13336 lines
		
	
	
		
			510 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			13336 lines
		
	
	
		
			510 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains the implementation of the scalar evolution analysis
 | |
| // engine, which is used primarily to analyze expressions involving induction
 | |
| // variables in loops.
 | |
| //
 | |
| // There are several aspects to this library.  First is the representation of
 | |
| // scalar expressions, which are represented as subclasses of the SCEV class.
 | |
| // These classes are used to represent certain types of subexpressions that we
 | |
| // can handle. We only create one SCEV of a particular shape, so
 | |
| // pointer-comparisons for equality are legal.
 | |
| //
 | |
| // One important aspect of the SCEV objects is that they are never cyclic, even
 | |
| // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
 | |
| // the PHI node is one of the idioms that we can represent (e.g., a polynomial
 | |
| // recurrence) then we represent it directly as a recurrence node, otherwise we
 | |
| // represent it as a SCEVUnknown node.
 | |
| //
 | |
| // In addition to being able to represent expressions of various types, we also
 | |
| // have folders that are used to build the *canonical* representation for a
 | |
| // particular expression.  These folders are capable of using a variety of
 | |
| // rewrite rules to simplify the expressions.
 | |
| //
 | |
| // Once the folders are defined, we can implement the more interesting
 | |
| // higher-level code, such as the code that recognizes PHI nodes of various
 | |
| // types, computes the execution count of a loop, etc.
 | |
| //
 | |
| // TODO: We should use these routines and value representations to implement
 | |
| // dependence analysis!
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // There are several good references for the techniques used in this analysis.
 | |
| //
 | |
| //  Chains of recurrences -- a method to expedite the evaluation
 | |
| //  of closed-form functions
 | |
| //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
 | |
| //
 | |
| //  On computational properties of chains of recurrences
 | |
| //  Eugene V. Zima
 | |
| //
 | |
| //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
 | |
| //  Robert A. van Engelen
 | |
| //
 | |
| //  Efficient Symbolic Analysis for Optimizing Compilers
 | |
| //  Robert A. van Engelen
 | |
| //
 | |
| //  Using the chains of recurrences algebra for data dependence testing and
 | |
| //  induction variable substitution
 | |
| //  MS Thesis, Johnie Birch
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ScalarEvolution.h"
 | |
| #include "llvm/ADT/APInt.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/ADT/EquivalenceClasses.h"
 | |
| #include "llvm/ADT/FoldingSet.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/ScopeExit.h"
 | |
| #include "llvm/ADT/Sequence.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/ConstantFolding.h"
 | |
| #include "llvm/Analysis/InstructionSimplify.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionDivision.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/TargetLibraryInfo.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/IR/Argument.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/ConstantRange.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalValue.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Use.h"
 | |
| #include "llvm/IR/User.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/IR/Verifier.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/KnownBits.h"
 | |
| #include "llvm/Support/SaveAndRestore.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <climits>
 | |
| #include <cstddef>
 | |
| #include <cstdint>
 | |
| #include <cstdlib>
 | |
| #include <map>
 | |
| #include <memory>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "scalar-evolution"
 | |
| 
 | |
| STATISTIC(NumArrayLenItCounts,
 | |
|           "Number of trip counts computed with array length");
 | |
| STATISTIC(NumTripCountsComputed,
 | |
|           "Number of loops with predictable loop counts");
 | |
| STATISTIC(NumTripCountsNotComputed,
 | |
|           "Number of loops without predictable loop counts");
 | |
| STATISTIC(NumBruteForceTripCountsComputed,
 | |
|           "Number of loops with trip counts computed by force");
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
| MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
 | |
|                         cl::ZeroOrMore,
 | |
|                         cl::desc("Maximum number of iterations SCEV will "
 | |
|                                  "symbolically execute a constant "
 | |
|                                  "derived loop"),
 | |
|                         cl::init(100));
 | |
| 
 | |
| // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
 | |
| static cl::opt<bool> VerifySCEV(
 | |
|     "verify-scev", cl::Hidden,
 | |
|     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
 | |
| static cl::opt<bool> VerifySCEVStrict(
 | |
|     "verify-scev-strict", cl::Hidden,
 | |
|     cl::desc("Enable stricter verification with -verify-scev is passed"));
 | |
| static cl::opt<bool>
 | |
|     VerifySCEVMap("verify-scev-maps", cl::Hidden,
 | |
|                   cl::desc("Verify no dangling value in ScalarEvolution's "
 | |
|                            "ExprValueMap (slow)"));
 | |
| 
 | |
| static cl::opt<bool> VerifyIR(
 | |
|     "scev-verify-ir", cl::Hidden,
 | |
|     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
 | |
|     cl::init(false));
 | |
| 
 | |
| static cl::opt<unsigned> MulOpsInlineThreshold(
 | |
|     "scev-mulops-inline-threshold", cl::Hidden,
 | |
|     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
 | |
|     cl::init(32));
 | |
| 
 | |
| static cl::opt<unsigned> AddOpsInlineThreshold(
 | |
|     "scev-addops-inline-threshold", cl::Hidden,
 | |
|     cl::desc("Threshold for inlining addition operands into a SCEV"),
 | |
|     cl::init(500));
 | |
| 
 | |
| static cl::opt<unsigned> MaxSCEVCompareDepth(
 | |
|     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
 | |
|     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
 | |
|     cl::init(32));
 | |
| 
 | |
| static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
 | |
|     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
 | |
|     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
 | |
|     cl::init(2));
 | |
| 
 | |
| static cl::opt<unsigned> MaxValueCompareDepth(
 | |
|     "scalar-evolution-max-value-compare-depth", cl::Hidden,
 | |
|     cl::desc("Maximum depth of recursive value complexity comparisons"),
 | |
|     cl::init(2));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
|     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
 | |
|                   cl::desc("Maximum depth of recursive arithmetics"),
 | |
|                   cl::init(32));
 | |
| 
 | |
| static cl::opt<unsigned> MaxConstantEvolvingDepth(
 | |
|     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
 | |
|     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
|     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
 | |
|                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
 | |
|                  cl::init(8));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
|     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
 | |
|                   cl::desc("Max coefficients in AddRec during evolving"),
 | |
|                   cl::init(8));
 | |
| 
 | |
| static cl::opt<unsigned>
 | |
|     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
 | |
|                   cl::desc("Size of the expression which is considered huge"),
 | |
|                   cl::init(4096));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| ClassifyExpressions("scalar-evolution-classify-expressions",
 | |
|     cl::Hidden, cl::init(true),
 | |
|     cl::desc("When printing analysis, include information on every instruction"));
 | |
| 
 | |
| static cl::opt<bool> UseExpensiveRangeSharpening(
 | |
|     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
 | |
|     cl::init(false),
 | |
|     cl::desc("Use more powerful methods of sharpening expression ranges. May "
 | |
|              "be costly in terms of compile time"));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           SCEV class definitions
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Implementation of the SCEV class.
 | |
| //
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void SCEV::dump() const {
 | |
|   print(dbgs());
 | |
|   dbgs() << '\n';
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void SCEV::print(raw_ostream &OS) const {
 | |
|   switch (getSCEVType()) {
 | |
|   case scConstant:
 | |
|     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
 | |
|     return;
 | |
|   case scPtrToInt: {
 | |
|     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
 | |
|     const SCEV *Op = PtrToInt->getOperand();
 | |
|     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
 | |
|        << *PtrToInt->getType() << ")";
 | |
|     return;
 | |
|   }
 | |
|   case scTruncate: {
 | |
|     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
 | |
|     const SCEV *Op = Trunc->getOperand();
 | |
|     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
 | |
|        << *Trunc->getType() << ")";
 | |
|     return;
 | |
|   }
 | |
|   case scZeroExtend: {
 | |
|     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
 | |
|     const SCEV *Op = ZExt->getOperand();
 | |
|     OS << "(zext " << *Op->getType() << " " << *Op << " to "
 | |
|        << *ZExt->getType() << ")";
 | |
|     return;
 | |
|   }
 | |
|   case scSignExtend: {
 | |
|     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
 | |
|     const SCEV *Op = SExt->getOperand();
 | |
|     OS << "(sext " << *Op->getType() << " " << *Op << " to "
 | |
|        << *SExt->getType() << ")";
 | |
|     return;
 | |
|   }
 | |
|   case scAddRecExpr: {
 | |
|     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
 | |
|     OS << "{" << *AR->getOperand(0);
 | |
|     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
 | |
|       OS << ",+," << *AR->getOperand(i);
 | |
|     OS << "}<";
 | |
|     if (AR->hasNoUnsignedWrap())
 | |
|       OS << "nuw><";
 | |
|     if (AR->hasNoSignedWrap())
 | |
|       OS << "nsw><";
 | |
|     if (AR->hasNoSelfWrap() &&
 | |
|         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
 | |
|       OS << "nw><";
 | |
|     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
 | |
|     OS << ">";
 | |
|     return;
 | |
|   }
 | |
|   case scAddExpr:
 | |
|   case scMulExpr:
 | |
|   case scUMaxExpr:
 | |
|   case scSMaxExpr:
 | |
|   case scUMinExpr:
 | |
|   case scSMinExpr: {
 | |
|     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
 | |
|     const char *OpStr = nullptr;
 | |
|     switch (NAry->getSCEVType()) {
 | |
|     case scAddExpr: OpStr = " + "; break;
 | |
|     case scMulExpr: OpStr = " * "; break;
 | |
|     case scUMaxExpr: OpStr = " umax "; break;
 | |
|     case scSMaxExpr: OpStr = " smax "; break;
 | |
|     case scUMinExpr:
 | |
|       OpStr = " umin ";
 | |
|       break;
 | |
|     case scSMinExpr:
 | |
|       OpStr = " smin ";
 | |
|       break;
 | |
|     default:
 | |
|       llvm_unreachable("There are no other nary expression types.");
 | |
|     }
 | |
|     OS << "(";
 | |
|     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
 | |
|          I != E; ++I) {
 | |
|       OS << **I;
 | |
|       if (std::next(I) != E)
 | |
|         OS << OpStr;
 | |
|     }
 | |
|     OS << ")";
 | |
|     switch (NAry->getSCEVType()) {
 | |
|     case scAddExpr:
 | |
|     case scMulExpr:
 | |
|       if (NAry->hasNoUnsignedWrap())
 | |
|         OS << "<nuw>";
 | |
|       if (NAry->hasNoSignedWrap())
 | |
|         OS << "<nsw>";
 | |
|       break;
 | |
|     default:
 | |
|       // Nothing to print for other nary expressions.
 | |
|       break;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case scUDivExpr: {
 | |
|     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
 | |
|     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
 | |
|     return;
 | |
|   }
 | |
|   case scUnknown: {
 | |
|     const SCEVUnknown *U = cast<SCEVUnknown>(this);
 | |
|     Type *AllocTy;
 | |
|     if (U->isSizeOf(AllocTy)) {
 | |
|       OS << "sizeof(" << *AllocTy << ")";
 | |
|       return;
 | |
|     }
 | |
|     if (U->isAlignOf(AllocTy)) {
 | |
|       OS << "alignof(" << *AllocTy << ")";
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     Type *CTy;
 | |
|     Constant *FieldNo;
 | |
|     if (U->isOffsetOf(CTy, FieldNo)) {
 | |
|       OS << "offsetof(" << *CTy << ", ";
 | |
|       FieldNo->printAsOperand(OS, false);
 | |
|       OS << ")";
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Otherwise just print it normally.
 | |
|     U->getValue()->printAsOperand(OS, false);
 | |
|     return;
 | |
|   }
 | |
|   case scCouldNotCompute:
 | |
|     OS << "***COULDNOTCOMPUTE***";
 | |
|     return;
 | |
|   }
 | |
|   llvm_unreachable("Unknown SCEV kind!");
 | |
| }
 | |
| 
 | |
| Type *SCEV::getType() const {
 | |
|   switch (getSCEVType()) {
 | |
|   case scConstant:
 | |
|     return cast<SCEVConstant>(this)->getType();
 | |
|   case scPtrToInt:
 | |
|   case scTruncate:
 | |
|   case scZeroExtend:
 | |
|   case scSignExtend:
 | |
|     return cast<SCEVCastExpr>(this)->getType();
 | |
|   case scAddRecExpr:
 | |
|   case scMulExpr:
 | |
|   case scUMaxExpr:
 | |
|   case scSMaxExpr:
 | |
|   case scUMinExpr:
 | |
|   case scSMinExpr:
 | |
|     return cast<SCEVNAryExpr>(this)->getType();
 | |
|   case scAddExpr:
 | |
|     return cast<SCEVAddExpr>(this)->getType();
 | |
|   case scUDivExpr:
 | |
|     return cast<SCEVUDivExpr>(this)->getType();
 | |
|   case scUnknown:
 | |
|     return cast<SCEVUnknown>(this)->getType();
 | |
|   case scCouldNotCompute:
 | |
|     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 | |
|   }
 | |
|   llvm_unreachable("Unknown SCEV kind!");
 | |
| }
 | |
| 
 | |
| bool SCEV::isZero() const {
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
 | |
|     return SC->getValue()->isZero();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SCEV::isOne() const {
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
 | |
|     return SC->getValue()->isOne();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SCEV::isAllOnesValue() const {
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
 | |
|     return SC->getValue()->isMinusOne();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SCEV::isNonConstantNegative() const {
 | |
|   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
 | |
|   if (!Mul) return false;
 | |
| 
 | |
|   // If there is a constant factor, it will be first.
 | |
|   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
 | |
|   if (!SC) return false;
 | |
| 
 | |
|   // Return true if the value is negative, this matches things like (-42 * V).
 | |
|   return SC->getAPInt().isNegative();
 | |
| }
 | |
| 
 | |
| SCEVCouldNotCompute::SCEVCouldNotCompute() :
 | |
|   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
 | |
| 
 | |
| bool SCEVCouldNotCompute::classof(const SCEV *S) {
 | |
|   return S->getSCEVType() == scCouldNotCompute;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scConstant);
 | |
|   ID.AddPointer(V);
 | |
|   void *IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
|   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
 | |
|   return getConstant(ConstantInt::get(getContext(), Val));
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
 | |
|   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
 | |
|   return getConstant(ConstantInt::get(ITy, V, isSigned));
 | |
| }
 | |
| 
 | |
| SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
 | |
|                            const SCEV *op, Type *ty)
 | |
|     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
 | |
|   Operands[0] = op;
 | |
| }
 | |
| 
 | |
| SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
 | |
|                                    Type *ITy)
 | |
|     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
 | |
|   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
 | |
|          "Must be a non-bit-width-changing pointer-to-integer cast!");
 | |
| }
 | |
| 
 | |
| SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
 | |
|                                            SCEVTypes SCEVTy, const SCEV *op,
 | |
|                                            Type *ty)
 | |
|     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
 | |
| 
 | |
| SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
 | |
|                                    Type *ty)
 | |
|     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
 | |
|   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
 | |
|          "Cannot truncate non-integer value!");
 | |
| }
 | |
| 
 | |
| SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
 | |
|                                        const SCEV *op, Type *ty)
 | |
|     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
 | |
|   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
 | |
|          "Cannot zero extend non-integer value!");
 | |
| }
 | |
| 
 | |
| SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
 | |
|                                        const SCEV *op, Type *ty)
 | |
|     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
 | |
|   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
 | |
|          "Cannot sign extend non-integer value!");
 | |
| }
 | |
| 
 | |
| void SCEVUnknown::deleted() {
 | |
|   // Clear this SCEVUnknown from various maps.
 | |
|   SE->forgetMemoizedResults(this);
 | |
| 
 | |
|   // Remove this SCEVUnknown from the uniquing map.
 | |
|   SE->UniqueSCEVs.RemoveNode(this);
 | |
| 
 | |
|   // Release the value.
 | |
|   setValPtr(nullptr);
 | |
| }
 | |
| 
 | |
| void SCEVUnknown::allUsesReplacedWith(Value *New) {
 | |
|   // Remove this SCEVUnknown from the uniquing map.
 | |
|   SE->UniqueSCEVs.RemoveNode(this);
 | |
| 
 | |
|   // Update this SCEVUnknown to point to the new value. This is needed
 | |
|   // because there may still be outstanding SCEVs which still point to
 | |
|   // this SCEVUnknown.
 | |
|   setValPtr(New);
 | |
| }
 | |
| 
 | |
| bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
 | |
|   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
 | |
|     if (VCE->getOpcode() == Instruction::PtrToInt)
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
 | |
|         if (CE->getOpcode() == Instruction::GetElementPtr &&
 | |
|             CE->getOperand(0)->isNullValue() &&
 | |
|             CE->getNumOperands() == 2)
 | |
|           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
 | |
|             if (CI->isOne()) {
 | |
|               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
 | |
|                                  ->getElementType();
 | |
|               return true;
 | |
|             }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
 | |
|   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
 | |
|     if (VCE->getOpcode() == Instruction::PtrToInt)
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
 | |
|         if (CE->getOpcode() == Instruction::GetElementPtr &&
 | |
|             CE->getOperand(0)->isNullValue()) {
 | |
|           Type *Ty =
 | |
|             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
 | |
|           if (StructType *STy = dyn_cast<StructType>(Ty))
 | |
|             if (!STy->isPacked() &&
 | |
|                 CE->getNumOperands() == 3 &&
 | |
|                 CE->getOperand(1)->isNullValue()) {
 | |
|               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
 | |
|                 if (CI->isOne() &&
 | |
|                     STy->getNumElements() == 2 &&
 | |
|                     STy->getElementType(0)->isIntegerTy(1)) {
 | |
|                   AllocTy = STy->getElementType(1);
 | |
|                   return true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
 | |
|   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
 | |
|     if (VCE->getOpcode() == Instruction::PtrToInt)
 | |
|       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
 | |
|         if (CE->getOpcode() == Instruction::GetElementPtr &&
 | |
|             CE->getNumOperands() == 3 &&
 | |
|             CE->getOperand(0)->isNullValue() &&
 | |
|             CE->getOperand(1)->isNullValue()) {
 | |
|           Type *Ty =
 | |
|             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
 | |
|           // Ignore vector types here so that ScalarEvolutionExpander doesn't
 | |
|           // emit getelementptrs that index into vectors.
 | |
|           if (Ty->isStructTy() || Ty->isArrayTy()) {
 | |
|             CTy = Ty;
 | |
|             FieldNo = CE->getOperand(2);
 | |
|             return true;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               SCEV Utilities
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Compare the two values \p LV and \p RV in terms of their "complexity" where
 | |
| /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
 | |
| /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
 | |
| /// have been previously deemed to be "equally complex" by this routine.  It is
 | |
| /// intended to avoid exponential time complexity in cases like:
 | |
| ///
 | |
| ///   %a = f(%x, %y)
 | |
| ///   %b = f(%a, %a)
 | |
| ///   %c = f(%b, %b)
 | |
| ///
 | |
| ///   %d = f(%x, %y)
 | |
| ///   %e = f(%d, %d)
 | |
| ///   %f = f(%e, %e)
 | |
| ///
 | |
| ///   CompareValueComplexity(%f, %c)
 | |
| ///
 | |
| /// Since we do not continue running this routine on expression trees once we
 | |
| /// have seen unequal values, there is no need to track them in the cache.
 | |
| static int
 | |
| CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
 | |
|                        const LoopInfo *const LI, Value *LV, Value *RV,
 | |
|                        unsigned Depth) {
 | |
|   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
 | |
|     return 0;
 | |
| 
 | |
|   // Order pointer values after integer values. This helps SCEVExpander form
 | |
|   // GEPs.
 | |
|   bool LIsPointer = LV->getType()->isPointerTy(),
 | |
|        RIsPointer = RV->getType()->isPointerTy();
 | |
|   if (LIsPointer != RIsPointer)
 | |
|     return (int)LIsPointer - (int)RIsPointer;
 | |
| 
 | |
|   // Compare getValueID values.
 | |
|   unsigned LID = LV->getValueID(), RID = RV->getValueID();
 | |
|   if (LID != RID)
 | |
|     return (int)LID - (int)RID;
 | |
| 
 | |
|   // Sort arguments by their position.
 | |
|   if (const auto *LA = dyn_cast<Argument>(LV)) {
 | |
|     const auto *RA = cast<Argument>(RV);
 | |
|     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
 | |
|     return (int)LArgNo - (int)RArgNo;
 | |
|   }
 | |
| 
 | |
|   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
 | |
|     const auto *RGV = cast<GlobalValue>(RV);
 | |
| 
 | |
|     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
 | |
|       auto LT = GV->getLinkage();
 | |
|       return !(GlobalValue::isPrivateLinkage(LT) ||
 | |
|                GlobalValue::isInternalLinkage(LT));
 | |
|     };
 | |
| 
 | |
|     // Use the names to distinguish the two values, but only if the
 | |
|     // names are semantically important.
 | |
|     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
 | |
|       return LGV->getName().compare(RGV->getName());
 | |
|   }
 | |
| 
 | |
|   // For instructions, compare their loop depth, and their operand count.  This
 | |
|   // is pretty loose.
 | |
|   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
 | |
|     const auto *RInst = cast<Instruction>(RV);
 | |
| 
 | |
|     // Compare loop depths.
 | |
|     const BasicBlock *LParent = LInst->getParent(),
 | |
|                      *RParent = RInst->getParent();
 | |
|     if (LParent != RParent) {
 | |
|       unsigned LDepth = LI->getLoopDepth(LParent),
 | |
|                RDepth = LI->getLoopDepth(RParent);
 | |
|       if (LDepth != RDepth)
 | |
|         return (int)LDepth - (int)RDepth;
 | |
|     }
 | |
| 
 | |
|     // Compare the number of operands.
 | |
|     unsigned LNumOps = LInst->getNumOperands(),
 | |
|              RNumOps = RInst->getNumOperands();
 | |
|     if (LNumOps != RNumOps)
 | |
|       return (int)LNumOps - (int)RNumOps;
 | |
| 
 | |
|     for (unsigned Idx : seq(0u, LNumOps)) {
 | |
|       int Result =
 | |
|           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
 | |
|                                  RInst->getOperand(Idx), Depth + 1);
 | |
|       if (Result != 0)
 | |
|         return Result;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   EqCacheValue.unionSets(LV, RV);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Return negative, zero, or positive, if LHS is less than, equal to, or greater
 | |
| // than RHS, respectively. A three-way result allows recursive comparisons to be
 | |
| // more efficient.
 | |
| static int CompareSCEVComplexity(
 | |
|     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
 | |
|     EquivalenceClasses<const Value *> &EqCacheValue,
 | |
|     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
 | |
|     DominatorTree &DT, unsigned Depth = 0) {
 | |
|   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
 | |
|   if (LHS == RHS)
 | |
|     return 0;
 | |
| 
 | |
|   // Primarily, sort the SCEVs by their getSCEVType().
 | |
|   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
 | |
|   if (LType != RType)
 | |
|     return (int)LType - (int)RType;
 | |
| 
 | |
|   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
 | |
|     return 0;
 | |
|   // Aside from the getSCEVType() ordering, the particular ordering
 | |
|   // isn't very important except that it's beneficial to be consistent,
 | |
|   // so that (a + b) and (b + a) don't end up as different expressions.
 | |
|   switch (LType) {
 | |
|   case scUnknown: {
 | |
|     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
 | |
|     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
 | |
| 
 | |
|     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
 | |
|                                    RU->getValue(), Depth + 1);
 | |
|     if (X == 0)
 | |
|       EqCacheSCEV.unionSets(LHS, RHS);
 | |
|     return X;
 | |
|   }
 | |
| 
 | |
|   case scConstant: {
 | |
|     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
 | |
|     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
 | |
| 
 | |
|     // Compare constant values.
 | |
|     const APInt &LA = LC->getAPInt();
 | |
|     const APInt &RA = RC->getAPInt();
 | |
|     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
 | |
|     if (LBitWidth != RBitWidth)
 | |
|       return (int)LBitWidth - (int)RBitWidth;
 | |
|     return LA.ult(RA) ? -1 : 1;
 | |
|   }
 | |
| 
 | |
|   case scAddRecExpr: {
 | |
|     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
 | |
|     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
 | |
| 
 | |
|     // There is always a dominance between two recs that are used by one SCEV,
 | |
|     // so we can safely sort recs by loop header dominance. We require such
 | |
|     // order in getAddExpr.
 | |
|     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
 | |
|     if (LLoop != RLoop) {
 | |
|       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
 | |
|       assert(LHead != RHead && "Two loops share the same header?");
 | |
|       if (DT.dominates(LHead, RHead))
 | |
|         return 1;
 | |
|       else
 | |
|         assert(DT.dominates(RHead, LHead) &&
 | |
|                "No dominance between recurrences used by one SCEV?");
 | |
|       return -1;
 | |
|     }
 | |
| 
 | |
|     // Addrec complexity grows with operand count.
 | |
|     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
 | |
|     if (LNumOps != RNumOps)
 | |
|       return (int)LNumOps - (int)RNumOps;
 | |
| 
 | |
|     // Lexicographically compare.
 | |
|     for (unsigned i = 0; i != LNumOps; ++i) {
 | |
|       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
 | |
|                                     LA->getOperand(i), RA->getOperand(i), DT,
 | |
|                                     Depth + 1);
 | |
|       if (X != 0)
 | |
|         return X;
 | |
|     }
 | |
|     EqCacheSCEV.unionSets(LHS, RHS);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case scAddExpr:
 | |
|   case scMulExpr:
 | |
|   case scSMaxExpr:
 | |
|   case scUMaxExpr:
 | |
|   case scSMinExpr:
 | |
|   case scUMinExpr: {
 | |
|     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
 | |
|     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
 | |
| 
 | |
|     // Lexicographically compare n-ary expressions.
 | |
|     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
 | |
|     if (LNumOps != RNumOps)
 | |
|       return (int)LNumOps - (int)RNumOps;
 | |
| 
 | |
|     for (unsigned i = 0; i != LNumOps; ++i) {
 | |
|       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
 | |
|                                     LC->getOperand(i), RC->getOperand(i), DT,
 | |
|                                     Depth + 1);
 | |
|       if (X != 0)
 | |
|         return X;
 | |
|     }
 | |
|     EqCacheSCEV.unionSets(LHS, RHS);
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   case scUDivExpr: {
 | |
|     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
 | |
|     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
 | |
| 
 | |
|     // Lexicographically compare udiv expressions.
 | |
|     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
 | |
|                                   RC->getLHS(), DT, Depth + 1);
 | |
|     if (X != 0)
 | |
|       return X;
 | |
|     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
 | |
|                               RC->getRHS(), DT, Depth + 1);
 | |
|     if (X == 0)
 | |
|       EqCacheSCEV.unionSets(LHS, RHS);
 | |
|     return X;
 | |
|   }
 | |
| 
 | |
|   case scPtrToInt:
 | |
|   case scTruncate:
 | |
|   case scZeroExtend:
 | |
|   case scSignExtend: {
 | |
|     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
 | |
|     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
 | |
| 
 | |
|     // Compare cast expressions by operand.
 | |
|     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
 | |
|                                   LC->getOperand(), RC->getOperand(), DT,
 | |
|                                   Depth + 1);
 | |
|     if (X == 0)
 | |
|       EqCacheSCEV.unionSets(LHS, RHS);
 | |
|     return X;
 | |
|   }
 | |
| 
 | |
|   case scCouldNotCompute:
 | |
|     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 | |
|   }
 | |
|   llvm_unreachable("Unknown SCEV kind!");
 | |
| }
 | |
| 
 | |
| /// Given a list of SCEV objects, order them by their complexity, and group
 | |
| /// objects of the same complexity together by value.  When this routine is
 | |
| /// finished, we know that any duplicates in the vector are consecutive and that
 | |
| /// complexity is monotonically increasing.
 | |
| ///
 | |
| /// Note that we go take special precautions to ensure that we get deterministic
 | |
| /// results from this routine.  In other words, we don't want the results of
 | |
| /// this to depend on where the addresses of various SCEV objects happened to
 | |
| /// land in memory.
 | |
| static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
 | |
|                               LoopInfo *LI, DominatorTree &DT) {
 | |
|   if (Ops.size() < 2) return;  // Noop
 | |
| 
 | |
|   EquivalenceClasses<const SCEV *> EqCacheSCEV;
 | |
|   EquivalenceClasses<const Value *> EqCacheValue;
 | |
|   if (Ops.size() == 2) {
 | |
|     // This is the common case, which also happens to be trivially simple.
 | |
|     // Special case it.
 | |
|     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
 | |
|     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
 | |
|       std::swap(LHS, RHS);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Do the rough sort by complexity.
 | |
|   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
 | |
|     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
 | |
|            0;
 | |
|   });
 | |
| 
 | |
|   // Now that we are sorted by complexity, group elements of the same
 | |
|   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
 | |
|   // be extremely short in practice.  Note that we take this approach because we
 | |
|   // do not want to depend on the addresses of the objects we are grouping.
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
 | |
|     const SCEV *S = Ops[i];
 | |
|     unsigned Complexity = S->getSCEVType();
 | |
| 
 | |
|     // If there are any objects of the same complexity and same value as this
 | |
|     // one, group them.
 | |
|     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
 | |
|       if (Ops[j] == S) { // Found a duplicate.
 | |
|         // Move it to immediately after i'th element.
 | |
|         std::swap(Ops[i+1], Ops[j]);
 | |
|         ++i;   // no need to rescan it.
 | |
|         if (i == e-2) return;  // Done!
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
 | |
| /// least HugeExprThreshold nodes).
 | |
| static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
 | |
|   return any_of(Ops, [](const SCEV *S) {
 | |
|     return S->getExpressionSize() >= HugeExprThreshold;
 | |
|   });
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      Simple SCEV method implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
 | |
| static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
 | |
|                                        ScalarEvolution &SE,
 | |
|                                        Type *ResultTy) {
 | |
|   // Handle the simplest case efficiently.
 | |
|   if (K == 1)
 | |
|     return SE.getTruncateOrZeroExtend(It, ResultTy);
 | |
| 
 | |
|   // We are using the following formula for BC(It, K):
 | |
|   //
 | |
|   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
 | |
|   //
 | |
|   // Suppose, W is the bitwidth of the return value.  We must be prepared for
 | |
|   // overflow.  Hence, we must assure that the result of our computation is
 | |
|   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
 | |
|   // safe in modular arithmetic.
 | |
|   //
 | |
|   // However, this code doesn't use exactly that formula; the formula it uses
 | |
|   // is something like the following, where T is the number of factors of 2 in
 | |
|   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
 | |
|   // exponentiation:
 | |
|   //
 | |
|   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
 | |
|   //
 | |
|   // This formula is trivially equivalent to the previous formula.  However,
 | |
|   // this formula can be implemented much more efficiently.  The trick is that
 | |
|   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
 | |
|   // arithmetic.  To do exact division in modular arithmetic, all we have
 | |
|   // to do is multiply by the inverse.  Therefore, this step can be done at
 | |
|   // width W.
 | |
|   //
 | |
|   // The next issue is how to safely do the division by 2^T.  The way this
 | |
|   // is done is by doing the multiplication step at a width of at least W + T
 | |
|   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
 | |
|   // when we perform the division by 2^T (which is equivalent to a right shift
 | |
|   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
 | |
|   // truncated out after the division by 2^T.
 | |
|   //
 | |
|   // In comparison to just directly using the first formula, this technique
 | |
|   // is much more efficient; using the first formula requires W * K bits,
 | |
|   // but this formula less than W + K bits. Also, the first formula requires
 | |
|   // a division step, whereas this formula only requires multiplies and shifts.
 | |
|   //
 | |
|   // It doesn't matter whether the subtraction step is done in the calculation
 | |
|   // width or the input iteration count's width; if the subtraction overflows,
 | |
|   // the result must be zero anyway.  We prefer here to do it in the width of
 | |
|   // the induction variable because it helps a lot for certain cases; CodeGen
 | |
|   // isn't smart enough to ignore the overflow, which leads to much less
 | |
|   // efficient code if the width of the subtraction is wider than the native
 | |
|   // register width.
 | |
|   //
 | |
|   // (It's possible to not widen at all by pulling out factors of 2 before
 | |
|   // the multiplication; for example, K=2 can be calculated as
 | |
|   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
 | |
|   // extra arithmetic, so it's not an obvious win, and it gets
 | |
|   // much more complicated for K > 3.)
 | |
| 
 | |
|   // Protection from insane SCEVs; this bound is conservative,
 | |
|   // but it probably doesn't matter.
 | |
|   if (K > 1000)
 | |
|     return SE.getCouldNotCompute();
 | |
| 
 | |
|   unsigned W = SE.getTypeSizeInBits(ResultTy);
 | |
| 
 | |
|   // Calculate K! / 2^T and T; we divide out the factors of two before
 | |
|   // multiplying for calculating K! / 2^T to avoid overflow.
 | |
|   // Other overflow doesn't matter because we only care about the bottom
 | |
|   // W bits of the result.
 | |
|   APInt OddFactorial(W, 1);
 | |
|   unsigned T = 1;
 | |
|   for (unsigned i = 3; i <= K; ++i) {
 | |
|     APInt Mult(W, i);
 | |
|     unsigned TwoFactors = Mult.countTrailingZeros();
 | |
|     T += TwoFactors;
 | |
|     Mult.lshrInPlace(TwoFactors);
 | |
|     OddFactorial *= Mult;
 | |
|   }
 | |
| 
 | |
|   // We need at least W + T bits for the multiplication step
 | |
|   unsigned CalculationBits = W + T;
 | |
| 
 | |
|   // Calculate 2^T, at width T+W.
 | |
|   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
 | |
| 
 | |
|   // Calculate the multiplicative inverse of K! / 2^T;
 | |
|   // this multiplication factor will perform the exact division by
 | |
|   // K! / 2^T.
 | |
|   APInt Mod = APInt::getSignedMinValue(W+1);
 | |
|   APInt MultiplyFactor = OddFactorial.zext(W+1);
 | |
|   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
 | |
|   MultiplyFactor = MultiplyFactor.trunc(W);
 | |
| 
 | |
|   // Calculate the product, at width T+W
 | |
|   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
 | |
|                                                       CalculationBits);
 | |
|   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
 | |
|   for (unsigned i = 1; i != K; ++i) {
 | |
|     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
 | |
|     Dividend = SE.getMulExpr(Dividend,
 | |
|                              SE.getTruncateOrZeroExtend(S, CalculationTy));
 | |
|   }
 | |
| 
 | |
|   // Divide by 2^T
 | |
|   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
 | |
| 
 | |
|   // Truncate the result, and divide by K! / 2^T.
 | |
| 
 | |
|   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
 | |
|                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
 | |
| }
 | |
| 
 | |
| /// Return the value of this chain of recurrences at the specified iteration
 | |
| /// number.  We can evaluate this recurrence by multiplying each element in the
 | |
| /// chain by the binomial coefficient corresponding to it.  In other words, we
 | |
| /// can evaluate {A,+,B,+,C,+,D} as:
 | |
| ///
 | |
| ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
 | |
| ///
 | |
| /// where BC(It, k) stands for binomial coefficient.
 | |
| const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
 | |
|                                                 ScalarEvolution &SE) const {
 | |
|   const SCEV *Result = getStart();
 | |
|   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | |
|     // The computation is correct in the face of overflow provided that the
 | |
|     // multiplication is performed _after_ the evaluation of the binomial
 | |
|     // coefficient.
 | |
|     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
 | |
|     if (isa<SCEVCouldNotCompute>(Coeff))
 | |
|       return Coeff;
 | |
| 
 | |
|     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                    SCEV Expression folder implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty,
 | |
|                                              unsigned Depth) {
 | |
|   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
 | |
|   assert(Depth <= 1 && "getPtrToIntExpr() should self-recurse at most once.");
 | |
| 
 | |
|   // We could be called with an integer-typed operands during SCEV rewrites.
 | |
|   // Since the operand is an integer already, just perform zext/trunc/self cast.
 | |
|   if (!Op->getType()->isPointerTy())
 | |
|     return getTruncateOrZeroExtend(Op, Ty);
 | |
| 
 | |
|   // What would be an ID for such a SCEV cast expression?
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scPtrToInt);
 | |
|   ID.AddPointer(Op);
 | |
| 
 | |
|   void *IP = nullptr;
 | |
| 
 | |
|   // Is there already an expression for such a cast?
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
 | |
|     return getTruncateOrZeroExtend(S, Ty);
 | |
| 
 | |
|   // If not, is this expression something we can't reduce any further?
 | |
|   if (isa<SCEVUnknown>(Op)) {
 | |
|     // Create an explicit cast node.
 | |
|     // We can reuse the existing insert position since if we get here,
 | |
|     // we won't have made any changes which would invalidate it.
 | |
|     Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
 | |
|     assert(getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(
 | |
|                Op->getType())) == getDataLayout().getTypeSizeInBits(IntPtrTy) &&
 | |
|            "We can only model ptrtoint if SCEV's effective (integer) type is "
 | |
|            "sufficiently wide to represent all possible pointer values.");
 | |
|     SCEV *S = new (SCEVAllocator)
 | |
|         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
 | |
|     UniqueSCEVs.InsertNode(S, IP);
 | |
|     addToLoopUseLists(S);
 | |
|     return getTruncateOrZeroExtend(S, Ty);
 | |
|   }
 | |
| 
 | |
|   assert(Depth == 0 &&
 | |
|          "getPtrToIntExpr() should not self-recurse for non-SCEVUnknown's.");
 | |
| 
 | |
|   // Otherwise, we've got some expression that is more complex than just a
 | |
|   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
 | |
|   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
 | |
|   // only, and the expressions must otherwise be integer-typed.
 | |
|   // So sink the cast down to the SCEVUnknown's.
 | |
| 
 | |
|   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
 | |
|   /// which computes a pointer-typed value, and rewrites the whole expression
 | |
|   /// tree so that *all* the computations are done on integers, and the only
 | |
|   /// pointer-typed operands in the expression are SCEVUnknown.
 | |
|   class SCEVPtrToIntSinkingRewriter
 | |
|       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
 | |
|     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
 | |
| 
 | |
|   public:
 | |
|     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
 | |
| 
 | |
|     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
 | |
|       SCEVPtrToIntSinkingRewriter Rewriter(SE);
 | |
|       return Rewriter.visit(Scev);
 | |
|     }
 | |
| 
 | |
|     const SCEV *visit(const SCEV *S) {
 | |
|       Type *STy = S->getType();
 | |
|       // If the expression is not pointer-typed, just keep it as-is.
 | |
|       if (!STy->isPointerTy())
 | |
|         return S;
 | |
|       // Else, recursively sink the cast down into it.
 | |
|       return Base::visit(S);
 | |
|     }
 | |
| 
 | |
|     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
 | |
|       SmallVector<const SCEV *, 2> Operands;
 | |
|       bool Changed = false;
 | |
|       for (auto *Op : Expr->operands()) {
 | |
|         Operands.push_back(visit(Op));
 | |
|         Changed |= Op != Operands.back();
 | |
|       }
 | |
|       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
 | |
|     }
 | |
| 
 | |
|     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
 | |
|       SmallVector<const SCEV *, 2> Operands;
 | |
|       bool Changed = false;
 | |
|       for (auto *Op : Expr->operands()) {
 | |
|         Operands.push_back(visit(Op));
 | |
|         Changed |= Op != Operands.back();
 | |
|       }
 | |
|       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
 | |
|     }
 | |
| 
 | |
|     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
 | |
|       Type *ExprPtrTy = Expr->getType();
 | |
|       assert(ExprPtrTy->isPointerTy() &&
 | |
|              "Should only reach pointer-typed SCEVUnknown's.");
 | |
|       Type *ExprIntPtrTy = SE.getDataLayout().getIntPtrType(ExprPtrTy);
 | |
|       return SE.getPtrToIntExpr(Expr, ExprIntPtrTy, /*Depth=*/1);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   // And actually perform the cast sinking.
 | |
|   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
 | |
|   assert(IntOp->getType()->isIntegerTy() &&
 | |
|          "We must have succeeded in sinking the cast, "
 | |
|          "and ending up with an integer-typed expression!");
 | |
|   return getTruncateOrZeroExtend(IntOp, Ty);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
 | |
|                                              unsigned Depth) {
 | |
|   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
 | |
|          "This is not a truncating conversion!");
 | |
|   assert(isSCEVable(Ty) &&
 | |
|          "This is not a conversion to a SCEVable type!");
 | |
|   Ty = getEffectiveSCEVType(Ty);
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scTruncate);
 | |
|   ID.AddPointer(Op);
 | |
|   ID.AddPointer(Ty);
 | |
|   void *IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
| 
 | |
|   // Fold if the operand is constant.
