPtrSet<const BasicBlock *, 16> Visited;
 | |
|     while (!Worklist.empty()) {
 | |
|       const BasicBlock *ToBB = Worklist.pop_back_val();
 | |
|       if (ToBB == JoinBB)
 | |
|         continue;
 | |
| 
 | |
|       // Make sure all loops in-between are finite.
 | |
|       if (!Visited.insert(ToBB).second) {
 | |
|         if (!F.hasFnAttribute(Attribute::WillReturn)) {
 | |
|           if (!LI)
 | |
|             return nullptr;
 | |
| 
 | |
|           bool MayContainIrreducibleControl = getOrCreateCachedOptional(
 | |
|               &F, IrreducibleControlMap, mayContainIrreducibleControl, F, LI);
 | |
|           if (MayContainIrreducibleControl)
 | |
|             return nullptr;
 | |
| 
 | |
|           const Loop *L = LI->getLoopFor(ToBB);
 | |
|           if (L && maybeEndlessLoop(*L))
 | |
|             return nullptr;
 | |
|         }
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Make sure the block has no instructions that could stop control
 | |
|       // transfer.
 | |
|       bool TransfersExecution = getOrCreateCachedOptional(
 | |
|           ToBB, BlockTransferMap, BlockTransfersExecutionToSuccessor, ToBB);
 | |
|       if (!TransfersExecution)
 | |
|         return nullptr;
 | |
| 
 | |
|       append_range(Worklist, successors(ToBB));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB->getName() << "\n");
 | |
|   return JoinBB;
 | |
| }
 | |
| const BasicBlock *
 | |
| MustBeExecutedContextExplorer::findBackwardJoinPoint(const BasicBlock *InitBB) {
 | |
|   const LoopInfo *LI = LIGetter(*InitBB->getParent());
 | |
|   const DominatorTree *DT = DTGetter(*InitBB->getParent());
 | |
|   LLVM_DEBUG(dbgs() << "\tFind backward join point for " << InitBB->getName()
 | |
|                     << (LI ? " [LI]" : "") << (DT ? " [DT]" : ""));
 | |
| 
 | |
|   // Try to determine a join block through the help of the dominance tree. If no
 | |
|   // tree was provided, we perform simple pattern matching for one block
 | |
|   // conditionals only.
 | |
|   if (DT)
 | |
|     if (const auto *InitNode = DT->getNode(InitBB))
 | |
|       if (const auto *IDomNode = InitNode->getIDom())
 | |
|         return IDomNode->getBlock();
 | |
| 
 | |
|   const Loop *L = LI ? LI->getLoopFor(InitBB) : nullptr;
 | |
|   const BasicBlock *HeaderBB = L ? L->getHeader() : nullptr;
 | |
| 
 | |
|   // Determine the predecessor blocks but ignore backedges.
 | |
|   SmallVector<const BasicBlock *, 8> Worklist;
 | |
|   for (const BasicBlock *PredBB : predecessors(InitBB)) {
 | |
|     bool IsBackedge =
 | |
|         (PredBB == InitBB) || (HeaderBB == InitBB && L->contains(PredBB));
 | |
|     // Loop backedges are ignored in backwards propagation: control has to come
 | |
|     // from somewhere.
 | |
|     if (!IsBackedge)
 | |
|       Worklist.push_back(PredBB);
 | |
|   }
 | |
| 
 | |
|   // If there are no other predecessor blocks, there is no join point.
 | |
|   if (Worklist.empty())
 | |
|     return nullptr;
 | |
| 
 | |
|   // If there is one predecessor block, it is the join point.