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     return getConstant(
 | |
|       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
 | |
| 
 | |
|   // trunc(trunc(x)) --> trunc(x)
 | |
|   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
 | |
|     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
 | |
| 
 | |
|   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
 | |
|   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
 | |
|     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
 | |
| 
 | |
|   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
 | |
|   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
 | |
|     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
 | |
| 
 | |
|   if (Depth > MaxCastDepth) {
 | |
|     SCEV *S =
 | |
|         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
 | |
|     UniqueSCEVs.InsertNode(S, IP);
 | |
|     addToLoopUseLists(S);
 | |
|     return S;
 | |
|   }
 | |
| 
 | |
|   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
 | |
|   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
 | |
|   // if after transforming we have at most one truncate, not counting truncates
 | |
|   // that replace other casts.
 | |
|   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
 | |
|     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
 | |
|     SmallVector<const SCEV *, 4> Operands;
 | |
|     unsigned numTruncs = 0;
 | |
|     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
 | |
|          ++i) {
 | |
|       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
 | |
|       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
 | |
|           isa<SCEVTruncateExpr>(S))
 | |
|         numTruncs++;
 | |
|       Operands.push_back(S);
 | |
|     }
 | |
|     if (numTruncs < 2) {
 | |
|       if (isa<SCEVAddExpr>(Op))
 | |
|         return getAddExpr(Operands);
 | |
|       else if (isa<SCEVMulExpr>(Op))
 | |
|         return getMulExpr(Operands);
 | |
|       else
 | |
|         llvm_unreachable("Unexpected SCEV type for Op.");
 | |
|     }
 | |
|     // Although we checked in the beginning that ID is not in the cache, it is
 | |
|     // possible that during recursion and different modification ID was inserted
 | |
|     // into the cache. So if we find it, just return it.
 | |
|     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
 | |
|       return S;
 | |
|   }
 | |
| 
 | |
|   // If the input value is a chrec scev, truncate the chrec's operands.
 | |
|   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
 | |
|     SmallVector<const SCEV *, 4> Operands;
 | |
|     for (const SCEV *Op : AddRec->operands())
 | |
|       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
 | |
|     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
 | |
|   }
 | |
| 
 | |
|   // Return zero if truncating to known zeros.
 | |
|   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
 | |
|   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
 | |
|     return getZero(Ty);
 | |
| 
 | |
|   // The cast wasn't folded; create an explicit cast node. We can reuse
 | |
|   // the existing insert position since if we get here, we won't have
 | |
|   // made any changes which would invalidate it.
 | |
|   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
 | |
|                                                  Op, Ty);
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   addToLoopUseLists(S);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| // Get the limit of a recurrence such that incrementing by Step cannot cause
 | |
| // signed overflow as long as the value of the recurrence within the
 | |
| // loop does not exceed this limit before incrementing.
 | |
| static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
 | |
|                                                  ICmpInst::Predicate *Pred,
 | |
|                                                  ScalarEvolution *SE) {
 | |
|   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
 | |
|   if (SE->isKnownPositive(Step)) {
 | |
|     *Pred = ICmpInst::ICMP_SLT;
 | |
|     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
 | |
|                            SE->getSignedRangeMax(Step));
 | |
|   }
 | |
|   if (SE->isKnownNegative(Step)) {
 | |
|     *Pred = ICmpInst::ICMP_SGT;
 | |
|     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
 | |
|                            SE->getSignedRangeMin(Step));
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Get the limit of a recurrence such that incrementing by Step cannot cause
 | |
| // unsigned overflow as long as the value of the recurrence within the loop does
 | |
| // not exceed this limit before incrementing.
 | |
| static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
 | |
|                                                    ICmpInst::Predicate *Pred,
 | |
|                                                    ScalarEvolution *SE) {
 | |
|   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
 | |
|   *Pred = ICmpInst::ICMP_ULT;
 | |
| 
 | |
|   return SE->getConstant(APInt::getMinValue(BitWidth) -
 | |
|                          SE->getUnsignedRangeMax(Step));
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct ExtendOpTraitsBase {
 | |
|   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
 | |
|                                                           unsigned);
 | |
| };
 | |
| 
 | |
| // Used to make code generic over signed and unsigned overflow.
 | |
| template <typename ExtendOp> struct ExtendOpTraits {
 | |
|   // Members present:
 | |
|   //
 | |
|   // static const SCEV::NoWrapFlags WrapType;
 | |
|   //
 | |
|   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
 | |
|   //
 | |
|   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
 | |
|   //                                           ICmpInst::Predicate *Pred,
 | |
|   //                                           ScalarEvolution *SE);
 | |
| };
 | |
| 
 | |
| template <>
 | |
| struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
 | |
|   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
 | |
| 
 | |
|   static const GetExtendExprTy GetExtendExpr;
 | |
| 
 | |
|   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
 | |
|                                              ICmpInst::Predicate *Pred,
 | |
|                                              ScalarEvolution *SE) {
 | |
|     return getSignedOverflowLimitForStep(Step, Pred, SE);
 | |
|   }
 | |
| };
 | |
| 
 | |
| const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
 | |
|     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
 | |
| 
 | |
| template <>
 | |
| struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
 | |
|   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
 | |
| 
 | |
|   static const GetExtendExprTy GetExtendExpr;
 | |
| 
 | |
|   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
 | |
|                                              ICmpInst::Predicate *Pred,
 | |
|                                              ScalarEvolution *SE) {
 | |
|     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
 | |
|   }
 | |
| };
 | |
| 
 | |
| const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
 | |
|     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // The recurrence AR has been shown to have no signed/unsigned wrap or something
 | |
| // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
 | |
| // easily prove NSW/NUW for its preincrement or postincrement sibling. This
 | |
| // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
 | |
| // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
 | |
| // expression "Step + sext/zext(PreIncAR)" is congruent with
 | |
| // "sext/zext(PostIncAR)"
 | |
| template <typename ExtendOpTy>
 | |
| static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
 | |
|                                         ScalarEvolution *SE, unsigned Depth) {
 | |
|   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
 | |
|   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
 | |
| 
 | |
|   const Loop *L = AR->getLoop();
 | |
|   const SCEV *Start = AR->getStart();
 | |
|   const SCEV *Step = AR->getStepRecurrence(*SE);
 | |
| 
 | |
|   // Check for a simple looking step prior to loop entry.
 | |
|   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
 | |
|   if (!SA)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
 | |
|   // subtraction is expensive. For this purpose, perform a quick and dirty
 | |
|   // difference, by checking for Step in the operand list.
 | |
|   SmallVector<const SCEV *, 4> DiffOps;
 | |
|   for (const SCEV *Op : SA->operands())
 | |
|     if (Op != Step)
 | |
|       DiffOps.push_back(Op);
 | |
| 
 | |
|   if (DiffOps.size() == SA->getNumOperands())
 | |
|     return nullptr;
 | |
| 
 | |
|   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
 | |
|   // `Step`:
 | |
| 
 | |
|   // 1. NSW/NUW flags on the step increment.
 | |
|   auto PreStartFlags =
 | |
|     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
 | |
|   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
 | |
|   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
 | |
|       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
 | |
| 
 | |
|   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
 | |
|   // "S+X does not sign/unsign-overflow".
 | |
|   //
 | |
| 
 | |
|   const SCEV *BECount = SE->getBackedgeTakenCount(L);
 | |
|   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
 | |
|       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
 | |
|     return PreStart;
 | |
| 
 | |
|   // 2. Direct overflow check on the step operation's expression.
 | |
|   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
 | |
|   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
 | |
|   const SCEV *OperandExtendedStart =
 | |
|       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
 | |
|                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
 | |
|   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
 | |
|     if (PreAR && AR->getNoWrapFlags(WrapType)) {
 | |
|       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
 | |
|       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
 | |
|       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
 | |
|       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
 | |
|     }
 | |
|     return PreStart;
 | |
|   }
 | |
| 
 | |
|   // 3. Loop precondition.
 | |
|   ICmpInst::Predicate Pred;
 | |
|   const SCEV *OverflowLimit =
 | |
|       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
 | |
| 
 | |
|   if (OverflowLimit &&
 | |
|       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
 | |
|     return PreStart;
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Get the normalized zero or sign extended expression for this AddRec's Start.
 | |
| template <typename ExtendOpTy>
 | |
| static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
 | |
|                                         ScalarEvolution *SE,
 | |
|                                         unsigned Depth) {
 | |
|   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
 | |
| 
 | |
|   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
 | |
|   if (!PreStart)
 | |
|     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
 | |
| 
 | |
|   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
 | |
|                                              Depth),
 | |
|                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
 | |
| }
 | |
| 
 | |
| // Try to prove away overflow by looking at "nearby" add recurrences.  A
 | |
| // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
 | |
| // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
 | |
| //
 | |
| // Formally:
 | |
| //
 | |
| //     {S,+,X} == {S-T,+,X} + T
 | |
| //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
 | |
| //
 | |
| // If ({S-T,+,X} + T) does not overflow  ... (1)
 | |
| //
 | |
| //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
 | |
| //
 | |
| // If {S-T,+,X} does not overflow  ... (2)
 | |
| //
 | |
| //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
 | |
| //      == {Ext(S-T)+Ext(T),+,Ext(X)}
 | |
| //
 | |
| // If (S-T)+T does not overflow  ... (3)
 | |
| //
 | |
| //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
 | |
| //      == {Ext(S),+,Ext(X)} == LHS
 | |
| //
 | |
| // Thus, if (1), (2) and (3) are true for some T, then
 | |
| //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
 | |
| //
 | |
| // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
 | |
| // does not overflow" restricted to the 0th iteration.  Therefore we only need
 | |
| // to check for (1) and (2).
 | |
| //
 | |
| // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
 | |
| // is `Delta` (defined below).
 | |
| template <typename ExtendOpTy>
 | |
| bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
 | |
|                                                 const SCEV *Step,
 | |
|                                                 const Loop *L) {
 | |
|   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
 | |
| 
 | |
|   // We restrict `Start` to a constant to prevent SCEV from spending too much
 | |
|   // time here.  It is correct (but more expensive) to continue with a
 | |
|   // non-constant `Start` and do a general SCEV subtraction to compute
 | |
|   // `PreStart` below.
 | |
|   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
 | |
|   if (!StartC)
 | |
|     return false;
 | |
| 
 | |
|   APInt StartAI = StartC->getAPInt();
 | |
| 
 | |
|   for (unsigned Delta : {-2, -1, 1, 2}) {
 | |
|     const SCEV *PreStart = getConstant(StartAI - Delta);
 | |
| 
 | |
|     FoldingSetNodeID ID;
 | |
|     ID.AddInteger(scAddRecExpr);
 | |
|     ID.AddPointer(PreStart);
 | |
|     ID.AddPointer(Step);
 | |
|     ID.AddPointer(L);
 | |
|     void *IP = nullptr;
 | |
|     const auto *PreAR =
 | |
|       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
 | |
| 
 | |
|     // Give up if we don't already have the add recurrence we need because
 | |
|     // actually constructing an add recurrence is relatively expensive.
 | |
|     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
 | |
|       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
 | |
|       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
 | |
|       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
 | |
|           DeltaS, &Pred, this);
 | |
|       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Finds an integer D for an expression (C + x + y + ...) such that the top
 | |
| // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
 | |
| // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
 | |
| // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
 | |
| // the (C + x + y + ...) expression is \p WholeAddExpr.
 | |
| static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
 | |
|                                             const SCEVConstant *ConstantTerm,
 | |
|                                             const SCEVAddExpr *WholeAddExpr) {
 | |
|   const APInt &C = ConstantTerm->getAPInt();
 | |
|   const unsigned BitWidth = C.getBitWidth();
 | |
|   // Find number of trailing zeros of (x + y + ...) w/o the C first:
 | |
|   uint32_t TZ = BitWidth;
 | |
|   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
 | |
|     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
 | |
|   if (TZ) {
 | |
|     // Set D to be as many least significant bits of C as possible while still
 | |
|     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
 | |
|     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
 | |
|   }
 | |
|   return APInt(BitWidth, 0);
 | |
| }
 | |
| 
 | |
| // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
 | |
| // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
 | |
| // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
 | |
| // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
 | |
| static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
 | |
|                                             const APInt &ConstantStart,
 | |
|                                             const SCEV *Step) {
 | |
|   const unsigned BitWidth = ConstantStart.getBitWidth();
 | |
|   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
 | |
|   if (TZ)
 | |
|     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
 | |
|                          : ConstantStart;
 | |
|   return APInt(BitWidth, 0);
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
 | |
|   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
 | |
|          "This is not an extending conversion!");
 | |
|   assert(isSCEVable(Ty) &&
 | |
|          "This is not a conversion to a SCEVable type!");
 | |
|   Ty = getEffectiveSCEVType(Ty);
 | |
| 
 | |
|   // Fold if the operand is constant.
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     return getConstant(
 | |
|       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
 | |
| 
 | |
|   // zext(zext(x)) --> zext(x)
 | |
|   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
 | |
|     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
 | |
| 
 | |
|   // Before doing any expensive analysis, check to see if we've already
 | |
|   // computed a SCEV for this Op and Ty.
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scZeroExtend);
 | |
|   ID.AddPointer(Op);
 | |
|   ID.AddPointer(Ty);
 | |
|   void *IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
|   if (Depth > MaxCastDepth) {
 | |
|     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
 | |
|                                                      Op, Ty);
 | |
|     UniqueSCEVs.InsertNode(S, IP);
 | |
|     addToLoopUseLists(S);
 | |
|     return S;
 | |
|   }
 | |
| 
 | |
|   // zext(trunc(x)) --> zext(x) or x or trunc(x)
 | |
|   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
 | |
|     // It's possible the bits taken off by the truncate were all zero bits. If
 | |
|     // so, we should be able to simplify this further.
 | |
|     const SCEV *X = ST->getOperand();
 | |
|     ConstantRange CR = getUnsignedRange(X);
 | |
|     unsigned TruncBits = getTypeSizeInBits(ST->getType());
 | |
|     unsigned NewBits = getTypeSizeInBits(Ty);
 | |
|     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
 | |
|             CR.zextOrTrunc(NewBits)))
 | |
|       return getTruncateOrZeroExtend(X, Ty, Depth);
 | |
|   }
 | |
| 
 | |
|   // If the input value is a chrec scev, and we can prove that the value
 | |
|   // did not overflow the old, smaller, value, we can zero extend all of the
 | |
|   // operands (often constants).  This allows analysis of something like
 | |
|   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
 | |
|     if (AR->isAffine()) {
 | |
|       const SCEV *Start = AR->getStart();
 | |
|       const SCEV *Step = AR->getStepRecurrence(*this);
 | |
|       unsigned BitWidth = getTypeSizeInBits(AR->getType());
 | |
|       const Loop *L = AR->getLoop();
 | |
| 
 | |
|       if (!AR->hasNoUnsignedWrap()) {
 | |
|         auto NewFlags = proveNoWrapViaConstantRanges(AR);
 | |
|         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
 | |
|       }
 | |
| 
 | |
|       // If we have special knowledge that this addrec won't overflow,
 | |
|       // we don't need to do any further analysis.
 | |
|       if (AR->hasNoUnsignedWrap())
 | |
|         return getAddRecExpr(
 | |
|             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
 | |
|             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
 | |
| 
 | |
|       // Check whether the backedge-taken count is SCEVCouldNotCompute.
 | |
|       // Note that this serves two purposes: It filters out loops that are
 | |
|       // simply not analyzable, and it covers the case where this code is
 | |
|       // being called from within backedge-taken count analysis, such that
 | |
|       // attempting to ask for the backedge-taken count would likely result
 | |
|       // in infinite recursion. In the later case, the analysis code will
 | |
|       // cope with a conservative value, and it will take care to purge
 | |
|       // that value once it has finished.
 | |
|       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
 | |
|       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
 | |
|         // Manually compute the final value for AR, checking for overflow.
 | |
| 
 | |
|         // Check whether the backedge-taken count can be losslessly casted to
 | |
|         // the addrec's type. The count is always unsigned.
 | |
|         const SCEV *CastedMaxBECount =
 | |
|             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
 | |
|         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
 | |
|             CastedMaxBECount, MaxBECount->getType(), Depth);
 | |
|         if (MaxBECount == RecastedMaxBECount) {
 | |
|           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
 | |
|           // Check whether Start+Step*MaxBECount has no unsigned overflow.
 | |
|           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
 | |
|                                         SCEV::FlagAnyWrap, Depth + 1);
 | |
|           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
 | |
|                                                           SCEV::FlagAnyWrap,
 | |
|                                                           Depth + 1),
 | |
|                                                WideTy, Depth + 1);
 | |
|           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
 | |
|           const SCEV *WideMaxBECount =
 | |
|             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
 | |
|           const SCEV *OperandExtendedAdd =
 | |
|             getAddExpr(WideStart,
 | |
|                        getMulExpr(WideMaxBECount,
 | |
|                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
 | |
|                                   SCEV::FlagAnyWrap, Depth + 1),
 | |
|                        SCEV::FlagAnyWrap, Depth + 1);
 | |
|           if (ZAdd == OperandExtendedAdd) {
 | |
|             // Cache knowledge of AR NUW, which is propagated to this AddRec.
 | |
|             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
 | |
|             // Return the expression with the addrec on the outside.
 | |
|             return getAddRecExpr(
 | |
|                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
 | |
|                                                          Depth + 1),
 | |
|                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
 | |
|                 AR->getNoWrapFlags());
 | |
|           }
 | |
|           // Similar to above, only this time treat the step value as signed.
 | |
|           // This covers loops that count down.
 | |
|           OperandExtendedAdd =
 | |
|             getAddExpr(WideStart,
 | |
|                        getMulExpr(WideMaxBECount,
 | |
|                                   getSignExtendExpr(Step, WideTy, Depth + 1),
 | |
|                                   SCEV::FlagAnyWrap, Depth + 1),
 | |
|                        SCEV::FlagAnyWrap, Depth + 1);
 | |
|           if (ZAdd == OperandExtendedAdd) {
 | |
|             // Cache knowledge of AR NW, which is propagated to this AddRec.
 | |
|             // Negative step causes unsigned wrap, but it still can't self-wrap.
 | |
|             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
 | |
|             // Return the expression with the addrec on the outside.
 | |
|             return getAddRecExpr(
 | |
|                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
 | |
|                                                          Depth + 1),
 | |
|                 getSignExtendExpr(Step, Ty, Depth + 1), L,
 | |
|                 AR->getNoWrapFlags());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Normally, in the cases we can prove no-overflow via a
 | |
|       // backedge guarding condition, we can also compute a backedge
 | |
|       // taken count for the loop.  The exceptions are assumptions and
 | |
|       // guards present in the loop -- SCEV is not great at exploiting
 | |
|       // these to compute max backedge taken counts, but can still use
 | |
|       // these to prove lack of overflow.  Use this fact to avoid
 | |
|       // doing extra work that may not pay off.
 | |
|       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
 | |
|           !AC.assumptions().empty()) {
 | |
| 
 | |
|         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
 | |
|         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
 | |
|         if (AR->hasNoUnsignedWrap()) {
 | |
|           // Same as nuw case above - duplicated here to avoid a compile time
 | |
|           // issue.  It's not clear that the order of checks does matter, but
 | |
|           // it's one of two issue possible causes for a change which was
 | |
|           // reverted.  Be conservative for the moment.
 | |
|           return getAddRecExpr(
 | |
|                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
 | |
|                                                          Depth + 1),
 | |
|                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
 | |
|                 AR->getNoWrapFlags());
 | |
|         }
 | |
|         
 | |
|         // For a negative step, we can extend the operands iff doing so only
 | |
|         // traverses values in the range zext([0,UINT_MAX]). 
 | |
|         if (isKnownNegative(Step)) {
 | |
|           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
 | |
|                                       getSignedRangeMin(Step));
 | |
|           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
 | |
|               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
 | |
|             // Cache knowledge of AR NW, which is propagated to this
 | |
|             // AddRec.  Negative step causes unsigned wrap, but it
 | |
|             // still can't self-wrap.
 | |
|             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
 | |
|             // Return the expression with the addrec on the outside.
 | |
|             return getAddRecExpr(
 | |
|                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
 | |
|                                                          Depth + 1),
 | |
|                 getSignExtendExpr(Step, Ty, Depth + 1), L,
 | |
|                 AR->getNoWrapFlags());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
 | |
|       // if D + (C - D + Step * n) could be proven to not unsigned wrap
 | |
|       // where D maximizes the number of trailing zeros of (C - D + Step * n)
 | |
|       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
 | |
|         const APInt &C = SC->getAPInt();
 | |
|         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
 | |
|         if (D != 0) {
 | |
|           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
 | |
|           const SCEV *SResidual =
 | |
|               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
 | |
|           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
 | |
|           return getAddExpr(SZExtD, SZExtR,
 | |
|                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
 | |
|                             Depth + 1);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
 | |
|         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
 | |
|         return getAddRecExpr(
 | |
|             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
 | |
|             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // zext(A % B) --> zext(A) % zext(B)
 | |
|   {
 | |
|     const SCEV *LHS;
 | |
|     const SCEV *RHS;
 | |
|     if (matchURem(Op, LHS, RHS))
 | |
|       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
 | |
|                          getZeroExtendExpr(RHS, Ty, Depth + 1));
 | |
|   }
 | |
| 
 | |
|   // zext(A / B) --> zext(A) / zext(B).
 | |
|   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
 | |
|     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
 | |
|                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
 | |
| 
 | |
|   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
 | |
|     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
 | |
|     if (SA->hasNoUnsignedWrap()) {
 | |
|       // If the addition does not unsign overflow then we can, by definition,
 | |
|       // commute the zero extension with the addition operation.
 | |
|       SmallVector<const SCEV *, 4> Ops;
 | |
|       for (const auto *Op : SA->operands())
 | |
|         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
 | |
|       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
 | |
|     }
 | |
| 
 | |
|     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
 | |
|     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
 | |
|     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
 | |
|     //
 | |
|     // Often address arithmetics contain expressions like
 | |
|     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
 | |
|     // This transformation is useful while proving that such expressions are
 | |
|     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
 | |
|     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
 | |
|       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
 | |
|       if (D != 0) {
 | |
|         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
 | |
|         const SCEV *SResidual =
 | |
|             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
 | |
|         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
 | |
|         return getAddExpr(SZExtD, SZExtR,
 | |
|                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
 | |
|                           Depth + 1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
 | |
|     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
 | |
|     if (SM->hasNoUnsignedWrap()) {
 | |
|       // If the multiply does not unsign overflow then we can, by definition,
 | |
|       // commute the zero extension with the multiply operation.
 | |
|       SmallVector<const SCEV *, 4> Ops;
 | |
|       for (const auto *Op : SM->operands())
 | |
|         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
 | |
|       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
 | |
|     }
 | |
| 
 | |
|     // zext(2^K * (trunc X to iN)) to iM ->
 | |
|     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
 | |
|     //
 | |
|     // Proof:
 | |
|     //
 | |
|     //     zext(2^K * (trunc X to iN)) to iM
 | |
|     //   = zext((trunc X to iN) << K) to iM
 | |
|     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
 | |
|     //     (because shl removes the top K bits)
 | |
|     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
 | |
|     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
 | |
|     //
 | |
|     if (SM->getNumOperands() == 2)
 | |
|       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
 | |
|         if (MulLHS->getAPInt().isPowerOf2())
 | |
|           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
 | |
|             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
 | |
|                                MulLHS->getAPInt().logBase2();
 | |
|             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
 | |
|             return getMulExpr(
 | |
|                 getZeroExtendExpr(MulLHS, Ty),
 | |
|                 getZeroExtendExpr(
 | |
|                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
 | |
|                 SCEV::FlagNUW, Depth + 1);
 | |
|           }
 | |
|   }
 | |
| 
 | |
|   // The cast wasn't folded; create an explicit cast node.
 | |
|   // Recompute the insert position, as it may have been invalidated.
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
|   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
 | |
|                                                    Op, Ty);
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   addToLoopUseLists(S);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
 | |
|   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
 | |
|          "This is not an extending conversion!");
 | |
|   assert(isSCEVable(Ty) &&
 | |
|          "This is not a conversion to a SCEVable type!");
 | |
|   Ty = getEffectiveSCEVType(Ty);
 | |
| 
 | |
|   // Fold if the operand is constant.
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     return getConstant(
 | |
|       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
 | |
| 
 | |
|   // sext(sext(x)) --> sext(x)
 | |
|   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
 | |
|     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
 | |
| 
 | |
|   // sext(zext(x)) --> zext(x)
 | |
|   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
 | |
|     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
 | |
| 
 | |
|   // Before doing any expensive analysis, check to see if we've already
 | |
|   // computed a SCEV for this Op and Ty.
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scSignExtend);
 | |
|   ID.AddPointer(Op);
 | |
|   ID.AddPointer(Ty);
 | |
|   void *IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
|   // Limit recursion depth.
 | |
|   if (Depth > MaxCastDepth) {
 | |
|     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
 | |
|                                                      Op, Ty);
 | |
|     UniqueSCEVs.InsertNode(S, IP);
 | |
|     addToLoopUseLists(S);
 | |
|     return S;
 | |
|   }
 | |
| 
 | |
|   // sext(trunc(x)) --> sext(x) or x or trunc(x)
 | |
|   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
 | |
|     // It's possible the bits taken off by the truncate were all sign bits. If
 | |
|     // so, we should be able to simplify this further.
 | |
|     const SCEV *X = ST->getOperand();
 | |
|     ConstantRange CR = getSignedRange(X);
 | |
|     unsigned TruncBits = getTypeSizeInBits(ST->getType());
 | |
|     unsigned NewBits = getTypeSizeInBits(Ty);
 | |
|     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
 | |
|             CR.sextOrTrunc(NewBits)))
 | |
|       return getTruncateOrSignExtend(X, Ty, Depth);
 | |
|   }
 | |
| 
 | |
|   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
 | |
|     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
 | |
|     if (SA->hasNoSignedWrap()) {
 | |
|       // If the addition does not sign overflow then we can, by definition,
 | |
|       // commute the sign extension with the addition operation.
 | |
|       SmallVector<const SCEV *, 4> Ops;
 | |
|       for (const auto *Op : SA->operands())
 | |
|         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
 | |
|       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
 | |
|     }
 | |
| 
 | |
|     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
 | |
|     // if D + (C - D + x + y + ...) could be proven to not signed wrap
 | |
|     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
 | |
|     //
 | |
|     // For instance, this will bring two seemingly different expressions:
 | |
|     //     1 + sext(5 + 20 * %x + 24 * %y)  and
 | |
|     //         sext(6 + 20 * %x + 24 * %y)
 | |
|     // to the same form:
 | |
|     //     2 + sext(4 + 20 * %x + 24 * %y)
 | |
|     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
 | |
|       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
 | |
|       if (D != 0) {
 | |
|         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
 | |
|         const SCEV *SResidual =
 | |
|             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
 | |
|         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
 | |
|         return getAddExpr(SSExtD, SSExtR,
 | |
|                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
 | |
|                           Depth + 1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // If the input value is a chrec scev, and we can prove that the value
 | |
|   // did not overflow the old, smaller, value, we can sign extend all of the
 | |
|   // operands (often constants).  This allows analysis of something like
 | |
|   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
 | |
|     if (AR->isAffine()) {
 | |
|       const SCEV *Start = AR->getStart();
 | |
|       const SCEV *Step = AR->getStepRecurrence(*this);
 | |
|       unsigned BitWidth = getTypeSizeInBits(AR->getType());
 | |
|       const Loop *L = AR->getLoop();
 | |
| 
 | |
|       if (!AR->hasNoSignedWrap()) {
 | |
|         auto NewFlags = proveNoWrapViaConstantRanges(AR);
 | |
|         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
 | |
|       }
 | |
| 
 | |
|       // If we have special knowledge that this addrec won't overflow,
 | |
|       // we don't need to do any further analysis.
 | |
|       if (AR->hasNoSignedWrap())
 | |
|         return getAddRecExpr(
 | |
|             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
 | |
|             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
 | |
| 
 | |
|       // Check whether the backedge-taken count is SCEVCouldNotCompute.
 | |
|       // Note that this serves two purposes: It filters out loops that are
 | |
|       // simply not analyzable, and it covers the case where this code is
 | |
|       // being called from within backedge-taken count analysis, such that
 | |
|       // attempting to ask for the backedge-taken count would likely result
 | |
|       // in infinite recursion. In the later case, the analysis code will
 | |
|       // cope with a conservative value, and it will take care to purge
 | |
|       // that value once it has finished.
 | |
|       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
 | |
|       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
 | |
|         // Manually compute the final value for AR, checking for
 | |
|         // overflow.
 | |
| 
 | |
|         // Check whether the backedge-taken count can be losslessly casted to
 | |
|         // the addrec's type. The count is always unsigned.
 | |
|         const SCEV *CastedMaxBECount =
 | |
|             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
 | |
|         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
 | |
|             CastedMaxBECount, MaxBECount->getType(), Depth);
 | |
|         if (MaxBECount == RecastedMaxBECount) {
 | |
|           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
 | |
|           // Check whether Start+Step*MaxBECount has no signed overflow.
 | |
|           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
 | |
|                                         SCEV::FlagAnyWrap, Depth + 1);
 | |
|           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
 | |
|                                                           SCEV::FlagAnyWrap,
 | |
|                                                           Depth + 1),
 | |
|                                                WideTy, Depth + 1);
 | |
|           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
 | |
|           const SCEV *WideMaxBECount =
 | |
|             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
 | |
|           const SCEV *OperandExtendedAdd =
 | |
|             getAddExpr(WideStart,
 | |
|                        getMulExpr(WideMaxBECount,
 | |
|                                   getSignExtendExpr(Step, WideTy, Depth + 1),
 | |
|                                   SCEV::FlagAnyWrap, Depth + 1),
 | |
|                        SCEV::FlagAnyWrap, Depth + 1);
 | |
|           if (SAdd == OperandExtendedAdd) {
 | |
|             // Cache knowledge of AR NSW, which is propagated to this AddRec.
 | |
|             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
 | |
|             // Return the expression with the addrec on the outside.
 | |
|             return getAddRecExpr(
 | |
|                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
 | |
|                                                          Depth + 1),
 | |
|                 getSignExtendExpr(Step, Ty, Depth + 1), L,
 | |
|                 AR->getNoWrapFlags());
 | |
|           }
 | |
|           // Similar to above, only this time treat the step value as unsigned.
 | |
|           // This covers loops that count up with an unsigned step.
 | |
|           OperandExtendedAdd =
 | |
|             getAddExpr(WideStart,
 | |
|                        getMulExpr(WideMaxBECount,
 | |
|                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
 | |
|                                   SCEV::FlagAnyWrap, Depth + 1),
 | |
|                        SCEV::FlagAnyWrap, Depth + 1);
 | |
|           if (SAdd == OperandExtendedAdd) {
 | |
|             // If AR wraps around then
 | |
|             //
 | |
|             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
 | |
|             // => SAdd != OperandExtendedAdd
 | |
|             //
 | |
|             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
 | |
|             // (SAdd == OperandExtendedAdd => AR is NW)
 | |
| 
 | |
|             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
 | |
| 
 | |
|             // Return the expression with the addrec on the outside.
 | |
|             return getAddRecExpr(
 | |
|                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
 | |
|                                                          Depth + 1),
 | |
|                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
 | |
|                 AR->getNoWrapFlags());
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       auto NewFlags = proveNoSignedWrapViaInduction(AR);
 | |
|       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
 | |
|       if (AR->hasNoSignedWrap()) {
 | |
|         // Same as nsw case above - duplicated here to avoid a compile time
 | |
|         // issue.  It's not clear that the order of checks does matter, but
 | |
|         // it's one of two issue possible causes for a change which was
 | |
|         // reverted.  Be conservative for the moment.
 | |
|         return getAddRecExpr(
 | |
|             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
 | |
|             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
 | |
|       }
 | |
| 
 | |
|       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
 | |
|       // if D + (C - D + Step * n) could be proven to not signed wrap
 | |
|       // where D maximizes the number of trailing zeros of (C - D + Step * n)
 | |
|       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
 | |
|         const APInt &C = SC->getAPInt();
 | |
|         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
 | |
|         if (D != 0) {
 | |
|           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
 | |
|           const SCEV *SResidual =
 | |
|               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
 | |
|           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
 | |
|           return getAddExpr(SSExtD, SSExtR,
 | |
|                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
 | |
|                             Depth + 1);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
 | |
|         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
 | |
|         return getAddRecExpr(
 | |
|             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
 | |
|             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   // If the input value is provably positive and we could not simplify
 | |
|   // away the sext build a zext instead.
 | |
|   if (isKnownNonNegative(Op))
 | |
|     return getZeroExtendExpr(Op, Ty, Depth + 1);
 | |
| 
 | |
|   // The cast wasn't folded; create an explicit cast node.
 | |
|   // Recompute the insert position, as it may have been invalidated.
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
|   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
 | |
|                                                    Op, Ty);
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   addToLoopUseLists(S);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// getAnyExtendExpr - Return a SCEV for the given operand extended with
 | |
| /// unspecified bits out to the given type.
 | |
| const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
 | |
|                                               Type *Ty) {
 | |
|   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
 | |
|          "This is not an extending conversion!");
 | |
|   assert(isSCEVable(Ty) &&
 | |
|          "This is not a conversion to a SCEVable type!");
 | |
|   Ty = getEffectiveSCEVType(Ty);
 | |
| 
 | |
|   // Sign-extend negative constants.
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
 | |
|     if (SC->getAPInt().isNegative())
 | |
|       return getSignExtendExpr(Op, Ty);
 | |
| 
 | |
|   // Peel off a truncate cast.
 | |
|   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
 | |
|     const SCEV *NewOp = T->getOperand();
 | |
|     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
 | |
|       return getAnyExtendExpr(NewOp, Ty);
 | |
|     return getTruncateOrNoop(NewOp, Ty);
 | |
|   }
 | |
| 
 | |
|   // Next try a zext cast. If the cast is folded, use it.
 | |
|   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
 | |
|   if (!isa<SCEVZeroExtendExpr>(ZExt))
 | |
|     return ZExt;
 | |
| 
 | |
|   // Next try a sext cast. If the cast is folded, use it.
 | |
|   const SCEV *SExt = getSignExtendExpr(Op, Ty);
 | |
|   if (!isa<SCEVSignExtendExpr>(SExt))
 | |
|     return SExt;
 | |
| 
 | |
|   // Force the cast to be folded into the operands of an addrec.
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
 | |
|     SmallVector<const SCEV *, 4> Ops;
 | |
|     for (const SCEV *Op : AR->operands())
 | |
|       Ops.push_back(getAnyExtendExpr(Op, Ty));
 | |
|     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
 | |
|   }
 | |
| 
 | |
|   // If the expression is obviously signed, use the sext cast value.
 | |
|   if (isa<SCEVSMaxExpr>(Op))
 | |
|     return SExt;
 | |
| 
 | |
|   // Absent any other information, use the zext cast value.
 | |
|   return ZExt;
 | |
| }
 | |
| 
 | |
| /// Process the given Ops list, which is a list of operands to be added under
 | |
| /// the given scale, update the given map. This is a helper function for
 | |
| /// getAddRecExpr. As an example of what it does, given a sequence of operands
 | |
| /// that would form an add expression like this:
 | |
| ///
 | |
| ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
 | |
| ///
 | |
| /// where A and B are constants, update the map with these values:
 | |
| ///
 | |
| ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
 | |
| ///
 | |
| /// and add 13 + A*B*29 to AccumulatedConstant.
 | |
| /// This will allow getAddRecExpr to produce this:
 | |
| ///
 | |
| ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
 | |
| ///
 | |
| /// This form often exposes folding opportunities that are hidden in
 | |
| /// the original operand list.
 | |
| ///
 | |
| /// Return true iff it appears that any interesting folding opportunities
 | |
| /// may be exposed. This helps getAddRecExpr short-circuit extra work in
 | |
| /// the common case where no interesting opportunities are present, and
 | |
| /// is also used as a check to avoid infinite recursion.
 | |
| static bool
 | |
| CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
 | |
|                              SmallVectorImpl<const SCEV *> &NewOps,
 | |
|                              APInt &AccumulatedConstant,
 | |
|                              const SCEV *const *Ops, size_t NumOperands,
 | |
|                              const APInt &Scale,
 | |
|                              ScalarEvolution &SE) {
 | |
|   bool Interesting = false;
 | |
| 
 | |
|   // Iterate over the add operands. They are sorted, with constants first.
 | |
|   unsigned i = 0;
 | |
|   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
 | |
|     ++i;
 | |
|     // Pull a buried constant out to the outside.
 | |
|     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
 | |
|       Interesting = true;
 | |
|     AccumulatedConstant += Scale * C->getAPInt();
 | |
|   }
 | |
| 
 | |
|   // Next comes everything else. We're especially interested in multiplies
 | |
|   // here, but they're in the middle, so just visit the rest with one loop.
 | |
|   for (; i != NumOperands; ++i) {
 | |
|     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
 | |
|     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
 | |
|       APInt NewScale =
 | |
|           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
 | |
|       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
 | |
|         // A multiplication of a constant with another add; recurse.
 | |
|         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
 | |
|         Interesting |=
 | |
|           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
 | |
|                                        Add->op_begin(), Add->getNumOperands(),
 | |
|                                        NewScale, SE);
 | |
|       } else {
 | |
|         // A multiplication of a constant with some other value. Update
 | |
|         // the map.
 | |
|         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
 | |
|         const SCEV *Key = SE.getMulExpr(MulOps);
 | |
|         auto Pair = M.insert({Key, NewScale});
 | |
|         if (Pair.second) {
 | |
|           NewOps.push_back(Pair.first->first);
 | |
|         } else {
 | |
|           Pair.first->second += NewScale;
 | |
|           // The map already had an entry for this value, which may indicate
 | |
|           // a folding opportunity.
 | |
|           Interesting = true;
 | |
|         }
 | |
|       }
 | |
|     } else {
 | |
|       // An ordinary operand. Update the map.
 | |
|       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
 | |
|           M.insert({Ops[i], Scale});
 | |
|       if (Pair.second) {
 | |
|         NewOps.push_back(Pair.first->first);
 | |
|       } else {
 | |
|         Pair.first->second += Scale;
 | |
|         // The map already had an entry for this value, which may indicate
 | |
|         // a folding opportunity.
 | |
|         Interesting = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Interesting;
 | |
| }
 | |
| 
 | |
| // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
 | |
| // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
 | |
| // can't-overflow flags for the operation if possible.
 | |
| static SCEV::NoWrapFlags
 | |
| StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
 | |
|                       const ArrayRef<const SCEV *> Ops,
 | |
|                       SCEV::NoWrapFlags Flags) {
 | |
|   using namespace std::placeholders;
 | |
| 
 | |
|   using OBO = OverflowingBinaryOperator;
 | |
| 
 | |
|   bool CanAnalyze =
 | |
|       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
 | |
|   (void)CanAnalyze;
 | |
|   assert(CanAnalyze && "don't call from other places!");
 | |
| 
 | |
|   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
 | |
|   SCEV::NoWrapFlags SignOrUnsignWrap =
 | |
|       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
 | |
| 
 | |
|   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
 | |
|   auto IsKnownNonNegative = [&](const SCEV *S) {
 | |
|     return SE->isKnownNonNegative(S);
 | |
|   };
 | |
| 
 | |
|   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
 | |
|     Flags =
 | |
|         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
 | |
| 
 | |
|   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
 | |
| 
 | |
|   if (SignOrUnsignWrap != SignOrUnsignMask &&
 | |
|       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
 | |
|       isa<SCEVConstant>(Ops[0])) {
 | |
| 
 | |
|     auto Opcode = [&] {
 | |
|       switch (Type) {
 | |
|       case scAddExpr:
 | |
|         return Instruction::Add;
 | |
|       case scMulExpr:
 | |
|         return Instruction::Mul;
 | |
|       default:
 | |
|         llvm_unreachable("Unexpected SCEV op.");
 | |
|       }
 | |
|     }();
 | |
| 
 | |
|     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
 | |
| 
 | |
|     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
 | |
|     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
 | |
|       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|           Opcode, C, OBO::NoSignedWrap);
 | |
|       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
 | |
|         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
 | |
|     }
 | |
| 
 | |
|     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
 | |
|     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
 | |
|       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|           Opcode, C, OBO::NoUnsignedWrap);
 | |
|       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
 | |
|         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Flags;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
 | |
|   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
 | |
| }
 | |
| 
 | |
| /// Get a canonical add expression, or something simpler if possible.
 | |
| const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
 | |
|                                         SCEV::NoWrapFlags OrigFlags,
 | |
|                                         unsigned Depth) {
 | |
|   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
 | |
|          "only nuw or nsw allowed");
 | |
|   assert(!Ops.empty() && "Cannot get empty add!");
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| #ifndef NDEBUG
 | |
|   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
 | |
|   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | |
|     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
 | |
|            "SCEVAddExpr operand types don't match!");
 | |
| #endif
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops, &LI, DT);
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
|     ++Idx;
 | |
|     assert(Idx < Ops.size());
 | |
|     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
 | |
|       if (Ops.size() == 2) return Ops[0];
 | |
|       Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|       LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|     }
 | |
| 
 | |
|     // If we are left with a constant zero being added, strip it off.
 | |
|     if (LHSC->getValue()->isZero()) {
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     }
 | |
| 
 | |
|     if (Ops.size() == 1) return Ops[0];
 | |
|   }
 | |
| 
 | |
|   // Delay expensive flag strengthening until necessary.
 | |
|   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
 | |
|     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
 | |
|   };
 | |
| 
 | |
|   // Limit recursion calls depth.
 | |
|   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
 | |
|     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
 | |
| 
 | |
|   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
 | |
|     // Don't strengthen flags if we have no new information.
 | |
|     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
 | |
|     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
 | |
|       Add->setNoWrapFlags(ComputeFlags(Ops));
 | |
|     return S;
 | |
|   }
 | |
| 
 | |
|   // Okay, check to see if the same value occurs in the operand list more than
 | |
|   // once.  If so, merge them together into an multiply expression.  Since we
 | |
|   // sorted the list, these values are required to be adjacent.
 | |
|   Type *Ty = Ops[0]->getType();
 | |
|   bool FoundMatch = false;
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
 | |
|     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
 | |
|       // Scan ahead to count how many equal operands there are.
 | |
|       unsigned Count = 2;
 | |
|       while (i+Count != e && Ops[i+Count] == Ops[i])
 | |
|         ++Count;
 | |
|       // Merge the values into a multiply.
 | |
|       const SCEV *Scale = getConstant(Ty, Count);
 | |
|       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
 | |
|       if (Ops.size() == Count)
 | |
|         return Mul;
 | |
|       Ops[i] = Mul;
 | |
|       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
 | |
|       --i; e -= Count - 1;
 | |
|       FoundMatch = true;
 | |
|     }
 | |
|   if (FoundMatch)
 | |
|     return getAddExpr(Ops, OrigFlags, Depth + 1);
 | |
| 
 | |
|   // Check for truncates. If all the operands are truncated from the same
 | |
|   // type, see if factoring out the truncate would permit the result to be
 | |
|   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
 | |
|   // if the contents of the resulting outer trunc fold to something simple.
 | |
|   auto FindTruncSrcType = [&]() -> Type * {
 | |
|     // We're ultimately looking to fold an addrec of truncs and muls of only
 | |
|     // constants and truncs, so if we find any other types of SCEV
 | |
|     // as operands of the addrec then we bail and return nullptr here.
 | |
|     // Otherwise, we return the type of the operand of a trunc that we find.
 | |
|     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
 | |
|       return T->getOperand()->getType();
 | |
|     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
 | |
|       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
 | |
|       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
 | |
|         return T->getOperand()->getType();
 | |
|     }
 | |
|     return nullptr;
 | |
|   };
 | |
|   if (auto *SrcType = FindTruncSrcType()) {
 | |
|     SmallVector<const SCEV *, 8> LargeOps;
 | |
|     bool Ok = true;
 | |
|     // Check all the operands to see if they can be represented in the
 | |
|     // source type of the truncate.
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | |
|       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
 | |
|         if (T->getOperand()->getType() != SrcType) {
 | |
|           Ok = false;
 | |
|           break;
 | |
|         }
 | |
|         LargeOps.push_back(T->getOperand());
 | |
|       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
 | |
|         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
 | |
|       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
 | |
|         SmallVector<const SCEV *, 8> LargeMulOps;
 | |
|         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
 | |
|           if (const SCEVTruncateExpr *T =
 | |
|                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
 | |
|             if (T->getOperand()->getType() != SrcType) {
 | |
|               Ok = false;
 | |
|               break;
 | |
|             }
 | |
|             LargeMulOps.push_back(T->getOperand());
 | |
|           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
 | |
|             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
 | |
|           } else {
 | |
|             Ok = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (Ok)
 | |
|           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
 | |
|       } else {
 | |
|         Ok = false;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (Ok) {
 | |
|       // Evaluate the expression in the larger type.
 | |
|       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
 | |
|       // If it folds to something simple, use it. Otherwise, don't.
 | |
|       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
 | |
|         return getTruncateExpr(Fold, Ty);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Skip past any other cast SCEVs.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // If there are add operands they would be next.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedAdd = false;
 | |
|     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
 | |
|       if (Ops.size() > AddOpsInlineThreshold ||
 | |
|           Add->getNumOperands() > AddOpsInlineThreshold)
 | |
|         break;
 | |
|       // If we have an add, expand the add operands onto the end of the operands
 | |
|       // list.
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       Ops.append(Add->op_begin(), Add->op_end());
 | |
|       DeletedAdd = true;
 | |
|     }
 | |
| 
 | |
|     // If we deleted at least one add, we added operands to the end of the list,
 | |
|     // and they are not necessarily sorted.  Recurse to resort and resimplify
 | |
|     // any operands we just acquired.
 | |
|     if (DeletedAdd)
 | |
|       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
 | |
|   }
 | |
| 
 | |
|   // Skip over the add expression until we get to a multiply.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Check to see if there are any folding opportunities present with
 | |
|   // operands multiplied by constant values.
 | |
|   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
 | |
|     uint64_t BitWidth = getTypeSizeInBits(Ty);
 | |
|     DenseMap<const SCEV *, APInt> M;
 | |
|     SmallVector<const SCEV *, 8> NewOps;
 | |
|     APInt AccumulatedConstant(BitWidth, 0);
 | |
|     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
 | |
|                                      Ops.data(), Ops.size(),
 | |
|                                      APInt(BitWidth, 1), *this)) {
 | |
|       struct APIntCompare {
 | |
|         bool operator()(const APInt &LHS, const APInt &RHS) const {
 | |
|           return LHS.ult(RHS);
 | |
|         }
 | |
|       };
 | |
| 
 | |
|       // Some interesting folding opportunity is present, so its worthwhile to
 | |
|       // re-generate the operands list. Group the operands by constant scale,
 | |
|       // to avoid multiplying by the same constant scale multiple times.
 | |
|       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
 | |
|       for (const SCEV *NewOp : NewOps)
 | |
|         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
 | |
|       // Re-generate the operands list.
 | |
|       Ops.clear();
 | |
|       if (AccumulatedConstant != 0)
 | |
|         Ops.push_back(getConstant(AccumulatedConstant));
 | |
|       for (auto &MulOp : MulOpLists)
 | |
|         if (MulOp.first != 0)
 | |
|           Ops.push_back(getMulExpr(
 | |
|               getConstant(MulOp.first),
 | |
|               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
 | |
|               SCEV::FlagAnyWrap, Depth + 1));
 | |
|       if (Ops.empty())
 | |
|         return getZero(Ty);
 | |
|       if (Ops.size() == 1)
 | |
|         return Ops[0];
 | |
|       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If we are adding something to a multiply expression, make sure the
 | |
|   // something is not already an operand of the multiply.  If so, merge it into
 | |
|   // the multiply.
 | |
|   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
 | |
|     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
 | |
|     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
 | |
|       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
 | |
|       if (isa<SCEVConstant>(MulOpSCEV))
 | |
|         continue;
 | |
|       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
 | |
|         if (MulOpSCEV == Ops[AddOp]) {
 | |
|           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
 | |
|           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
 | |
|           if (Mul->getNumOperands() != 2) {
 | |
|             // If the multiply has more than two operands, we must get the
 | |
|             // Y*Z term.
 | |
|             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
 | |
|                                                 Mul->op_begin()+MulOp);
 | |
|             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
 | |
|             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
 | |
|           }
 | |
|           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
 | |
|           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
 | |
|           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
 | |
|                                             SCEV::FlagAnyWrap, Depth + 1);
 | |
|           if (Ops.size() == 2) return OuterMul;
 | |
|           if (AddOp < Idx) {
 | |
|             Ops.erase(Ops.begin()+AddOp);
 | |
|             Ops.erase(Ops.begin()+Idx-1);
 | |
|           } else {
 | |
|             Ops.erase(Ops.begin()+Idx);
 | |
|             Ops.erase(Ops.begin()+AddOp-1);
 | |
|           }
 | |
|           Ops.push_back(OuterMul);
 | |
|           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
 | |
|         }
 | |
| 
 | |
|       // Check this multiply against other multiplies being added together.
 | |
|       for (unsigned OtherMulIdx = Idx+1;
 | |
|            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
 | |
|            ++OtherMulIdx) {
 | |
|         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
 | |
|         // If MulOp occurs in OtherMul, we can fold the two multiplies
 | |
|         // together.
 | |
|         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
 | |
|              OMulOp != e; ++OMulOp)
 | |
|           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
 | |
|             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
 | |
|             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
 | |
|             if (Mul->getNumOperands() != 2) {
 | |
|               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
 | |
|                                                   Mul->op_begin()+MulOp);
 | |
|               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
 | |
|               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
 | |
|             }
 | |
|             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
 | |
|             if (OtherMul->getNumOperands() != 2) {
 | |
|               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
 | |
|                                                   OtherMul->op_begin()+OMulOp);
 | |
|               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
 | |
|               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
 | |
|             }
 | |
|             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
 | |
|             const SCEV *InnerMulSum =
 | |
|                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
 | |
|             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
 | |
|                                               SCEV::FlagAnyWrap, Depth + 1);
 | |
|             if (Ops.size() == 2) return OuterMul;
 | |
|             Ops.erase(Ops.begin()+Idx);
 | |
|             Ops.erase(Ops.begin()+OtherMulIdx-1);
 | |
|             Ops.push_back(OuterMul);
 | |
|             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there are any add recurrences in the operands list, see if any other
 | |
|   // added values are loop invariant.  If so, we can fold them into the
 | |
|   // recurrence.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Scan over all recurrences, trying to fold loop invariants into them.
 | |
|   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
 | |
|     // Scan all of the other operands to this add and add them to the vector if
 | |
|     // they are loop invariant w.r.t. the recurrence.
 | |
|     SmallVector<const SCEV *, 8> LIOps;
 | |
|     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
 | |
|     const Loop *AddRecLoop = AddRec->getLoop();
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
 | |
|         LIOps.push_back(Ops[i]);
 | |
|         Ops.erase(Ops.begin()+i);
 | |
|         --i; --e;
 | |
|       }
 | |
| 
 | |
|     // If we found some loop invariants, fold them into the recurrence.
 | |
|     if (!LIOps.empty()) {
 | |
|       // Compute nowrap flags for the addition of the loop-invariant ops and
 | |
|       // the addrec. Temporarily push it as an operand for that purpose.
 | |
|       LIOps.push_back(AddRec);
 | |
|       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
 | |
|       LIOps.pop_back();
 | |
| 
 | |
|       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
 | |
|       LIOps.push_back(AddRec->getStart());
 | |
| 
 | |
|       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
 | |
|       // This follows from the fact that the no-wrap flags on the outer add
 | |
|       // expression are applicable on the 0th iteration, when the add recurrence
 | |
|       // will be equal to its start value.
 | |
|       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
 | |
| 
 | |
|       // Build the new addrec. Propagate the NUW and NSW flags if both the
 | |
|       // outer add and the inner addrec are guaranteed to have no overflow.
 | |
|       // Always propagate NW.
 | |
|       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
 | |
|       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
 | |
| 
 | |
|       // If all of the other operands were loop invariant, we are done.
 | |
|       if (Ops.size() == 1) return NewRec;
 | |
| 
 | |
|       // Otherwise, add the folded AddRec by the non-invariant parts.
 | |
|       for (unsigned i = 0;; ++i)
 | |
|         if (Ops[i] == AddRec) {
 | |
|           Ops[i] = NewRec;
 | |
|           break;
 | |
|         }
 | |
|       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
 | |
|     }
 | |
| 
 | |
|     // Okay, if there weren't any loop invariants to be folded, check to see if
 | |
|     // there are multiple AddRec's with the same loop induction variable being
 | |
|     // added together.  If so, we can fold them.
 | |
|     for (unsigned OtherIdx = Idx+1;
 | |
|          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|          ++OtherIdx) {
 | |
|       // We expect the AddRecExpr's to be sorted in reverse dominance order,
 | |
|       // so that the 1st found AddRecExpr is dominated by all others.
 | |
|       assert(DT.dominates(
 | |
|            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
 | |
|            AddRec->getLoop()->getHeader()) &&
 | |
|         "AddRecExprs are not sorted in reverse dominance order?");
 | |
|       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
 | |
|         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
 | |
|         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
 | |
|         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|              ++OtherIdx) {
 | |
|           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|           if (OtherAddRec->getLoop() == AddRecLoop) {
 | |
|             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
 | |
|                  i != e; ++i) {
 | |
|               if (i >= AddRecOps.size()) {
 | |
|                 AddRecOps.append(OtherAddRec->op_begin()+i,
 | |
|                                  OtherAddRec->op_end());
 | |
|                 break;
 | |
|               }
 | |
|               SmallVector<const SCEV *, 2> TwoOps = {
 | |
|                   AddRecOps[i], OtherAddRec->getOperand(i)};
 | |
|               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
 | |
|             }
 | |
|             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
 | |
|           }
 | |
|         }
 | |
|         // Step size has changed, so we cannot guarantee no self-wraparound.
 | |
|         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
 | |
|         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise couldn't fold anything into this recurrence.  Move onto the
 | |
|     // next one.
 | |
|   }
 | |
| 
 | |
|   // Okay, it looks like we really DO need an add expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
 | |
|                                     SCEV::NoWrapFlags Flags) {
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scAddExpr);
 | |
|   for (const SCEV *Op : Ops)
 | |
|     ID.AddPointer(Op);
 | |
|   void *IP = nullptr;
 | |
|   SCEVAddExpr *S =
 | |
|       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
 | |
|   if (!S) {
 | |
|     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
 | |
|     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
 | |
|     S = new (SCEVAllocator)
 | |
|         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
 | |
|     UniqueSCEVs.InsertNode(S, IP);
 | |
|     addToLoopUseLists(S);
 | |
|   }
 | |
|   S->setNoWrapFlags(Flags);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
 | |
|                                        const Loop *L, SCEV::NoWrapFlags Flags) {
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scAddRecExpr);
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     ID.AddPointer(Ops[i]);
 | |
|   ID.AddPointer(L);
 | |
|   void *IP = nullptr;
 | |
|   SCEVAddRecExpr *S =
 | |
|       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
 | |
|   if (!S) {
 | |
|     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
 | |
|     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
 | |
|     S = new (SCEVAllocator)
 | |
|         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
 | |
|     UniqueSCEVs.InsertNode(S, IP);
 | |
|     addToLoopUseLists(S);
 | |
|   }
 | |
|   setNoWrapFlags(S, Flags);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
 | |
|                                     SCEV::NoWrapFlags Flags) {
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scMulExpr);
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     ID.AddPointer(Ops[i]);
 | |
|   void *IP = nullptr;
 | |
|   SCEVMulExpr *S =
 | |
|     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
 | |
|   if (!S) {
 | |
|     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
 | |
|     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
 | |
|     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
 | |
|                                         O, Ops.size());
 | |
|     UniqueSCEVs.InsertNode(S, IP);
 | |
|     addToLoopUseLists(S);
 | |
|   }
 | |
|   S->setNoWrapFlags(Flags);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
 | |
|   uint64_t k = i*j;
 | |
|   if (j > 1 && k / j != i) Overflow = true;
 | |
|   return k;
 | |
| }
 | |
| 
 | |
| /// Compute the result of "n choose k", the binomial coefficient.  If an
 | |
| /// intermediate computation overflows, Overflow will be set and the return will
 | |
| /// be garbage. Overflow is not cleared on absence of overflow.
 | |
| static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
 | |
|   // We use the multiplicative formula:
 | |
|   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
 | |
|   // At each iteration, we take the n-th term of the numeral and divide by the
 | |
|   // (k-n)th term of the denominator.  This division will always produce an
 | |
|   // integral result, and helps reduce the chance of overflow in the
 | |
|   // intermediate computations. However, we can still overflow even when the
 | |
|   // final result would fit.
 | |
| 
 | |
|   if (n == 0 || n == k) return 1;
 | |
|   if (k > n) return 0;
 | |
| 
 | |
|   if (k > n/2)
 | |
|     k = n-k;
 | |
| 
 | |
|   uint64_t r = 1;
 | |
|   for (uint64_t i = 1; i <= k; ++i) {
 | |
|     r = umul_ov(r, n-(i-1), Overflow);
 | |
|     r /= i;
 | |
|   }
 | |
|   return r;
 | |
| }
 | |
| 
 | |
| /// Determine if any of the operands in this SCEV are a constant or if
 | |
| /// any of the add or multiply expressions in this SCEV contain a constant.
 | |
| static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
 | |
|   struct FindConstantInAddMulChain {
 | |
|     bool FoundConstant = false;
 | |
| 
 | |
|     bool follow(const SCEV *S) {
 | |
|       FoundConstant |= isa<SCEVConstant>(S);
 | |
|       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
 | |
|     }
 | |
| 
 | |
|     bool isDone() const {
 | |
|       return FoundConstant;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   FindConstantInAddMulChain F;
 | |
|   SCEVTraversal<FindConstantInAddMulChain> ST(F);
 | |
|   ST.visitAll(StartExpr);
 | |
|   return F.FoundConstant;
 | |
| }
 | |
| 
 | |
| /// Get a canonical multiply expression, or something simpler if possible.
 | |
| const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
 | |
|                                         SCEV::NoWrapFlags OrigFlags,
 | |
|                                         unsigned Depth) {
 | |
|   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
 | |
|          "only nuw or nsw allowed");
 | |
|   assert(!Ops.empty() && "Cannot get empty mul!");
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| #ifndef NDEBUG
 | |
|   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
 | |
|   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | |
|     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
 | |
|            "SCEVMulExpr operand types don't match!");
 | |
| #endif
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops, &LI, DT);
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
|     ++Idx;
 | |
|     assert(Idx < Ops.size());
 | |
|     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
 | |
|       if (Ops.size() == 2) return Ops[0];
 | |
|       Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|       LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|     }
 | |
| 
 | |
|     // If we have a multiply of zero, it will always be zero.
 | |
|     if (LHSC->getValue()->isZero())
 | |
|       return LHSC;
 | |
| 
 | |
|     // If we are left with a constant one being multiplied, strip it off.
 | |
|     if (LHSC->getValue()->isOne()) {
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     }
 | |
| 
 | |
|     if (Ops.size() == 1)
 | |
|       return Ops[0];
 | |
|   }
 | |
| 
 | |
|   // Delay expensive flag strengthening until necessary.
 | |
|   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
 | |
|     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
 | |
|   };
 | |
| 
 | |
|   // Limit recursion calls depth.
 | |
|   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
 | |
|     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
 | |
| 
 | |
|   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
 | |
|     // Don't strengthen flags if we have no new information.
 | |
|     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
 | |
|     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
 | |
|       Mul->setNoWrapFlags(ComputeFlags(Ops));
 | |
|     return S;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
|     if (Ops.size() == 2) {
 | |
|       // C1*(C2+V) -> C1*C2 + C1*V
 | |
|       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
 | |
|         // If any of Add's ops are Adds or Muls with a constant, apply this
 | |
|         // transformation as well.
 | |
|         //
 | |
|         // TODO: There are some cases where this transformation is not
 | |
|         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
 | |
|         // this transformation should be narrowed down.
 | |
|         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
 | |
|           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
 | |
|                                        SCEV::FlagAnyWrap, Depth + 1),
 | |
|                             getMulExpr(LHSC, Add->getOperand(1),
 | |
|                                        SCEV::FlagAnyWrap, Depth + 1),
 | |
|                             SCEV::FlagAnyWrap, Depth + 1);
 | |
| 
 | |
|       if (Ops[0]->isAllOnesValue()) {
 | |
|         // If we have a mul by -1 of an add, try distributing the -1 among the
 | |
|         // add operands.
 | |
|         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
 | |
|           SmallVector<const SCEV *, 4> NewOps;
 | |
|           bool AnyFolded = false;
 | |
|           for (const SCEV *AddOp : Add->operands()) {
 | |
|             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
 | |
|                                          Depth + 1);
 | |
|             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
 | |
|             NewOps.push_back(Mul);
 | |
|           }
 | |
|           if (AnyFolded)
 | |
|             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
 | |
|         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
 | |
|           // Negation preserves a recurrence's no self-wrap property.
 | |
|           SmallVector<const SCEV *, 4> Operands;
 | |
|           for (const SCEV *AddRecOp : AddRec->operands())
 | |
|             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
 | |
|                                           Depth + 1));
 | |
| 
 | |
|           return getAddRecExpr(Operands, AddRec->getLoop(),
 | |
|                                AddRec->getNoWrapFlags(SCEV::FlagNW));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Skip over the add expression until we get to a multiply.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // If there are mul operands inline them all into this expression.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedMul = false;
 | |
|     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
 | |
|       if (Ops.size() > MulOpsInlineThreshold)
 | |
|         break;
 | |
|       // If we have an mul, expand the mul operands onto the end of the
 | |
|       // operands list.
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       Ops.append(Mul->op_begin(), Mul->op_end());
 | |
|       DeletedMul = true;
 | |
|     }
 | |
| 
 | |
|     // If we deleted at least one mul, we added operands to the end of the
 | |
|     // list, and they are not necessarily sorted.  Recurse to resort and
 | |
|     // resimplify any operands we just acquired.
 | |
|     if (DeletedMul)
 | |
|       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
 | |
|   }
 | |
| 
 | |
|   // If there are any add recurrences in the operands list, see if any other
 | |
|   // added values are loop invariant.  If so, we can fold them into the
 | |
|   // recurrence.
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Scan over all recurrences, trying to fold loop invariants into them.
 | |
|   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
 | |
|     // Scan all of the other operands to this mul and add them to the vector
 | |
|     // if they are loop invariant w.r.t. the recurrence.
 | |
|     SmallVector<const SCEV *, 8> LIOps;
 | |
|     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
 | |
|     const Loop *AddRecLoop = AddRec->getLoop();
 | |
|     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
 | |
|         LIOps.push_back(Ops[i]);
 | |
|         Ops.erase(Ops.begin()+i);
 | |
|         --i; --e;
 | |
|       }
 | |
| 
 | |
|     // If we found some loop invariants, fold them into the recurrence.
 | |
|     if (!LIOps.empty()) {
 | |
|       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
 | |
|       SmallVector<const SCEV *, 4> NewOps;
 | |
|       NewOps.reserve(AddRec->getNumOperands());
 | |
|       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
 | |
|       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
 | |
|         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
 | |
|                                     SCEV::FlagAnyWrap, Depth + 1));
 | |
| 
 | |
|       // Build the new addrec. Propagate the NUW and NSW flags if both the
 | |
|       // outer mul and the inner addrec are guaranteed to have no overflow.
 | |
|       //
 | |
|       // No self-wrap cannot be guaranteed after changing the step size, but
 | |
|       // will be inferred if either NUW or NSW is true.
 | |
|       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
 | |
|       const SCEV *NewRec = getAddRecExpr(
 | |
|           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
 | |
| 
 | |
|       // If all of the other operands were loop invariant, we are done.
 | |
|       if (Ops.size() == 1) return NewRec;
 | |
| 
 | |
|       // Otherwise, multiply the folded AddRec by the non-invariant parts.
 | |
|       for (unsigned i = 0;; ++i)
 | |
|         if (Ops[i] == AddRec) {
 | |
|           Ops[i] = NewRec;
 | |
|           break;
 | |
|         }
 | |
|       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
 | |
|     }
 | |
| 
 | |
|     // Okay, if there weren't any loop invariants to be folded, check to see
 | |
|     // if there are multiple AddRec's with the same loop induction variable
 | |
|     // being multiplied together.  If so, we can fold them.
 | |
| 
 | |
|     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
 | |
|     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
 | |
|     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
 | |
|     //   ]]],+,...up to x=2n}.
 | |
|     // Note that the arguments to choose() are always integers with values
 | |
|     // known at compile time, never SCEV objects.
 | |
|     //
 | |
|     // The implementation avoids pointless extra computations when the two
 | |
|     // addrec's are of different length (mathematically, it's equivalent to
 | |
|     // an infinite stream of zeros on the right).
 | |
|     bool OpsModified = false;
 | |
|     for (unsigned OtherIdx = Idx+1;
 | |
|          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|          ++OtherIdx) {
 | |
|       const SCEVAddRecExpr *OtherAddRec =
 | |
|         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
 | |
|       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
 | |
|         continue;
 | |
| 
 | |
|       // Limit max number of arguments to avoid creation of unreasonably big
 | |
|       // SCEVAddRecs with very complex operands.
 | |
|       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
 | |
|           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
 | |
|         continue;
 | |
| 
 | |
|       bool Overflow = false;
 | |
|       Type *Ty = AddRec->getType();
 | |
|       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
 | |
|       SmallVector<const SCEV*, 7> AddRecOps;
 | |
|       for (int x = 0, xe = AddRec->getNumOperands() +
 | |
|              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
 | |
|         SmallVector <const SCEV *, 7> SumOps;
 | |
|         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
 | |
|           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
 | |
|           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
 | |
|                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
 | |
|                z < ze && !Overflow; ++z) {
 | |
|             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
 | |
|             uint64_t Coeff;
 | |
|             if (LargerThan64Bits)
 | |
|               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
 | |
|             else
 | |
|               Coeff = Coeff1*Coeff2;
 | |
|             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
 | |
|             const SCEV *Term1 = AddRec->getOperand(y-z);
 | |
|             const SCEV *Term2 = OtherAddRec->getOperand(z);
 | |
|             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
 | |
|                                         SCEV::FlagAnyWrap, Depth + 1));
 | |
|           }
 | |
|         }
 | |
|         if (SumOps.empty())
 | |
|           SumOps.push_back(getZero(Ty));
 | |
|         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
 | |
|       }
 | |
|       if (!Overflow) {
 | |
|         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
 | |
|                                               SCEV::FlagAnyWrap);
 | |
|         if (Ops.size() == 2) return NewAddRec;
 | |
|         Ops[Idx] = NewAddRec;
 | |
|         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
 | |
|         OpsModified = true;
 | |
|         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
 | |
|         if (!AddRec)
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     if (OpsModified)
 | |
|       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
 | |
| 
 | |
|     // Otherwise couldn't fold anything into this recurrence.  Move onto the
 | |
|     // next one.
 | |
|   }
 | |
| 
 | |
|   // Okay, it looks like we really DO need an mul expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
 | |
| }
 | |
| 
 | |
| /// Represents an unsigned remainder expression based on unsigned division.
 | |
| const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
 | |
|                                          const SCEV *RHS) {
 | |
|   assert(getEffectiveSCEVType(LHS->getType()) ==
 | |
|          getEffectiveSCEVType(RHS->getType()) &&
 | |
|          "SCEVURemExpr operand types don't match!");
 | |
| 
 | |
|   // Short-circuit easy cases
 | |
|   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
 | |
|     // If constant is one, the result is trivial
 | |
|     if (RHSC->getValue()->isOne())
 | |
|       return getZero(LHS->getType()); // X urem 1 --> 0
 | |
| 
 | |
|     // If constant is a power of two, fold into a zext(trunc(LHS)).
 | |
|     if (RHSC->getAPInt().isPowerOf2()) {
 | |
|       Type *FullTy = LHS->getType();
 | |
|       Type *TruncTy =
 | |
|           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
 | |
|       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
 | |
|   const SCEV *UDiv = getUDivExpr(LHS, RHS);
 | |
|   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
 | |
|   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
 | |
| }
 | |
| 
 | |
| /// Get a canonical unsigned division expression, or something simpler if
 | |
| /// possible.
 | |
| const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
 | |
|                                          const SCEV *RHS) {
 | |
|   assert(getEffectiveSCEVType(LHS->getType()) ==
 | |
|          getEffectiveSCEVType(RHS->getType()) &&
 | |
|          "SCEVUDivExpr operand types don't match!");
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scUDivExpr);
 | |
|   ID.AddPointer(LHS);
 | |
|   ID.AddPointer(RHS);
 | |
|   void *IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
 | |
|     return S;
 | |
| 
 | |
|   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
 | |
|     if (RHSC->getValue()->isOne())
 | |
|       return LHS;                               // X udiv 1 --> x
 | |
|     // If the denominator is zero, the result of the udiv is undefined. Don't
 | |
|     // try to analyze it, because the resolution chosen here may differ from
 | |
|     // the resolution chosen in other parts of the compiler.
 | |
|     if (!RHSC->getValue()->isZero()) {
 | |
|       // Determine if the division can be folded into the operands of
 | |
|       // its operands.
 | |
|       // TODO: Generalize this to non-constants by using known-bits information.
 | |
|       Type *Ty = LHS->getType();
 | |
|       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
 | |
|       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
 | |
|       // For non-power-of-two values, effectively round the value up to the
 | |
|       // nearest power of two.
 | |
|       if (!RHSC->getAPInt().isPowerOf2())
 | |
|         ++MaxShiftAmt;
 | |
|       IntegerType *ExtTy =
 | |
|         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
 | |
|       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
 | |
|         if (const SCEVConstant *Step =
 | |
|             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
 | |
|           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
 | |
|           const APInt &StepInt = Step->getAPInt();
 | |
|           const APInt &DivInt = RHSC->getAPInt();
 | |
|           if (!StepInt.urem(DivInt) &&
 | |
|               getZeroExtendExpr(AR, ExtTy) ==
 | |
|               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
 | |
|                             getZeroExtendExpr(Step, ExtTy),
 | |
|                             AR->getLoop(), SCEV::FlagAnyWrap)) {
 | |
|             SmallVector<const SCEV *, 4> Operands;
 | |
|             for (const SCEV *Op : AR->operands())
 | |
|               Operands.push_back(getUDivExpr(Op, RHS));
 | |
|             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
 | |
|           }
 | |
|           /// Get a canonical UDivExpr for a recurrence.
 | |
|           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
 | |
|           // We can currently only fold X%N if X is constant.
 | |
|           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
 | |
|           if (StartC && !DivInt.urem(StepInt) &&
 | |
|               getZeroExtendExpr(AR, ExtTy) ==
 | |
|               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
 | |
|                             getZeroExtendExpr(Step, ExtTy),
 | |
|                             AR->getLoop(), SCEV::FlagAnyWrap)) {
 | |
|             const APInt &StartInt = StartC->getAPInt();
 | |
|             const APInt &StartRem = StartInt.urem(StepInt);
 | |
|             if (StartRem != 0) {
 | |
|               const SCEV *NewLHS =
 | |
|                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
 | |
|                                 AR->getLoop(), SCEV::FlagNW);
 | |
|               if (LHS != NewLHS) {
 | |
|                 LHS = NewLHS;
 | |
| 
 | |
|                 // Reset the ID to include the new LHS, and check if it is
 | |
|                 // already cached.
 | |
|                 ID.clear();
 | |
|                 ID.AddInteger(scUDivExpr);
 | |
|                 ID.AddPointer(LHS);
 | |
|                 ID.AddPointer(RHS);
 | |
|                 IP = nullptr;
 | |
|                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
 | |
|                   return S;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
 | |
|       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
 | |
|         SmallVector<const SCEV *, 4> Operands;
 | |
|         for (const SCEV *Op : M->operands())
 | |
|           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
 | |
|         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
 | |
|           // Find an operand that's safely divisible.
 | |
|           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
 | |
|             const SCEV *Op = M->getOperand(i);
 | |
|             const SCEV *Div = getUDivExpr(Op, RHSC);
 | |
|             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
 | |
|               Operands = SmallVector<const SCEV *, 4>(M->operands());
 | |
|               Operands[i] = Div;
 | |
|               return getMulExpr(Operands);
 | |
|             }
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
 | |
|       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
 | |
|         if (auto *DivisorConstant =
 | |
|                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
 | |
|           bool Overflow = false;
 | |
|           APInt NewRHS =
 | |
|               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
 | |
|           if (Overflow) {
 | |
|             return getConstant(RHSC->getType(), 0, false);
 | |
|           }
 | |
|           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
 | |
|       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
 | |
|         SmallVector<const SCEV *, 4> Operands;
 | |
|         for (const SCEV *Op : A->operands())
 | |
|           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
 | |
|         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
 | |
|           Operands.clear();
 | |
|           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
 | |
|             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
 | |
|             if (isa<SCEVUDivExpr>(Op) ||
 | |
|                 getMulExpr(Op, RHS) != A->getOperand(i))
 | |
|               break;
 | |
|             Operands.push_back(Op);
 | |
|           }
 | |
|           if (Operands.size() == A->getNumOperands())
 | |
|             return getAddExpr(Operands);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Fold if both operands are constant.
 | |
|       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
 | |
|         Constant *LHSCV = LHSC->getValue();
 | |
|         Constant *RHSCV = RHSC->getValue();
 | |
|         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
 | |
|                                                                    RHSCV)));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
 | |
|   // changes). Make sure we get a new one.
 | |
|   IP = nullptr;
 | |
|   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
 | |
|   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
 | |
|                                              LHS, RHS);
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   addToLoopUseLists(S);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
 | |
|   APInt A = C1->getAPInt().abs();
 | |
|   APInt B = C2->getAPInt().abs();
 | |
|   uint32_t ABW = A.getBitWidth();
 | |
|   uint32_t BBW = B.getBitWidth();
 | |
| 
 | |
|   if (ABW > BBW)
 | |
|     B = B.zext(ABW);
 | |
|   else if (ABW < BBW)
 | |
|     A = A.zext(BBW);
 | |
| 
 | |
|   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
 | |
| }
 | |
| 
 | |
| /// Get a canonical unsigned division expression, or something simpler if
 | |
| /// possible. There is no representation for an exact udiv in SCEV IR, but we
 | |
| /// can attempt to remove factors from the LHS and RHS.  We can't do this when
 | |
| /// it's not exact because the udiv may be clearing bits.
 | |
| const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
 | |
|                                               const SCEV *RHS) {
 | |
|   // TODO: we could try to find factors in all sorts of things, but for now we
 | |
|   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
 | |
|   // end of this file for inspiration.
 | |
| 
 | |
|   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
 | |
|   if (!Mul || !Mul->hasNoUnsignedWrap())
 | |
|     return getUDivExpr(LHS, RHS);
 | |
| 
 | |
|   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
 | |
|     // If the mulexpr multiplies by a constant, then that constant must be the
 | |
|     // first element of the mulexpr.
 | |
|     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
 | |
|       if (LHSCst == RHSCst) {
 | |
|         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
 | |
|         return getMulExpr(Operands);
 | |
|       }
 | |
| 
 | |
|       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
 | |
|       // that there's a factor provided by one of the other terms. We need to
 | |
|       // check.
 | |
|       APInt Factor = gcd(LHSCst, RHSCst);
 | |
|       if (!Factor.isIntN(1)) {
 | |
|         LHSCst =
 | |
|             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
 | |
|         RHSCst =
 | |
|             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
 | |
|         SmallVector<const SCEV *, 2> Operands;
 | |
|         Operands.push_back(LHSCst);
 | |
|         Operands.append(Mul->op_begin() + 1, Mul->op_end());
 | |
|         LHS = getMulExpr(Operands);
 | |
|         RHS = RHSCst;
 | |
|         Mul = dyn_cast<SCEVMulExpr>(LHS);
 | |
|         if (!Mul)
 | |
|           return getUDivExactExpr(LHS, RHS);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
 | |
|     if (Mul->getOperand(i) == RHS) {
 | |
|       SmallVector<const SCEV *, 2> Operands;
 | |
|       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
 | |
|       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
 | |
|       return getMulExpr(Operands);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return getUDivExpr(LHS, RHS);
 | |
| }
 | |
| 
 | |
| /// Get an add recurrence expression for the specified loop.  Simplify the
 | |
| /// expression as much as possible.
 | |
| const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
 | |
|                                            const Loop *L,
 | |
|                                            SCEV::NoWrapFlags Flags) {
 | |
|   SmallVector<const SCEV *, 4> Operands;
 | |
|   Operands.push_back(Start);
 | |
|   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
 | |
|     if (StepChrec->getLoop() == L) {
 | |
|       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
 | |
|       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
 | |
|     }
 | |
| 
 | |
|   Operands.push_back(Step);
 | |
|   return getAddRecExpr(Operands, L, Flags);
 | |
| }
 | |
| 
 | |
| /// Get an add recurrence expression for the specified loop.  Simplify the
 | |
| /// expression as much as possible.
 | |
| const SCEV *
 | |
| ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
 | |
|                                const Loop *L, SCEV::NoWrapFlags Flags) {
 | |
|   if (Operands.size() == 1) return Operands[0];
 | |
| #ifndef NDEBUG
 | |
|   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
 | |
|   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
 | |
|     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
 | |
|            "SCEVAddRecExpr operand types don't match!");
 | |
|   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
 | |
|     assert(isLoopInvariant(Operands[i], L) &&
 | |
|            "SCEVAddRecExpr operand is not loop-invariant!");
 | |
| #endif
 | |
| 
 | |
|   if (Operands.back()->isZero()) {
 | |
|     Operands.pop_back();
 | |
|     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
 | |
|   }
 | |
| 
 | |
|   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
 | |
|   // use that information to infer NUW and NSW flags. However, computing a
 | |
|   // BE count requires calling getAddRecExpr, so we may not yet have a
 | |
|   // meaningful BE count at this point (and if we don't, we'd be stuck
 | |
|   // with a SCEVCouldNotCompute as the cached BE count).
 | |
| 
 | |
|   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
 | |
| 
 | |
|   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
 | |
|   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
 | |
|     const Loop *NestedLoop = NestedAR->getLoop();
 | |
|     if (L->contains(NestedLoop)
 | |
|             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
 | |
|             : (!NestedLoop->contains(L) &&
 | |
|                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
 | |
|       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
 | |
|       Operands[0] = NestedAR->getStart();
 | |
|       // AddRecs require their operands be loop-invariant with respect to their
 | |
|       // loops. Don't perform this transformation if it would break this
 | |
|       // requirement.
 | |
|       bool AllInvariant = all_of(
 | |
|           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
 | |
| 
 | |
|       if (AllInvariant) {
 | |
|         // Create a recurrence for the outer loop with the same step size.
 | |
|         //
 | |
|         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
 | |
|         // inner recurrence has the same property.
 | |
|         SCEV::NoWrapFlags OuterFlags =
 | |
|           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
 | |
| 
 | |
|         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
 | |
|         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
 | |
|           return isLoopInvariant(Op, NestedLoop);
 | |
|         });
 | |
| 
 | |
|         if (AllInvariant) {
 | |
|           // Ok, both add recurrences are valid after the transformation.
 | |
|           //
 | |
|           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
 | |
|           // the outer recurrence has the same property.
 | |
|           SCEV::NoWrapFlags InnerFlags =
 | |
|             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
 | |
|           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
 | |
|         }
 | |
|       }
 | |
|       // Reset Operands to its original state.
 | |
|       Operands[0] = NestedAR;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   return getOrCreateAddRecExpr(Operands, L, Flags);
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getGEPExpr(GEPOperator *GEP,
 | |
|                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
 | |
|   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
 | |
|   // getSCEV(Base)->getType() has the same address space as Base->getType()
 | |
|   // because SCEV::getType() preserves the address space.
 | |
|   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
 | |
|   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
 | |
|   // instruction to its SCEV, because the Instruction may be guarded by control
 | |
|   // flow and the no-overflow bits may not be valid for the expression in any
 | |
|   // context. This can be fixed similarly to how these flags are handled for
 | |
|   // adds.
 | |
|   SCEV::NoWrapFlags OffsetWrap =
 | |
|       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
 | |
| 
 | |
|   Type *CurTy = GEP->getType();
 | |
|   bool FirstIter = true;
 | |
|   SmallVector<const SCEV *, 4> Offsets;
 | |
|   for (const SCEV *IndexExpr : IndexExprs) {
 | |
|     // Compute the (potentially symbolic) offset in bytes for this index.
 | |
|     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
 | |
|       // For a struct, add the member offset.
 | |
|       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
 | |
|       unsigned FieldNo = Index->getZExtValue();
 | |
|       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
 | |
|       Offsets.push_back(FieldOffset);
 | |
| 
 | |
|       // Update CurTy to the type of the field at Index.
 | |
|       CurTy = STy->getTypeAtIndex(Index);
 | |
|     } else {
 | |
|       // Update CurTy to its element type.
 | |
|       if (FirstIter) {
 | |
|         assert(isa<PointerType>(CurTy) &&
 | |
|                "The first index of a GEP indexes a pointer");
 | |
|         CurTy = GEP->getSourceElementType();
 | |
|         FirstIter = false;
 | |
|       } else {
 | |
|         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
 | |
|       }
 | |
|       // For an array, add the element offset, explicitly scaled.
 | |
|       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
 | |
|       // Getelementptr indices are signed.
 | |
|       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
 | |
| 
 | |
|       // Multiply the index by the element size to compute the element offset.
 | |
|       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
 | |
|       Offsets.push_back(LocalOffset);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle degenerate case of GEP without offsets.
 | |
|   if (Offsets.empty())
 | |
|     return BaseExpr;
 | |
| 
 | |
|   // Add the offsets together, assuming nsw if inbounds.
 | |
|   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
 | |
|   // Add the base address and the offset. We cannot use the nsw flag, as the
 | |
|   // base address is unsigned. However, if we know that the offset is
 | |
|   // non-negative, we can use nuw.
 | |
|   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
 | |
|                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
 | |
|   return getAddExpr(BaseExpr, Offset, BaseWrap);
 | |
| }
 | |
| 
 | |
| std::tuple<SCEV *, FoldingSetNodeID, void *>
 | |
| ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
 | |
|                                          ArrayRef<const SCEV *> Ops) {
 | |
|   FoldingSetNodeID ID;
 | |
|   void *IP = nullptr;
 | |
|   ID.AddInteger(SCEVType);
 | |
|   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | |
|     ID.AddPointer(Ops[i]);
 | |
|   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
 | |
|       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
 | |
|   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
 | |
|   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getSignumExpr(const SCEV *Op) {
 | |
|   Type *Ty = Op->getType();
 | |
|   return getSMinExpr(getSMaxExpr(Op, getMinusOne(Ty)), getOne(Ty));
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
 | |
|                                            SmallVectorImpl<const SCEV *> &Ops) {
 | |
|   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| #ifndef NDEBUG
 | |
|   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
 | |
|   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
 | |
|     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
 | |
|            "Operand types don't match!");
 | |
| #endif
 | |
| 
 | |
|   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
 | |
|   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
 | |
| 
 | |
|   // Sort by complexity, this groups all similar expression types together.
 | |
|   GroupByComplexity(Ops, &LI, DT);
 | |
| 
 | |
|   // Check if we have created the same expression before.
 | |
|   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
 | |
|     return S;
 | |
|   }
 | |
| 
 | |
|   // If there are any constants, fold them together.
 | |
|   unsigned Idx = 0;
 | |
|   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
 | |
|     ++Idx;
 | |
|     assert(Idx < Ops.size());
 | |
|     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
 | |
|       if (Kind == scSMaxExpr)
 | |
|         return APIntOps::smax(LHS, RHS);
 | |
|       else if (Kind == scSMinExpr)
 | |
|         return APIntOps::smin(LHS, RHS);
 | |
|       else if (Kind == scUMaxExpr)
 | |
|         return APIntOps::umax(LHS, RHS);
 | |
|       else if (Kind == scUMinExpr)
 | |
|         return APIntOps::umin(LHS, RHS);
 | |
|       llvm_unreachable("Unknown SCEV min/max opcode");
 | |
|     };
 | |
| 
 | |
|     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
 | |
|       // We found two constants, fold them together!
 | |
|       ConstantInt *Fold = ConstantInt::get(
 | |
|           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
 | |
|       Ops[0] = getConstant(Fold);
 | |
|       Ops.erase(Ops.begin()+1);  // Erase the folded element
 | |
|       if (Ops.size() == 1) return Ops[0];
 | |
|       LHSC = cast<SCEVConstant>(Ops[0]);
 | |
|     }
 | |
| 
 | |
|     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
 | |
|     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
 | |
| 
 | |
|     if (IsMax ? IsMinV : IsMaxV) {
 | |
|       // If we are left with a constant minimum(/maximum)-int, strip it off.
 | |
|       Ops.erase(Ops.begin());
 | |
|       --Idx;
 | |
|     } else if (IsMax ? IsMaxV : IsMinV) {
 | |
|       // If we have a max(/min) with a constant maximum(/minimum)-int,
 | |
|       // it will always be the extremum.
 | |
|       return LHSC;
 | |
|     }
 | |
| 
 | |
|     if (Ops.size() == 1) return Ops[0];
 | |
|   }
 | |
| 
 | |
|   // Find the first operation of the same kind
 | |
|   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
 | |
|     ++Idx;
 | |
| 
 | |
|   // Check to see if one of the operands is of the same kind. If so, expand its
 | |
|   // operands onto our operand list, and recurse to simplify.
 | |
|   if (Idx < Ops.size()) {
 | |
|     bool DeletedAny = false;
 | |
|     while (Ops[Idx]->getSCEVType() == Kind) {
 | |
|       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
 | |
|       Ops.erase(Ops.begin()+Idx);
 | |
|       Ops.append(SMME->op_begin(), SMME->op_end());
 | |
|       DeletedAny = true;
 | |
|     }
 | |
| 
 | |
|     if (DeletedAny)
 | |
|       return getMinMaxExpr(Kind, Ops);
 | |
|   }
 | |
| 
 | |
|   // Okay, check to see if the same value occurs in the operand list twice.  If
 | |
|   // so, delete one.  Since we sorted the list, these values are required to
 | |
|   // be adjacent.
 | |
|   llvm::CmpInst::Predicate GEPred =
 | |
|       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
 | |
|   llvm::CmpInst::Predicate LEPred =
 | |
|       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
 | |
|   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
 | |
|   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
 | |
|   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
 | |
|     if (Ops[i] == Ops[i + 1] ||
 | |
|         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
 | |
|       //  X op Y op Y  -->  X op Y
 | |
|       //  X op Y       -->  X, if we know X, Y are ordered appropriately
 | |
|       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
 | |
|       --i;
 | |
|       --e;
 | |
|     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
 | |
|                                                Ops[i + 1])) {
 | |
|       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
 | |
|       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
 | |
|       --i;
 | |
|       --e;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Ops.size() == 1) return Ops[0];
 | |
| 
 | |
|   assert(!Ops.empty() && "Reduced smax down to nothing!");
 | |
| 
 | |
|   // Okay, it looks like we really DO need an expr.  Check to see if we
 | |
|   // already have one, otherwise create a new one.
 | |
|   const SCEV *ExistingSCEV;
 | |
|   FoldingSetNodeID ID;
 | |
|   void *IP;
 | |
|   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
 | |
|   if (ExistingSCEV)
 | |
|     return ExistingSCEV;
 | |
|   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
 | |
|   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
 | |
|   SCEV *S = new (SCEVAllocator)
 | |
|       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
 | |
| 
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   addToLoopUseLists(S);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
 | |
|   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
 | |
|   return getSMaxExpr(Ops);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
 | |
|   return getMinMaxExpr(scSMaxExpr, Ops);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
 | |
|   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
 | |
|   return getUMaxExpr(Ops);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
 | |
|   return getMinMaxExpr(scUMaxExpr, Ops);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
 | |
|                                          const SCEV *RHS) {
 | |
|   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
 | |
|   return getSMinExpr(Ops);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
 | |
|   return getMinMaxExpr(scSMinExpr, Ops);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
 | |
|                                          const SCEV *RHS) {
 | |
|   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
 | |
|   return getUMinExpr(Ops);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
 | |
|   return getMinMaxExpr(scUMinExpr, Ops);
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
 | |
|                                              ScalableVectorType *ScalableTy) {
 | |
|   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
 | |
|   Constant *One = ConstantInt::get(IntTy, 1);
 | |
|   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
 | |
|   // Note that the expression we created is the final expression, we don't
 | |
|   // want to simplify it any further Also, if we call a normal getSCEV(),
 | |
|   // we'll end up in an endless recursion. So just create an SCEVUnknown.
 | |
|   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
 | |
|   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
 | |
|     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
 | |
|   // We can bypass creating a target-independent constant expression and then
 | |
|   // folding it back into a ConstantInt. This is just a compile-time
 | |
|   // optimization.
 | |
|   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
 | |
|   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
 | |
|     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
 | |
|   // We can bypass creating a target-independent constant expression and then
 | |
|   // folding it back into a ConstantInt. This is just a compile-time
 | |
|   // optimization.
 | |
|   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
 | |
|                                              StructType *STy,
 | |
|                                              unsigned FieldNo) {
 | |
|   // We can bypass creating a target-independent constant expression and then
 | |
|   // folding it back into a ConstantInt. This is just a compile-time
 | |
|   // optimization.
 | |
|   return getConstant(
 | |
|       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getUnknown(Value *V) {
 | |
|   // Don't attempt to do anything other than create a SCEVUnknown object
 | |
|   // here.  createSCEV only calls getUnknown after checking for all other
 | |
|   // interesting possibilities, and any other code that calls getUnknown
 | |
|   // is doing so in order to hide a value from SCEV canonicalization.
 | |
| 
 | |
|   FoldingSetNodeID ID;
 | |
|   ID.AddInteger(scUnknown);
 | |
|   ID.AddPointer(V);
 | |
|   void *IP = nullptr;
 | |
|   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
 | |
|     assert(cast<SCEVUnknown>(S)->getValue() == V &&
 | |
|            "Stale SCEVUnknown in uniquing map!");
 | |
|     return S;
 | |
|   }
 | |
|   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
 | |
|                                             FirstUnknown);
 | |
|   FirstUnknown = cast<SCEVUnknown>(S);
 | |
|   UniqueSCEVs.InsertNode(S, IP);
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //            Basic SCEV Analysis and PHI Idiom Recognition Code
 | |
| //
 | |
| 
 | |
| /// Test if values of the given type are analyzable within the SCEV
 | |
| /// framework. This primarily includes integer types, and it can optionally
 | |
| /// include pointer types if the ScalarEvolution class has access to
 | |
| /// target-specific information.