 | |
|   if (Worklist.size() == 1)
 | |
|     return Worklist[0];
 | |
| 
 | |
|   const BasicBlock *JoinBB = nullptr;
 | |
|   if (Worklist.size() == 2) {
 | |
|     const BasicBlock *Pred0 = Worklist[0];
 | |
|     const BasicBlock *Pred1 = Worklist[1];
 | |
|     const BasicBlock *Pred0UniquePred = Pred0->getUniquePredecessor();
 | |
|     const BasicBlock *Pred1UniquePred = Pred1->getUniquePredecessor();
 | |
|     if (Pred0 == Pred1UniquePred) {
 | |
|       // InitBB <-          Pred0 = JoinBB
 | |
|       // InitBB <- Pred1 <- Pred0 = JoinBB
 | |
|       JoinBB = Pred0;
 | |
|     } else if (Pred1 == Pred0UniquePred) {
 | |
|       // InitBB <- Pred0 <- Pred1 = JoinBB
 | |
|       // InitBB <-          Pred1 = JoinBB
 | |
|       JoinBB = Pred1;
 | |
|     } else if (Pred0UniquePred == Pred1UniquePred) {
 | |
|       // InitBB <- Pred0 <- JoinBB
 | |
|       // InitBB <- Pred1 <- JoinBB
 | |
|       JoinBB = Pred0UniquePred;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!JoinBB && L)
 | |
|     JoinBB = L->getHeader();
 | |
| 
 | |
|   // In backwards direction there is no need to show termination of previous
 | |
|   // instructions. If they do not terminate, the code afterward is dead, making
 | |
|   // any information/transformation correct anyway.
 | |
|   return JoinBB;
 | |
| }
 | |
| 
 | |
| const Instruction *
 | |
| MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
 | |
|     MustBeExecutedIterator &It, const Instruction *PP) {
 | |
|   if (!PP)
 | |
|     return PP;
 | |
|   LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP << "\n");
 | |
| 
 | |
|   // If we explore only inside a given basic block we stop at terminators.
 | |
|   if (!ExploreInterBlock && PP->isTerminator()) {
 | |
|     LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // If we do not traverse the call graph we check if we can make progress in
 | |
|   // the current function. First, check if the instruction is guaranteed to
 | |
|   // transfer execution to the successor.
 | |
|   bool TransfersExecution = isGuaranteedToTransferExecutionToSuccessor(PP);
 | |
|   if (!TransfersExecution)
 | |
|     return nullptr;
 | |
| 
 | |
|   // If this is not a terminator we know that there is a single instruction
 | |
|   // after this one that is executed next if control is transfered. If not,
 | |
|   // we can try to go back to a call site we entered earlier. If none exists, we
 | |
|   // do not know any instruction that has to be executd next.
 | |
|   if (!PP->isTerminator()) {
 | |
|     const Instruction *NextPP = PP->getNextNode();
 | |
|     LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
 | |
|     return NextPP;
 | |
|   }
 | |
| 
 | |
|   // Finally, we have to handle terminators, trivial ones first.
 | |
|   assert(PP->isTerminator() && "Expected a terminator!");
 | |
| 
 | |
|   // A terminator without a successor is not handled yet.
 | |
|   if (PP->getNumSuccessors() == 0) {
 | |
|     LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // A terminator with a single successor, we will continue at the beginning of
 | |
|   // that one.
 | |
|   if (PP->getNumSuccessors() == 1) {
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "\tUnconditional terminator, continue with successor\n");
 | |
|     return &PP->getSuccessor(0)->front();
 | |
|   }
 | |
| 
 | |
|   // Multiple successors mean we need to find the join point where control flow
 | |
|   // converges again. We use the findForwardJoinPoint helper function with
 | |
|   // information about the function and helper analyses, if available.
 | |
|   if (const BasicBlock *JoinBB = findForwardJoinPoint(PP->getParent()))
 | |
|     return &JoinBB->front();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\tNo join point found\n");
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| const Instruction *
 | |
| MustBeExecutedContextExplorer::getMustBeExecutedPrevInstruction(
 | |
|     MustBeExecutedIterator &It, const Instruction *PP) {
 | |
|   if (!PP)
 | |
|     return PP;
 | |
| 
 | |
|   bool IsFirst = !(PP->getPrevNode());
 | |
|   LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP
 | |
|                     << (IsFirst ? " [IsFirst]" : "") << "\n");
 | |
| 
 | |
|   // If we explore only inside a given basic block we stop at the first
 | |
|   // instruction.
 | |
|   if (!ExploreInterBlock && IsFirst) {
 | |
|     LLVM_DEBUG(dbgs() << "\tReached block front in intra-block mode, done\n");
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   // The block and function that contains the current position.
 | |
|   const BasicBlock *PPBlock = PP->getParent();
 | |
| 
 | |
|   // If we are inside a block we know what instruction was executed before, the
 | |
|   // previous one.
 | |
|   if (!IsFirst) {
 | |
|     const Instruction *PrevPP = PP->getPrevNode();
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "\tIntermediate instruction, continue with previous\n");
 | |
|     // We did not enter a callee so we simply return the previous instruction.