 | |
| bool ScalarEvolution::isSCEVable(Type *Ty) const {
 | |
|   // Integers and pointers are always SCEVable.
 | |
|   return Ty->isIntOrPtrTy();
 | |
| }
 | |
| 
 | |
| /// Return the size in bits of the specified type, for which isSCEVable must
 | |
| /// return true.
 | |
| uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
 | |
|   assert(isSCEVable(Ty) && "Type is not SCEVable!");
 | |
|   if (Ty->isPointerTy())
 | |
|     return getDataLayout().getIndexTypeSizeInBits(Ty);
 | |
|   return getDataLayout().getTypeSizeInBits(Ty);
 | |
| }
 | |
| 
 | |
| /// Return a type with the same bitwidth as the given type and which represents
 | |
| /// how SCEV will treat the given type, for which isSCEVable must return
 | |
| /// true. For pointer types, this is the pointer index sized integer type.
 | |
| Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
 | |
|   assert(isSCEVable(Ty) && "Type is not SCEVable!");
 | |
| 
 | |
|   if (Ty->isIntegerTy())
 | |
|     return Ty;
 | |
| 
 | |
|   // The only other support type is pointer.
 | |
|   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
 | |
|   return getDataLayout().getIndexType(Ty);
 | |
| }
 | |
| 
 | |
| Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
 | |
|   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getCouldNotCompute() {
 | |
|   return CouldNotCompute.get();
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::checkValidity(const SCEV *S) const {
 | |
|   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
 | |
|     auto *SU = dyn_cast<SCEVUnknown>(S);
 | |
|     return SU && SU->getValue() == nullptr;
 | |
|   });
 | |
| 
 | |
|   return !ContainsNulls;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
 | |
|   HasRecMapType::iterator I = HasRecMap.find(S);
 | |
|   if (I != HasRecMap.end())
 | |
|     return I->second;
 | |
| 
 | |
|   bool FoundAddRec =
 | |
|       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
 | |
|   HasRecMap.insert({S, FoundAddRec});
 | |
|   return FoundAddRec;
 | |
| }
 | |
| 
 | |
| /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
 | |
| /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
 | |
| /// offset I, then return {S', I}, else return {\p S, nullptr}.
 | |
| static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
 | |
|   const auto *Add = dyn_cast<SCEVAddExpr>(S);
 | |
|   if (!Add)
 | |
|     return {S, nullptr};
 | |
| 
 | |
|   if (Add->getNumOperands() != 2)
 | |
|     return {S, nullptr};
 | |
| 
 | |
|   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
 | |
|   if (!ConstOp)
 | |
|     return {S, nullptr};
 | |
| 
 | |
|   return {Add->getOperand(1), ConstOp->getValue()};
 | |
| }
 | |
| 
 | |
| /// Return the ValueOffsetPair set for \p S. \p S can be represented
 | |
| /// by the value and offset from any ValueOffsetPair in the set.
 | |
| SetVector<ScalarEvolution::ValueOffsetPair> *
 | |
| ScalarEvolution::getSCEVValues(const SCEV *S) {
 | |
|   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
 | |
|   if (SI == ExprValueMap.end())
 | |
|     return nullptr;
 | |
| #ifndef NDEBUG
 | |
|   if (VerifySCEVMap) {
 | |
|     // Check there is no dangling Value in the set returned.
 | |
|     for (const auto &VE : SI->second)
 | |
|       assert(ValueExprMap.count(VE.first));
 | |
|   }
 | |
| #endif
 | |
|   return &SI->second;
 | |
| }
 | |
| 
 | |
| /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
 | |
| /// cannot be used separately. eraseValueFromMap should be used to remove
 | |
| /// V from ValueExprMap and ExprValueMap at the same time.
 | |
| void ScalarEvolution::eraseValueFromMap(Value *V) {
 | |
|   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
 | |
|   if (I != ValueExprMap.end()) {
 | |
|     const SCEV *S = I->second;
 | |
|     // Remove {V, 0} from the set of ExprValueMap[S]
 | |
|     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
 | |
|       SV->remove({V, nullptr});
 | |
| 
 | |
|     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
 | |
|     const SCEV *Stripped;
 | |
|     ConstantInt *Offset;
 | |
|     std::tie(Stripped, Offset) = splitAddExpr(S);
 | |
|     if (Offset != nullptr) {
 | |
|       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
 | |
|         SV->remove({V, Offset});
 | |
|     }
 | |
|     ValueExprMap.erase(V);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Check whether value has nuw/nsw/exact set but SCEV does not.
 | |
| /// TODO: In reality it is better to check the poison recursively
 | |
| /// but this is better than nothing.
 | |
| static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
 | |
|   if (auto *I = dyn_cast<Instruction>(V)) {
 | |
|     if (isa<OverflowingBinaryOperator>(I)) {
 | |
|       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
 | |
|         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
 | |
|           return true;
 | |
|         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
 | |
|           return true;
 | |
|       }
 | |
|     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return an existing SCEV if it exists, otherwise analyze the expression and
 | |
| /// create a new one.
 | |
| const SCEV *ScalarEvolution::getSCEV(Value *V) {
 | |
|   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
 | |
| 
 | |
|   const SCEV *S = getExistingSCEV(V);
 | |
|   if (S == nullptr) {
 | |
|     S = createSCEV(V);
 | |
|     // During PHI resolution, it is possible to create two SCEVs for the same
 | |
|     // V, so it is needed to double check whether V->S is inserted into
 | |
|     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
 | |
|     std::pair<ValueExprMapType::iterator, bool> Pair =
 | |
|         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
 | |
|     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
 | |
|       ExprValueMap[S].insert({V, nullptr});
 | |
| 
 | |
|       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
 | |
|       // ExprValueMap.
 | |
|       const SCEV *Stripped = S;
 | |
|       ConstantInt *Offset = nullptr;
 | |
|       std::tie(Stripped, Offset) = splitAddExpr(S);
 | |
|       // If stripped is SCEVUnknown, don't bother to save
 | |
|       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
 | |
|       // increase the complexity of the expansion code.
 | |
|       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
 | |
|       // because it may generate add/sub instead of GEP in SCEV expansion.
 | |
|       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
 | |
|           !isa<GetElementPtrInst>(V))
 | |
|         ExprValueMap[Stripped].insert({V, Offset});
 | |
|     }
 | |
|   }
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
 | |
|   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
 | |
| 
 | |
|   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
 | |
|   if (I != ValueExprMap.end()) {
 | |
|     const SCEV *S = I->second;
 | |
|     if (checkValidity(S))
 | |
|       return S;
 | |
|     eraseValueFromMap(V);
 | |
|     forgetMemoizedResults(S);
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Return a SCEV corresponding to -V = -1*V
 | |
| const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
 | |
|                                              SCEV::NoWrapFlags Flags) {
 | |
|   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
 | |
|     return getConstant(
 | |
|                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
 | |
| 
 | |
|   Type *Ty = V->getType();
 | |
|   Ty = getEffectiveSCEVType(Ty);
 | |
|   return getMulExpr(V, getMinusOne(Ty), Flags);
 | |
| }
 | |
| 
 | |
| /// If Expr computes ~A, return A else return nullptr
 | |
| static const SCEV *MatchNotExpr(const SCEV *Expr) {
 | |
|   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
 | |
|   if (!Add || Add->getNumOperands() != 2 ||
 | |
|       !Add->getOperand(0)->isAllOnesValue())
 | |
|     return nullptr;
 | |
| 
 | |
|   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
 | |
|   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
 | |
|       !AddRHS->getOperand(0)->isAllOnesValue())
 | |
|     return nullptr;
 | |
| 
 | |
|   return AddRHS->getOperand(1);
 | |
| }
 | |
| 
 | |
| /// Return a SCEV corresponding to ~V = -1-V
 | |
| const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
 | |
|   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
 | |
|     return getConstant(
 | |
|                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
 | |
| 
 | |
|   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
 | |
|   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
 | |
|     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
 | |
|       SmallVector<const SCEV *, 2> MatchedOperands;
 | |
|       for (const SCEV *Operand : MME->operands()) {
 | |
|         const SCEV *Matched = MatchNotExpr(Operand);
 | |
|         if (!Matched)
 | |
|           return (const SCEV *)nullptr;
 | |
|         MatchedOperands.push_back(Matched);
 | |
|       }
 | |
|       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
 | |
|                            MatchedOperands);
 | |
|     };
 | |
|     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
 | |
|       return Replaced;
 | |
|   }
 | |
| 
 | |
|   Type *Ty = V->getType();
 | |
|   Ty = getEffectiveSCEVType(Ty);
 | |
|   return getMinusSCEV(getMinusOne(Ty), V);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
 | |
|                                           SCEV::NoWrapFlags Flags,
 | |
|                                           unsigned Depth) {
 | |
|   // Fast path: X - X --> 0.
 | |
|   if (LHS == RHS)
 | |
|     return getZero(LHS->getType());
 | |
| 
 | |
|   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
 | |
|   // makes it so that we cannot make much use of NUW.
 | |
|   auto AddFlags = SCEV::FlagAnyWrap;
 | |
|   const bool RHSIsNotMinSigned =
 | |
|       !getSignedRangeMin(RHS).isMinSignedValue();
 | |
|   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
 | |
|     // Let M be the minimum representable signed value. Then (-1)*RHS
 | |
|     // signed-wraps if and only if RHS is M. That can happen even for
 | |
|     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
 | |
|     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
 | |
|     // (-1)*RHS, we need to prove that RHS != M.
 | |
|     //
 | |
|     // If LHS is non-negative and we know that LHS - RHS does not
 | |
|     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
 | |
|     // either by proving that RHS > M or that LHS >= 0.
 | |
|     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
 | |
|       AddFlags = SCEV::FlagNSW;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
 | |
|   // RHS is NSW and LHS >= 0.
 | |
|   //
 | |
|   // The difficulty here is that the NSW flag may have been proven
 | |
|   // relative to a loop that is to be found in a recurrence in LHS and
 | |
|   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
 | |
|   // larger scope than intended.
 | |
|   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
 | |
| 
 | |
|   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
 | |
|                                                      unsigned Depth) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
 | |
|          "Cannot truncate or zero extend with non-integer arguments!");
 | |
|   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | |
|     return V;  // No conversion
 | |
|   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
 | |
|     return getTruncateExpr(V, Ty, Depth);
 | |
|   return getZeroExtendExpr(V, Ty, Depth);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
 | |
|                                                      unsigned Depth) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
 | |
|          "Cannot truncate or zero extend with non-integer arguments!");
 | |
|   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | |
|     return V;  // No conversion
 | |
|   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
 | |
|     return getTruncateExpr(V, Ty, Depth);
 | |
|   return getSignExtendExpr(V, Ty, Depth);
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
 | |
|          "Cannot noop or zero extend with non-integer arguments!");
 | |
|   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
 | |
|          "getNoopOrZeroExtend cannot truncate!");
 | |
|   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | |
|     return V;  // No conversion
 | |
|   return getZeroExtendExpr(V, Ty);
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
 | |
|          "Cannot noop or sign extend with non-integer arguments!");
 | |
|   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
 | |
|          "getNoopOrSignExtend cannot truncate!");
 | |
|   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | |
|     return V;  // No conversion
 | |
|   return getSignExtendExpr(V, Ty);
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
 | |
|          "Cannot noop or any extend with non-integer arguments!");
 | |
|   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
 | |
|          "getNoopOrAnyExtend cannot truncate!");
 | |
|   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | |
|     return V;  // No conversion
 | |
|   return getAnyExtendExpr(V, Ty);
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
 | |
|   Type *SrcTy = V->getType();
 | |
|   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
 | |
|          "Cannot truncate or noop with non-integer arguments!");
 | |
|   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
 | |
|          "getTruncateOrNoop cannot extend!");
 | |
|   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
 | |
|     return V;  // No conversion
 | |
|   return getTruncateExpr(V, Ty);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
 | |
|                                                         const SCEV *RHS) {
 | |
|   const SCEV *PromotedLHS = LHS;
 | |
|   const SCEV *PromotedRHS = RHS;
 | |
| 
 | |
|   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
 | |
|     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
 | |
|   else
 | |
|     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
 | |
| 
 | |
|   return getUMaxExpr(PromotedLHS, PromotedRHS);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
 | |
|                                                         const SCEV *RHS) {
 | |
|   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
 | |
|   return getUMinFromMismatchedTypes(Ops);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
 | |
|     SmallVectorImpl<const SCEV *> &Ops) {
 | |
|   assert(!Ops.empty() && "At least one operand must be!");
 | |
|   // Trivial case.
 | |
|   if (Ops.size() == 1)
 | |
|     return Ops[0];
 | |
| 
 | |
|   // Find the max type first.
 | |
|   Type *MaxType = nullptr;
 | |
|   for (auto *S : Ops)
 | |
|     if (MaxType)
 | |
|       MaxType = getWiderType(MaxType, S->getType());
 | |
|     else
 | |
|       MaxType = S->getType();
 | |
|   assert(MaxType && "Failed to find maximum type!");
 | |
| 
 | |
|   // Extend all ops to max type.
 | |
|   SmallVector<const SCEV *, 2> PromotedOps;
 | |
|   for (auto *S : Ops)
 | |
|     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
 | |
| 
 | |
|   // Generate umin.
 | |
|   return getUMinExpr(PromotedOps);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
 | |
|   // A pointer operand may evaluate to a nonpointer expression, such as null.
 | |
|   if (!V->getType()->isPointerTy())
 | |
|     return V;
 | |
| 
 | |
|   while (true) {
 | |
|     if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) {
 | |
|       V = Cast->getOperand();
 | |
|     } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
 | |
|       const SCEV *PtrOp = nullptr;
 | |
|       for (const SCEV *NAryOp : NAry->operands()) {
 | |
|         if (NAryOp->getType()->isPointerTy()) {
 | |
|           // Cannot find the base of an expression with multiple pointer ops.
 | |
|           if (PtrOp)
 | |
|             return V;
 | |
|           PtrOp = NAryOp;
 | |
|         }
 | |
|       }
 | |
|       if (!PtrOp) // All operands were non-pointer.
 | |
|         return V;
 | |
|       V = PtrOp;
 | |
|     } else // Not something we can look further into.
 | |
|       return V;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Push users of the given Instruction onto the given Worklist.
 | |
| static void
 | |
| PushDefUseChildren(Instruction *I,
 | |
|                    SmallVectorImpl<Instruction *> &Worklist) {
 | |
|   // Push the def-use children onto the Worklist stack.
 | |
|   for (User *U : I->users())
 | |
|     Worklist.push_back(cast<Instruction>(U));
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
 | |
|   SmallVector<Instruction *, 16> Worklist;
 | |
|   PushDefUseChildren(PN, Worklist);
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 8> Visited;
 | |
|   Visited.insert(PN);
 | |
|   while (!Worklist.empty()) {
 | |
|     Instruction *I = Worklist.pop_back_val();
 | |
|     if (!Visited.insert(I).second)
 | |
|       continue;
 | |
| 
 | |
|     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
 | |
|     if (It != ValueExprMap.end()) {
 | |
|       const SCEV *Old = It->second;
 | |
| 
 | |
|       // Short-circuit the def-use traversal if the symbolic name
 | |
|       // ceases to appear in expressions.
 | |
|       if (Old != SymName && !hasOperand(Old, SymName))
 | |
|         continue;
 | |
| 
 | |
|       // SCEVUnknown for a PHI either means that it has an unrecognized
 | |
|       // structure, it's a PHI that's in the progress of being computed
 | |
|       // by createNodeForPHI, or it's a single-value PHI. In the first case,
 | |
|       // additional loop trip count information isn't going to change anything.
 | |
|       // In the second case, createNodeForPHI will perform the necessary
 | |
|       // updates on its own when it gets to that point. In the third, we do
 | |
|       // want to forget the SCEVUnknown.
 | |
|       if (!isa<PHINode>(I) ||
 | |
|           !isa<SCEVUnknown>(Old) ||
 | |
|           (I != PN && Old == SymName)) {
 | |
|         eraseValueFromMap(It->first);
 | |
|         forgetMemoizedResults(Old);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     PushDefUseChildren(I, Worklist);
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
 | |
| /// expression in case its Loop is L. If it is not L then
 | |
| /// if IgnoreOtherLoops is true then use AddRec itself
 | |
| /// otherwise rewrite cannot be done.
 | |
| /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
 | |
| class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
 | |
| public:
 | |
|   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
 | |
|                              bool IgnoreOtherLoops = true) {
 | |
|     SCEVInitRewriter Rewriter(L, SE);
 | |
|     const SCEV *Result = Rewriter.visit(S);
 | |
|     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
 | |
|       return SE.getCouldNotCompute();
 | |
|     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
 | |
|                ? SE.getCouldNotCompute()
 | |
|                : Result;
 | |
|   }
 | |
| 
 | |
|   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
 | |
|     if (!SE.isLoopInvariant(Expr, L))
 | |
|       SeenLoopVariantSCEVUnknown = true;
 | |
|     return Expr;
 | |
|   }
 | |
| 
 | |
|   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
 | |
|     // Only re-write AddRecExprs for this loop.
 | |
|     if (Expr->getLoop() == L)
 | |
|       return Expr->getStart();
 | |
|     SeenOtherLoops = true;
 | |
|     return Expr;
 | |
|   }
 | |
| 
 | |
|   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
 | |
| 
 | |
|   bool hasSeenOtherLoops() { return SeenOtherLoops; }
 | |
| 
 | |
| private:
 | |
|   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
 | |
|       : SCEVRewriteVisitor(SE), L(L) {}
 | |
| 
 | |
|   const Loop *L;
 | |
|   bool SeenLoopVariantSCEVUnknown = false;
 | |
|   bool SeenOtherLoops = false;
 | |
| };
 | |
| 
 | |
| /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
 | |
| /// increment expression in case its Loop is L. If it is not L then
 | |
| /// use AddRec itself.
 | |
| /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
 | |
| class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
 | |
| public:
 | |
|   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
 | |
|     SCEVPostIncRewriter Rewriter(L, SE);
 | |
|     const SCEV *Result = Rewriter.visit(S);
 | |
|     return Rewriter.hasSeenLoopVariantSCEVUnknown()
 | |
|         ? SE.getCouldNotCompute()
 | |
|         : Result;
 | |
|   }
 | |
| 
 | |
|   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
 | |
|     if (!SE.isLoopInvariant(Expr, L))
 | |
|       SeenLoopVariantSCEVUnknown = true;
 | |
|     return Expr;
 | |
|   }
 | |
| 
 | |
|   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
 | |
|     // Only re-write AddRecExprs for this loop.
 | |
|     if (Expr->getLoop() == L)
 | |
|       return Expr->getPostIncExpr(SE);
 | |
|     SeenOtherLoops = true;
 | |
|     return Expr;
 | |
|   }
 | |
| 
 | |
|   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
 | |
| 
 | |
|   bool hasSeenOtherLoops() { return SeenOtherLoops; }
 | |
| 
 | |
| private:
 | |
|   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
 | |
|       : SCEVRewriteVisitor(SE), L(L) {}
 | |
| 
 | |
|   const Loop *L;
 | |
|   bool SeenLoopVariantSCEVUnknown = false;
 | |
|   bool SeenOtherLoops = false;
 | |
| };
 | |
| 
 | |
| /// This class evaluates the compare condition by matching it against the
 | |
| /// condition of loop latch. If there is a match we assume a true value
 | |
| /// for the condition while building SCEV nodes.
 | |
| class SCEVBackedgeConditionFolder
 | |
|     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
 | |
| public:
 | |
|   static const SCEV *rewrite(const SCEV *S, const Loop *L,
 | |
|                              ScalarEvolution &SE) {
 | |
|     bool IsPosBECond = false;
 | |
|     Value *BECond = nullptr;
 | |
|     if (BasicBlock *Latch = L->getLoopLatch()) {
 | |
|       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
 | |
|       if (BI && BI->isConditional()) {
 | |
|         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
 | |
|                "Both outgoing branches should not target same header!");
 | |
|         BECond = BI->getCondition();
 | |
|         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
 | |
|       } else {
 | |
|         return S;
 | |
|       }
 | |
|     }
 | |
|     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
 | |
|     return Rewriter.visit(S);
 | |
|   }
 | |
| 
 | |
|   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
 | |
|     const SCEV *Result = Expr;
 | |
|     bool InvariantF = SE.isLoopInvariant(Expr, L);
 | |
| 
 | |
|     if (!InvariantF) {
 | |
|       Instruction *I = cast<Instruction>(Expr->getValue());
 | |
|       switch (I->getOpcode()) {
 | |
|       case Instruction::Select: {
 | |
|         SelectInst *SI = cast<SelectInst>(I);
 | |
|         Optional<const SCEV *> Res =
 | |
|             compareWithBackedgeCondition(SI->getCondition());
 | |
|         if (Res.hasValue()) {
 | |
|           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
 | |
|           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       default: {
 | |
|         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
 | |
|         if (Res.hasValue())
 | |
|           Result = Res.getValue();
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
 | |
|                                        bool IsPosBECond, ScalarEvolution &SE)
 | |
|       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
 | |
|         IsPositiveBECond(IsPosBECond) {}
 | |
| 
 | |
|   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
 | |
| 
 | |
|   const Loop *L;
 | |
|   /// Loop back condition.
 | |
|   Value *BackedgeCond = nullptr;
 | |
|   /// Set to true if loop back is on positive branch condition.
 | |
|   bool IsPositiveBECond;
 | |
| };
 | |
| 
 | |
| Optional<const SCEV *>
 | |
| SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
 | |
| 
 | |
|   // If value matches the backedge condition for loop latch,
 | |
|   // then return a constant evolution node based on loopback
 | |
|   // branch taken.
 | |
|   if (BackedgeCond == IC)
 | |
|     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
 | |
|                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
 | |
| public:
 | |
|   static const SCEV *rewrite(const SCEV *S, const Loop *L,
 | |
|                              ScalarEvolution &SE) {
 | |
|     SCEVShiftRewriter Rewriter(L, SE);
 | |
|     const SCEV *Result = Rewriter.visit(S);
 | |
|     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
 | |
|   }
 | |
| 
 | |
|   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
 | |
|     // Only allow AddRecExprs for this loop.
 | |
|     if (!SE.isLoopInvariant(Expr, L))
 | |
|       Valid = false;
 | |
|     return Expr;
 | |
|   }
 | |
| 
 | |
|   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
 | |
|     if (Expr->getLoop() == L && Expr->isAffine())
 | |
|       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
 | |
|     Valid = false;
 | |
|     return Expr;
 | |
|   }
 | |
| 
 | |
|   bool isValid() { return Valid; }
 | |
| 
 | |
| private:
 | |
|   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
 | |
|       : SCEVRewriteVisitor(SE), L(L) {}
 | |
| 
 | |
|   const Loop *L;
 | |
|   bool Valid = true;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| SCEV::NoWrapFlags
 | |
| ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
 | |
|   if (!AR->isAffine())
 | |
|     return SCEV::FlagAnyWrap;
 | |
| 
 | |
|   using OBO = OverflowingBinaryOperator;
 | |
| 
 | |
|   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
 | |
| 
 | |
|   if (!AR->hasNoSignedWrap()) {
 | |
|     ConstantRange AddRecRange = getSignedRange(AR);
 | |
|     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
 | |
| 
 | |
|     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|         Instruction::Add, IncRange, OBO::NoSignedWrap);
 | |
|     if (NSWRegion.contains(AddRecRange))
 | |
|       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
 | |
|   }
 | |
| 
 | |
|   if (!AR->hasNoUnsignedWrap()) {
 | |
|     ConstantRange AddRecRange = getUnsignedRange(AR);
 | |
|     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
 | |
| 
 | |
|     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
 | |
|         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
 | |
|     if (NUWRegion.contains(AddRecRange))
 | |
|       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| SCEV::NoWrapFlags
 | |
| ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
 | |
|   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
 | |
| 
 | |
|   if (AR->hasNoSignedWrap())
 | |
|     return Result;
 | |
| 
 | |
|   if (!AR->isAffine())
 | |
|     return Result;
 | |
| 
 | |
|   const SCEV *Step = AR->getStepRecurrence(*this);
 | |
|   const Loop *L = AR->getLoop();
 | |
| 
 | |
|   // Check whether the backedge-taken count is SCEVCouldNotCompute.
 | |
|   // Note that this serves two purposes: It filters out loops that are
 | |
|   // simply not analyzable, and it covers the case where this code is
 | |
|   // being called from within backedge-taken count analysis, such that
 | |
|   // attempting to ask for the backedge-taken count would likely result
 | |
|   // in infinite recursion. In the later case, the analysis code will
 | |
|   // cope with a conservative value, and it will take care to purge
 | |
|   // that value once it has finished.
 | |
|   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
 | |
| 
 | |
|   // Normally, in the cases we can prove no-overflow via a
 | |
|   // backedge guarding condition, we can also compute a backedge
 | |
|   // taken count for the loop.  The exceptions are assumptions and
 | |
|   // guards present in the loop -- SCEV is not great at exploiting
 | |
|   // these to compute max backedge taken counts, but can still use
 | |
|   // these to prove lack of overflow.  Use this fact to avoid
 | |
|   // doing extra work that may not pay off.
 | |
| 
 | |
|   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
 | |
|       AC.assumptions().empty())
 | |
|     return Result;
 | |
| 
 | |
|   // If the backedge is guarded by a comparison with the pre-inc  value the
 | |
|   // addrec is safe. Also, if the entry is guarded by a comparison with the
 | |
|   // start value and the backedge is guarded by a comparison with the post-inc
 | |
|   // value, the addrec is safe.
 | |
|   ICmpInst::Predicate Pred;
 | |
|   const SCEV *OverflowLimit =
 | |
|     getSignedOverflowLimitForStep(Step, &Pred, this);
 | |
|   if (OverflowLimit &&
 | |
|       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
 | |
|        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
 | |
|     Result = setFlags(Result, SCEV::FlagNSW);
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| SCEV::NoWrapFlags
 | |
| ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
 | |
|   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
 | |
| 
 | |
|   if (AR->hasNoUnsignedWrap())
 | |
|     return Result;
 | |
| 
 | |
|   if (!AR->isAffine())
 | |
|     return Result;
 | |
| 
 | |
|   const SCEV *Step = AR->getStepRecurrence(*this);
 | |
|   unsigned BitWidth = getTypeSizeInBits(AR->getType());
 | |
|   const Loop *L = AR->getLoop();
 | |
| 
 | |
|   // Check whether the backedge-taken count is SCEVCouldNotCompute.
 | |
|   // Note that this serves two purposes: It filters out loops that are
 | |
|   // simply not analyzable, and it covers the case where this code is
 | |
|   // being called from within backedge-taken count analysis, such that
 | |
|   // attempting to ask for the backedge-taken count would likely result
 | |
|   // in infinite recursion. In the later case, the analysis code will
 | |
|   // cope with a conservative value, and it will take care to purge
 | |
|   // that value once it has finished.
 | |
|   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
 | |
| 
 | |
|   // Normally, in the cases we can prove no-overflow via a
 | |
|   // backedge guarding condition, we can also compute a backedge
 | |
|   // taken count for the loop.  The exceptions are assumptions and
 | |
|   // guards present in the loop -- SCEV is not great at exploiting
 | |
|   // these to compute max backedge taken counts, but can still use
 | |
|   // these to prove lack of overflow.  Use this fact to avoid
 | |
|   // doing extra work that may not pay off.
 | |
| 
 | |
|   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
 | |
|       AC.assumptions().empty())
 | |
|     return Result;
 | |
| 
 | |
|   // If the backedge is guarded by a comparison with the pre-inc  value the
 | |
|   // addrec is safe. Also, if the entry is guarded by a comparison with the
 | |
|   // start value and the backedge is guarded by a comparison with the post-inc
 | |
|   // value, the addrec is safe.
 | |
|   if (isKnownPositive(Step)) {
 | |
|     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
 | |
|                                 getUnsignedRangeMax(Step));
 | |
|     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
 | |
|         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
 | |
|       Result = setFlags(Result, SCEV::FlagNUW);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Represents an abstract binary operation.  This may exist as a
 | |
| /// normal instruction or constant expression, or may have been
 | |
| /// derived from an expression tree.
 | |
| struct BinaryOp {
 | |
|   unsigned Opcode;
 | |
|   Value *LHS;
 | |
|   Value *RHS;
 | |
|   bool IsNSW = false;
 | |
|   bool IsNUW = false;
 | |
|   bool IsExact = false;
 | |
| 
 | |
|   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
 | |
|   /// constant expression.
 | |
|   Operator *Op = nullptr;
 | |
| 
 | |
|   explicit BinaryOp(Operator *Op)
 | |
|       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
 | |
|         Op(Op) {
 | |
|     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
 | |
|       IsNSW = OBO->hasNoSignedWrap();
 | |
|       IsNUW = OBO->hasNoUnsignedWrap();
 | |
|     }
 | |
|     if (auto *PEO = dyn_cast<PossiblyExactOperator>(Op))
 | |
|       IsExact = PEO->isExact();
 | |
|   }
 | |
| 
 | |
|   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
 | |
|                     bool IsNUW = false, bool IsExact = false)
 | |
|       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
 | |
|         IsExact(IsExact) {}
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Try to map \p V into a BinaryOp, and return \c None on failure.
 | |
| static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
 | |
|   auto *Op = dyn_cast<Operator>(V);
 | |
|   if (!Op)
 | |
|     return None;
 | |
| 
 | |
|   // Implementation detail: all the cleverness here should happen without
 | |
|   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
 | |
|   // SCEV expressions when possible, and we should not break that.
 | |
| 
 | |
|   switch (Op->getOpcode()) {
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::Shl:
 | |
|     return BinaryOp(Op);
 | |
| 
 | |
|   case Instruction::Xor:
 | |
|     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
 | |
|       // If the RHS of the xor is a signmask, then this is just an add.
 | |
|       // Instcombine turns add of signmask into xor as a strength reduction step.
 | |
|       if (RHSC->getValue().isSignMask())
 | |
|         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
 | |
|     return BinaryOp(Op);
 | |
| 
 | |
|   case Instruction::LShr:
 | |
|     // Turn logical shift right of a constant into a unsigned divide.
 | |
|     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
 | |
|       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
 | |
| 
 | |
|       // If the shift count is not less than the bitwidth, the result of
 | |
|       // the shift is undefined. Don't try to analyze it, because the
 | |
|       // resolution chosen here may differ from the resolution chosen in
 | |
|       // other parts of the compiler.
 | |
|       if (SA->getValue().ult(BitWidth)) {
 | |
|         Constant *X =
 | |
|             ConstantInt::get(SA->getContext(),
 | |
|                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
 | |
|         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
 | |
|       }
 | |
|     }
 | |
|     return BinaryOp(Op);
 | |
| 
 | |
|   case Instruction::ExtractValue: {
 | |
|     auto *EVI = cast<ExtractValueInst>(Op);
 | |
|     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
 | |
|       break;
 | |
| 
 | |
|     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
 | |
|     if (!WO)
 | |
|       break;
 | |
| 
 | |
|     Instruction::BinaryOps BinOp = WO->getBinaryOp();
 | |
|     bool Signed = WO->isSigned();
 | |
|     // TODO: Should add nuw/nsw flags for mul as well.
 | |
|     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
 | |
|       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
 | |
| 
 | |
|     // Now that we know that all uses of the arithmetic-result component of
 | |
|     // CI are guarded by the overflow check, we can go ahead and pretend
 | |
|     // that the arithmetic is non-overflowing.
 | |
|     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
 | |
|                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
 | |
|   // semantics as a Sub, return a binary sub expression.
 | |
|   if (auto *II = dyn_cast<IntrinsicInst>(V))
 | |
|     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
 | |
|       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| /// Helper function to createAddRecFromPHIWithCasts. We have a phi
 | |
| /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
 | |
| /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
 | |
| /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
 | |
| /// follows one of the following patterns:
 | |
| /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
 | |
| /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
 | |
| /// If the SCEV expression of \p Op conforms with one of the expected patterns
 | |
| /// we return the type of the truncation operation, and indicate whether the
 | |
| /// truncated type should be treated as signed/unsigned by setting
 | |
| /// \p Signed to true/false, respectively.
 | |
| static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
 | |
|                                bool &Signed, ScalarEvolution &SE) {
 | |
|   // The case where Op == SymbolicPHI (that is, with no type conversions on
 | |
|   // the way) is handled by the regular add recurrence creating logic and
 | |
|   // would have already been triggered in createAddRecForPHI. Reaching it here
 | |
|   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
 | |
|   // because one of the other operands of the SCEVAddExpr updating this PHI is
 | |
|   // not invariant).
 | |
|   //
 | |
|   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
 | |
|   // this case predicates that allow us to prove that Op == SymbolicPHI will
 | |
|   // be added.
 | |
|   if (Op == SymbolicPHI)
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
 | |
|   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
 | |
|   if (SourceBits != NewBits)
 | |
|     return nullptr;
 | |
| 
 | |
|   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
 | |
|   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
 | |
|   if (!SExt && !ZExt)
 | |
|     return nullptr;
 | |
|   const SCEVTruncateExpr *Trunc =
 | |
|       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
 | |
|            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
 | |
|   if (!Trunc)
 | |
|     return nullptr;
 | |
|   const SCEV *X = Trunc->getOperand();
 | |
|   if (X != SymbolicPHI)
 | |
|     return nullptr;
 | |
|   Signed = SExt != nullptr;
 | |
|   return Trunc->getType();
 | |
| }
 | |
| 
 | |
| static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
 | |
|   if (!PN->getType()->isIntegerTy())
 | |
|     return nullptr;
 | |
|   const Loop *L = LI.getLoopFor(PN->getParent());
 | |
|   if (!L || L->getHeader() != PN->getParent())
 | |
|     return nullptr;
 | |
|   return L;
 | |
| }
 | |
| 
 | |
| // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
 | |
| // computation that updates the phi follows the following pattern:
 | |
| //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
 | |
| // which correspond to a phi->trunc->sext/zext->add->phi update chain.
 | |
| // If so, try to see if it can be rewritten as an AddRecExpr under some
 | |
| // Predicates. If successful, return them as a pair. Also cache the results
 | |
| // of the analysis.
 | |
| //
 | |
| // Example usage scenario:
 | |
| //    Say the Rewriter is called for the following SCEV:
 | |
| //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
 | |
| //    where:
 | |
| //         %X = phi i64 (%Start, %BEValue)
 | |
| //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
 | |
| //    and call this function with %SymbolicPHI = %X.
 | |
| //
 | |
| //    The analysis will find that the value coming around the backedge has
 | |
| //    the following SCEV:
 | |
| //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
 | |
| //    Upon concluding that this matches the desired pattern, the function
 | |
| //    will return the pair {NewAddRec, SmallPredsVec} where:
 | |
| //         NewAddRec = {%Start,+,%Step}
 | |
| //         SmallPredsVec = {P1, P2, P3} as follows:
 | |
| //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
 | |
| //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
 | |
| //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
 | |
| //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
 | |
| //    under the predicates {P1,P2,P3}.
 | |
| //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
 | |
| //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
 | |
| //
 | |
| // TODO's:
 | |
| //
 | |
| // 1) Extend the Induction descriptor to also support inductions that involve
 | |
| //    casts: When needed (namely, when we are called in the context of the
 | |
| //    vectorizer induction analysis), a Set of cast instructions will be
 | |
| //    populated by this method, and provided back to isInductionPHI. This is
 | |
| //    needed to allow the vectorizer to properly record them to be ignored by
 | |
| //    the cost model and to avoid vectorizing them (otherwise these casts,
 | |
| //    which are redundant under the runtime overflow checks, will be
 | |
| //    vectorized, which can be costly).
 | |
| //
 | |
| // 2) Support additional induction/PHISCEV patterns: We also want to support
 | |
| //    inductions where the sext-trunc / zext-trunc operations (partly) occur
 | |
| //    after the induction update operation (the induction increment):
 | |
| //
 | |
| //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
 | |
| //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
 | |
| //
 | |
| //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
 | |
| //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
 | |
| //
 | |
| // 3) Outline common code with createAddRecFromPHI to avoid duplication.
 | |
| Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
 | |
| ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
 | |
|   SmallVector<const SCEVPredicate *, 3> Predicates;
 | |
| 
 | |
|   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
 | |
|   // return an AddRec expression under some predicate.
 | |
| 
 | |
|   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
 | |
|   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
 | |
|   assert(L && "Expecting an integer loop header phi");
 | |
| 
 | |
|   // The loop may have multiple entrances or multiple exits; we can analyze
 | |
|   // this phi as an addrec if it has a unique entry value and a unique
 | |
|   // backedge value.
 | |
|   Value *BEValueV = nullptr, *StartValueV = nullptr;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *V = PN->getIncomingValue(i);
 | |
|     if (L->contains(PN->getIncomingBlock(i))) {
 | |
|       if (!BEValueV) {
 | |
|         BEValueV = V;
 | |
|       } else if (BEValueV != V) {
 | |
|         BEValueV = nullptr;
 | |
|         break;
 | |
|       }
 | |
|     } else if (!StartValueV) {
 | |
|       StartValueV = V;
 | |
|     } else if (StartValueV != V) {
 | |
|       StartValueV = nullptr;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!BEValueV || !StartValueV)
 | |
|     return None;
 | |
| 
 | |
|   const SCEV *BEValue = getSCEV(BEValueV);
 | |
| 
 | |
|   // If the value coming around the backedge is an add with the symbolic
 | |
|   // value we just inserted, possibly with casts that we can ignore under
 | |
|   // an appropriate runtime guard, then we found a simple induction variable!
 | |
|   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
 | |
|   if (!Add)
 | |
|     return None;
 | |
| 
 | |
|   // If there is a single occurrence of the symbolic value, possibly
 | |
|   // casted, replace it with a recurrence.
 | |
|   unsigned FoundIndex = Add->getNumOperands();
 | |
|   Type *TruncTy = nullptr;
 | |
|   bool Signed;
 | |
|   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | |
|     if ((TruncTy =
 | |
|              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
 | |
|       if (FoundIndex == e) {
 | |
|         FoundIndex = i;
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|   if (FoundIndex == Add->getNumOperands())
 | |
|     return None;
 | |
| 
 | |
|   // Create an add with everything but the specified operand.
 | |
|   SmallVector<const SCEV *, 8> Ops;
 | |
|   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | |
|     if (i != FoundIndex)
 | |
|       Ops.push_back(Add->getOperand(i));
 | |
|   const SCEV *Accum = getAddExpr(Ops);
 | |
| 
 | |
|   // The runtime checks will not be valid if the step amount is
 | |
|   // varying inside the loop.
 | |
|   if (!isLoopInvariant(Accum, L))
 | |
|     return None;
 | |
| 
 | |
|   // *** Part2: Create the predicates
 | |
| 
 | |
|   // Analysis was successful: we have a phi-with-cast pattern for which we
 | |
|   // can return an AddRec expression under the following predicates:
 | |
|   //
 | |
|   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
 | |
|   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
 | |
|   // P2: An Equal predicate that guarantees that
 | |
|   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
 | |
|   // P3: An Equal predicate that guarantees that
 | |
|   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
 | |
|   //
 | |
|   // As we next prove, the above predicates guarantee that:
 | |
|   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
 | |
|   //
 | |
|   //
 | |
|   // More formally, we want to prove that:
 | |
|   //     Expr(i+1) = Start + (i+1) * Accum
 | |
|   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
 | |
|   //
 | |
|   // Given that:
 | |
|   // 1) Expr(0) = Start
 | |
|   // 2) Expr(1) = Start + Accum
 | |
|   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
 | |
|   // 3) Induction hypothesis (step i):
 | |
|   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
 | |
|   //
 | |
|   // Proof:
 | |
|   //  Expr(i+1) =
 | |
|   //   = Start + (i+1)*Accum
 | |
|   //   = (Start + i*Accum) + Accum
 | |
|   //   = Expr(i) + Accum
 | |
|   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
 | |
|   //                                                             :: from step i
 | |
|   //
 | |
|   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
 | |
|   //
 | |
|   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
 | |
|   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
 | |
|   //     + Accum                                                     :: from P3
 | |
|   //
 | |
|   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
 | |
|   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
 | |
|   //
 | |
|   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
 | |
|   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
 | |
|   //
 | |
|   // By induction, the same applies to all iterations 1<=i<n:
 | |
|   //
 | |
| 
 | |
|   // Create a truncated addrec for which we will add a no overflow check (P1).
 | |
|   const SCEV *StartVal = getSCEV(StartValueV);
 | |
|   const SCEV *PHISCEV =
 | |
|       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
 | |
|                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
 | |
| 
 | |
|   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
 | |
|   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
 | |
|   // will be constant.
 | |
|   //
 | |
|   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
 | |
|   // add P1.
 | |
|   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
 | |
|     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
 | |
|         Signed ? SCEVWrapPredicate::IncrementNSSW
 | |
|                : SCEVWrapPredicate::IncrementNUSW;
 | |
|     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
 | |
|     Predicates.push_back(AddRecPred);
 | |
|   }
 | |
| 
 | |
|   // Create the Equal Predicates P2,P3:
 | |
| 
 | |
|   // It is possible that the predicates P2 and/or P3 are computable at
 | |
|   // compile time due to StartVal and/or Accum being constants.
 | |
|   // If either one is, then we can check that now and escape if either P2
 | |
|   // or P3 is false.
 | |
| 
 | |
|   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
 | |
|   // for each of StartVal and Accum
 | |
|   auto getExtendedExpr = [&](const SCEV *Expr,
 | |
|                              bool CreateSignExtend) -> const SCEV * {
 | |
|     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
 | |
|     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
 | |
|     const SCEV *ExtendedExpr =
 | |
|         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
 | |
|                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
 | |
|     return ExtendedExpr;
 | |
|   };
 | |
| 
 | |
|   // Given:
 | |
|   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
 | |
|   //               = getExtendedExpr(Expr)
 | |
|   // Determine whether the predicate P: Expr == ExtendedExpr
 | |
|   // is known to be false at compile time
 | |
|   auto PredIsKnownFalse = [&](const SCEV *Expr,
 | |
|                               const SCEV *ExtendedExpr) -> bool {
 | |
|     return Expr != ExtendedExpr &&
 | |
|            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
 | |
|   };
 | |
| 
 | |
|   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
 | |
|   if (PredIsKnownFalse(StartVal, StartExtended)) {
 | |
|     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   // The Step is always Signed (because the overflow checks are either
 | |
|   // NSSW or NUSW)
 | |
|   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
 | |
|   if (PredIsKnownFalse(Accum, AccumExtended)) {
 | |
|     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   auto AppendPredicate = [&](const SCEV *Expr,
 | |
|                              const SCEV *ExtendedExpr) -> void {
 | |
|     if (Expr != ExtendedExpr &&
 | |
|         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
 | |
|       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
 | |
|       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
 | |
|       Predicates.push_back(Pred);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   AppendPredicate(StartVal, StartExtended);
 | |
|   AppendPredicate(Accum, AccumExtended);
 | |
| 
 | |
|   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
 | |
|   // which the casts had been folded away. The caller can rewrite SymbolicPHI
 | |
|   // into NewAR if it will also add the runtime overflow checks specified in
 | |
|   // Predicates.
 | |
|   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
 | |
| 
 | |
|   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
 | |
|       std::make_pair(NewAR, Predicates);
 | |
|   // Remember the result of the analysis for this SCEV at this locayyytion.
 | |
|   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
 | |
|   return PredRewrite;
 | |
| }
 | |
| 
 | |
| Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
 | |
| ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
 | |
|   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
 | |
|   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
 | |
|   if (!L)
 | |
|     return None;
 | |
| 
 | |
|   // Check to see if we already analyzed this PHI.
 | |
|   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
 | |
|   if (I != PredicatedSCEVRewrites.end()) {
 | |
|     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
 | |
|         I->second;
 | |
|     // Analysis was done before and failed to create an AddRec:
 | |
|     if (Rewrite.first == SymbolicPHI)
 | |
|       return None;
 | |
|     // Analysis was done before and succeeded to create an AddRec under
 | |
|     // a predicate:
 | |
|     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
 | |
|     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
 | |
|     return Rewrite;
 | |
|   }
 | |
| 
 | |
|   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
 | |
|     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
 | |
| 
 | |
|   // Record in the cache that the analysis failed
 | |
|   if (!Rewrite) {
 | |
|     SmallVector<const SCEVPredicate *, 3> Predicates;
 | |
|     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   return Rewrite;
 | |
| }
 | |
| 
 | |
| // FIXME: This utility is currently required because the Rewriter currently
 | |
| // does not rewrite this expression:
 | |
| // {0, +, (sext ix (trunc iy to ix) to iy)}
 | |
| // into {0, +, %step},
 | |
| // even when the following Equal predicate exists:
 | |
| // "%step == (sext ix (trunc iy to ix) to iy)".
 | |
| bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
 | |
|     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
 | |
|   if (AR1 == AR2)
 | |
|     return true;
 | |
| 
 | |
|   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
 | |
|     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
 | |
|         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
 | |
|       return false;
 | |
|     return true;
 | |
|   };
 | |
| 
 | |
|   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
 | |
|       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// A helper function for createAddRecFromPHI to handle simple cases.
 | |
| ///
 | |
| /// This function tries to find an AddRec expression for the simplest (yet most
 | |
| /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
 | |
| /// If it fails, createAddRecFromPHI will use a more general, but slow,
 | |
| /// technique for finding the AddRec expression.
 | |
| const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
 | |
|                                                       Value *BEValueV,
 | |
|                                                       Value *StartValueV) {
 | |
|   const Loop *L = LI.getLoopFor(PN->getParent());
 | |
|   assert(L && L->getHeader() == PN->getParent());
 | |
|   assert(BEValueV && StartValueV);
 | |
| 
 | |
|   auto BO = MatchBinaryOp(BEValueV, DT);
 | |
|   if (!BO)
 | |
|     return nullptr;
 | |
| 
 | |
|   if (BO->Opcode != Instruction::Add)
 | |
|     return nullptr;
 | |
| 
 | |
|   const SCEV *Accum = nullptr;
 | |
|   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
 | |
|     Accum = getSCEV(BO->RHS);
 | |
|   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
 | |
|     Accum = getSCEV(BO->LHS);
 | |
| 
 | |
|   if (!Accum)
 | |
|     return nullptr;
 | |
| 
 | |
|   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
 | |
|   if (BO->IsNUW)
 | |
|     Flags = setFlags(Flags, SCEV::FlagNUW);
 | |
|   if (BO->IsNSW)
 | |
|     Flags = setFlags(Flags, SCEV::FlagNSW);
 | |
| 
 | |
|   const SCEV *StartVal = getSCEV(StartValueV);
 | |
|   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
 | |
| 
 | |
|   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
 | |
| 
 | |
|   // We can add Flags to the post-inc expression only if we
 | |
|   // know that it is *undefined behavior* for BEValueV to
 | |
|   // overflow.
 | |
|   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
 | |
|     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
 | |
|       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
 | |
| 
 | |
|   return PHISCEV;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
 | |
|   const Loop *L = LI.getLoopFor(PN->getParent());
 | |
|   if (!L || L->getHeader() != PN->getParent())
 | |
|     return nullptr;
 | |
| 
 | |
|   // The loop may have multiple entrances or multiple exits; we can analyze
 | |
|   // this phi as an addrec if it has a unique entry value and a unique
 | |
|   // backedge value.
 | |
|   Value *BEValueV = nullptr, *StartValueV = nullptr;
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *V = PN->getIncomingValue(i);
 | |
|     if (L->contains(PN->getIncomingBlock(i))) {
 | |
|       if (!BEValueV) {
 | |
|         BEValueV = V;
 | |
|       } else if (BEValueV != V) {
 | |
|         BEValueV = nullptr;
 | |
|         break;
 | |
|       }
 | |
|     } else if (!StartValueV) {
 | |
|       StartValueV = V;
 | |
|     } else if (StartValueV != V) {
 | |
|       StartValueV = nullptr;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   if (!BEValueV || !StartValueV)
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
 | |
|          "PHI node already processed?");
 | |
| 
 | |
|   // First, try to find AddRec expression without creating a fictituos symbolic
 | |
|   // value for PN.
 | |
|   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
 | |
|     return S;
 | |
| 
 | |
|   // Handle PHI node value symbolically.
 | |
|   const SCEV *SymbolicName = getUnknown(PN);
 | |
|   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
 | |
| 
 | |
|   // Using this symbolic name for the PHI, analyze the value coming around
 | |
|   // the back-edge.
 | |
|   const SCEV *BEValue = getSCEV(BEValueV);
 | |
| 
 | |
|   // NOTE: If BEValue is loop invariant, we know that the PHI node just
 | |
|   // has a special value for the first iteration of the loop.
 | |
| 
 | |
|   // If the value coming around the backedge is an add with the symbolic
 | |
|   // value we just inserted, then we found a simple induction variable!
 | |
|   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
 | |
|     // If there is a single occurrence of the symbolic value, replace it
 | |
|     // with a recurrence.
 | |
|     unsigned FoundIndex = Add->getNumOperands();
 | |
|     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | |
|       if (Add->getOperand(i) == SymbolicName)
 | |
|         if (FoundIndex == e) {
 | |
|           FoundIndex = i;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|     if (FoundIndex != Add->getNumOperands()) {
 | |
|       // Create an add with everything but the specified operand.
 | |
|       SmallVector<const SCEV *, 8> Ops;
 | |
|       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
 | |
|         if (i != FoundIndex)
 | |
|           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
 | |
|                                                              L, *this));
 | |
|       const SCEV *Accum = getAddExpr(Ops);
 | |
| 
 | |
|       // This is not a valid addrec if the step amount is varying each
 | |
|       // loop iteration, but is not itself an addrec in this loop.
 | |
|       if (isLoopInvariant(Accum, L) ||
 | |
|           (isa<SCEVAddRecExpr>(Accum) &&
 | |
|            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
 | |
|         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
 | |
| 
 | |
|         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
 | |
|           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
 | |
|             if (BO->IsNUW)
 | |
|               Flags = setFlags(Flags, SCEV::FlagNUW);
 | |
|             if (BO->IsNSW)
 | |
|               Flags = setFlags(Flags, SCEV::FlagNSW);
 | |
|           }
 | |
|         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
 | |
|           // If the increment is an inbounds GEP, then we know the address
 | |
|           // space cannot be wrapped around. We cannot make any guarantee
 | |
|           // about signed or unsigned overflow because pointers are
 | |
|           // unsigned but we may have a negative index from the base
 | |
|           // pointer. We can guarantee that no unsigned wrap occurs if the
 | |
|           // indices form a positive value.
 | |
|           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
 | |
|             Flags = setFlags(Flags, SCEV::FlagNW);
 | |
| 
 | |
|             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
 | |
|             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
 | |
|               Flags = setFlags(Flags, SCEV::FlagNUW);
 | |
|           }
 | |
| 
 | |
|           // We cannot transfer nuw and nsw flags from subtraction
 | |
|           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
 | |
|           // for instance.
 | |
|         }
 | |
| 
 | |
|         const SCEV *StartVal = getSCEV(StartValueV);
 | |
|         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
 | |
| 
 | |
|         // Okay, for the entire analysis of this edge we assumed the PHI
 | |
|         // to be symbolic.  We now need to go back and purge all of the
 | |
|         // entries for the scalars that use the symbolic expression.
 | |
|         forgetSymbolicName(PN, SymbolicName);
 | |
|         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
 | |
| 
 | |
|         // We can add Flags to the post-inc expression only if we
 | |
|         // know that it is *undefined behavior* for BEValueV to
 | |
|         // overflow.
 | |
|         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
 | |
|           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
 | |
|             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
 | |
| 
 | |
|         return PHISCEV;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     // Otherwise, this could be a loop like this:
 | |
|     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
 | |
|     // In this case, j = {1,+,1}  and BEValue is j.
 | |
|     // Because the other in-value of i (0) fits the evolution of BEValue
 | |
|     // i really is an addrec evolution.
 | |
|     //
 | |
|     // We can generalize this saying that i is the shifted value of BEValue
 | |
|     // by one iteration:
 | |
|     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
 | |
|     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
 | |
|     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
 | |
|     if (Shifted != getCouldNotCompute() &&
 | |
|         Start != getCouldNotCompute()) {
 | |
|       const SCEV *StartVal = getSCEV(StartValueV);
 | |
|       if (Start == StartVal) {
 | |
|         // Okay, for the entire analysis of this edge we assumed the PHI
 | |
|         // to be symbolic.  We now need to go back and purge all of the
 | |
|         // entries for the scalars that use the symbolic expression.
 | |
|         forgetSymbolicName(PN, SymbolicName);
 | |
|         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
 | |
|         return Shifted;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Remove the temporary PHI node SCEV that has been inserted while intending
 | |
|   // to create an AddRecExpr for this PHI node. We can not keep this temporary
 | |
|   // as it will prevent later (possibly simpler) SCEV expressions to be added
 | |
|   // to the ValueExprMap.
 | |
|   eraseValueFromMap(PN);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| // Checks if the SCEV S is available at BB.  S is considered available at BB
 | |
| // if S can be materialized at BB without introducing a fault.
 | |
| static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
 | |
|                                BasicBlock *BB) {
 | |
|   struct CheckAvailable {
 | |
|     bool TraversalDone = false;
 | |
|     bool Available = true;
 | |
| 
 | |
|     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
 | |
|     BasicBlock *BB = nullptr;
 | |
|     DominatorTree &DT;
 | |
| 
 | |
|     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
 | |
|       : L(L), BB(BB), DT(DT) {}
 | |
| 
 | |
|     bool setUnavailable() {
 | |
|       TraversalDone = true;
 | |
|       Available = false;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool follow(const SCEV *S) {
 | |
|       switch (S->getSCEVType()) {
 | |
|       case scConstant:
 | |
|       case scPtrToInt:
 | |
|       case scTruncate:
 | |
|       case scZeroExtend:
 | |
|       case scSignExtend:
 | |
|       case scAddExpr:
 | |
|       case scMulExpr:
 | |
|       case scUMaxExpr:
 | |
|       case scSMaxExpr:
 | |
|       case scUMinExpr:
 | |
|       case scSMinExpr:
 | |
|         // These expressions are available if their operand(s) is/are.
 | |
|         return true;
 | |
| 
 | |
|       case scAddRecExpr: {
 | |
|         // We allow add recurrences that are on the loop BB is in, or some
 | |
|         // outer loop.  This guarantees availability because the value of the
 | |
|         // add recurrence at BB is simply the "current" value of the induction
 | |
|         // variable.  We can relax this in the future; for instance an add
 | |
|         // recurrence on a sibling dominating loop is also available at BB.
 | |
|         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
 | |
|         if (L && (ARLoop == L || ARLoop->contains(L)))
 | |
|           return true;
 | |
| 
 | |
|         return setUnavailable();
 | |
|       }
 | |
| 
 | |
|       case scUnknown: {
 | |
|         // For SCEVUnknown, we check for simple dominance.
 | |
|         const auto *SU = cast<SCEVUnknown>(S);
 | |
|         Value *V = SU->getValue();
 | |
| 
 | |
|         if (isa<Argument>(V))
 | |
|           return false;
 | |
| 
 | |
|         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
 | |
|           return false;
 | |
| 
 | |
|         return setUnavailable();
 | |
|       }
 | |
| 
 | |
|       case scUDivExpr:
 | |
|       case scCouldNotCompute:
 | |
|         // We do not try to smart about these at all.
 | |
|         return setUnavailable();
 | |
|       }
 | |
|       llvm_unreachable("Unknown SCEV kind!");
 | |
|     }
 | |
| 
 | |
|     bool isDone() { return TraversalDone; }
 | |
|   };
 | |
| 
 | |
|   CheckAvailable CA(L, BB, DT);
 | |
|   SCEVTraversal<CheckAvailable> ST(CA);
 | |
| 
 | |
|   ST.visitAll(S);
 | |
|   return CA.Available;
 | |
| }
 | |
| 
 | |
| // Try to match a control flow sequence that branches out at BI and merges back
 | |
| // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
 | |
| // match.
 | |
| static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
 | |
|                           Value *&C, Value *&LHS, Value *&RHS) {
 | |
|   C = BI->getCondition();
 | |
| 
 | |
|   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
 | |
|   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
 | |
| 
 | |
|   if (!LeftEdge.isSingleEdge())
 | |
|     return false;
 | |
| 
 | |
|   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
 | |
| 
 | |
|   Use &LeftUse = Merge->getOperandUse(0);
 | |
|   Use &RightUse = Merge->getOperandUse(1);
 | |
| 
 | |
|   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
 | |
|     LHS = LeftUse;
 | |
|     RHS = RightUse;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
 | |
|     LHS = RightUse;
 | |
|     RHS = LeftUse;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
 | |
|   auto IsReachable =
 | |
|       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
 | |
|   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
 | |
|     const Loop *L = LI.getLoopFor(PN->getParent());
 | |
| 
 | |
|     // We don't want to break LCSSA, even in a SCEV expression tree.
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
 | |
|         return nullptr;
 | |
| 
 | |
|     // Try to match
 | |
|     //
 | |
|     //  br %cond, label %left, label %right
 | |
|     // left:
 | |
|     //  br label %merge
 | |
|     // right:
 | |
|     //  br label %merge
 | |
|     // merge:
 | |
|     //  V = phi [ %x, %left ], [ %y, %right ]
 | |
|     //
 | |
|     // as "select %cond, %x, %y"
 | |
| 
 | |
|     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
 | |
|     assert(IDom && "At least the entry block should dominate PN");
 | |
| 
 | |
|     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
 | |
|     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
 | |
| 
 | |
|     if (BI && BI->isConditional() &&
 | |
|         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
 | |
|         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
 | |
|         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
 | |
|       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
 | |
|   if (const SCEV *S = createAddRecFromPHI(PN))
 | |
|     return S;
 | |
| 
 | |
|   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
 | |
|     return S;
 | |
| 
 | |
|   // If the PHI has a single incoming value, follow that value, unless the
 | |
|   // PHI's incoming blocks are in a different loop, in which case doing so
 | |
|   // risks breaking LCSSA form. Instcombine would normally zap these, but
 | |
|   // it doesn't have DominatorTree information, so it may miss cases.
 | |
|   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
 | |
|     if (LI.replacementPreservesLCSSAForm(PN, V))
 | |
|       return getSCEV(V);
 | |
| 
 | |
|   // If it's not a loop phi, we can't handle it yet.
 | |
|   return getUnknown(PN);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
 | |
|                                                       Value *Cond,
 | |
|                                                       Value *TrueVal,
 | |
|                                                       Value *FalseVal) {
 | |
|   // Handle "constant" branch or select. This can occur for instance when a
 | |
|   // loop pass transforms an inner loop and moves on to process the outer loop.
 | |
|   if (auto *CI = dyn_cast<ConstantInt>(Cond))
 | |
|     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
 | |
| 
 | |
|   // Try to match some simple smax or umax patterns.
 | |
|   auto *ICI = dyn_cast<ICmpInst>(Cond);
 | |
|   if (!ICI)
 | |
|     return getUnknown(I);
 | |
| 
 | |
|   Value *LHS = ICI->getOperand(0);
 | |
|   Value *RHS = ICI->getOperand(1);
 | |
| 
 | |
|   switch (ICI->getPredicate()) {
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|     std::swap(LHS, RHS);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     // a >s b ? a+x : b+x  ->  smax(a, b)+x
 | |
|     // a >s b ? b+x : a+x  ->  smin(a, b)+x
 | |
|     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
 | |
|       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
 | |
|       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
 | |
|       const SCEV *LA = getSCEV(TrueVal);
 | |
|       const SCEV *RA = getSCEV(FalseVal);
 | |
|       const SCEV *LDiff = getMinusSCEV(LA, LS);
 | |
|       const SCEV *RDiff = getMinusSCEV(RA, RS);
 | |
|       if (LDiff == RDiff)
 | |
|         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
 | |
|       LDiff = getMinusSCEV(LA, RS);
 | |
|       RDiff = getMinusSCEV(RA, LS);
 | |
|       if (LDiff == RDiff)
 | |
|         return getAddExpr(getSMinExpr(LS, RS), LDiff);
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     std::swap(LHS, RHS);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     // a >u b ? a+x : b+x  ->  umax(a, b)+x
 | |
|     // a >u b ? b+x : a+x  ->  umin(a, b)+x
 | |
|     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
 | |
|       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
 | |
|       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
 | |
|       const SCEV *LA = getSCEV(TrueVal);
 | |
|       const SCEV *RA = getSCEV(FalseVal);
 | |
|       const SCEV *LDiff = getMinusSCEV(LA, LS);
 | |
|       const SCEV *RDiff = getMinusSCEV(RA, RS);
 | |
|       if (LDiff == RDiff)
 | |
|         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
 | |
|       LDiff = getMinusSCEV(LA, RS);
 | |
|       RDiff = getMinusSCEV(RA, LS);
 | |
|       if (LDiff == RDiff)
 | |
|         return getAddExpr(getUMinExpr(LS, RS), LDiff);
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
 | |
|     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
 | |
|         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
 | |
|       const SCEV *One = getOne(I->getType());
 | |
|       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
 | |
|       const SCEV *LA = getSCEV(TrueVal);
 | |
|       const SCEV *RA = getSCEV(FalseVal);
 | |
|       const SCEV *LDiff = getMinusSCEV(LA, LS);
 | |
|       const SCEV *RDiff = getMinusSCEV(RA, One);
 | |
|       if (LDiff == RDiff)
 | |
|         return getAddExpr(getUMaxExpr(One, LS), LDiff);
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
 | |
|     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
 | |
|         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
 | |
|       const SCEV *One = getOne(I->getType());
 | |
|       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
 | |
|       const SCEV *LA = getSCEV(TrueVal);
 | |
|       const SCEV *RA = getSCEV(FalseVal);
 | |
|       const SCEV *LDiff = getMinusSCEV(LA, One);
 | |
|       const SCEV *RDiff = getMinusSCEV(RA, LS);
 | |
|       if (LDiff == RDiff)
 | |
|         return getAddExpr(getUMaxExpr(One, LS), LDiff);
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return getUnknown(I);
 | |
| }
 | |
| 
 | |
| /// Expand GEP instructions into add and multiply operations. This allows them
 | |
| /// to be analyzed by regular SCEV code.
 | |
| const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
 | |
|   // Don't attempt to analyze GEPs over unsized objects.
 | |
|   if (!GEP->getSourceElementType()->isSized())
 | |
|     return getUnknown(GEP);
 | |
| 
 | |
|   SmallVector<const SCEV *, 4> IndexExprs;
 | |
|   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
 | |
|     IndexExprs.push_back(getSCEV(*Index));
 | |
|   return getGEPExpr(GEP, IndexExprs);
 | |
| }
 | |
| 
 | |
| uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
 | |
|   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
 | |
|     return C->getAPInt().countTrailingZeros();
 | |
| 
 | |
|   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
 | |
|     return GetMinTrailingZeros(I->getOperand());
 | |
| 
 | |
|   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
 | |
|     return std::min(GetMinTrailingZeros(T->getOperand()),
 | |
|                     (uint32_t)getTypeSizeInBits(T->getType()));
 | |
| 
 | |
|   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
 | |
|     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
 | |
|     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
 | |
|                ? getTypeSizeInBits(E->getType())
 | |
|                : OpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
 | |
|     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
 | |
|     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
 | |
|                ? getTypeSizeInBits(E->getType())
 | |
|                : OpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
 | |
|     // The result is the min of all operands results.
 | |
|     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
 | |
|     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
 | |
|       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
 | |
|     return MinOpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
 | |
|     // The result is the sum of all operands results.
 | |
|     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
 | |
|     uint32_t BitWidth = getTypeSizeInBits(M->getType());
 | |
|     for (unsigned i = 1, e = M->getNumOperands();
 | |
|          SumOpRes != BitWidth && i != e; ++i)
 | |
|       SumOpRes =
 | |
|           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
 | |
|     return SumOpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     // The result is the min of all operands results.
 | |
|     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
 | |
|     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
 | |
|       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
 | |
|     return MinOpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
 | |
|     // The result is the min of all operands results.
 | |
|     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
 | |
|     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
 | |
|       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
 | |
|     return MinOpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
 | |
|     // The result is the min of all operands results.
 | |
|     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
 | |
|     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
 | |
|       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
 | |
|     return MinOpRes;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
 | |
|     // For a SCEVUnknown, ask ValueTracking.
 | |
|     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
 | |
|     return Known.countMinTrailingZeros();
 | |
|   }
 | |
| 
 | |
|   // SCEVUDivExpr
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
 | |
|   auto I = MinTrailingZerosCache.find(S);
 | |
|   if (I != MinTrailingZerosCache.end())
 | |
|     return I->second;
 | |
| 
 | |
|   uint32_t Result = GetMinTrailingZerosImpl(S);
 | |
|   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
 | |
|   assert(InsertPair.second && "Should insert a new key");
 | |
|   return InsertPair.first->second;
 | |
| }
 | |
| 
 | |
| /// Helper method to assign a range to V from metadata present in the IR.
 | |
| static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
 | |
|       return getConstantRangeFromMetadata(*MD);
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
 | |
|                                      SCEV::NoWrapFlags Flags) {
 | |
|   if (AddRec->getNoWrapFlags(Flags) != Flags) {
 | |
|     AddRec->setNoWrapFlags(Flags);
 | |
|     UnsignedRanges.erase(AddRec);
 | |
|     SignedRanges.erase(AddRec);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Determine the range for a particular SCEV.  If SignHint is
 | |
| /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
 | |
| /// with a "cleaner" unsigned (resp. signed) representation.
 | |
| const ConstantRange &
 | |
| ScalarEvolution::getRangeRef(const SCEV *S,
 | |
|                              ScalarEvolution::RangeSignHint SignHint) {
 | |
|   DenseMap<const SCEV *, ConstantRange> &Cache =
 | |
|       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
 | |
|                                                        : SignedRanges;
 | |
|   ConstantRange::PreferredRangeType RangeType =
 | |
|       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
 | |
|           ? ConstantRange::Unsigned : ConstantRange::Signed;
 | |
| 
 | |
|   // See if we've computed this range already.
 | |
|   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
 | |
|   if (I != Cache.end())
 | |
|     return I->second;
 | |
| 
 | |
|   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
 | |
|     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
 | |
| 
 | |
|   unsigned BitWidth = getTypeSizeInBits(S->getType());
 | |
|   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
 | |
|   using OBO = OverflowingBinaryOperator;
 | |
| 
 | |
|   // If the value has known zeros, the maximum value will have those known zeros
 | |
|   // as well.
 | |
|   uint32_t TZ = GetMinTrailingZeros(S);
 | |
|   if (TZ != 0) {
 | |
|     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
 | |
|       ConservativeResult =
 | |
|           ConstantRange(APInt::getMinValue(BitWidth),
 | |
|                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
 | |
|     else
 | |
|       ConservativeResult = ConstantRange(
 | |
|           APInt::getSignedMinValue(BitWidth),
 | |
|           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
 | |
|   }
 | |
| 
 | |
|   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | |
|     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
 | |
|     unsigned WrapType = OBO::AnyWrap;
 | |
|     if (Add->hasNoSignedWrap())
 | |
|       WrapType |= OBO::NoSignedWrap;
 | |
|     if (Add->hasNoUnsignedWrap())
 | |
|       WrapType |= OBO::NoUnsignedWrap;
 | |
|     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
 | |
|       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
 | |
|                           WrapType, RangeType);
 | |
|     return setRange(Add, SignHint,
 | |
|                     ConservativeResult.intersectWith(X, RangeType));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
 | |
|     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
 | |
|     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
 | |
|       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
 | |
|     return setRange(Mul, SignHint,
 | |
|                     ConservativeResult.intersectWith(X, RangeType));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
 | |
|     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
 | |
|     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
 | |
|       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
 | |
|     return setRange(SMax, SignHint,
 | |
|                     ConservativeResult.intersectWith(X, RangeType));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
 | |
|     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
 | |
|     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
 | |
|       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
 | |
|     return setRange(UMax, SignHint,
 | |
|                     ConservativeResult.intersectWith(X, RangeType));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
 | |
|     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
 | |
|     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
 | |
|       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
 | |
|     return setRange(SMin, SignHint,
 | |
|                     ConservativeResult.intersectWith(X, RangeType));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
 | |
|     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
 | |
|     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
 | |
|       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
 | |
|     return setRange(UMin, SignHint,
 | |
|                     ConservativeResult.intersectWith(X, RangeType));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
 | |
|     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
 | |
|     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
 | |
|     return setRange(UDiv, SignHint,
 | |
|                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
 | |
|     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
 | |
|     return setRange(ZExt, SignHint,
 | |
|                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
 | |
|                                                      RangeType));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
 | |
|     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
 | |
|     return setRange(SExt, SignHint,
 | |
|                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
 | |
|                                                      RangeType));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
 | |
|     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
 | |
|     return setRange(PtrToInt, SignHint, X);
 | |
|   }
 | |
| 
 | |
|   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
 | |
|     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
 | |
|     return setRange(Trunc, SignHint,
 | |
|                     ConservativeResult.intersectWith(X.truncate(BitWidth),
 | |
|                                                      RangeType));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     // If there's no unsigned wrap, the value will never be less than its
 | |
|     // initial value.
 | |
|     if (AddRec->hasNoUnsignedWrap()) {
 | |
|       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
 | |
|       if (!UnsignedMinValue.isNullValue())
 | |
|         ConservativeResult = ConservativeResult.intersectWith(
 | |
|             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
 | |
|     }
 | |
| 
 | |
|     // If there's no signed wrap, and all the operands except initial value have
 | |
|     // the same sign or zero, the value won't ever be:
 | |
|     // 1: smaller than initial value if operands are non negative,
 | |
|     // 2: bigger than initial value if operands are non positive.
 | |
|     // For both cases, value can not cross signed min/max boundary.
 | |
|     if (AddRec->hasNoSignedWrap()) {
 | |
|       bool AllNonNeg = true;
 | |
|       bool AllNonPos = true;
 | |
|       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
 | |
|         if (!isKnownNonNegative(AddRec->getOperand(i)))
 | |
|           AllNonNeg = false;
 | |
|         if (!isKnownNonPositive(AddRec->getOperand(i)))
 | |
|           AllNonPos = false;
 | |
|       }
 | |
|       if (AllNonNeg)
 | |
|         ConservativeResult = ConservativeResult.intersectWith(
 | |
|             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
 | |
|                                        APInt::getSignedMinValue(BitWidth)),
 | |
|             RangeType);
 | |
|       else if (AllNonPos)
 | |
|         ConservativeResult = ConservativeResult.intersectWith(
 | |
|             ConstantRange::getNonEmpty(
 | |
|                 APInt::getSignedMinValue(BitWidth),
 | |
|                 getSignedRangeMax(AddRec->getStart()) + 1),
 | |
|             RangeType);
 | |
|     }
 | |
| 
 | |
|     // TODO: non-affine addrec
 | |
|     if (AddRec->isAffine()) {
 | |
|       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
 | |
|       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
 | |
|           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
 | |
|         auto RangeFromAffine = getRangeForAffineAR(
 | |
|             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
 | |
|             BitWidth);
 | |
|         ConservativeResult =
 | |
|             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
 | |
| 
 | |
|         auto RangeFromFactoring = getRangeViaFactoring(
 | |
|             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
 | |
|             BitWidth);
 | |
|         ConservativeResult =
 | |
|             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
 | |
|       }
 | |
| 
 | |
|       // Now try symbolic BE count and more powerful methods.
 | |
|       if (UseExpensiveRangeSharpening) {
 | |
|         const SCEV *SymbolicMaxBECount =
 | |
|             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
 | |
|         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
 | |
|             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
 | |
|             AddRec->hasNoSelfWrap()) {
 | |
|           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
 | |
|               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
 | |
|           ConservativeResult =
 | |
|               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return setRange(AddRec, SignHint, std::move(ConservativeResult));
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
 | |
|     // Check if the IR explicitly contains !range metadata.
 | |
|     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
 | |
|     if (MDRange.hasValue())
 | |
|       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
 | |
|                                                             RangeType);
 | |
| 
 | |
|     // Split here to avoid paying the compile-time cost of calling both
 | |
|     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
 | |
|     // if needed.
 | |
|     const DataLayout &DL = getDataLayout();
 | |
|     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
 | |
|       // For a SCEVUnknown, ask ValueTracking.
 | |
|       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
 | |
|       if (Known.getBitWidth() != BitWidth)
 | |
|         Known = Known.zextOrTrunc(BitWidth);
 | |
|       // If Known does not result in full-set, intersect with it.
 | |
|       if (Known.getMinValue() != Known.getMaxValue() + 1)
 | |
|         ConservativeResult = ConservativeResult.intersectWith(
 | |
|             ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
 | |
|             RangeType);
 | |
|     } else {
 | |
|       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
 | |
|              "generalize as needed!");
 | |
|       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
 | |
|       // If the pointer size is larger than the index size type, this can cause
 | |
|       // NS to be larger than BitWidth. So compensate for this.
 | |
|       if (U->getType()->isPointerTy()) {
 | |
|         unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
 | |
|         int ptrIdxDiff = ptrSize - BitWidth;
 | |
|         if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
 | |
|           NS -= ptrIdxDiff;
 | |
|       }
 | |
| 
 | |
|       if (NS > 1)
 | |
|         ConservativeResult = ConservativeResult.intersectWith(
 | |
|             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
 | |
|                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
 | |
|             RangeType);
 | |
|     }
 | |
| 
 | |
|     // A range of Phi is a subset of union of all ranges of its input.
 | |
|     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
 | |
|       // Make sure that we do not run over cycled Phis.
 | |
|       if (PendingPhiRanges.insert(Phi).second) {
 | |
|         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
 | |
|         for (auto &Op : Phi->operands()) {
 | |
|           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
 | |
|           RangeFromOps = RangeFromOps.unionWith(OpRange);
 | |
|           // No point to continue if we already have a full set.
 | |
|           if (RangeFromOps.isFullSet())
 | |
|             break;
 | |
|         }
 | |
|         ConservativeResult =
 | |
|             ConservativeResult.intersectWith(RangeFromOps, RangeType);
 | |
|         bool Erased = PendingPhiRanges.erase(Phi);
 | |
|         assert(Erased && "Failed to erase Phi properly?");
 | |
|         (void) Erased;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return setRange(U, SignHint, std::move(ConservativeResult));
 | |
|   }
 | |
| 
 | |
|   return setRange(S, SignHint, std::move(ConservativeResult));
 | |
| }
 | |
| 
 | |
| // Given a StartRange, Step and MaxBECount for an expression compute a range of
 | |
| // values that the expression can take. Initially, the expression has a value
 | |
| // from StartRange and then is changed by Step up to MaxBECount times. Signed
 | |
| // argument defines if we treat Step as signed or unsigned.
 | |
| static ConstantRange getRangeForAffineARHelper(APInt Step,
 | |
|                                                const ConstantRange &StartRange,
 | |
|                                                const APInt &MaxBECount,
 | |
|                                                unsigned BitWidth, bool Signed) {
 | |
|   // If either Step or MaxBECount is 0, then the expression won't change, and we
 | |
|   // just need to return the initial range.
 | |
|   if (Step == 0 || MaxBECount == 0)
 | |
|     return StartRange;
 | |
| 
 | |
|   // If we don't know anything about the initial value (i.e. StartRange is
 | |
|   // FullRange), then we don't know anything about the final range either.
 | |
|   // Return FullRange.
 | |
|   if (StartRange.isFullSet())
 | |
|     return ConstantRange::getFull(BitWidth);
 | |
| 
 | |
|   // If Step is signed and negative, then we use its absolute value, but we also
 | |
|   // note that we're moving in the opposite direction.
 | |
|   bool Descending = Signed && Step.isNegative();
 | |
| 
 | |
|   if (Signed)
 | |
|     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
 | |
|     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
 | |
|     // This equations hold true due to the well-defined wrap-around behavior of
 | |
|     // APInt.
 | |
|     Step = Step.abs();
 | |
| 
 | |
|   // Check if Offset is more than full span of BitWidth. If it is, the
 | |
|   // expression is guaranteed to overflow.
 | |
|   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
 | |
|     return ConstantRange::getFull(BitWidth);
 | |
| 
 | |
|   // Offset is by how much the expression can change. Checks above guarantee no
 | |
|   // overflow here.
 | |
|   APInt Offset = Step * MaxBECount;
 | |
| 
 | |
|   // Minimum value of the final range will match the minimal value of StartRange
 | |
|   // if the expression is increasing and will be decreased by Offset otherwise.
 | |
|   // Maximum value of the final range will match the maximal value of StartRange
 | |
|   // if the expression is decreasing and will be increased by Offset otherwise.
 | |
|   APInt StartLower = StartRange.getLower();
 | |
|   APInt StartUpper = StartRange.getUpper() - 1;
 | |
|   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
 | |
|                                    : (StartUpper + std::move(Offset));
 | |
| 
 | |
|   // It's possible that the new minimum/maximum value will fall into the initial
 | |
|   // range (due to wrap around). This means that the expression can take any
 | |
|   // value in this bitwidth, and we have to return full range.
 | |
|   if (StartRange.contains(MovedBoundary))
 | |
|     return ConstantRange::getFull(BitWidth);
 | |
| 
 | |
|   APInt NewLower =
 | |
|       Descending ? std::move(MovedBoundary) : std::move(StartLower);
 | |
|   APInt NewUpper =
 | |
|       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
 | |
|   NewUpper += 1;
 | |
| 
 | |
|   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
 | |
|   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
 | |
| }
 | |
| 
 | |
| ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
 | |
|                                                    const SCEV *Step,
 | |
|                                                    const SCEV *MaxBECount,
 | |
|                                                    unsigned BitWidth) {
 | |
|   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
 | |
|          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
 | |
|          "Precondition!");
 | |
| 
 | |
|   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
 | |
|   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
 | |
| 
 | |
|   // First, consider step signed.
 | |
|   ConstantRange StartSRange = getSignedRange(Start);
 | |
|   ConstantRange StepSRange = getSignedRange(Step);
 | |
| 
 | |
|   // If Step can be both positive and negative, we need to find ranges for the
 | |
|   // maximum absolute step values in both directions and union them.
 | |
|   ConstantRange SR =
 | |
|       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
 | |
|                                 MaxBECountValue, BitWidth, /* Signed = */ true);
 | |
|   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
 | |
|                                               StartSRange, MaxBECountValue,
 | |
|                                               BitWidth, /* Signed = */ true));
 | |
| 
 | |
|   // Next, consider step unsigned.
 | |
|   ConstantRange UR = getRangeForAffineARHelper(
 | |
|       getUnsignedRangeMax(Step), getUnsignedRange(Start),
 | |
|       MaxBECountValue, BitWidth, /* Signed = */ false);
 | |
| 
 | |
|   // Finally, intersect signed and unsigned ranges.
 | |
|   return SR.intersectWith(UR, ConstantRange::Smallest);
 | |
| }
 | |
| 
 | |
| ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
 | |
|     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
 | |
|     ScalarEvolution::RangeSignHint SignHint) {
 | |
|   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
 | |
|   assert(AddRec->hasNoSelfWrap() &&
 | |
|          "This only works for non-self-wrapping AddRecs!");
 | |
|   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
 | |
|   const SCEV *Step = AddRec->getStepRecurrence(*this);
 | |
|   // Only deal with constant step to save compile time.
 | |
|   if (!isa<SCEVConstant>(Step))
 | |
|     return ConstantRange::getFull(BitWidth);
 | |
|   // Let's make sure that we can prove that we do not self-wrap during
 | |
|   // MaxBECount iterations. We need this because MaxBECount is a maximum
 | |
|   // iteration count estimate, and we might infer nw from some exit for which we
 | |
|   // do not know max exit count (or any other side reasoning).
 | |
|   // TODO: Turn into assert at some point.
 | |
|   if (getTypeSizeInBits(MaxBECount->getType()) >
 | |
|       getTypeSizeInBits(AddRec->getType()))
 | |
|     return ConstantRange::getFull(BitWidth);
 | |
|   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
 | |
|   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
 | |
|   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
 | |
|   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
 | |
|   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
 | |
|                                          MaxItersWithoutWrap))
 | |
|     return ConstantRange::getFull(BitWidth);
 | |
| 
 | |
|   ICmpInst::Predicate LEPred =
 | |
|       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
 | |
|   ICmpInst::Predicate GEPred =
 | |
|       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
 | |
|   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
 | |
| 
 | |
|   // We know that there is no self-wrap. Let's take Start and End values and
 | |
|   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
 | |
|   // the iteration. They either lie inside the range [Min(Start, End),
 | |
|   // Max(Start, End)] or outside it:
 | |
|   //
 | |
|   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
 | |
|   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
 | |
|   //
 | |
|   // No self wrap flag guarantees that the intermediate values cannot be BOTH
 | |
|   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
 | |
|   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
 | |
|   // Start <= End and step is positive, or Start >= End and step is negative.
 | |
|   const SCEV *Start = AddRec->getStart();
 | |
|   ConstantRange StartRange = getRangeRef(Start, SignHint);
 | |
|   ConstantRange EndRange = getRangeRef(End, SignHint);
 | |
|   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
 | |
|   // If they already cover full iteration space, we will know nothing useful
 | |
|   // even if we prove what we want to prove.
 | |
|   if (RangeBetween.isFullSet())
 | |
|     return RangeBetween;
 | |
|   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
 | |
|   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
 | |
|                                : RangeBetween.isWrappedSet();
 | |
|   if (IsWrappedSet)
 | |
|     return ConstantRange::getFull(BitWidth);
 | |
| 
 | |
|   if (isKnownPositive(Step) &&
 | |
|       isKnownPredicateViaConstantRanges(LEPred, Start, End))
 | |
|     return RangeBetween;
 | |
|   else if (isKnownNegative(Step) &&
 | |
|            isKnownPredicateViaConstantRanges(GEPred, Start, End))
 | |
|     return RangeBetween;
 | |
|   return ConstantRange::getFull(BitWidth);
 | |
| }
 | |
| 
 | |
| ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
 | |
|                                                     const SCEV *Step,
 | |
|                                                     const SCEV *MaxBECount,
 | |
|                                                     unsigned BitWidth) {
 | |
|   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
 | |
|   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
 | |
| 
 | |
|   struct SelectPattern {
 | |
|     Value *Condition = nullptr;
 | |
|     APInt TrueValue;
 | |
|     APInt FalseValue;
 | |
| 
 | |
|     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
 | |
|                            const SCEV *S) {
 | |
|       Optional<unsigned> CastOp;
 | |
|       APInt Offset(BitWidth, 0);
 | |
| 
 | |
|       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
 | |
|              "Should be!");
 | |
| 
 | |
|       // Peel off a constant offset:
 | |
|       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
 | |
|         // In the future we could consider being smarter here and handle
 | |
|         // {Start+Step,+,Step} too.
 | |
|         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
 | |
|           return;
 | |
| 
 | |
|         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
 | |
|         S = SA->getOperand(1);
 | |
|       }
 | |
| 
 | |
|       // Peel off a cast operation
 | |
|       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
 | |
|         CastOp = SCast->getSCEVType();
 | |
|         S = SCast->getOperand();
 | |
|       }
 | |
| 
 | |
|       using namespace llvm::PatternMatch;
 | |
| 
 | |
|       auto *SU = dyn_cast<SCEVUnknown>(S);
 | |
|       const APInt *TrueVal, *FalseVal;
 | |
|       if (!SU ||
 | |
|           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
 | |
|                                           m_APInt(FalseVal)))) {
 | |
|         Condition = nullptr;
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       TrueValue = *TrueVal;
 | |
|       FalseValue = *FalseVal;
 | |
| 
 | |
|       // Re-apply the cast we peeled off earlier
 | |
|       if (CastOp.hasValue())
 | |
|         switch (*CastOp) {
 | |
|         default:
 | |
|           llvm_unreachable("Unknown SCEV cast type!");
 | |
| 
 | |
|         case scTruncate:
 | |
|           TrueValue = TrueValue.trunc(BitWidth);
 | |
|           FalseValue = FalseValue.trunc(BitWidth);
 | |
|           break;
 | |
|         case scZeroExtend:
 | |
|           TrueValue = TrueValue.zext(BitWidth);
 | |
|           FalseValue = FalseValue.zext(BitWidth);
 | |
|           break;
 | |
|         case scSignExtend:
 | |
|           TrueValue = TrueValue.sext(BitWidth);
 | |
|           FalseValue = FalseValue.sext(BitWidth);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       // Re-apply the constant offset we peeled off earlier
 | |
|       TrueValue += Offset;
 | |
|       FalseValue += Offset;
 | |
|     }
 | |
| 
 | |
|     bool isRecognized() { return Condition != nullptr; }
 | |
|   };
 | |
| 
 | |
|   SelectPattern StartPattern(*this, BitWidth, Start);
 | |
|   if (!StartPattern.isRecognized())
 | |
|     return ConstantRange::getFull(BitWidth);
 | |
| 
 | |
|   SelectPattern StepPattern(*this, BitWidth, Step);
 | |
|   if (!StepPattern.isRecognized())
 | |
|     return ConstantRange::getFull(BitWidth);
 | |
| 
 | |
|   if (StartPattern.Condition != StepPattern.Condition) {
 | |
|     // We don't handle this case today; but we could, by considering four
 | |
|     // possibilities below instead of two. I'm not sure if there are cases where
 | |
|     // that will help over what getRange already does, though.
 | |
|     return ConstantRange::getFull(BitWidth);
 | |
|   }
 | |
| 
 | |
|   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
 | |
|   // construct arbitrary general SCEV expressions here.  This function is called
 | |
|   // from deep in the call stack, and calling getSCEV (on a sext instruction,
 | |
|   // say) can end up caching a suboptimal value.
 | |
| 
 | |
|   // FIXME: without the explicit `this` receiver below, MSVC errors out with
 | |
|   // C2352 and C2512 (otherwise it isn't needed).
 | |
| 
 | |
|   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
 | |
|   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
 | |
|   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
 | |
|   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
 | |
| 
 | |
|   ConstantRange TrueRange =
 | |
|       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
 | |
|   ConstantRange FalseRange =
 | |
|       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
 | |
| 
 | |
|   return TrueRange.unionWith(FalseRange);
 | |
| }
 | |
| 
 | |
| SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
 | |
|   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
 | |
|   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
 | |
| 
 | |
|   // Return early if there are no flags to propagate to the SCEV.
 | |
|   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
 | |
|   if (BinOp->hasNoUnsignedWrap())
 | |
|     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
 | |
|   if (BinOp->hasNoSignedWrap())
 | |
|     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
 | |
|   if (Flags == SCEV::FlagAnyWrap)
 | |
|     return SCEV::FlagAnyWrap;
 | |
| 
 | |
|   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
 | |
|   // Here we check that I is in the header of the innermost loop containing I,
 | |
|   // since we only deal with instructions in the loop header. The actual loop we
 | |
|   // need to check later will come from an add recurrence, but getting that
 | |
|   // requires computing the SCEV of the operands, which can be expensive. This
 | |
|   // check we can do cheaply to rule out some cases early.
 | |
|   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
 | |
|   if (InnermostContainingLoop == nullptr ||
 | |
|       InnermostContainingLoop->getHeader() != I->getParent())
 | |
|     return false;
 | |
| 
 | |
|   // Only proceed if we can prove that I does not yield poison.
 | |
|   if (!programUndefinedIfPoison(I))
 | |
|     return false;
 | |
| 
 | |
|   // At this point we know that if I is executed, then it does not wrap
 | |
|   // according to at least one of NSW or NUW. If I is not executed, then we do
 | |
|   // not know if the calculation that I represents would wrap. Multiple
 | |
|   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
 | |
|   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
 | |
|   // derived from other instructions that map to the same SCEV. We cannot make
 | |
|   // that guarantee for cases where I is not executed. So we need to find the
 | |
|   // loop that I is considered in relation to and prove that I is executed for
 | |
|   // every iteration of that loop. That implies that the value that I
 | |
|   // calculates does not wrap anywhere in the loop, so then we can apply the
 | |
|   // flags to the SCEV.