 | |
|     return PrevPP;
 | |
|   }
 | |
| 
 | |
|   // Finally, we have to handle the case where the program point is the first in
 | |
|   // a block but not in the function. We use the findBackwardJoinPoint helper
 | |
|   // function with information about the function and helper analyses, if
 | |
|   // available.
 | |
|   if (const BasicBlock *JoinBB = findBackwardJoinPoint(PPBlock))
 | |
|     return &JoinBB->back();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "\tNo join point found\n");
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| MustBeExecutedIterator::MustBeExecutedIterator(
 | |
|     MustBeExecutedContextExplorer &Explorer, const Instruction *I)
 | |
|     : Explorer(Explorer), CurInst(I) {
 | |
|   reset(I);
 | |
| }
 | |
| 
 | |
| void MustBeExecutedIterator::reset(const Instruction *I) {
 | |
|   Visited.clear();
 | |
|   resetInstruction(I);
 | |
| }
 | |
| 
 | |
| void MustBeExecutedIterator::resetInstruction(const Instruction *I) {
 | |
|   CurInst = I;
 | |
|   Head = Tail = nullptr;
 | |
|   Visited.insert({I, ExplorationDirection::FORWARD});
 | |
|   Visited.insert({I, ExplorationDirection::BACKWARD});
 | |
|   if (Explorer.ExploreCFGForward)
 | |
|     Head = I;
 | |
|   if (Explorer.ExploreCFGBackward)
 | |
|     Tail = I;
 | |
| }
 | |
| 
 | |
| const Instruction *MustBeExecutedIterator::advance() {
 | |
|   assert(CurInst && "Cannot advance an end iterator!");
 | |
|   Head = Explorer.getMustBeExecutedNextInstruction(*this, Head);
 | |
|   if (Head && Visited.insert({Head, ExplorationDirection ::FORWARD}).second)
 | |
|     return Head;
 | |
|   Head = nullptr;
 | |
| 
 | |
|   Tail = Explorer.getMustBeExecutedPrevInstruction(*this, Tail);
 | |
|   if (Tail && Visited.insert({Tail, ExplorationDirection ::BACKWARD}).second)
 | |
|     return Tail;
 | |
|   Tail = nullptr;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| PreservedAnalyses MustExecutePrinterPass::run(Function &F,
 | |
|                                               FunctionAnalysisManager &AM) {
 | |
|   auto &LI = AM.getResult<LoopAnalysis>(F);
 | |
|   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | |
| 
 | |
|   MustExecuteAnnotatedWriter Writer(F, DT, LI);
 | |
|   F.print(OS, &Writer);
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| PreservedAnalyses
 | |
| MustBeExecutedContextPrinterPass::run(Module &M, ModuleAnalysisManager &AM) {
 | |
|   FunctionAnalysisManager &FAM =
 | |
|       AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
 | |
|   GetterTy<const LoopInfo> LIGetter = [&](const Function &F) {
 | |
|     return &FAM.getResult<LoopAnalysis>(const_cast<Function &>(F));
 | |
|   };
 | |
|   GetterTy<const DominatorTree> DTGetter = [&](const Function &F) {
 | |
|     return &FAM.getResult<DominatorTreeAnalysis>(const_cast<Function &>(F));
 | |
|   };
 | |
|   GetterTy<const PostDominatorTree> PDTGetter = [&](const Function &F) {
 | |
|     return &FAM.getResult<PostDominatorTreeAnalysis>(const_cast<Function &>(F));
 | |
|   };
 | |
| 
 | |
|   MustBeExecutedContextExplorer Explorer(
 | |
|       /* ExploreInterBlock */ true,
 | |
|       /* ExploreCFGForward */ true,
 | |
|       /* ExploreCFGBackward */ true, LIGetter, DTGetter, PDTGetter);
 | |
| 
 | |
|   for (Function &F : M) {
 | |
|     for (Instruction &I : instructions(F)) {
 | |
|       OS << "-- Explore context of: " << I << "\n";
 | |
|       for (const Instruction *CI : Explorer.range(&I))
 | |
|         OS << "  [F: " << CI->getFunction()->getName() << "] " << *CI << "\n";
 | |
|     }
 | |
|   }
 | |
|   return PreservedAnalyses::all();
 | |
| }
 |