 | |
|   //
 | |
|   // We check isLoopInvariant to disambiguate in case we are adding recurrences
 | |
|   // from different loops, so that we know which loop to prove that I is
 | |
|   // executed in.
 | |
|   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
 | |
|     // I could be an extractvalue from a call to an overflow intrinsic.
 | |
|     // TODO: We can do better here in some cases.
 | |
|     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
 | |
|       return false;
 | |
|     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
 | |
|     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
 | |
|       bool AllOtherOpsLoopInvariant = true;
 | |
|       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
 | |
|            ++OtherOpIndex) {
 | |
|         if (OtherOpIndex != OpIndex) {
 | |
|           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
 | |
|           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
 | |
|             AllOtherOpsLoopInvariant = false;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (AllOtherOpsLoopInvariant &&
 | |
|           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
 | |
|   // If we know that \c I can never be poison period, then that's enough.
 | |
|   if (isSCEVExprNeverPoison(I))
 | |
|     return true;
 | |
| 
 | |
|   // For an add recurrence specifically, we assume that infinite loops without
 | |
|   // side effects are undefined behavior, and then reason as follows:
 | |
|   //
 | |
|   // If the add recurrence is poison in any iteration, it is poison on all
 | |
|   // future iterations (since incrementing poison yields poison). If the result
 | |
|   // of the add recurrence is fed into the loop latch condition and the loop
 | |
|   // does not contain any throws or exiting blocks other than the latch, we now
 | |
|   // have the ability to "choose" whether the backedge is taken or not (by
 | |
|   // choosing a sufficiently evil value for the poison feeding into the branch)
 | |
|   // for every iteration including and after the one in which \p I first became
 | |
|   // poison.  There are two possibilities (let's call the iteration in which \p
 | |
|   // I first became poison as K):
 | |
|   //
 | |
|   //  1. In the set of iterations including and after K, the loop body executes
 | |
|   //     no side effects.  In this case executing the backege an infinte number
 | |
|   //     of times will yield undefined behavior.
 | |
|   //
 | |
|   //  2. In the set of iterations including and after K, the loop body executes
 | |
|   //     at least one side effect.  In this case, that specific instance of side
 | |
|   //     effect is control dependent on poison, which also yields undefined
 | |
|   //     behavior.
 | |
| 
 | |
|   auto *ExitingBB = L->getExitingBlock();
 | |
|   auto *LatchBB = L->getLoopLatch();
 | |
|   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
 | |
|     return false;
 | |
| 
 | |
|   SmallPtrSet<const Instruction *, 16> Pushed;
 | |
|   SmallVector<const Instruction *, 8> PoisonStack;
 | |
| 
 | |
|   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
 | |
|   // things that are known to be poison under that assumption go on the
 | |
|   // PoisonStack.
 | |
|   Pushed.insert(I);
 | |
|   PoisonStack.push_back(I);
 | |
| 
 | |
|   bool LatchControlDependentOnPoison = false;
 | |
|   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
 | |
|     const Instruction *Poison = PoisonStack.pop_back_val();
 | |
| 
 | |
|     for (auto *PoisonUser : Poison->users()) {
 | |
|       if (propagatesPoison(cast<Operator>(PoisonUser))) {
 | |
|         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
 | |
|           PoisonStack.push_back(cast<Instruction>(PoisonUser));
 | |
|       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
 | |
|         assert(BI->isConditional() && "Only possibility!");
 | |
|         if (BI->getParent() == LatchBB) {
 | |
|           LatchControlDependentOnPoison = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
 | |
| }
 | |
| 
 | |
| ScalarEvolution::LoopProperties
 | |
| ScalarEvolution::getLoopProperties(const Loop *L) {
 | |
|   using LoopProperties = ScalarEvolution::LoopProperties;
 | |
| 
 | |
|   auto Itr = LoopPropertiesCache.find(L);
 | |
|   if (Itr == LoopPropertiesCache.end()) {
 | |
|     auto HasSideEffects = [](Instruction *I) {
 | |
|       if (auto *SI = dyn_cast<StoreInst>(I))
 | |
|         return !SI->isSimple();
 | |
| 
 | |
|       return I->mayHaveSideEffects();
 | |
|     };
 | |
| 
 | |
|     LoopProperties LP = {/* HasNoAbnormalExits */ true,
 | |
|                          /*HasNoSideEffects*/ true};
 | |
| 
 | |
|     for (auto *BB : L->getBlocks())
 | |
|       for (auto &I : *BB) {
 | |
|         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
 | |
|           LP.HasNoAbnormalExits = false;
 | |
|         if (HasSideEffects(&I))
 | |
|           LP.HasNoSideEffects = false;
 | |
|         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
 | |
|           break; // We're already as pessimistic as we can get.
 | |
|       }
 | |
| 
 | |
|     auto InsertPair = LoopPropertiesCache.insert({L, LP});
 | |
|     assert(InsertPair.second && "We just checked!");
 | |
|     Itr = InsertPair.first;
 | |
|   }
 | |
| 
 | |
|   return Itr->second;
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::createSCEV(Value *V) {
 | |
|   if (!isSCEVable(V->getType()))
 | |
|     return getUnknown(V);
 | |
| 
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     // Don't attempt to analyze instructions in blocks that aren't
 | |
|     // reachable. Such instructions don't matter, and they aren't required
 | |
|     // to obey basic rules for definitions dominating uses which this
 | |
|     // analysis depends on.
 | |
|     if (!DT.isReachableFromEntry(I->getParent()))
 | |
|       return getUnknown(UndefValue::get(V->getType()));
 | |
|   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
 | |
|     return getConstant(CI);
 | |
|   else if (isa<ConstantPointerNull>(V))
 | |
|     // FIXME: we shouldn't special-case null pointer constant.
 | |
|     return getZero(V->getType());
 | |
|   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
 | |
|     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
 | |
|   else if (!isa<ConstantExpr>(V))
 | |
|     return getUnknown(V);
 | |
| 
 | |
|   Operator *U = cast<Operator>(V);
 | |
|   if (auto BO = MatchBinaryOp(U, DT)) {
 | |
|     switch (BO->Opcode) {
 | |
|     case Instruction::Add: {
 | |
|       // The simple thing to do would be to just call getSCEV on both operands
 | |
|       // and call getAddExpr with the result. However if we're looking at a
 | |
|       // bunch of things all added together, this can be quite inefficient,
 | |
|       // because it leads to N-1 getAddExpr calls for N ultimate operands.
 | |
|       // Instead, gather up all the operands and make a single getAddExpr call.
 | |
|       // LLVM IR canonical form means we need only traverse the left operands.
 | |
|       SmallVector<const SCEV *, 4> AddOps;
 | |
|       do {
 | |
|         if (BO->Op) {
 | |
|           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
 | |
|             AddOps.push_back(OpSCEV);
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           // If a NUW or NSW flag can be applied to the SCEV for this
 | |
|           // addition, then compute the SCEV for this addition by itself
 | |
|           // with a separate call to getAddExpr. We need to do that
 | |
|           // instead of pushing the operands of the addition onto AddOps,
 | |
|           // since the flags are only known to apply to this particular
 | |
|           // addition - they may not apply to other additions that can be
 | |
|           // formed with operands from AddOps.
 | |
|           const SCEV *RHS = getSCEV(BO->RHS);
 | |
|           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
 | |
|           if (Flags != SCEV::FlagAnyWrap) {
 | |
|             const SCEV *LHS = getSCEV(BO->LHS);
 | |
|             if (BO->Opcode == Instruction::Sub)
 | |
|               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
 | |
|             else
 | |
|               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (BO->Opcode == Instruction::Sub)
 | |
|           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
 | |
|         else
 | |
|           AddOps.push_back(getSCEV(BO->RHS));
 | |
| 
 | |
|         auto NewBO = MatchBinaryOp(BO->LHS, DT);
 | |
|         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
 | |
|                        NewBO->Opcode != Instruction::Sub)) {
 | |
|           AddOps.push_back(getSCEV(BO->LHS));
 | |
|           break;
 | |
|         }
 | |
|         BO = NewBO;
 | |
|       } while (true);
 | |
| 
 | |
|       return getAddExpr(AddOps);
 | |
|     }
 | |
| 
 | |
|     case Instruction::Mul: {
 | |
|       SmallVector<const SCEV *, 4> MulOps;
 | |
|       do {
 | |
|         if (BO->Op) {
 | |
|           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
 | |
|             MulOps.push_back(OpSCEV);
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
 | |
|           if (Flags != SCEV::FlagAnyWrap) {
 | |
|             MulOps.push_back(
 | |
|                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         MulOps.push_back(getSCEV(BO->RHS));
 | |
|         auto NewBO = MatchBinaryOp(BO->LHS, DT);
 | |
|         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
 | |
|           MulOps.push_back(getSCEV(BO->LHS));
 | |
|           break;
 | |
|         }
 | |
|         BO = NewBO;
 | |
|       } while (true);
 | |
| 
 | |
|       return getMulExpr(MulOps);
 | |
|     }
 | |
|     case Instruction::UDiv:
 | |
|       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
 | |
|     case Instruction::URem:
 | |
|       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
 | |
|     case Instruction::Sub: {
 | |
|       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
 | |
|       if (BO->Op)
 | |
|         Flags = getNoWrapFlagsFromUB(BO->Op);
 | |
|       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
 | |
|     }
 | |
|     case Instruction::And:
 | |
|       // For an expression like x&255 that merely masks off the high bits,
 | |
|       // use zext(trunc(x)) as the SCEV expression.
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
 | |
|         if (CI->isZero())
 | |
|           return getSCEV(BO->RHS);
 | |
|         if (CI->isMinusOne())
 | |
|           return getSCEV(BO->LHS);
 | |
|         const APInt &A = CI->getValue();
 | |
| 
 | |
|         // Instcombine's ShrinkDemandedConstant may strip bits out of
 | |
|         // constants, obscuring what would otherwise be a low-bits mask.
 | |
|         // Use computeKnownBits to compute what ShrinkDemandedConstant
 | |
|         // knew about to reconstruct a low-bits mask value.
 | |
|         unsigned LZ = A.countLeadingZeros();
 | |
|         unsigned TZ = A.countTrailingZeros();
 | |
|         unsigned BitWidth = A.getBitWidth();
 | |
|         KnownBits Known(BitWidth);
 | |
|         computeKnownBits(BO->LHS, Known, getDataLayout(),
 | |
|                          0, &AC, nullptr, &DT);
 | |
| 
 | |
|         APInt EffectiveMask =
 | |
|             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
 | |
|         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
 | |
|           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
 | |
|           const SCEV *LHS = getSCEV(BO->LHS);
 | |
|           const SCEV *ShiftedLHS = nullptr;
 | |
|           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
 | |
|             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
 | |
|               // For an expression like (x * 8) & 8, simplify the multiply.
 | |
|               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
 | |
|               unsigned GCD = std::min(MulZeros, TZ);
 | |
|               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
 | |
|               SmallVector<const SCEV*, 4> MulOps;
 | |
|               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
 | |
|               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
 | |
|               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
 | |
|               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
 | |
|             }
 | |
|           }
 | |
|           if (!ShiftedLHS)
 | |
|             ShiftedLHS = getUDivExpr(LHS, MulCount);
 | |
|           return getMulExpr(
 | |
|               getZeroExtendExpr(
 | |
|                   getTruncateExpr(ShiftedLHS,
 | |
|                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
 | |
|                   BO->LHS->getType()),
 | |
|               MulCount);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case Instruction::Or:
 | |
|       // If the RHS of the Or is a constant, we may have something like:
 | |
|       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
 | |
|       // optimizations will transparently handle this case.
 | |
|       //
 | |
|       // In order for this transformation to be safe, the LHS must be of the
 | |
|       // form X*(2^n) and the Or constant must be less than 2^n.
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
 | |
|         const SCEV *LHS = getSCEV(BO->LHS);
 | |
|         const APInt &CIVal = CI->getValue();
 | |
|         if (GetMinTrailingZeros(LHS) >=
 | |
|             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
 | |
|           // Build a plain add SCEV.
 | |
|           return getAddExpr(LHS, getSCEV(CI),
 | |
|                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case Instruction::Xor:
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
 | |
|         // If the RHS of xor is -1, then this is a not operation.
 | |
|         if (CI->isMinusOne())
 | |
|           return getNotSCEV(getSCEV(BO->LHS));
 | |
| 
 | |
|         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
 | |
|         // This is a variant of the check for xor with -1, and it handles
 | |
|         // the case where instcombine has trimmed non-demanded bits out
 | |
|         // of an xor with -1.
 | |
|         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
 | |
|           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
 | |
|             if (LBO->getOpcode() == Instruction::And &&
 | |
|                 LCI->getValue() == CI->getValue())
 | |
|               if (const SCEVZeroExtendExpr *Z =
 | |
|                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
 | |
|                 Type *UTy = BO->LHS->getType();
 | |
|                 const SCEV *Z0 = Z->getOperand();
 | |
|                 Type *Z0Ty = Z0->getType();
 | |
|                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
 | |
| 
 | |
|                 // If C is a low-bits mask, the zero extend is serving to
 | |
|                 // mask off the high bits. Complement the operand and
 | |
|                 // re-apply the zext.
 | |
|                 if (CI->getValue().isMask(Z0TySize))
 | |
|                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
 | |
| 
 | |
|                 // If C is a single bit, it may be in the sign-bit position
 | |
|                 // before the zero-extend. In this case, represent the xor
 | |
|                 // using an add, which is equivalent, and re-apply the zext.
 | |
|                 APInt Trunc = CI->getValue().trunc(Z0TySize);
 | |
|                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
 | |
|                     Trunc.isSignMask())
 | |
|                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
 | |
|                                            UTy);
 | |
|               }
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case Instruction::Shl:
 | |
|       // Turn shift left of a constant amount into a multiply.
 | |
|       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
 | |
|         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
 | |
| 
 | |
|         // If the shift count is not less than the bitwidth, the result of
 | |
|         // the shift is undefined. Don't try to analyze it, because the
 | |
|         // resolution chosen here may differ from the resolution chosen in
 | |
|         // other parts of the compiler.
 | |
|         if (SA->getValue().uge(BitWidth))
 | |
|           break;
 | |
| 
 | |
|         // We can safely preserve the nuw flag in all cases. It's also safe to
 | |
|         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
 | |
|         // requires special handling. It can be preserved as long as we're not
 | |
|         // left shifting by bitwidth - 1.
 | |
|         auto Flags = SCEV::FlagAnyWrap;
 | |
|         if (BO->Op) {
 | |
|           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
 | |
|           if ((MulFlags & SCEV::FlagNSW) &&
 | |
|               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
 | |
|             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
 | |
|           if (MulFlags & SCEV::FlagNUW)
 | |
|             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
 | |
|         }
 | |
| 
 | |
|         Constant *X = ConstantInt::get(
 | |
|             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
 | |
|         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case Instruction::AShr: {
 | |
|       // AShr X, C, where C is a constant.
 | |
|       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
 | |
|       if (!CI)
 | |
|         break;
 | |
| 
 | |
|       Type *OuterTy = BO->LHS->getType();
 | |
|       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
 | |
|       // If the shift count is not less than the bitwidth, the result of
 | |
|       // the shift is undefined. Don't try to analyze it, because the
 | |
|       // resolution chosen here may differ from the resolution chosen in
 | |
|       // other parts of the compiler.
 | |
|       if (CI->getValue().uge(BitWidth))
 | |
|         break;
 | |
| 
 | |
|       if (CI->isZero())
 | |
|         return getSCEV(BO->LHS); // shift by zero --> noop
 | |
| 
 | |
|       uint64_t AShrAmt = CI->getZExtValue();
 | |
|       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
 | |
| 
 | |
|       Operator *L = dyn_cast<Operator>(BO->LHS);
 | |
|       if (L && L->getOpcode() == Instruction::Shl) {
 | |
|         // X = Shl A, n
 | |
|         // Y = AShr X, m
 | |
|         // Both n and m are constant.
 | |
| 
 | |
|         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
 | |
|         if (L->getOperand(1) == BO->RHS)
 | |
|           // For a two-shift sext-inreg, i.e. n = m,
 | |
|           // use sext(trunc(x)) as the SCEV expression.
 | |
|           return getSignExtendExpr(
 | |
|               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
 | |
| 
 | |
|         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
 | |
|         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
 | |
|           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
 | |
|           if (ShlAmt > AShrAmt) {
 | |
|             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
 | |
|             // expression. We already checked that ShlAmt < BitWidth, so
 | |
|             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
 | |
|             // ShlAmt - AShrAmt < Amt.
 | |
|             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
 | |
|                                             ShlAmt - AShrAmt);
 | |
|             return getSignExtendExpr(
 | |
|                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
 | |
|                 getConstant(Mul)), OuterTy);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       if (BO->IsExact) {
 | |
|         // Given exact arithmetic in-bounds right-shift by a constant,
 | |
|         // we can lower it into:  (abs(x) EXACT/u (1<<C)) * signum(x)
 | |
|         const SCEV *X = getSCEV(BO->LHS);
 | |
|         const SCEV *AbsX = getAbsExpr(X, /*IsNSW=*/false);
 | |
|         APInt Mult = APInt::getOneBitSet(BitWidth, AShrAmt);
 | |
|         const SCEV *Div = getUDivExactExpr(AbsX, getConstant(Mult));
 | |
|         return getMulExpr(Div, getSignumExpr(X), SCEV::FlagNSW);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   switch (U->getOpcode()) {
 | |
|   case Instruction::Trunc:
 | |
|     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
 | |
| 
 | |
|   case Instruction::ZExt:
 | |
|     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
 | |
| 
 | |
|   case Instruction::SExt:
 | |
|     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
 | |
|       // The NSW flag of a subtract does not always survive the conversion to
 | |
|       // A + (-1)*B.  By pushing sign extension onto its operands we are much
 | |
|       // more likely to preserve NSW and allow later AddRec optimisations.
 | |
|       //
 | |
|       // NOTE: This is effectively duplicating this logic from getSignExtend:
 | |
|       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
 | |
|       // but by that point the NSW information has potentially been lost.
 | |
|       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
 | |
|         Type *Ty = U->getType();
 | |
|         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
 | |
|         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
 | |
|         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
 | |
|       }
 | |
|     }
 | |
|     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
 | |
| 
 | |
|   case Instruction::BitCast:
 | |
|     // BitCasts are no-op casts so we just eliminate the cast.
 | |
|     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
 | |
|       return getSCEV(U->getOperand(0));
 | |
|     break;
 | |
| 
 | |
|   case Instruction::PtrToInt: {
 | |
|     // Pointer to integer cast is straight-forward, so do model it.
 | |
|     Value *Ptr = U->getOperand(0);
 | |
|     const SCEV *Op = getSCEV(Ptr);
 | |
|     Type *DstIntTy = U->getType();
 | |
|     // SCEV doesn't have constant pointer expression type, but it supports
 | |
|     // nullptr constant (and only that one), which is modelled in SCEV as a
 | |
|     // zero integer constant. So just skip the ptrtoint cast for constants.
 | |
|     if (isa<SCEVConstant>(Op))
 | |
|       return getTruncateOrZeroExtend(Op, DstIntTy);
 | |
|     Type *PtrTy = Ptr->getType();
 | |
|     Type *IntPtrTy = getDataLayout().getIntPtrType(PtrTy);
 | |
|     // But only if effective SCEV (integer) type is wide enough to represent
 | |
|     // all possible pointer values.
 | |
|     if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(PtrTy)) !=
 | |
|         getDataLayout().getTypeSizeInBits(IntPtrTy))
 | |
|       return getUnknown(V);
 | |
|     return getPtrToIntExpr(Op, DstIntTy);
 | |
|   }
 | |
|   case Instruction::IntToPtr:
 | |
|     // Just don't deal with inttoptr casts.
 | |
|     return getUnknown(V);
 | |
| 
 | |
|   case Instruction::SDiv:
 | |
|     // If both operands are non-negative, this is just an udiv.
 | |
|     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
 | |
|         isKnownNonNegative(getSCEV(U->getOperand(1))))
 | |
|       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
 | |
|     break;
 | |
| 
 | |
|   case Instruction::SRem:
 | |
|     // If both operands are non-negative, this is just an urem.
 | |
|     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
 | |
|         isKnownNonNegative(getSCEV(U->getOperand(1))))
 | |
|       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
 | |
|     break;
 | |
| 
 | |
|   case Instruction::GetElementPtr:
 | |
|     return createNodeForGEP(cast<GEPOperator>(U));
 | |
| 
 | |
|   case Instruction::PHI:
 | |
|     return createNodeForPHI(cast<PHINode>(U));
 | |
| 
 | |
|   case Instruction::Select:
 | |
|     // U can also be a select constant expr, which let fall through.  Since
 | |
|     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
 | |
|     // constant expressions cannot have instructions as operands, we'd have
 | |
|     // returned getUnknown for a select constant expressions anyway.
 | |
|     if (isa<Instruction>(U))
 | |
|       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
 | |
|                                       U->getOperand(1), U->getOperand(2));
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Call:
 | |
|   case Instruction::Invoke:
 | |
|     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
 | |
|       return getSCEV(RV);
 | |
| 
 | |
|     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
 | |
|       switch (II->getIntrinsicID()) {
 | |
|       case Intrinsic::abs:
 | |
|         return getAbsExpr(
 | |
|             getSCEV(II->getArgOperand(0)),
 | |
|             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
 | |
|       case Intrinsic::umax:
 | |
|         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
 | |
|                            getSCEV(II->getArgOperand(1)));
 | |
|       case Intrinsic::umin:
 | |
|         return getUMinExpr(getSCEV(II->getArgOperand(0)),
 | |
|                            getSCEV(II->getArgOperand(1)));
 | |
|       case Intrinsic::smax:
 | |
|         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
 | |
|                            getSCEV(II->getArgOperand(1)));
 | |
|       case Intrinsic::smin:
 | |
|         return getSMinExpr(getSCEV(II->getArgOperand(0)),
 | |
|                            getSCEV(II->getArgOperand(1)));
 | |
|       case Intrinsic::usub_sat: {
 | |
|         const SCEV *X = getSCEV(II->getArgOperand(0));
 | |
|         const SCEV *Y = getSCEV(II->getArgOperand(1));
 | |
|         const SCEV *ClampedY = getUMinExpr(X, Y);
 | |
|         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
 | |
|       }
 | |
|       case Intrinsic::uadd_sat: {
 | |
|         const SCEV *X = getSCEV(II->getArgOperand(0));
 | |
|         const SCEV *Y = getSCEV(II->getArgOperand(1));
 | |
|         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
 | |
|         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
 | |
|       }
 | |
|       case Intrinsic::start_loop_iterations:
 | |
|         // A start_loop_iterations is just equivalent to the first operand for
 | |
|         // SCEV purposes.
 | |
|         return getSCEV(II->getArgOperand(0));
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return getUnknown(V);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   Iteration Count Computation Code
 | |
| //
 | |
| 
 | |
| static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
 | |
|   if (!ExitCount)
 | |
|     return 0;
 | |
| 
 | |
|   ConstantInt *ExitConst = ExitCount->getValue();
 | |
| 
 | |
|   // Guard against huge trip counts.
 | |
|   if (ExitConst->getValue().getActiveBits() > 32)
 | |
|     return 0;
 | |
| 
 | |
|   // In case of integer overflow, this returns 0, which is correct.
 | |
|   return ((unsigned)ExitConst->getZExtValue()) + 1;
 | |
| }
 | |
| 
 | |
| unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
 | |
|   if (BasicBlock *ExitingBB = L->getExitingBlock())
 | |
|     return getSmallConstantTripCount(L, ExitingBB);
 | |
| 
 | |
|   // No trip count information for multiple exits.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| ScalarEvolution::getSmallConstantTripCount(const Loop *L,
 | |
|                                            const BasicBlock *ExitingBlock) {
 | |
|   assert(ExitingBlock && "Must pass a non-null exiting block!");
 | |
|   assert(L->isLoopExiting(ExitingBlock) &&
 | |
|          "Exiting block must actually branch out of the loop!");
 | |
|   const SCEVConstant *ExitCount =
 | |
|       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
 | |
|   return getConstantTripCount(ExitCount);
 | |
| }
 | |
| 
 | |
| unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
 | |
|   const auto *MaxExitCount =
 | |
|       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
 | |
|   return getConstantTripCount(MaxExitCount);
 | |
| }
 | |
| 
 | |
| unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
 | |
|   if (BasicBlock *ExitingBB = L->getExitingBlock())
 | |
|     return getSmallConstantTripMultiple(L, ExitingBB);
 | |
| 
 | |
|   // No trip multiple information for multiple exits.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Returns the largest constant divisor of the trip count of this loop as a
 | |
| /// normal unsigned value, if possible. This means that the actual trip count is
 | |
| /// always a multiple of the returned value (don't forget the trip count could
 | |
| /// very well be zero as well!).
 | |
| ///
 | |
| /// Returns 1 if the trip count is unknown or not guaranteed to be the
 | |
| /// multiple of a constant (which is also the case if the trip count is simply
 | |
| /// constant, use getSmallConstantTripCount for that case), Will also return 1
 | |
| /// if the trip count is very large (>= 2^32).
 | |
| ///
 | |
| /// As explained in the comments for getSmallConstantTripCount, this assumes
 | |
| /// that control exits the loop via ExitingBlock.
 | |
| unsigned
 | |
| ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
 | |
|                                               const BasicBlock *ExitingBlock) {
 | |
|   assert(ExitingBlock && "Must pass a non-null exiting block!");
 | |
|   assert(L->isLoopExiting(ExitingBlock) &&
 | |
|          "Exiting block must actually branch out of the loop!");
 | |
|   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
 | |
|   if (ExitCount == getCouldNotCompute())
 | |
|     return 1;
 | |
| 
 | |
|   // Get the trip count from the BE count by adding 1.
 | |
|   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
 | |
| 
 | |
|   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
 | |
|   if (!TC)
 | |
|     // Attempt to factor more general cases. Returns the greatest power of
 | |
|     // two divisor. If overflow happens, the trip count expression is still
 | |
|     // divisible by the greatest power of 2 divisor returned.
 | |
|     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
 | |
| 
 | |
|   ConstantInt *Result = TC->getValue();
 | |
| 
 | |
|   // Guard against huge trip counts (this requires checking
 | |
|   // for zero to handle the case where the trip count == -1 and the
 | |
|   // addition wraps).
 | |
|   if (!Result || Result->getValue().getActiveBits() > 32 ||
 | |
|       Result->getValue().getActiveBits() == 0)
 | |
|     return 1;
 | |
| 
 | |
|   return (unsigned)Result->getZExtValue();
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getExitCount(const Loop *L,
 | |
|                                           const BasicBlock *ExitingBlock,
 | |
|                                           ExitCountKind Kind) {
 | |
|   switch (Kind) {
 | |
|   case Exact:
 | |
|   case SymbolicMaximum:
 | |
|     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
 | |
|   case ConstantMaximum:
 | |
|     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
 | |
|   };
 | |
|   llvm_unreachable("Invalid ExitCountKind!");
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
 | |
|                                                  SCEVUnionPredicate &Preds) {
 | |
|   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
 | |
|                                                    ExitCountKind Kind) {
 | |
|   switch (Kind) {
 | |
|   case Exact:
 | |
|     return getBackedgeTakenInfo(L).getExact(L, this);
 | |
|   case ConstantMaximum:
 | |
|     return getBackedgeTakenInfo(L).getConstantMax(this);
 | |
|   case SymbolicMaximum:
 | |
|     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
 | |
|   };
 | |
|   llvm_unreachable("Invalid ExitCountKind!");
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
 | |
|   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
 | |
| }
 | |
| 
 | |
| /// Push PHI nodes in the header of the given loop onto the given Worklist.
 | |
| static void
 | |
| PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
 | |
|   BasicBlock *Header = L->getHeader();
 | |
| 
 | |
|   // Push all Loop-header PHIs onto the Worklist stack.
 | |
|   for (PHINode &PN : Header->phis())
 | |
|     Worklist.push_back(&PN);
 | |
| }
 | |
| 
 | |
| const ScalarEvolution::BackedgeTakenInfo &
 | |
| ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
 | |
|   auto &BTI = getBackedgeTakenInfo(L);
 | |
|   if (BTI.hasFullInfo())
 | |
|     return BTI;
 | |
| 
 | |
|   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
 | |
| 
 | |
|   if (!Pair.second)
 | |
|     return Pair.first->second;
 | |
| 
 | |
|   BackedgeTakenInfo Result =
 | |
|       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
 | |
| 
 | |
|   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
 | |
| }
 | |
| 
 | |
| ScalarEvolution::BackedgeTakenInfo &
 | |
| ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
 | |
|   // Initially insert an invalid entry for this loop. If the insertion
 | |
|   // succeeds, proceed to actually compute a backedge-taken count and
 | |
|   // update the value. The temporary CouldNotCompute value tells SCEV
 | |
|   // code elsewhere that it shouldn't attempt to request a new
 | |
|   // backedge-taken count, which could result in infinite recursion.
 | |
|   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
 | |
|       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
 | |
|   if (!Pair.second)
 | |
|     return Pair.first->second;
 | |
| 
 | |
|   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
 | |
|   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
 | |
|   // must be cleared in this scope.
 | |
|   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
 | |
| 
 | |
|   // In product build, there are no usage of statistic.
 | |
|   (void)NumTripCountsComputed;
 | |
|   (void)NumTripCountsNotComputed;
 | |
| #if LLVM_ENABLE_STATS || !defined(NDEBUG)
 | |
|   const SCEV *BEExact = Result.getExact(L, this);
 | |
|   if (BEExact != getCouldNotCompute()) {
 | |
|     assert(isLoopInvariant(BEExact, L) &&
 | |
|            isLoopInvariant(Result.getConstantMax(this), L) &&
 | |
|            "Computed backedge-taken count isn't loop invariant for loop!");
 | |
|     ++NumTripCountsComputed;
 | |
|   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
 | |
|              isa<PHINode>(L->getHeader()->begin())) {
 | |
|     // Only count loops that have phi nodes as not being computable.
 | |
|     ++NumTripCountsNotComputed;
 | |
|   }
 | |
| #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
 | |
| 
 | |
|   // Now that we know more about the trip count for this loop, forget any
 | |
|   // existing SCEV values for PHI nodes in this loop since they are only
 | |
|   // conservative estimates made without the benefit of trip count
 | |
|   // information. This is similar to the code in forgetLoop, except that
 | |
|   // it handles SCEVUnknown PHI nodes specially.
 | |
|   if (Result.hasAnyInfo()) {
 | |
|     SmallVector<Instruction *, 16> Worklist;
 | |
|     PushLoopPHIs(L, Worklist);
 | |
| 
 | |
|     SmallPtrSet<Instruction *, 8> Discovered;
 | |
|     while (!Worklist.empty()) {
 | |
|       Instruction *I = Worklist.pop_back_val();
 | |
| 
 | |
|       ValueExprMapType::iterator It =
 | |
|         ValueExprMap.find_as(static_cast<Value *>(I));
 | |
|       if (It != ValueExprMap.end()) {
 | |
|         const SCEV *Old = It->second;
 | |
| 
 | |
|         // SCEVUnknown for a PHI either means that it has an unrecognized
 | |
|         // structure, or it's a PHI that's in the progress of being computed
 | |
|         // by createNodeForPHI.  In the former case, additional loop trip
 | |
|         // count information isn't going to change anything. In the later
 | |
|         // case, createNodeForPHI will perform the necessary updates on its
 | |
|         // own when it gets to that point.
 | |
|         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
 | |
|           eraseValueFromMap(It->first);
 | |
|           forgetMemoizedResults(Old);
 | |
|         }
 | |
|         if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|           ConstantEvolutionLoopExitValue.erase(PN);
 | |
|       }
 | |
| 
 | |
|       // Since we don't need to invalidate anything for correctness and we're
 | |
|       // only invalidating to make SCEV's results more precise, we get to stop
 | |
|       // early to avoid invalidating too much.  This is especially important in
 | |
|       // cases like:
 | |
|       //
 | |
|       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
 | |
|       // loop0:
 | |
|       //   %pn0 = phi
 | |
|       //   ...
 | |
|       // loop1:
 | |
|       //   %pn1 = phi
 | |
|       //   ...
 | |
|       //
 | |
|       // where both loop0 and loop1's backedge taken count uses the SCEV
 | |
|       // expression for %v.  If we don't have the early stop below then in cases
 | |
|       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
 | |
|       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
 | |
|       // count for loop1, effectively nullifying SCEV's trip count cache.
 | |
|       for (auto *U : I->users())
 | |
|         if (auto *I = dyn_cast<Instruction>(U)) {
 | |
|           auto *LoopForUser = LI.getLoopFor(I->getParent());
 | |
|           if (LoopForUser && L->contains(LoopForUser) &&
 | |
|               Discovered.insert(I).second)
 | |
|             Worklist.push_back(I);
 | |
|         }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Re-lookup the insert position, since the call to
 | |
|   // computeBackedgeTakenCount above could result in a
 | |
|   // recusive call to getBackedgeTakenInfo (on a different
 | |
|   // loop), which would invalidate the iterator computed
 | |
|   // earlier.
 | |
|   return BackedgeTakenCounts.find(L)->second = std::move(Result);
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::forgetAllLoops() {
 | |
|   // This method is intended to forget all info about loops. It should
 | |
|   // invalidate caches as if the following happened:
 | |
|   // - The trip counts of all loops have changed arbitrarily
 | |
|   // - Every llvm::Value has been updated in place to produce a different
 | |
|   // result.
 | |
|   BackedgeTakenCounts.clear();
 | |
|   PredicatedBackedgeTakenCounts.clear();
 | |
|   LoopPropertiesCache.clear();
 | |
|   ConstantEvolutionLoopExitValue.clear();
 | |
|   ValueExprMap.clear();
 | |
|   ValuesAtScopes.clear();
 | |
|   LoopDispositions.clear();
 | |
|   BlockDispositions.clear();
 | |
|   UnsignedRanges.clear();
 | |
|   SignedRanges.clear();
 | |
|   ExprValueMap.clear();
 | |
|   HasRecMap.clear();
 | |
|   MinTrailingZerosCache.clear();
 | |
|   PredicatedSCEVRewrites.clear();
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::forgetLoop(const Loop *L) {
 | |
|   // Drop any stored trip count value.
 | |
|   auto RemoveLoopFromBackedgeMap =
 | |
|       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
 | |
|         auto BTCPos = Map.find(L);
 | |
|         if (BTCPos != Map.end()) {
 | |
|           BTCPos->second.clear();
 | |
|           Map.erase(BTCPos);
 | |
|         }
 | |
|       };
 | |
| 
 | |
|   SmallVector<const Loop *, 16> LoopWorklist(1, L);
 | |
|   SmallVector<Instruction *, 32> Worklist;
 | |
|   SmallPtrSet<Instruction *, 16> Visited;
 | |
| 
 | |
|   // Iterate over all the loops and sub-loops to drop SCEV information.
 | |
|   while (!LoopWorklist.empty()) {
 | |
|     auto *CurrL = LoopWorklist.pop_back_val();
 | |
| 
 | |
|     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
 | |
|     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
 | |
| 
 | |
|     // Drop information about predicated SCEV rewrites for this loop.
 | |
|     for (auto I = PredicatedSCEVRewrites.begin();
 | |
|          I != PredicatedSCEVRewrites.end();) {
 | |
|       std::pair<const SCEV *, const Loop *> Entry = I->first;
 | |
|       if (Entry.second == CurrL)
 | |
|         PredicatedSCEVRewrites.erase(I++);
 | |
|       else
 | |
|         ++I;
 | |
|     }
 | |
| 
 | |
|     auto LoopUsersItr = LoopUsers.find(CurrL);
 | |
|     if (LoopUsersItr != LoopUsers.end()) {
 | |
|       for (auto *S : LoopUsersItr->second)
 | |
|         forgetMemoizedResults(S);
 | |
|       LoopUsers.erase(LoopUsersItr);
 | |
|     }
 | |
| 
 | |
|     // Drop information about expressions based on loop-header PHIs.
 | |
|     PushLoopPHIs(CurrL, Worklist);
 | |
| 
 | |
|     while (!Worklist.empty()) {
 | |
|       Instruction *I = Worklist.pop_back_val();
 | |
|       if (!Visited.insert(I).second)
 | |
|         continue;
 | |
| 
 | |
|       ValueExprMapType::iterator It =
 | |
|           ValueExprMap.find_as(static_cast<Value *>(I));
 | |
|       if (It != ValueExprMap.end()) {
 | |
|         eraseValueFromMap(It->first);
 | |
|         forgetMemoizedResults(It->second);
 | |
|         if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|           ConstantEvolutionLoopExitValue.erase(PN);
 | |
|       }
 | |
| 
 | |
|       PushDefUseChildren(I, Worklist);
 | |
|     }
 | |
| 
 | |
|     LoopPropertiesCache.erase(CurrL);
 | |
|     // Forget all contained loops too, to avoid dangling entries in the
 | |
|     // ValuesAtScopes map.
 | |
|     LoopWorklist.append(CurrL->begin(), CurrL->end());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
 | |
|   while (Loop *Parent = L->getParentLoop())
 | |
|     L = Parent;
 | |
|   forgetLoop(L);
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::forgetValue(Value *V) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return;
 | |
| 
 | |
|   // Drop information about expressions based on loop-header PHIs.
 | |
|   SmallVector<Instruction *, 16> Worklist;
 | |
|   Worklist.push_back(I);
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 8> Visited;
 | |
|   while (!Worklist.empty()) {
 | |
|     I = Worklist.pop_back_val();
 | |
|     if (!Visited.insert(I).second)
 | |
|       continue;
 | |
| 
 | |
|     ValueExprMapType::iterator It =
 | |
|       ValueExprMap.find_as(static_cast<Value *>(I));
 | |
|     if (It != ValueExprMap.end()) {
 | |
|       eraseValueFromMap(It->first);
 | |
|       forgetMemoizedResults(It->second);
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|         ConstantEvolutionLoopExitValue.erase(PN);
 | |
|     }
 | |
| 
 | |
|     PushDefUseChildren(I, Worklist);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
 | |
|   LoopDispositions.clear();
 | |
| }
 | |
| 
 | |
| /// Get the exact loop backedge taken count considering all loop exits. A
 | |
| /// computable result can only be returned for loops with all exiting blocks
 | |
| /// dominating the latch. howFarToZero assumes that the limit of each loop test
 | |
| /// is never skipped. This is a valid assumption as long as the loop exits via
 | |
| /// that test. For precise results, it is the caller's responsibility to specify
 | |
| /// the relevant loop exiting block using getExact(ExitingBlock, SE).
 | |
| const SCEV *
 | |
| ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
 | |
|                                              SCEVUnionPredicate *Preds) const {
 | |
|   // If any exits were not computable, the loop is not computable.
 | |
|   if (!isComplete() || ExitNotTaken.empty())
 | |
|     return SE->getCouldNotCompute();
 | |
| 
 | |
|   const BasicBlock *Latch = L->getLoopLatch();
 | |
|   // All exiting blocks we have collected must dominate the only backedge.
 | |
|   if (!Latch)
 | |
|     return SE->getCouldNotCompute();
 | |
| 
 | |
|   // All exiting blocks we have gathered dominate loop's latch, so exact trip
 | |
|   // count is simply a minimum out of all these calculated exit counts.
 | |
|   SmallVector<const SCEV *, 2> Ops;
 | |
|   for (auto &ENT : ExitNotTaken) {
 | |
|     const SCEV *BECount = ENT.ExactNotTaken;
 | |
|     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
 | |
|     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
 | |
|            "We should only have known counts for exiting blocks that dominate "
 | |
|            "latch!");
 | |
| 
 | |
|     Ops.push_back(BECount);
 | |
| 
 | |
|     if (Preds && !ENT.hasAlwaysTruePredicate())
 | |
|       Preds->add(ENT.Predicate.get());
 | |
| 
 | |
|     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
 | |
|            "Predicate should be always true!");
 | |
|   }
 | |
| 
 | |
|   return SE->getUMinFromMismatchedTypes(Ops);
 | |
| }
 | |
| 
 | |
| /// Get the exact not taken count for this loop exit.
 | |
| const SCEV *
 | |
| ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
 | |
|                                              ScalarEvolution *SE) const {
 | |
|   for (auto &ENT : ExitNotTaken)
 | |
|     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
 | |
|       return ENT.ExactNotTaken;
 | |
| 
 | |
|   return SE->getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
 | |
|     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
 | |
|   for (auto &ENT : ExitNotTaken)
 | |
|     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
 | |
|       return ENT.MaxNotTaken;
 | |
| 
 | |
|   return SE->getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| /// getConstantMax - Get the constant max backedge taken count for the loop.
 | |
| const SCEV *
 | |
| ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
 | |
|   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
 | |
|     return !ENT.hasAlwaysTruePredicate();
 | |
|   };
 | |
| 
 | |
|   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
 | |
|     return SE->getCouldNotCompute();
 | |
| 
 | |
|   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
 | |
|           isa<SCEVConstant>(getConstantMax())) &&
 | |
|          "No point in having a non-constant max backedge taken count!");
 | |
|   return getConstantMax();
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
 | |
|                                                    ScalarEvolution *SE) {
 | |
|   if (!SymbolicMax)
 | |
|     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
 | |
|   return SymbolicMax;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
 | |
|     ScalarEvolution *SE) const {
 | |
|   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
 | |
|     return !ENT.hasAlwaysTruePredicate();
 | |
|   };
 | |
|   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
 | |
|                                                     ScalarEvolution *SE) const {
 | |
|   if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() &&
 | |
|       SE->hasOperand(getConstantMax(), S))
 | |
|     return true;
 | |
| 
 | |
|   for (auto &ENT : ExitNotTaken)
 | |
|     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
 | |
|         SE->hasOperand(ENT.ExactNotTaken, S))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
 | |
|     : ExactNotTaken(E), MaxNotTaken(E) {
 | |
|   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
 | |
|           isa<SCEVConstant>(MaxNotTaken)) &&
 | |
|          "No point in having a non-constant max backedge taken count!");
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit::ExitLimit(
 | |
|     const SCEV *E, const SCEV *M, bool MaxOrZero,
 | |
|     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
 | |
|     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
 | |
|   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
 | |
|           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
 | |
|          "Exact is not allowed to be less precise than Max");
 | |
|   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
 | |
|           isa<SCEVConstant>(MaxNotTaken)) &&
 | |
|          "No point in having a non-constant max backedge taken count!");
 | |
|   for (auto *PredSet : PredSetList)
 | |
|     for (auto *P : *PredSet)
 | |
|       addPredicate(P);
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit::ExitLimit(
 | |
|     const SCEV *E, const SCEV *M, bool MaxOrZero,
 | |
|     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
 | |
|     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
 | |
|   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
 | |
|           isa<SCEVConstant>(MaxNotTaken)) &&
 | |
|          "No point in having a non-constant max backedge taken count!");
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
 | |
|                                       bool MaxOrZero)
 | |
|     : ExitLimit(E, M, MaxOrZero, None) {
 | |
|   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
 | |
|           isa<SCEVConstant>(MaxNotTaken)) &&
 | |
|          "No point in having a non-constant max backedge taken count!");
 | |
| }
 | |
| 
 | |
| /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
 | |
| /// computable exit into a persistent ExitNotTakenInfo array.
 | |
| ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
 | |
|     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
 | |
|     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
 | |
|     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
 | |
|   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
 | |
| 
 | |
|   ExitNotTaken.reserve(ExitCounts.size());
 | |
|   std::transform(
 | |
|       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
 | |
|       [&](const EdgeExitInfo &EEI) {
 | |
|         BasicBlock *ExitBB = EEI.first;
 | |
|         const ExitLimit &EL = EEI.second;
 | |
|         if (EL.Predicates.empty())
 | |
|           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
 | |
|                                   nullptr);
 | |
| 
 | |
|         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
 | |
|         for (auto *Pred : EL.Predicates)
 | |
|           Predicate->add(Pred);
 | |
| 
 | |
|         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
 | |
|                                 std::move(Predicate));
 | |
|       });
 | |
|   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
 | |
|           isa<SCEVConstant>(ConstantMax)) &&
 | |
|          "No point in having a non-constant max backedge taken count!");
 | |
| }
 | |
| 
 | |
| /// Invalidate this result and free the ExitNotTakenInfo array.
 | |
| void ScalarEvolution::BackedgeTakenInfo::clear() {
 | |
|   ExitNotTaken.clear();
 | |
| }
 | |
| 
 | |
| /// Compute the number of times the backedge of the specified loop will execute.
 | |
| ScalarEvolution::BackedgeTakenInfo
 | |
| ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
 | |
|                                            bool AllowPredicates) {
 | |
|   SmallVector<BasicBlock *, 8> ExitingBlocks;
 | |
|   L->getExitingBlocks(ExitingBlocks);
 | |
| 
 | |
|   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
 | |
| 
 | |
|   SmallVector<EdgeExitInfo, 4> ExitCounts;
 | |
|   bool CouldComputeBECount = true;
 | |
|   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
 | |
|   const SCEV *MustExitMaxBECount = nullptr;
 | |
|   const SCEV *MayExitMaxBECount = nullptr;
 | |
|   bool MustExitMaxOrZero = false;
 | |
| 
 | |
|   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
 | |
|   // and compute maxBECount.
 | |
|   // Do a union of all the predicates here.
 | |
|   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
 | |
|     BasicBlock *ExitBB = ExitingBlocks[i];
 | |
| 
 | |
|     // We canonicalize untaken exits to br (constant), ignore them so that
 | |
|     // proving an exit untaken doesn't negatively impact our ability to reason
 | |
|     // about the loop as whole.
 | |
|     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
 | |
|       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
 | |
|         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
 | |
|         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
 | |
|           continue;
 | |
|       }
 | |
| 
 | |
|     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
 | |
| 
 | |
|     assert((AllowPredicates || EL.Predicates.empty()) &&
 | |
|            "Predicated exit limit when predicates are not allowed!");
 | |
| 
 | |
|     // 1. For each exit that can be computed, add an entry to ExitCounts.
 | |
|     // CouldComputeBECount is true only if all exits can be computed.
 | |
|     if (EL.ExactNotTaken == getCouldNotCompute())
 | |
|       // We couldn't compute an exact value for this exit, so
 | |
|       // we won't be able to compute an exact value for the loop.
 | |
|       CouldComputeBECount = false;
 | |
|     else
 | |
|       ExitCounts.emplace_back(ExitBB, EL);
 | |
| 
 | |
|     // 2. Derive the loop's MaxBECount from each exit's max number of
 | |
|     // non-exiting iterations. Partition the loop exits into two kinds:
 | |
|     // LoopMustExits and LoopMayExits.
 | |
|     //
 | |
|     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
 | |
|     // is a LoopMayExit.  If any computable LoopMustExit is found, then
 | |
|     // MaxBECount is the minimum EL.MaxNotTaken of computable
 | |
|     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
 | |
|     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
 | |
|     // computable EL.MaxNotTaken.
 | |
|     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
 | |
|         DT.dominates(ExitBB, Latch)) {
 | |
|       if (!MustExitMaxBECount) {
 | |
|         MustExitMaxBECount = EL.MaxNotTaken;
 | |
|         MustExitMaxOrZero = EL.MaxOrZero;
 | |
|       } else {
 | |
|         MustExitMaxBECount =
 | |
|             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
 | |
|       }
 | |
|     } else if (MayExitMaxBECount != getCouldNotCompute()) {
 | |
|       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
 | |
|         MayExitMaxBECount = EL.MaxNotTaken;
 | |
|       else {
 | |
|         MayExitMaxBECount =
 | |
|             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
 | |
|     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
 | |
|   // The loop backedge will be taken the maximum or zero times if there's
 | |
|   // a single exit that must be taken the maximum or zero times.
 | |
|   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
 | |
|   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
 | |
|                            MaxBECount, MaxOrZero);
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
 | |
|                                       bool AllowPredicates) {
 | |
|   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
 | |
|   // If our exiting block does not dominate the latch, then its connection with
 | |
|   // loop's exit limit may be far from trivial.
 | |
|   const BasicBlock *Latch = L->getLoopLatch();
 | |
|   if (!Latch || !DT.dominates(ExitingBlock, Latch))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
 | |
|   Instruction *Term = ExitingBlock->getTerminator();
 | |
|   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
 | |
|     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
 | |
|     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
 | |
|     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
 | |
|            "It should have one successor in loop and one exit block!");
 | |
|     // Proceed to the next level to examine the exit condition expression.
 | |
|     return computeExitLimitFromCond(
 | |
|         L, BI->getCondition(), ExitIfTrue,
 | |
|         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
 | |
|   }
 | |
| 
 | |
|   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
 | |
|     // For switch, make sure that there is a single exit from the loop.
 | |
|     BasicBlock *Exit = nullptr;
 | |
|     for (auto *SBB : successors(ExitingBlock))
 | |
|       if (!L->contains(SBB)) {
 | |
|         if (Exit) // Multiple exit successors.
 | |
|           return getCouldNotCompute();
 | |
|         Exit = SBB;
 | |
|       }
 | |
|     assert(Exit && "Exiting block must have at least one exit");
 | |
|     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
 | |
|                                                 /*ControlsExit=*/IsOnlyExit);
 | |
|   }
 | |
| 
 | |
|   return getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
 | |
|     const Loop *L, Value *ExitCond, bool ExitIfTrue,
 | |
|     bool ControlsExit, bool AllowPredicates) {
 | |
|   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
 | |
|   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
 | |
|                                         ControlsExit, AllowPredicates);
 | |
| }
 | |
| 
 | |
| Optional<ScalarEvolution::ExitLimit>
 | |
| ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
 | |
|                                       bool ExitIfTrue, bool ControlsExit,
 | |
|                                       bool AllowPredicates) {
 | |
|   (void)this->L;
 | |
|   (void)this->ExitIfTrue;
 | |
|   (void)this->AllowPredicates;
 | |
| 
 | |
|   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
 | |
|          this->AllowPredicates == AllowPredicates &&
 | |
|          "Variance in assumed invariant key components!");
 | |
|   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
 | |
|   if (Itr == TripCountMap.end())
 | |
|     return None;
 | |
|   return Itr->second;
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
 | |
|                                              bool ExitIfTrue,
 | |
|                                              bool ControlsExit,
 | |
|                                              bool AllowPredicates,
 | |
|                                              const ExitLimit &EL) {
 | |
|   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
 | |
|          this->AllowPredicates == AllowPredicates &&
 | |
|          "Variance in assumed invariant key components!");
 | |
| 
 | |
|   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
 | |
|   assert(InsertResult.second && "Expected successful insertion!");
 | |
|   (void)InsertResult;
 | |
|   (void)ExitIfTrue;
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
 | |
|     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
 | |
|     bool ControlsExit, bool AllowPredicates) {
 | |
| 
 | |
|   if (auto MaybeEL =
 | |
|           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
 | |
|     return *MaybeEL;
 | |
| 
 | |
|   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
 | |
|                                               ControlsExit, AllowPredicates);
 | |
|   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
 | |
|   return EL;
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
 | |
|     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
 | |
|     bool ControlsExit, bool AllowPredicates) {
 | |
|   // Handle BinOp conditions (And, Or).
 | |
|   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
 | |
|           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
 | |
|     return *LimitFromBinOp;
 | |
| 
 | |
|   // With an icmp, it may be feasible to compute an exact backedge-taken count.
 | |
|   // Proceed to the next level to examine the icmp.
 | |
|   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
 | |
|     ExitLimit EL =
 | |
|         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
 | |
|     if (EL.hasFullInfo() || !AllowPredicates)
 | |
|       return EL;
 | |
| 
 | |
|     // Try again, but use SCEV predicates this time.
 | |
|     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
 | |
|                                     /*AllowPredicates=*/true);
 | |
|   }
 | |
| 
 | |
|   // Check for a constant condition. These are normally stripped out by
 | |
|   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
 | |
|   // preserve the CFG and is temporarily leaving constant conditions
 | |
|   // in place.
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
 | |
|     if (ExitIfTrue == !CI->getZExtValue())
 | |
|       // The backedge is always taken.
 | |
|       return getCouldNotCompute();
 | |
|     else
 | |
|       // The backedge is never taken.
 | |
|       return getZero(CI->getType());
 | |
|   }
 | |
| 
 | |
|   // If it's not an integer or pointer comparison then compute it the hard way.
 | |
|   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
 | |
| }
 | |
| 
 | |
| Optional<ScalarEvolution::ExitLimit>
 | |
| ScalarEvolution::computeExitLimitFromCondFromBinOp(
 | |
|     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
 | |
|     bool ControlsExit, bool AllowPredicates) {
 | |
|   // Check if the controlling expression for this loop is an And or Or.
 | |
|   Value *Op0, *Op1;
 | |
|   bool IsAnd = false;
 | |
|   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
 | |
|     IsAnd = true;
 | |
|   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
 | |
|     IsAnd = false;
 | |
|   else
 | |
|     return None;
 | |
| 
 | |
|   // EitherMayExit is true in these two cases:
 | |
|   //   br (and Op0 Op1), loop, exit
 | |
|   //   br (or  Op0 Op1), exit, loop
 | |
|   bool EitherMayExit = IsAnd ^ ExitIfTrue;
 | |
|   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
 | |
|                                                  ControlsExit && !EitherMayExit,
 | |
|                                                  AllowPredicates);
 | |
|   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
 | |
|                                                  ControlsExit && !EitherMayExit,
 | |
|                                                  AllowPredicates);
 | |
| 
 | |
|   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
 | |
|   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
 | |
|   if (isa<ConstantInt>(Op1))
 | |
|     return Op1 == NeutralElement ? EL0 : EL1;
 | |
|   if (isa<ConstantInt>(Op0))
 | |
|     return Op0 == NeutralElement ? EL1 : EL0;
 | |
| 
 | |
|   const SCEV *BECount = getCouldNotCompute();
 | |
|   const SCEV *MaxBECount = getCouldNotCompute();
 | |
|   if (EitherMayExit) {
 | |
|     // Both conditions must be same for the loop to continue executing.
 | |
|     // Choose the less conservative count.
 | |
|     // If ExitCond is a short-circuit form (select), using
 | |
|     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
 | |
|     // To see the detailed examples, please see
 | |
|     // test/Analysis/ScalarEvolution/exit-count-select.ll
 | |
|     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
 | |
|     if (!PoisonSafe)
 | |
|       // Even if ExitCond is select, we can safely derive BECount using both
 | |
|       // EL0 and EL1 in these cases:
 | |
|       // (1) EL0.ExactNotTaken is non-zero
 | |
|       // (2) EL1.ExactNotTaken is non-poison
 | |
|       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
 | |
|       //     it cannot be umin(0, ..))
 | |
|       // The PoisonSafe assignment below is simplified and the assertion after
 | |
|       // BECount calculation fully guarantees the condition (3).
 | |
|       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
 | |
|                    isa<SCEVConstant>(EL1.ExactNotTaken);
 | |
|     if (EL0.ExactNotTaken != getCouldNotCompute() &&
 | |
|         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
 | |
|       BECount =
 | |
|           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
 | |
| 
 | |
|       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
 | |
|       // it should have been simplified to zero (see the condition (3) above)
 | |
|       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
 | |
|              BECount->isZero());
 | |
|     }
 | |
|     if (EL0.MaxNotTaken == getCouldNotCompute())
 | |
|       MaxBECount = EL1.MaxNotTaken;
 | |
|     else if (EL1.MaxNotTaken == getCouldNotCompute())
 | |
|       MaxBECount = EL0.MaxNotTaken;
 | |
|     else
 | |
|       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
 | |
|   } else {
 | |
|     // Both conditions must be same at the same time for the loop to exit.
 | |
|     // For now, be conservative.
 | |
|     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
 | |
|       BECount = EL0.ExactNotTaken;
 | |
|   }
 | |
| 
 | |
|   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
 | |
|   // to be more aggressive when computing BECount than when computing
 | |
|   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
 | |
|   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
 | |
|   // to not.
 | |
|   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
 | |
|       !isa<SCEVCouldNotCompute>(BECount))
 | |
|     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
 | |
| 
 | |
|   return ExitLimit(BECount, MaxBECount, false,
 | |
|                    { &EL0.Predicates, &EL1.Predicates });
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
 | |
|                                           ICmpInst *ExitCond,
 | |
|                                           bool ExitIfTrue,
 | |
|                                           bool ControlsExit,
 | |
|                                           bool AllowPredicates) {
 | |
|   // If the condition was exit on true, convert the condition to exit on false
 | |
|   ICmpInst::Predicate Pred;
 | |
|   if (!ExitIfTrue)
 | |
|     Pred = ExitCond->getPredicate();
 | |
|   else
 | |
|     Pred = ExitCond->getInversePredicate();
 | |
|   const ICmpInst::Predicate OriginalPred = Pred;
 | |
| 
 | |
|   // Handle common loops like: for (X = "string"; *X; ++X)
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
 | |
|     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
 | |
|       ExitLimit ItCnt =
 | |
|         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
 | |
|       if (ItCnt.hasAnyInfo())
 | |
|         return ItCnt;
 | |
|     }
 | |
| 
 | |
|   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
 | |
|   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
 | |
| 
 | |
|   // Try to evaluate any dependencies out of the loop.
 | |
|   LHS = getSCEVAtScope(LHS, L);
 | |
|   RHS = getSCEVAtScope(RHS, L);
 | |
| 
 | |
|   // At this point, we would like to compute how many iterations of the
 | |
|   // loop the predicate will return true for these inputs.
 | |
|   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
 | |
|     // If there is a loop-invariant, force it into the RHS.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   // Simplify the operands before analyzing them.
 | |
|   (void)SimplifyICmpOperands(Pred, LHS, RHS);
 | |
| 
 | |
|   // If we have a comparison of a chrec against a constant, try to use value
 | |
|   // ranges to answer this query.
 | |
|   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
 | |
|     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
 | |
|       if (AddRec->getLoop() == L) {
 | |
|         // Form the constant range.
 | |
|         ConstantRange CompRange =
 | |
|             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
 | |
| 
 | |
|         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
 | |
|         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
 | |
|       }
 | |
| 
 | |
|   switch (Pred) {
 | |
|   case ICmpInst::ICMP_NE: {                     // while (X != Y)
 | |
|     // Convert to: while (X-Y != 0)
 | |
|     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
 | |
|                                 AllowPredicates);
 | |
|     if (EL.hasAnyInfo()) return EL;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
 | |
|     // Convert to: while (X-Y == 0)
 | |
|     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
 | |
|     if (EL.hasAnyInfo()) return EL;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
 | |
|     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
 | |
|     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
 | |
|                                     AllowPredicates);
 | |
|     if (EL.hasAnyInfo()) return EL;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
 | |
|     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
 | |
|     ExitLimit EL =
 | |
|         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
 | |
|                             AllowPredicates);
 | |
|     if (EL.hasAnyInfo()) return EL;
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   auto *ExhaustiveCount =
 | |
|       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
 | |
| 
 | |
|   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
 | |
|     return ExhaustiveCount;
 | |
| 
 | |
|   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
 | |
|                                       ExitCond->getOperand(1), L, OriginalPred);
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
 | |
|                                                       SwitchInst *Switch,
 | |
|                                                       BasicBlock *ExitingBlock,
 | |
|                                                       bool ControlsExit) {
 | |
|   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
 | |
| 
 | |
|   // Give up if the exit is the default dest of a switch.
 | |
|   if (Switch->getDefaultDest() == ExitingBlock)
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   assert(L->contains(Switch->getDefaultDest()) &&
 | |
|          "Default case must not exit the loop!");
 | |
|   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
 | |
|   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
 | |
| 
 | |
|   // while (X != Y) --> while (X-Y != 0)
 | |
|   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
 | |
|   if (EL.hasAnyInfo())
 | |
|     return EL;
 | |
| 
 | |
|   return getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| static ConstantInt *
 | |
| EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
 | |
|                                 ScalarEvolution &SE) {
 | |
|   const SCEV *InVal = SE.getConstant(C);
 | |
|   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
 | |
|   assert(isa<SCEVConstant>(Val) &&
 | |
|          "Evaluation of SCEV at constant didn't fold correctly?");
 | |
|   return cast<SCEVConstant>(Val)->getValue();
 | |
| }
 | |
| 
 | |
| /// Given an exit condition of 'icmp op load X, cst', try to see if we can
 | |
| /// compute the backedge execution count.
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::computeLoadConstantCompareExitLimit(
 | |
|   LoadInst *LI,
 | |
|   Constant *RHS,
 | |
|   const Loop *L,
 | |
|   ICmpInst::Predicate predicate) {
 | |
|   if (LI->isVolatile()) return getCouldNotCompute();
 | |
| 
 | |
|   // Check to see if the loaded pointer is a getelementptr of a global.
 | |
|   // TODO: Use SCEV instead of manually grubbing with GEPs.
 | |
|   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
 | |
|   if (!GEP) return getCouldNotCompute();
 | |
| 
 | |
|   // Make sure that it is really a constant global we are gepping, with an
 | |
|   // initializer, and make sure the first IDX is really 0.
 | |
|   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
 | |
|   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
 | |
|       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
 | |
|       !cast<Constant>(GEP->getOperand(1))->isNullValue())
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // Okay, we allow one non-constant index into the GEP instruction.
 | |
|   Value *VarIdx = nullptr;
 | |
|   std::vector<Constant*> Indexes;
 | |
|   unsigned VarIdxNum = 0;
 | |
|   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
 | |
|       Indexes.push_back(CI);
 | |
|     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
 | |
|       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
 | |
|       VarIdx = GEP->getOperand(i);
 | |
|       VarIdxNum = i-2;
 | |
|       Indexes.push_back(nullptr);
 | |
|     }
 | |
| 
 | |
|   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
 | |
|   if (!VarIdx)
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
 | |
|   // Check to see if X is a loop variant variable value now.
 | |
|   const SCEV *Idx = getSCEV(VarIdx);
 | |
|   Idx = getSCEVAtScope(Idx, L);
 | |
| 
 | |
|   // We can only recognize very limited forms of loop index expressions, in
 | |
|   // particular, only affine AddRec's like {C1,+,C2}.
 | |
|   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
 | |
|   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
 | |
|       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
 | |
|       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   unsigned MaxSteps = MaxBruteForceIterations;
 | |
|   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
 | |
|     ConstantInt *ItCst = ConstantInt::get(
 | |
|                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
 | |
|     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
 | |
| 
 | |
|     // Form the GEP offset.
 | |
|     Indexes[VarIdxNum] = Val;
 | |
| 
 | |
|     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
 | |
|                                                          Indexes);
 | |
|     if (!Result) break;  // Cannot compute!
 | |
| 
 | |
|     // Evaluate the condition for this iteration.
 | |
|     Result = ConstantExpr::getICmp(predicate, Result, RHS);
 | |
|     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
 | |
|     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
 | |
|       ++NumArrayLenItCounts;
 | |
|       return getConstant(ItCst);   // Found terminating iteration!
 | |
|     }
 | |
|   }
 | |
|   return getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
 | |
|     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
 | |
|   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
 | |
|   if (!RHS)
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   const BasicBlock *Latch = L->getLoopLatch();
 | |
|   if (!Latch)
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   const BasicBlock *Predecessor = L->getLoopPredecessor();
 | |
|   if (!Predecessor)
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // Return true if V is of the form "LHS `shift_op` <positive constant>".
 | |
|   // Return LHS in OutLHS and shift_opt in OutOpCode.
 | |
|   auto MatchPositiveShift =
 | |
|       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
 | |
| 
 | |
|     using namespace PatternMatch;
 | |
| 
 | |
|     ConstantInt *ShiftAmt;
 | |
|     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
 | |
|       OutOpCode = Instruction::LShr;
 | |
|     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
 | |
|       OutOpCode = Instruction::AShr;
 | |
|     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
 | |
|       OutOpCode = Instruction::Shl;
 | |
|     else
 | |
|       return false;
 | |
| 
 | |
|     return ShiftAmt->getValue().isStrictlyPositive();
 | |
|   };
 | |
| 
 | |
|   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
 | |
|   //
 | |
|   // loop:
 | |
|   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
 | |
|   //   %iv.shifted = lshr i32 %iv, <positive constant>
 | |
|   //
 | |
|   // Return true on a successful match.  Return the corresponding PHI node (%iv
 | |
|   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
 | |
|   auto MatchShiftRecurrence =
 | |
|       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
 | |
|     Optional<Instruction::BinaryOps> PostShiftOpCode;
 | |
| 
 | |
|     {
 | |
|       Instruction::BinaryOps OpC;
 | |
|       Value *V;
 | |
| 
 | |
|       // If we encounter a shift instruction, "peel off" the shift operation,
 | |
|       // and remember that we did so.  Later when we inspect %iv's backedge
 | |
|       // value, we will make sure that the backedge value uses the same
 | |
|       // operation.
 | |
|       //
 | |
|       // Note: the peeled shift operation does not have to be the same
 | |
|       // instruction as the one feeding into the PHI's backedge value.  We only
 | |
|       // really care about it being the same *kind* of shift instruction --
 | |
|       // that's all that is required for our later inferences to hold.
 | |
|       if (MatchPositiveShift(LHS, V, OpC)) {
 | |
|         PostShiftOpCode = OpC;
 | |
|         LHS = V;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     PNOut = dyn_cast<PHINode>(LHS);
 | |
|     if (!PNOut || PNOut->getParent() != L->getHeader())
 | |
|       return false;
 | |
| 
 | |
|     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
 | |
|     Value *OpLHS;
 | |
| 
 | |
|     return
 | |
|         // The backedge value for the PHI node must be a shift by a positive
 | |
|         // amount
 | |
|         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
 | |
| 
 | |
|         // of the PHI node itself
 | |
|         OpLHS == PNOut &&
 | |
| 
 | |
|         // and the kind of shift should be match the kind of shift we peeled
 | |
|         // off, if any.
 | |
|         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
 | |
|   };
 | |
| 
 | |
|   PHINode *PN;
 | |
|   Instruction::BinaryOps OpCode;
 | |
|   if (!MatchShiftRecurrence(LHS, PN, OpCode))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   const DataLayout &DL = getDataLayout();
 | |
| 
 | |
|   // The key rationale for this optimization is that for some kinds of shift
 | |
|   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
 | |
|   // within a finite number of iterations.  If the condition guarding the
 | |
|   // backedge (in the sense that the backedge is taken if the condition is true)
 | |
|   // is false for the value the shift recurrence stabilizes to, then we know
 | |
|   // that the backedge is taken only a finite number of times.
 | |
| 
 | |
|   ConstantInt *StableValue = nullptr;
 | |
|   switch (OpCode) {
 | |
|   default:
 | |
|     llvm_unreachable("Impossible case!");
 | |
| 
 | |
|   case Instruction::AShr: {
 | |
|     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
 | |
|     // bitwidth(K) iterations.
 | |
|     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
 | |
|     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
 | |
|                                        Predecessor->getTerminator(), &DT);
 | |
|     auto *Ty = cast<IntegerType>(RHS->getType());
 | |
|     if (Known.isNonNegative())
 | |
|       StableValue = ConstantInt::get(Ty, 0);
 | |
|     else if (Known.isNegative())
 | |
|       StableValue = ConstantInt::get(Ty, -1, true);
 | |
|     else
 | |
|       return getCouldNotCompute();
 | |
| 
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::Shl:
 | |
|     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
 | |
|     // stabilize to 0 in at most bitwidth(K) iterations.
 | |
|     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   auto *Result =
 | |
|       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
 | |
|   assert(Result->getType()->isIntegerTy(1) &&
 | |
|          "Otherwise cannot be an operand to a branch instruction");
 | |
| 
 | |
|   if (Result->isZeroValue()) {
 | |
|     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
 | |
|     const SCEV *UpperBound =
 | |
|         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
 | |
|     return ExitLimit(getCouldNotCompute(), UpperBound, false);
 | |
|   }
 | |
| 
 | |
|   return getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| /// Return true if we can constant fold an instruction of the specified type,
 | |
| /// assuming that all operands were constants.
 | |
| static bool CanConstantFold(const Instruction *I) {
 | |
|   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
 | |
|       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
 | |
|       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
 | |
|     return true;
 | |
| 
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(I))
 | |
|     if (const Function *F = CI->getCalledFunction())
 | |
|       return canConstantFoldCallTo(CI, F);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Determine whether this instruction can constant evolve within this loop
 | |
| /// assuming its operands can all constant evolve.
 | |
| static bool canConstantEvolve(Instruction *I, const Loop *L) {
 | |
|   // An instruction outside of the loop can't be derived from a loop PHI.
 | |
|   if (!L->contains(I)) return false;
 | |
| 
 | |
|   if (isa<PHINode>(I)) {
 | |
|     // We don't currently keep track of the control flow needed to evaluate
 | |
|     // PHIs, so we cannot handle PHIs inside of loops.
 | |
|     return L->getHeader() == I->getParent();
 | |
|   }
 | |
| 
 | |
|   // If we won't be able to constant fold this expression even if the operands
 | |
|   // are constants, bail early.
 | |
|   return CanConstantFold(I);
 | |
| }
 | |
| 
 | |
| /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
 | |
| /// recursing through each instruction operand until reaching a loop header phi.
 | |
| static PHINode *
 | |
| getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
 | |
|                                DenseMap<Instruction *, PHINode *> &PHIMap,
 | |
|                                unsigned Depth) {
 | |
|   if (Depth > MaxConstantEvolvingDepth)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Otherwise, we can evaluate this instruction if all of its operands are
 | |
|   // constant or derived from a PHI node themselves.
 | |
|   PHINode *PHI = nullptr;
 | |
|   for (Value *Op : UseInst->operands()) {
 | |
|     if (isa<Constant>(Op)) continue;
 | |
| 
 | |
|     Instruction *OpInst = dyn_cast<Instruction>(Op);
 | |
|     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
 | |
| 
 | |
|     PHINode *P = dyn_cast<PHINode>(OpInst);
 | |
|     if (!P)
 | |
|       // If this operand is already visited, reuse the prior result.
 | |
|       // We may have P != PHI if this is the deepest point at which the
 | |
|       // inconsistent paths meet.
 | |
|       P = PHIMap.lookup(OpInst);
 | |
|     if (!P) {
 | |
|       // Recurse and memoize the results, whether a phi is found or not.
 | |
|       // This recursive call invalidates pointers into PHIMap.
 | |
|       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
 | |
|       PHIMap[OpInst] = P;
 | |
|     }
 | |
|     if (!P)
 | |
|       return nullptr;  // Not evolving from PHI
 | |
|     if (PHI && PHI != P)
 | |
|       return nullptr;  // Evolving from multiple different PHIs.
 | |
|     PHI = P;
 | |
|   }
 | |
|   // This is a expression evolving from a constant PHI!
 | |
|   return PHI;
 | |
| }
 | |
| 
 | |
| /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
 | |
| /// in the loop that V is derived from.  We allow arbitrary operations along the
 | |
| /// way, but the operands of an operation must either be constants or a value
 | |
| /// derived from a constant PHI.  If this expression does not fit with these
 | |
| /// constraints, return null.
 | |
| static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I || !canConstantEvolve(I, L)) return nullptr;
 | |
| 
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(I))
 | |
|     return PN;
 | |
| 
 | |
|   // Record non-constant instructions contained by the loop.
 | |
|   DenseMap<Instruction *, PHINode *> PHIMap;
 | |
|   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
 | |
| }
 | |
| 
 | |
| /// EvaluateExpression - Given an expression that passes the
 | |
| /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
 | |
| /// in the loop has the value PHIVal.  If we can't fold this expression for some
 | |
| /// reason, return null.
 | |
| static Constant *EvaluateExpression(Value *V, const Loop *L,
 | |
|                                     DenseMap<Instruction *, Constant *> &Vals,
 | |
|                                     const DataLayout &DL,
 | |
|                                     const TargetLibraryInfo *TLI) {
 | |
|   // Convenient constant check, but redundant for recursive calls.
 | |
|   if (Constant *C = dyn_cast<Constant>(V)) return C;
 | |
|   Instruction *I = dyn_cast<Instruction>(V);
 | |
|   if (!I) return nullptr;
 | |
| 
 | |
|   if (Constant *C = Vals.lookup(I)) return C;
 | |
| 
 | |
|   // An instruction inside the loop depends on a value outside the loop that we
 | |
|   // weren't given a mapping for, or a value such as a call inside the loop.
 | |
|   if (!canConstantEvolve(I, L)) return nullptr;
 | |
| 
 | |
|   // An unmapped PHI can be due to a branch or another loop inside this loop,
 | |
|   // or due to this not being the initial iteration through a loop where we
 | |
|   // couldn't compute the evolution of this particular PHI last time.
 | |
|   if (isa<PHINode>(I)) return nullptr;
 | |
| 
 | |
|   std::vector<Constant*> Operands(I->getNumOperands());
 | |
| 
 | |
|   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
 | |
|     if (!Operand) {
 | |
|       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
 | |
|       if (!Operands[i]) return nullptr;
 | |
|       continue;
 | |
|     }
 | |
|     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
 | |
|     Vals[Operand] = C;
 | |
|     if (!C) return nullptr;
 | |
|     Operands[i] = C;
 | |
|   }
 | |
| 
 | |
|   if (CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
 | |
|                                            Operands[1], DL, TLI);
 | |
|   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
 | |
|     if (!LI->isVolatile())
 | |
|       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
 | |
|   }
 | |
|   return ConstantFoldInstOperands(I, Operands, DL, TLI);
 | |
| }
 | |
| 
 | |
| 
 | |
| // If every incoming value to PN except the one for BB is a specific Constant,
 | |
| // return that, else return nullptr.
 | |
| static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
 | |
|   Constant *IncomingVal = nullptr;
 | |
| 
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|     if (PN->getIncomingBlock(i) == BB)
 | |
|       continue;
 | |
| 
 | |
|     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
 | |
|     if (!CurrentVal)
 | |
|       return nullptr;
 | |
| 
 | |
|     if (IncomingVal != CurrentVal) {
 | |
|       if (IncomingVal)
 | |
|         return nullptr;
 | |
|       IncomingVal = CurrentVal;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return IncomingVal;
 | |
| }
 | |
| 
 | |
| /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
 | |
| /// in the header of its containing loop, we know the loop executes a
 | |
| /// constant number of times, and the PHI node is just a recurrence
 | |
| /// involving constants, fold it.
 | |
| Constant *
 | |
| ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
 | |
|                                                    const APInt &BEs,
 | |
|                                                    const Loop *L) {
 | |
|   auto I = ConstantEvolutionLoopExitValue.find(PN);
 | |
|   if (I != ConstantEvolutionLoopExitValue.end())
 | |
|     return I->second;
 | |
| 
 | |
|   if (BEs.ugt(MaxBruteForceIterations))
 | |
|     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
 | |
| 
 | |
|   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
 | |
| 
 | |
|   DenseMap<Instruction *, Constant *> CurrentIterVals;
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
 | |
| 
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   if (!Latch)
 | |
|     return nullptr;
 | |
| 
 | |
|   for (PHINode &PHI : Header->phis()) {
 | |
|     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
 | |
|       CurrentIterVals[&PHI] = StartCST;
 | |
|   }
 | |
|   if (!CurrentIterVals.count(PN))
 | |
|     return RetVal = nullptr;
 | |
| 
 | |
|   Value *BEValue = PN->getIncomingValueForBlock(Latch);
 | |
| 
 | |
|   // Execute the loop symbolically to determine the exit value.
 | |
|   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
 | |
|          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
 | |
| 
 | |
|   unsigned NumIterations = BEs.getZExtValue(); // must be in range
 | |
|   unsigned IterationNum = 0;
 | |
|   const DataLayout &DL = getDataLayout();
 | |
|   for (; ; ++IterationNum) {
 | |
|     if (IterationNum == NumIterations)
 | |
|       return RetVal = CurrentIterVals[PN];  // Got exit value!
 | |
| 
 | |
|     // Compute the value of the PHIs for the next iteration.
 | |
|     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
 | |
|     DenseMap<Instruction *, Constant *> NextIterVals;
 | |
|     Constant *NextPHI =
 | |
|         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
 | |
|     if (!NextPHI)
 | |
|       return nullptr;        // Couldn't evaluate!
 | |
|     NextIterVals[PN] = NextPHI;
 | |
| 
 | |
|     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
 | |
| 
 | |
|     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
 | |
|     // cease to be able to evaluate one of them or if they stop evolving,
 | |
|     // because that doesn't necessarily prevent us from computing PN.
 | |
|     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
 | |
|     for (const auto &I : CurrentIterVals) {
 | |
|       PHINode *PHI = dyn_cast<PHINode>(I.first);
 | |
|       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
 | |
|       PHIsToCompute.emplace_back(PHI, I.second);
 | |
|     }
 | |
|     // We use two distinct loops because EvaluateExpression may invalidate any
 | |
|     // iterators into CurrentIterVals.
 | |
|     for (const auto &I : PHIsToCompute) {
 | |
|       PHINode *PHI = I.first;
 | |
|       Constant *&NextPHI = NextIterVals[PHI];
 | |
|       if (!NextPHI) {   // Not already computed.
 | |
|         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
 | |
|         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
 | |
|       }
 | |
|       if (NextPHI != I.second)
 | |
|         StoppedEvolving = false;
 | |
|     }
 | |
| 
 | |
|     // If all entries in CurrentIterVals == NextIterVals then we can stop
 | |
|     // iterating, the loop can't continue to change.
 | |
|     if (StoppedEvolving)
 | |
|       return RetVal = CurrentIterVals[PN];
 | |
| 
 | |
|     CurrentIterVals.swap(NextIterVals);
 | |
|   }
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
 | |
|                                                           Value *Cond,
 | |
|                                                           bool ExitWhen) {
 | |
|   PHINode *PN = getConstantEvolvingPHI(Cond, L);
 | |
|   if (!PN) return getCouldNotCompute();
 | |
| 
 | |
|   // If the loop is canonicalized, the PHI will have exactly two entries.
 | |
|   // That's the only form we support here.
 | |
|   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
 | |
| 
 | |
|   DenseMap<Instruction *, Constant *> CurrentIterVals;
 | |
|   BasicBlock *Header = L->getHeader();
 | |
|   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
 | |
| 
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   assert(Latch && "Should follow from NumIncomingValues == 2!");
 | |
| 
 | |
|   for (PHINode &PHI : Header->phis()) {
 | |
|     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
 | |
|       CurrentIterVals[&PHI] = StartCST;
 | |
|   }
 | |
|   if (!CurrentIterVals.count(PN))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
 | |
|   // the loop symbolically to determine when the condition gets a value of
 | |
|   // "ExitWhen".
 | |
|   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
 | |
|   const DataLayout &DL = getDataLayout();
 | |
|   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
 | |
|     auto *CondVal = dyn_cast_or_null<ConstantInt>(
 | |
|         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
 | |
| 
 | |
|     // Couldn't symbolically evaluate.
 | |
|     if (!CondVal) return getCouldNotCompute();
 | |
| 
 | |
|     if (CondVal->getValue() == uint64_t(ExitWhen)) {
 | |
|       ++NumBruteForceTripCountsComputed;
 | |
|       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
 | |
|     }
 | |
| 
 | |
|     // Update all the PHI nodes for the next iteration.
 | |
|     DenseMap<Instruction *, Constant *> NextIterVals;
 | |
| 
 | |
|     // Create a list of which PHIs we need to compute. We want to do this before
 | |
|     // calling EvaluateExpression on them because that may invalidate iterators
 | |
|     // into CurrentIterVals.
 | |
|     SmallVector<PHINode *, 8> PHIsToCompute;
 | |
|     for (const auto &I : CurrentIterVals) {
 | |
|       PHINode *PHI = dyn_cast<PHINode>(I.first);
 | |
|       if (!PHI || PHI->getParent() != Header) continue;
 | |
|       PHIsToCompute.push_back(PHI);
 | |
|     }
 | |
|     for (PHINode *PHI : PHIsToCompute) {
 | |
|       Constant *&NextPHI = NextIterVals[PHI];
 | |
|       if (NextPHI) continue;    // Already computed!
 | |
| 
 | |
|       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
 | |
|       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
 | |
|     }
 | |
|     CurrentIterVals.swap(NextIterVals);
 | |
|   }
 | |
| 
 | |
|   // Too many iterations were needed to evaluate.
 | |
|   return getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
 | |
|   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
 | |
|       ValuesAtScopes[V];
 | |
|   // Check to see if we've folded this expression at this loop before.
 | |
|   for (auto &LS : Values)
 | |
|     if (LS.first == L)
 | |
|       return LS.second ? LS.second : V;
 | |
| 
 | |
|   Values.emplace_back(L, nullptr);
 | |
| 
 | |
|   // Otherwise compute it.
 | |
|   const SCEV *C = computeSCEVAtScope(V, L);
 | |
|   for (auto &LS : reverse(ValuesAtScopes[V]))
 | |
|     if (LS.first == L) {
 | |
|       LS.second = C;
 | |
|       break;
 | |
|     }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| /// This builds up a Constant using the ConstantExpr interface.  That way, we
 | |
| /// will return Constants for objects which aren't represented by a
 | |
| /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
 | |
| /// Returns NULL if the SCEV isn't representable as a Constant.
 | |
| static Constant *BuildConstantFromSCEV(const SCEV *V) {
 | |
|   switch (V->getSCEVType()) {
 | |
|   case scCouldNotCompute:
 | |
|   case scAddRecExpr:
 | |
|     return nullptr;
 | |
|   case scConstant:
 | |
|     return cast<SCEVConstant>(V)->getValue();
 | |
|   case scUnknown:
 | |
|     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
 | |
|   case scSignExtend: {
 | |
|     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
 | |
|     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
 | |
|       return ConstantExpr::getSExt(CastOp, SS->getType());
 | |
|     return nullptr;
 | |
|   }
 | |
|   case scZeroExtend: {
 | |
|     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
 | |
|     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
 | |
|       return ConstantExpr::getZExt(CastOp, SZ->getType());
 | |
|     return nullptr;
 | |
|   }
 | |
|   case scPtrToInt: {
 | |
|     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
 | |
|     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
 | |
|       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
 | |
| 
 | |
|     return nullptr;
 | |
|   }
 | |
|   case scTruncate: {
 | |
|     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
 | |
|     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
 | |
|       return ConstantExpr::getTrunc(CastOp, ST->getType());
 | |
|     return nullptr;
 | |
|   }
 | |
|   case scAddExpr: {
 | |
|     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
 | |
|     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
 | |
|       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
 | |
|         unsigned AS = PTy->getAddressSpace();
 | |
|         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
 | |
|         C = ConstantExpr::getBitCast(C, DestPtrTy);
 | |
|       }
 | |
|       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
 | |
|         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
 | |
|         if (!C2)
 | |
|           return nullptr;
 | |
| 
 | |
|         // First pointer!
 | |
|         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
 | |
|           unsigned AS = C2->getType()->getPointerAddressSpace();
 | |
|           std::swap(C, C2);
 | |
|           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
 | |
|           // The offsets have been converted to bytes.  We can add bytes to an
 | |
|           // i8* by GEP with the byte count in the first index.
 | |
|           C = ConstantExpr::getBitCast(C, DestPtrTy);
 | |
|         }
 | |
| 
 | |
|         // Don't bother trying to sum two pointers. We probably can't
 | |
|         // statically compute a load that results from it anyway.
 | |
|         if (C2->getType()->isPointerTy())
 | |
|           return nullptr;
 | |
| 
 | |
|         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
 | |
|           if (PTy->getElementType()->isStructTy())
 | |
|             C2 = ConstantExpr::getIntegerCast(
 | |
|                 C2, Type::getInt32Ty(C->getContext()), true);
 | |
|           C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
 | |
|         } else
 | |
|           C = ConstantExpr::getAdd(C, C2);
 | |
|       }
 | |
|       return C;
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
|   case scMulExpr: {
 | |
|     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
 | |
|     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
 | |
|       // Don't bother with pointers at all.
 | |
|       if (C->getType()->isPointerTy())
 | |
|         return nullptr;
 | |
|       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
 | |
|         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
 | |
|         if (!C2 || C2->getType()->isPointerTy())
 | |
|           return nullptr;
 | |
|         C = ConstantExpr::getMul(C, C2);
 | |
|       }
 | |
|       return C;
 | |
|     }
 | |
|     return nullptr;
 | |
|   }
 | |
|   case scUDivExpr: {
 | |
|     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
 | |
|     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
 | |
|       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
 | |
|         if (LHS->getType() == RHS->getType())
 | |
|           return ConstantExpr::getUDiv(LHS, RHS);
 | |
|     return nullptr;
 | |
|   }
 | |
|   case scSMaxExpr:
 | |
|   case scUMaxExpr:
 | |
|   case scSMinExpr:
 | |
|   case scUMinExpr:
 | |
|     return nullptr; // TODO: smax, umax, smin, umax.
 | |
|   }
 | |
|   llvm_unreachable("Unknown SCEV kind!");
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
 | |
|   if (isa<SCEVConstant>(V)) return V;
 | |
| 
 | |
|   // If this instruction is evolved from a constant-evolving PHI, compute the
 | |
|   // exit value from the loop without using SCEVs.
 | |
|   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
 | |
|     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
 | |
|       if (PHINode *PN = dyn_cast<PHINode>(I)) {
 | |
|         const Loop *CurrLoop = this->LI[I->getParent()];
 | |
|         // Looking for loop exit value.
 | |
|         if (CurrLoop && CurrLoop->getParentLoop() == L &&
 | |
|             PN->getParent() == CurrLoop->getHeader()) {
 | |
|           // Okay, there is no closed form solution for the PHI node.  Check
 | |
|           // to see if the loop that contains it has a known backedge-taken
 | |
|           // count.  If so, we may be able to force computation of the exit
 | |
|           // value.
 | |
|           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
 | |
|           // This trivial case can show up in some degenerate cases where
 | |
|           // the incoming IR has not yet been fully simplified.
 | |
|           if (BackedgeTakenCount->isZero()) {
 | |
|             Value *InitValue = nullptr;
 | |
|             bool MultipleInitValues = false;
 | |
|             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
 | |
|               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
 | |
|                 if (!InitValue)
 | |
|                   InitValue = PN->getIncomingValue(i);
 | |
|                 else if (InitValue != PN->getIncomingValue(i)) {
 | |
|                   MultipleInitValues = true;
 | |
|                   break;
 | |
|                 }
 | |
|               }
 | |
|             }
 | |
|             if (!MultipleInitValues && InitValue)
 | |
|               return getSCEV(InitValue);
 | |
|           }
 | |
|           // Do we have a loop invariant value flowing around the backedge
 | |
|           // for a loop which must execute the backedge?
 | |
|           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
 | |
|               isKnownPositive(BackedgeTakenCount) &&
 | |
|               PN->getNumIncomingValues() == 2) {
 | |
| 
 | |
|             unsigned InLoopPred =
 | |
|                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
 | |
|             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
 | |
|             if (CurrLoop->isLoopInvariant(BackedgeVal))
 | |
|               return getSCEV(BackedgeVal);
 | |
|           }
 | |
|           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
 | |
|             // Okay, we know how many times the containing loop executes.  If
 | |
|             // this is a constant evolving PHI node, get the final value at
 | |
|             // the specified iteration number.
 | |
|             Constant *RV = getConstantEvolutionLoopExitValue(
 | |
|                 PN, BTCC->getAPInt(), CurrLoop);
 | |
|             if (RV) return getSCEV(RV);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         // If there is a single-input Phi, evaluate it at our scope. If we can
 | |
|         // prove that this replacement does not break LCSSA form, use new value.
 | |
|         if (PN->getNumOperands() == 1) {
 | |
|           const SCEV *Input = getSCEV(PN->getOperand(0));
 | |
|           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
 | |
|           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
 | |
|           // for the simplest case just support constants.
 | |
|           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Okay, this is an expression that we cannot symbolically evaluate
 | |
|       // into a SCEV.  Check to see if it's possible to symbolically evaluate
 | |
|       // the arguments into constants, and if so, try to constant propagate the
 | |
|       // result.  This is particularly useful for computing loop exit values.
 | |
|       if (CanConstantFold(I)) {
 | |
|         SmallVector<Constant *, 4> Operands;
 | |
|         bool MadeImprovement = false;
 | |
|         for (Value *Op : I->operands()) {
 | |
|           if (Constant *C = dyn_cast<Constant>(Op)) {
 | |
|             Operands.push_back(C);
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           // If any of the operands is non-constant and if they are
 | |
|           // non-integer and non-pointer, don't even try to analyze them
 | |
|           // with scev techniques.
 | |
|           if (!isSCEVable(Op->getType()))
 | |
|             return V;
 | |
| 
 | |
|           const SCEV *OrigV = getSCEV(Op);
 | |
|           const SCEV *OpV = getSCEVAtScope(OrigV, L);
 | |
|           MadeImprovement |= OrigV != OpV;
 | |
| 
 | |
|           Constant *C = BuildConstantFromSCEV(OpV);
 | |
|           if (!C) return V;
 | |
|           if (C->getType() != Op->getType())
 | |
|             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
 | |
|                                                               Op->getType(),
 | |
|                                                               false),
 | |
|                                       C, Op->getType());
 | |
|           Operands.push_back(C);
 | |
|         }
 | |
| 
 | |
|         // Check to see if getSCEVAtScope actually made an improvement.
 | |
|         if (MadeImprovement) {
 | |
|           Constant *C = nullptr;
 | |
|           const DataLayout &DL = getDataLayout();
 | |
|           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
 | |
|             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
 | |
|                                                 Operands[1], DL, &TLI);
 | |
|           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
 | |
|             if (!Load->isVolatile())
 | |
|               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
 | |
|                                                DL);
 | |
|           } else
 | |
|             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
 | |
|           if (!C) return V;
 | |
|           return getSCEV(C);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // This is some other type of SCEVUnknown, just return it.
 | |
|     return V;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
 | |
|     // Avoid performing the look-up in the common case where the specified
 | |
|     // expression has no loop-variant portions.
 | |
|     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
 | |
|       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
 | |
|       if (OpAtScope != Comm->getOperand(i)) {
 | |
|         // Okay, at least one of these operands is loop variant but might be
 | |
|         // foldable.  Build a new instance of the folded commutative expression.
 | |
|         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
 | |
|                                             Comm->op_begin()+i);
 | |
|         NewOps.push_back(OpAtScope);
 | |
| 
 | |
|         for (++i; i != e; ++i) {
 | |
|           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
 | |
|           NewOps.push_back(OpAtScope);
 | |
|         }
 | |
|         if (isa<SCEVAddExpr>(Comm))
 | |
|           return getAddExpr(NewOps, Comm->getNoWrapFlags());
 | |
|         if (isa<SCEVMulExpr>(Comm))
 | |
|           return getMulExpr(NewOps, Comm->getNoWrapFlags());
 | |
|         if (isa<SCEVMinMaxExpr>(Comm))
 | |
|           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
 | |
|         llvm_unreachable("Unknown commutative SCEV type!");
 | |
|       }
 | |
|     }
 | |
|     // If we got here, all operands are loop invariant.
 | |
|     return Comm;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
 | |
|     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
 | |
|     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
 | |
|     if (LHS == Div->getLHS() && RHS == Div->getRHS())
 | |
|       return Div;   // must be loop invariant
 | |
|     return getUDivExpr(LHS, RHS);
 | |
|   }
 | |
| 
 | |
|   // If this is a loop recurrence for a loop that does not contain L, then we
 | |
|   // are dealing with the final value computed by the loop.
 | |
|   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
 | |
|     // First, attempt to evaluate each operand.
 | |
|     // Avoid performing the look-up in the common case where the specified
 | |
|     // expression has no loop-variant portions.
 | |
|     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
 | |
|       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
 | |
|       if (OpAtScope == AddRec->getOperand(i))
 | |
|         continue;
 | |
| 
 | |
|       // Okay, at least one of these operands is loop variant but might be
 | |
|       // foldable.  Build a new instance of the folded commutative expression.
 | |
|       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
 | |
|                                           AddRec->op_begin()+i);
 | |
|       NewOps.push_back(OpAtScope);
 | |
|       for (++i; i != e; ++i)
 | |
|         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
 | |
| 
 | |
|       const SCEV *FoldedRec =
 | |
|         getAddRecExpr(NewOps, AddRec->getLoop(),
 | |
|                       AddRec->getNoWrapFlags(SCEV::FlagNW));
 | |
|       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
 | |
|       // The addrec may be folded to a nonrecurrence, for example, if the
 | |
|       // induction variable is multiplied by zero after constant folding. Go
 | |
|       // ahead and return the folded value.
 | |
|       if (!AddRec)
 | |
|         return FoldedRec;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     // If the scope is outside the addrec's loop, evaluate it by using the
 | |
|     // loop exit value of the addrec.
 | |
|     if (!AddRec->getLoop()->contains(L)) {
 | |
|       // To evaluate this recurrence, we need to know how many times the AddRec
 | |
|       // loop iterates.  Compute this now.
 | |
|       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
 | |
|       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
 | |
| 
 | |
|       // Then, evaluate the AddRec.
 | |
|       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
 | |
|     }
 | |
| 
 | |
|     return AddRec;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
 | |
|     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
 | |
|     if (Op == Cast->getOperand())
 | |
|       return Cast;  // must be loop invariant
 | |
|     return getZeroExtendExpr(Op, Cast->getType());
 | |
|   }
 | |
| 
 | |
|   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
 | |
|     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
 | |
|     if (Op == Cast->getOperand())
 | |
|       return Cast;  // must be loop invariant
 | |
|     return getSignExtendExpr(Op, Cast->getType());
 | |
|   }
 | |
| 
 | |
|   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
 | |
|     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
 | |
|     if (Op == Cast->getOperand())
 | |
|       return Cast;  // must be loop invariant
 | |
|     return getTruncateExpr(Op, Cast->getType());
 | |
|   }
 | |
| 
 | |
|   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
 | |
|     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
 | |
|     if (Op == Cast->getOperand())
 | |
|       return Cast; // must be loop invariant
 | |
|     return getPtrToIntExpr(Op, Cast->getType());
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown SCEV type!");
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
 | |
|   return getSCEVAtScope(getSCEV(V), L);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
 | |
|   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
 | |
|     return stripInjectiveFunctions(ZExt->getOperand());
 | |
|   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
 | |
|     return stripInjectiveFunctions(SExt->getOperand());
 | |
|   return S;
 | |
| }
 | |
| 
 | |
| /// Finds the minimum unsigned root of the following equation:
 | |
| ///
 | |
| ///     A * X = B (mod N)
 | |
| ///
 | |
| /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
 | |
| /// A and B isn't important.
 | |
| ///
 | |
| /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
 | |
| static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
 | |
|                                                ScalarEvolution &SE) {
 | |
|   uint32_t BW = A.getBitWidth();
 | |
|   assert(BW == SE.getTypeSizeInBits(B->getType()));
 | |
|   assert(A != 0 && "A must be non-zero.");
 | |
| 
 | |
|   // 1. D = gcd(A, N)
 | |
|   //
 | |
|   // The gcd of A and N may have only one prime factor: 2. The number of
 | |
|   // trailing zeros in A is its multiplicity
 | |
|   uint32_t Mult2 = A.countTrailingZeros();
 | |
|   // D = 2^Mult2
 | |
| 
 | |
|   // 2. Check if B is divisible by D.
 | |
|   //
 | |
|   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
 | |
|   // is not less than multiplicity of this prime factor for D.
 | |
|   if (SE.GetMinTrailingZeros(B) < Mult2)
 | |
|     return SE.getCouldNotCompute();
 | |
| 
 | |
|   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
 | |
|   // modulo (N / D).
 | |
|   //
 | |
|   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
 | |
|   // (N / D) in general. The inverse itself always fits into BW bits, though,
 | |
|   // so we immediately truncate it.
 | |
|   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
 | |
|   APInt Mod(BW + 1, 0);
 | |
|   Mod.setBit(BW - Mult2);  // Mod = N / D
 | |
|   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
 | |
| 
 | |
|   // 4. Compute the minimum unsigned root of the equation:
 | |
|   // I * (B / D) mod (N / D)
 | |
|   // To simplify the computation, we factor out the divide by D:
 | |
|   // (I * B mod N) / D
 | |
|   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
 | |
|   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
 | |
| }
 | |
| 
 | |
| /// For a given quadratic addrec, generate coefficients of the corresponding
 | |
| /// quadratic equation, multiplied by a common value to ensure that they are
 | |
| /// integers.
 | |
| /// The returned value is a tuple { A, B, C, M, BitWidth }, where
 | |
| /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
 | |
| /// were multiplied by, and BitWidth is the bit width of the original addrec
 | |
| /// coefficients.
 | |
| /// This function returns None if the addrec coefficients are not compile-
 | |
| /// time constants.
 | |
| static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
 | |
| GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
 | |
|   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
 | |
|   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
 | |
|   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
 | |
|   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
 | |
|   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
 | |
|                     << *AddRec << '\n');
 | |
| 
 | |
|   // We currently can only solve this if the coefficients are constants.
 | |
|   if (!LC || !MC || !NC) {
 | |
|     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
 | |
|     return None;
 | |
|   }
 | |
| 
 | |
|   APInt L = LC->getAPInt();
 | |
|   APInt M = MC->getAPInt();
 | |
|   APInt N = NC->getAPInt();
 | |
|   assert(!N.isNullValue() && "This is not a quadratic addrec");
 | |
| 
 | |
|   unsigned BitWidth = LC->getAPInt().getBitWidth();
 | |
|   unsigned NewWidth = BitWidth + 1;
 | |
|   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
 | |
|                     << BitWidth << '\n');
 | |
|   // The sign-extension (as opposed to a zero-extension) here matches the
 | |
|   // extension used in SolveQuadraticEquationWrap (with the same motivation).
 | |
|   N = N.sext(NewWidth);
 | |
|   M = M.sext(NewWidth);
 | |
|   L = L.sext(NewWidth);
 | |
| 
 | |
|   // The increments are M, M+N, M+2N, ..., so the accumulated values are
 | |
|   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
 | |
|   //   L+M, L+2M+N, L+3M+3N, ...
 | |
|   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
 | |
|   //
 | |
|   // The equation Acc = 0 is then
 | |
|   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
 | |
|   // In a quadratic form it becomes:
 | |
|   //   N n^2 + (2M-N) n + 2L = 0.
 | |
| 
 | |
|   APInt A = N;
 | |
|   APInt B = 2 * M - A;
 | |
|   APInt C = 2 * L;
 | |
|   APInt T = APInt(NewWidth, 2);
 | |
|   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
 | |
|                     << "x + " << C << ", coeff bw: " << NewWidth
 | |
|                     << ", multiplied by " << T << '\n');
 | |
|   return std::make_tuple(A, B, C, T, BitWidth);
 | |
| }
 | |
| 
 | |
| /// Helper function to compare optional APInts:
 | |
| /// (a) if X and Y both exist, return min(X, Y),
 | |
| /// (b) if neither X nor Y exist, return None,
 | |
| /// (c) if exactly one of X and Y exists, return that value.
 | |
| static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
 | |
|   if (X.hasValue() && Y.hasValue()) {
 | |
|     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
 | |
|     APInt XW = X->sextOrSelf(W);
 | |
|     APInt YW = Y->sextOrSelf(W);
 | |
|     return XW.slt(YW) ? *X : *Y;
 | |
|   }
 | |
|   if (!X.hasValue() && !Y.hasValue())
 | |
|     return None;
 | |
|   return X.hasValue() ? *X : *Y;
 | |
| }
 | |
| 
 | |
| /// Helper function to truncate an optional APInt to a given BitWidth.
 | |
| /// When solving addrec-related equations, it is preferable to return a value
 | |
| /// that has the same bit width as the original addrec's coefficients. If the
 | |
| /// solution fits in the original bit width, truncate it (except for i1).
 | |
| /// Returning a value of a different bit width may inhibit some optimizations.
 | |
| ///
 | |
| /// In general, a solution to a quadratic equation generated from an addrec
 | |
| /// may require BW+1 bits, where BW is the bit width of the addrec's
 | |
| /// coefficients. The reason is that the coefficients of the quadratic
 | |
| /// equation are BW+1 bits wide (to avoid truncation when converting from
 | |
| /// the addrec to the equation).
 | |
| static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
 | |
|   if (!X.hasValue())
 | |
|     return None;
 | |
|   unsigned W = X->getBitWidth();
 | |
|   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
 | |
|     return X->trunc(BitWidth);
 | |
|   return X;
 | |
| }
 | |
| 
 | |
| /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
 | |
| /// iterations. The values L, M, N are assumed to be signed, and they
 | |
| /// should all have the same bit widths.
 | |
| /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
 | |
| /// where BW is the bit width of the addrec's coefficients.
 | |
| /// If the calculated value is a BW-bit integer (for BW > 1), it will be
 | |
| /// returned as such, otherwise the bit width of the returned value may
 | |
| /// be greater than BW.
 | |
| ///
 | |
| /// This function returns None if
 | |
| /// (a) the addrec coefficients are not constant, or
 | |
| /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
 | |
| ///     like x^2 = 5, no integer solutions exist, in other cases an integer
 | |
| ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
 | |
| static Optional<APInt>
 | |
| SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
 | |
|   APInt A, B, C, M;
 | |
|   unsigned BitWidth;
 | |
|   auto T = GetQuadraticEquation(AddRec);
 | |
|   if (!T.hasValue())
 | |
|     return None;
 | |
| 
 | |
|   std::tie(A, B, C, M, BitWidth) = *T;
 | |
|   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
 | |
|   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
 | |
|   if (!X.hasValue())
 | |
|     return None;
 | |
| 
 | |
|   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
 | |
|   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
 | |
|   if (!V->isZero())
 | |
|     return None;
 | |
| 
 | |
|   return TruncIfPossible(X, BitWidth);
 | |
| }
 | |
| 
 | |
| /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
 | |
| /// iterations. The values M, N are assumed to be signed, and they
 | |
| /// should all have the same bit widths.
 | |
| /// Find the least n such that c(n) does not belong to the given range,
 | |
| /// while c(n-1) does.
 | |
| ///
 | |
| /// This function returns None if
 | |
| /// (a) the addrec coefficients are not constant, or
 | |
| /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
 | |
| ///     bounds of the range.
 | |
| static Optional<APInt>
 | |
| SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
 | |
|                           const ConstantRange &Range, ScalarEvolution &SE) {
 | |
|   assert(AddRec->getOperand(0)->isZero() &&
 | |
|          "Starting value of addrec should be 0");
 | |
|   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
 | |
|                     << Range << ", addrec " << *AddRec << '\n');
 | |
|   // This case is handled in getNumIterationsInRange. Here we can assume that
 | |
|   // we start in the range.
 | |
|   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
 | |
|          "Addrec's initial value should be in range");
 | |
| 
 | |
|   APInt A, B, C, M;
 | |
|   unsigned BitWidth;
 | |
|   auto T = GetQuadraticEquation(AddRec);
 | |
|   if (!T.hasValue())
 | |
|     return None;
 | |
| 
 | |
|   // Be careful about the return value: there can be two reasons for not
 | |
|   // returning an actual number. First, if no solutions to the equations
 | |
|   // were found, and second, if the solutions don't leave the given range.
 | |
|   // The first case means that the actual solution is "unknown", the second
 | |
|   // means that it's known, but not valid. If the solution is unknown, we
 | |
|   // cannot make any conclusions.
 | |
|   // Return a pair: the optional solution and a flag indicating if the
 | |
|   // solution was found.
 | |
|   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
 | |
|     // Solve for signed overflow and unsigned overflow, pick the lower
 | |
|     // solution.
 | |
|     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
 | |
|                       << Bound << " (before multiplying by " << M << ")\n");
 | |
|     Bound *= M; // The quadratic equation multiplier.
 | |
| 
 | |
|     Optional<APInt> SO = None;
 | |
|     if (BitWidth > 1) {
 | |
|       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
 | |
|                            "signed overflow\n");
 | |
|       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
 | |
|                          "unsigned overflow\n");
 | |
|     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
 | |
|                                                               BitWidth+1);
 | |
| 
 | |
|     auto LeavesRange = [&] (const APInt &X) {
 | |
|       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
 | |
|       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
 | |
|       if (Range.contains(V0->getValue()))
 | |
|         return false;
 | |
|       // X should be at least 1, so X-1 is non-negative.
 | |
|       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
 | |
|       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
 | |
|       if (Range.contains(V1->getValue()))
 | |
|         return true;
 | |
|       return false;
 | |
|     };
 | |
| 
 | |
|     // If SolveQuadraticEquationWrap returns None, it means that there can
 | |
|     // be a solution, but the function failed to find it. We cannot treat it
 | |
|     // as "no solution".
 | |
|     if (!SO.hasValue() || !UO.hasValue())
 | |
|       return { None, false };
 | |
| 
 | |
|     // Check the smaller value first to see if it leaves the range.
 | |
|     // At this point, both SO and UO must have values.
 | |
|     Optional<APInt> Min = MinOptional(SO, UO);
 | |
|     if (LeavesRange(*Min))
 | |
|       return { Min, true };
 | |
|     Optional<APInt> Max = Min == SO ? UO : SO;
 | |
|     if (LeavesRange(*Max))
 | |
|       return { Max, true };
 | |
| 
 | |
|     // Solutions were found, but were eliminated, hence the "true".
 | |
|     return { None, true };
 | |
|   };
 | |
| 
 | |
|   std::tie(A, B, C, M, BitWidth) = *T;
 | |
|   // Lower bound is inclusive, subtract 1 to represent the exiting value.
 | |
|   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
 | |
|   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
 | |
|   auto SL = SolveForBoundary(Lower);
 | |
|   auto SU = SolveForBoundary(Upper);
 | |
|   // If any of the solutions was unknown, no meaninigful conclusions can
 | |
|   // be made.
 | |
|   if (!SL.second || !SU.second)
 | |
|     return None;
 | |
| 
 | |
|   // Claim: The correct solution is not some value between Min and Max.
 | |
|   //
 | |
|   // Justification: Assuming that Min and Max are different values, one of
 | |
|   // them is when the first signed overflow happens, the other is when the
 | |
|   // first unsigned overflow happens. Crossing the range boundary is only
 | |
|   // possible via an overflow (treating 0 as a special case of it, modeling
 | |
|   // an overflow as crossing k*2^W for some k).
 | |
|   //
 | |
|   // The interesting case here is when Min was eliminated as an invalid
 | |
|   // solution, but Max was not. The argument is that if there was another
 | |
|   // overflow between Min and Max, it would also have been eliminated if
 | |
|   // it was considered.
 | |
|   //
 | |
|   // For a given boundary, it is possible to have two overflows of the same
 | |
|   // type (signed/unsigned) without having the other type in between: this
 | |
|   // can happen when the vertex of the parabola is between the iterations
 | |
|   // corresponding to the overflows. This is only possible when the two
 | |
|   // overflows cross k*2^W for the same k. In such case, if the second one
 | |
|   // left the range (and was the first one to do so), the first overflow
 | |
|   // would have to enter the range, which would mean that either we had left
 | |
|   // the range before or that we started outside of it. Both of these cases
 | |
|   // are contradictions.
 | |
|   //
 | |
|   // Claim: In the case where SolveForBoundary returns None, the correct
 | |
|   // solution is not some value between the Max for this boundary and the
 | |
|   // Min of the other boundary.
 | |
|   //
 | |
|   // Justification: Assume that we had such Max_A and Min_B corresponding
 | |
|   // to range boundaries A and B and such that Max_A < Min_B. If there was
 | |
|   // a solution between Max_A and Min_B, it would have to be caused by an
 | |
|   // overflow corresponding to either A or B. It cannot correspond to B,
 | |
|   // since Min_B is the first occurrence of such an overflow. If it
 | |
|   // corresponded to A, it would have to be either a signed or an unsigned
 | |
|   // overflow that is larger than both eliminated overflows for A. But
 | |
|   // between the eliminated overflows and this overflow, the values would
 | |
|   // cover the entire value space, thus crossing the other boundary, which
 | |
|   // is a contradiction.
 | |
| 
 | |
|   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
 | |
|                               bool AllowPredicates) {
 | |
| 
 | |
|   // This is only used for loops with a "x != y" exit test. The exit condition
 | |
|   // is now expressed as a single expression, V = x-y. So the exit test is
 | |
|   // effectively V != 0.  We know and take advantage of the fact that this
 | |
|   // expression only being used in a comparison by zero context.
 | |
| 
 | |
|   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
 | |
|   // If the value is a constant
 | |
|   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
 | |
|     // If the value is already zero, the branch will execute zero times.
 | |
|     if (C->getValue()->isZero()) return C;
 | |
|     return getCouldNotCompute();  // Otherwise it will loop infinitely.
 | |
|   }
 | |
| 
 | |
|   const SCEVAddRecExpr *AddRec =
 | |
|       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
 | |
| 
 | |
|   if (!AddRec && AllowPredicates)
 | |
|     // Try to make this an AddRec using runtime tests, in the first X
 | |
|     // iterations of this loop, where X is the SCEV expression found by the
 | |
|     // algorithm below.
 | |
|     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
 | |
| 
 | |
|   if (!AddRec || AddRec->getLoop() != L)
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
 | |
|   // the quadratic equation to solve it.
 | |
|   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
 | |
|     // We can only use this value if the chrec ends up with an exact zero
 | |
|     // value at this index.  When solving for "X*X != 5", for example, we
 | |
|     // should not accept a root of 2.
 | |
|     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
 | |
|       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
 | |
|       return ExitLimit(R, R, false, Predicates);
 | |
|     }
 | |
|     return getCouldNotCompute();
 | |
|   }
 | |
| 
 | |
|   // Otherwise we can only handle this if it is affine.
 | |
|   if (!AddRec->isAffine())
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // If this is an affine expression, the execution count of this branch is
 | |
|   // the minimum unsigned root of the following equation:
 | |
|   //
 | |
|   //     Start + Step*N = 0 (mod 2^BW)
 | |
|   //
 | |
|   // equivalent to:
 | |
|   //
 | |
|   //             Step*N = -Start (mod 2^BW)
 | |
|   //
 | |
|   // where BW is the common bit width of Start and Step.
 | |
| 
 | |
|   // Get the initial value for the loop.
 | |
|   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
 | |
|   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
 | |
| 
 | |
|   // For now we handle only constant steps.
 | |
|   //
 | |
|   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
 | |
|   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
 | |
|   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
 | |
|   // We have not yet seen any such cases.
 | |
|   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
 | |
|   if (!StepC || StepC->getValue()->isZero())
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // For positive steps (counting up until unsigned overflow):
 | |
|   //   N = -Start/Step (as unsigned)
 | |
|   // For negative steps (counting down to zero):
 | |
|   //   N = Start/-Step
 | |
|   // First compute the unsigned distance from zero in the direction of Step.
 | |
|   bool CountDown = StepC->getAPInt().isNegative();
 | |
|   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
 | |
| 
 | |
|   // Handle unitary steps, which cannot wraparound.
 | |
|   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
 | |
|   //   N = Distance (as unsigned)
 | |
|   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
 | |
|     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
 | |
|     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
 | |
|     if (MaxBECountBase.ult(MaxBECount))
 | |
|       MaxBECount = MaxBECountBase;
 | |
| 
 | |
|     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
 | |
|     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
 | |
|     // case, and see if we can improve the bound.
 | |
|     //
 | |
|     // Explicitly handling this here is necessary because getUnsignedRange
 | |
|     // isn't context-sensitive; it doesn't know that we only care about the
 | |
|     // range inside the loop.
 | |
|     const SCEV *Zero = getZero(Distance->getType());
 | |
|     const SCEV *One = getOne(Distance->getType());
 | |
|     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
 | |
|     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
 | |
|       // If Distance + 1 doesn't overflow, we can compute the maximum distance
 | |
|       // as "unsigned_max(Distance + 1) - 1".
 | |
|       ConstantRange CR = getUnsignedRange(DistancePlusOne);
 | |
|       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
 | |
|     }
 | |
|     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
 | |
|   }
 | |
| 
 | |
|   // If the condition controls loop exit (the loop exits only if the expression
 | |
|   // is true) and the addition is no-wrap we can use unsigned divide to
 | |
|   // compute the backedge count.  In this case, the step may not divide the
 | |
|   // distance, but we don't care because if the condition is "missed" the loop
 | |
|   // will have undefined behavior due to wrapping.
 | |
|   if (ControlsExit && AddRec->hasNoSelfWrap() &&
 | |
|       loopHasNoAbnormalExits(AddRec->getLoop())) {
 | |
|     const SCEV *Exact =
 | |
|         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
 | |
|     const SCEV *Max =
 | |
|         Exact == getCouldNotCompute()
 | |
|             ? Exact
 | |
|             : getConstant(getUnsignedRangeMax(Exact));
 | |
|     return ExitLimit(Exact, Max, false, Predicates);
 | |
|   }
 | |
| 
 | |
|   // Solve the general equation.
 | |
|   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
 | |
|                                                getNegativeSCEV(Start), *this);
 | |
|   const SCEV *M = E == getCouldNotCompute()
 | |
|                       ? E
 | |
|                       : getConstant(getUnsignedRangeMax(E));
 | |
|   return ExitLimit(E, M, false, Predicates);
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
 | |
|   // Loops that look like: while (X == 0) are very strange indeed.  We don't
 | |
|   // handle them yet except for the trivial case.  This could be expanded in the
 | |
|   // future as needed.
 | |
| 
 | |
|   // If the value is a constant, check to see if it is known to be non-zero
 | |
|   // already.  If so, the backedge will execute zero times.
 | |
|   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
 | |
|     if (!C->getValue()->isZero())
 | |
|       return getZero(C->getType());
 | |
|     return getCouldNotCompute();  // Otherwise it will loop infinitely.
 | |
|   }
 | |
| 
 | |
|   // We could implement others, but I really doubt anyone writes loops like
 | |
|   // this, and if they did, they would already be constant folded.
 | |
|   return getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| std::pair<const BasicBlock *, const BasicBlock *>
 | |
| ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
 | |
|     const {
 | |
|   // If the block has a unique predecessor, then there is no path from the
 | |
|   // predecessor to the block that does not go through the direct edge
 | |
|   // from the predecessor to the block.
 | |
|   if (const BasicBlock *Pred = BB->getSinglePredecessor())
 | |
|     return {Pred, BB};
 | |
| 
 | |
|   // A loop's header is defined to be a block that dominates the loop.
 | |
|   // If the header has a unique predecessor outside the loop, it must be
 | |
|   // a block that has exactly one successor that can reach the loop.
 | |
|   if (const Loop *L = LI.getLoopFor(BB))
 | |
|     return {L->getLoopPredecessor(), L->getHeader()};
 | |
| 
 | |
|   return {nullptr, nullptr};
 | |
| }
 | |
| 
 | |
| /// SCEV structural equivalence is usually sufficient for testing whether two
 | |
| /// expressions are equal, however for the purposes of looking for a condition
 | |
| /// guarding a loop, it can be useful to be a little more general, since a
 | |
| /// front-end may have replicated the controlling expression.
 | |
| static bool HasSameValue(const SCEV *A, const SCEV *B) {
 | |
|   // Quick check to see if they are the same SCEV.
 | |
|   if (A == B) return true;
 | |
| 
 | |
|   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
 | |
|     // Not all instructions that are "identical" compute the same value.  For
 | |
|     // instance, two distinct alloca instructions allocating the same type are
 | |
|     // identical and do not read memory; but compute distinct values.
 | |
|     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
 | |
|   };
 | |
| 
 | |
|   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
 | |
|   // two different instructions with the same value. Check for this case.
 | |
|   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
 | |
|     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
 | |
|       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
 | |
|         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
 | |
|           if (ComputesEqualValues(AI, BI))
 | |
|             return true;
 | |
| 
 | |
|   // Otherwise assume they may have a different value.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
 | |
|                                            const SCEV *&LHS, const SCEV *&RHS,
 | |
|                                            unsigned Depth) {
 | |
|   bool Changed = false;
 | |
|   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
 | |
|   // '0 != 0'.
 | |
|   auto TrivialCase = [&](bool TriviallyTrue) {
 | |
|     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
 | |
|     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
 | |
|     return true;
 | |
|   };
 | |
|   // If we hit the max recursion limit bail out.
 | |
|   if (Depth >= 3)
 | |
|     return false;
 | |
| 
 | |
|   // Canonicalize a constant to the right side.
 | |
|   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
 | |
|     // Check for both operands constant.
 | |
|     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
 | |
|       if (ConstantExpr::getICmp(Pred,
 | |
|                                 LHSC->getValue(),
 | |
|                                 RHSC->getValue())->isNullValue())
 | |
|         return TrivialCase(false);
 | |
|       else
 | |
|         return TrivialCase(true);
 | |
|     }
 | |
|     // Otherwise swap the operands to put the constant on the right.
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|     Changed = true;
 | |
|   }
 | |
| 
 | |
|   // If we're comparing an addrec with a value which is loop-invariant in the
 | |
|   // addrec's loop, put the addrec on the left. Also make a dominance check,
 | |
|   // as both operands could be addrecs loop-invariant in each other's loop.
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
 | |
|     const Loop *L = AR->getLoop();
 | |
|     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
 | |
|       std::swap(LHS, RHS);
 | |
|       Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If there's a constant operand, canonicalize comparisons with boundary
 | |
|   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
 | |
|   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
 | |
|     const APInt &RA = RC->getAPInt();
 | |
| 
 | |
|     bool SimplifiedByConstantRange = false;
 | |
| 
 | |
|     if (!ICmpInst::isEquality(Pred)) {
 | |
|       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
 | |
|       if (ExactCR.isFullSet())
 | |
|         return TrivialCase(true);
 | |
|       else if (ExactCR.isEmptySet())
 | |
|         return TrivialCase(false);
 | |
| 
 | |
|       APInt NewRHS;
 | |
|       CmpInst::Predicate NewPred;
 | |
|       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
 | |
|           ICmpInst::isEquality(NewPred)) {
 | |
|         // We were able to convert an inequality to an equality.
 | |
|         Pred = NewPred;
 | |
|         RHS = getConstant(NewRHS);
 | |
|         Changed = SimplifiedByConstantRange = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!SimplifiedByConstantRange) {
 | |
|       switch (Pred) {
 | |
|       default:
 | |
|         break;
 | |
|       case ICmpInst::ICMP_EQ:
 | |
|       case ICmpInst::ICMP_NE:
 | |
|         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
 | |
|         if (!RA)
 | |
|           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
 | |
|             if (const SCEVMulExpr *ME =
 | |
|                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
 | |
|               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
 | |
|                   ME->getOperand(0)->isAllOnesValue()) {
 | |
|                 RHS = AE->getOperand(1);
 | |
|                 LHS = ME->getOperand(1);
 | |
|                 Changed = true;
 | |
|               }
 | |
|         break;
 | |
| 
 | |
| 
 | |
|         // The "Should have been caught earlier!" messages refer to the fact
 | |
|         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
 | |
|         // should have fired on the corresponding cases, and canonicalized the
 | |
|         // check to trivial case.
 | |
| 
 | |
|       case ICmpInst::ICMP_UGE:
 | |
|         assert(!RA.isMinValue() && "Should have been caught earlier!");
 | |
|         Pred = ICmpInst::ICMP_UGT;
 | |
|         RHS = getConstant(RA - 1);
 | |
|         Changed = true;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_ULE:
 | |
|         assert(!RA.isMaxValue() && "Should have been caught earlier!");
 | |
|         Pred = ICmpInst::ICMP_ULT;
 | |
|         RHS = getConstant(RA + 1);
 | |
|         Changed = true;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SGE:
 | |
|         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
 | |
|         Pred = ICmpInst::ICMP_SGT;
 | |
|         RHS = getConstant(RA - 1);
 | |
|         Changed = true;
 | |
|         break;
 | |
|       case ICmpInst::ICMP_SLE:
 | |
|         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
 | |
|         Pred = ICmpInst::ICMP_SLT;
 | |
|         RHS = getConstant(RA + 1);
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for obvious equality.
 | |
|   if (HasSameValue(LHS, RHS)) {
 | |
|     if (ICmpInst::isTrueWhenEqual(Pred))
 | |
|       return TrivialCase(true);
 | |
|     if (ICmpInst::isFalseWhenEqual(Pred))
 | |
|       return TrivialCase(false);
 | |
|   }
 | |
| 
 | |
|   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
 | |
|   // adding or subtracting 1 from one of the operands.
 | |
|   switch (Pred) {
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
 | |
|       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
 | |
|                        SCEV::FlagNSW);
 | |
|       Pred = ICmpInst::ICMP_SLT;
 | |
|       Changed = true;
 | |
|     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
 | |
|       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
 | |
|                        SCEV::FlagNSW);
 | |
|       Pred = ICmpInst::ICMP_SLT;
 | |
|       Changed = true;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
 | |
|       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
 | |
|                        SCEV::FlagNSW);
 | |
|       Pred = ICmpInst::ICMP_SGT;
 | |
|       Changed = true;
 | |
|     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
 | |
|       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
 | |
|                        SCEV::FlagNSW);
 | |
|       Pred = ICmpInst::ICMP_SGT;
 | |
|       Changed = true;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
 | |
|       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
 | |
|                        SCEV::FlagNUW);
 | |
|       Pred = ICmpInst::ICMP_ULT;
 | |
|       Changed = true;
 | |
|     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
 | |
|       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
 | |
|       Pred = ICmpInst::ICMP_ULT;
 | |
|       Changed = true;
 | |
|     }
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     if (!getUnsignedRangeMin(RHS).isMinValue()) {
 | |
|       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
 | |
|       Pred = ICmpInst::ICMP_UGT;
 | |
|       Changed = true;
 | |
|     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
 | |
|       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
 | |
|                        SCEV::FlagNUW);
 | |
|       Pred = ICmpInst::ICMP_UGT;
 | |
|       Changed = true;
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // TODO: More simplifications are possible here.
 | |
| 
 | |
|   // Recursively simplify until we either hit a recursion limit or nothing
 | |
|   // changes.
 | |
|   if (Changed)
 | |
|     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownNegative(const SCEV *S) {
 | |
|   return getSignedRangeMax(S).isNegative();
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownPositive(const SCEV *S) {
 | |
|   return getSignedRangeMin(S).isStrictlyPositive();
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
 | |
|   return !getSignedRangeMin(S).isNegative();
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
 | |
|   return !getSignedRangeMax(S).isStrictlyPositive();
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
 | |
|   return isKnownNegative(S) || isKnownPositive(S);
 | |
| }
 | |
| 
 | |
| std::pair<const SCEV *, const SCEV *>
 | |
| ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
 | |
|   // Compute SCEV on entry of loop L.
 | |
|   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
 | |
|   if (Start == getCouldNotCompute())
 | |
|     return { Start, Start };
 | |
|   // Compute post increment SCEV for loop L.
 | |
|   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
 | |
|   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
 | |
|   return { Start, PostInc };
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
 | |
|                                           const SCEV *LHS, const SCEV *RHS) {
 | |
|   // First collect all loops.
 | |
|   SmallPtrSet<const Loop *, 8> LoopsUsed;
 | |
|   getUsedLoops(LHS, LoopsUsed);
 | |
|   getUsedLoops(RHS, LoopsUsed);
 | |
| 
 | |
|   if (LoopsUsed.empty())
 | |
|     return false;
 | |
| 
 | |
|   // Domination relationship must be a linear order on collected loops.
 | |
| #ifndef NDEBUG
 | |
|   for (auto *L1 : LoopsUsed)
 | |
|     for (auto *L2 : LoopsUsed)
 | |
|       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
 | |
|               DT.dominates(L2->getHeader(), L1->getHeader())) &&
 | |
|              "Domination relationship is not a linear order");
 | |
| #endif
 | |
| 
 | |
|   const Loop *MDL =
 | |
|       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
 | |
|                         [&](const Loop *L1, const Loop *L2) {
 | |
|          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
 | |
|        });
 | |
| 
 | |
|   // Get init and post increment value for LHS.
 | |
|   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
 | |
|   // if LHS contains unknown non-invariant SCEV then bail out.
 | |
|   if (SplitLHS.first == getCouldNotCompute())
 | |
|     return false;
 | |
|   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
 | |
|   // Get init and post increment value for RHS.
 | |
|   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
 | |
|   // if RHS contains unknown non-invariant SCEV then bail out.
 | |
|   if (SplitRHS.first == getCouldNotCompute())
 | |
|     return false;
 | |
|   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
 | |
|   // It is possible that init SCEV contains an invariant load but it does
 | |
|   // not dominate MDL and is not available at MDL loop entry, so we should
 | |
|   // check it here.
 | |
|   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
 | |
|       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
 | |
|     return false;
 | |
| 
 | |
|   // It seems backedge guard check is faster than entry one so in some cases
 | |
|   // it can speed up whole estimation by short circuit
 | |
|   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
 | |
|                                      SplitRHS.second) &&
 | |
|          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
 | |
|                                        const SCEV *LHS, const SCEV *RHS) {
 | |
|   // Canonicalize the inputs first.
 | |
|   (void)SimplifyICmpOperands(Pred, LHS, RHS);
 | |
| 
 | |
|   if (isKnownViaInduction(Pred, LHS, RHS))
 | |
|     return true;
 | |
| 
 | |
|   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
 | |
|     return true;
 | |
| 
 | |
|   // Otherwise see what can be done with some simple reasoning.
 | |
|   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
 | |
|                                          const SCEV *LHS, const SCEV *RHS,
 | |
|                                          const Instruction *Context) {
 | |
|   // TODO: Analyze guards and assumes from Context's block.
 | |
|   return isKnownPredicate(Pred, LHS, RHS) ||
 | |
|          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
 | |
|                                               const SCEVAddRecExpr *LHS,
 | |
|                                               const SCEV *RHS) {
 | |
|   const Loop *L = LHS->getLoop();
 | |
|   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
 | |
|          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
 | |
| }
 | |
| 
 | |
| Optional<ScalarEvolution::MonotonicPredicateType>
 | |
| ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
 | |
|                                            ICmpInst::Predicate Pred) {
 | |
|   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // Verify an invariant: inverting the predicate should turn a monotonically
 | |
|   // increasing change to a monotonically decreasing one, and vice versa.
 | |
|   if (Result) {
 | |
|     auto ResultSwapped =
 | |
|         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
 | |
| 
 | |
|     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
 | |
|     assert(ResultSwapped.getValue() != Result.getValue() &&
 | |
|            "monotonicity should flip as we flip the predicate");
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| Optional<ScalarEvolution::MonotonicPredicateType>
 | |
| ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
 | |
|                                                ICmpInst::Predicate Pred) {
 | |
|   // A zero step value for LHS means the induction variable is essentially a
 | |
|   // loop invariant value. We don't really depend on the predicate actually
 | |
|   // flipping from false to true (for increasing predicates, and the other way
 | |
|   // around for decreasing predicates), all we care about is that *if* the
 | |
|   // predicate changes then it only changes from false to true.
 | |
|   //
 | |
|   // A zero step value in itself is not very useful, but there may be places
 | |
|   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
 | |
|   // as general as possible.
 | |
| 
 | |
|   // Only handle LE/LT/GE/GT predicates.
 | |
|   if (!ICmpInst::isRelational(Pred))
 | |
|     return None;
 | |
| 
 | |
|   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
 | |
|   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
 | |
|          "Should be greater or less!");
 | |
| 
 | |
|   // Check that AR does not wrap.
 | |
|   if (ICmpInst::isUnsigned(Pred)) {
 | |
|     if (!LHS->hasNoUnsignedWrap())
 | |
|       return None;
 | |
|     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
 | |
|   } else {
 | |
|     assert(ICmpInst::isSigned(Pred) &&
 | |
|            "Relational predicate is either signed or unsigned!");
 | |
|     if (!LHS->hasNoSignedWrap())
 | |
|       return None;
 | |
| 
 | |
|     const SCEV *Step = LHS->getStepRecurrence(*this);
 | |
| 
 | |
|     if (isKnownNonNegative(Step))
 | |
|       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
 | |
| 
 | |
|     if (isKnownNonPositive(Step))
 | |
|       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
 | |
| 
 | |
|     return None;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Optional<ScalarEvolution::LoopInvariantPredicate>
 | |
| ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
 | |
|                                            const SCEV *LHS, const SCEV *RHS,
 | |
|                                            const Loop *L) {
 | |
| 
 | |
|   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
 | |
|   if (!isLoopInvariant(RHS, L)) {
 | |
|     if (!isLoopInvariant(LHS, L))
 | |
|       return None;
 | |
| 
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
 | |
|   if (!ArLHS || ArLHS->getLoop() != L)
 | |
|     return None;
 | |
| 
 | |
|   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
 | |
|   if (!MonotonicType)
 | |
|     return None;
 | |
|   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
 | |
|   // true as the loop iterates, and the backedge is control dependent on
 | |
|   // "ArLHS `Pred` RHS" == true then we can reason as follows:
 | |
|   //
 | |
|   //   * if the predicate was false in the first iteration then the predicate
 | |
|   //     is never evaluated again, since the loop exits without taking the
 | |
|   //     backedge.
 | |
|   //   * if the predicate was true in the first iteration then it will
 | |
|   //     continue to be true for all future iterations since it is
 | |
|   //     monotonically increasing.
 | |
|   //
 | |
|   // For both the above possibilities, we can replace the loop varying
 | |
|   // predicate with its value on the first iteration of the loop (which is
 | |
|   // loop invariant).
 | |
|   //
 | |
|   // A similar reasoning applies for a monotonically decreasing predicate, by
 | |
|   // replacing true with false and false with true in the above two bullets.
 | |
|   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
 | |
|   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
 | |
| 
 | |
|   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
 | |
|     return None;
 | |
| 
 | |
|   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
 | |
| }
 | |
| 
 | |
| Optional<ScalarEvolution::LoopInvariantPredicate>
 | |
| ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
 | |
|     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
 | |
|     const Instruction *Context, const SCEV *MaxIter) {
 | |
|   // Try to prove the following set of facts:
 | |
|   // - The predicate is monotonic in the iteration space.
 | |
|   // - If the check does not fail on the 1st iteration:
 | |
|   //   - No overflow will happen during first MaxIter iterations;
 | |
|   //   - It will not fail on the MaxIter'th iteration.
 | |
|   // If the check does fail on the 1st iteration, we leave the loop and no
 | |
|   // other checks matter.
 | |
| 
 | |
|   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
 | |
|   if (!isLoopInvariant(RHS, L)) {
 | |
|     if (!isLoopInvariant(LHS, L))
 | |
|       return None;
 | |
| 
 | |
|     std::swap(LHS, RHS);
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
 | |
|   if (!AR || AR->getLoop() != L)
 | |
|     return None;
 | |
| 
 | |
|   // The predicate must be relational (i.e. <, <=, >=, >).
 | |
|   if (!ICmpInst::isRelational(Pred))
 | |
|     return None;
 | |
| 
 | |
|   // TODO: Support steps other than +/- 1.
 | |
|   const SCEV *Step = AR->getStepRecurrence(*this);
 | |
|   auto *One = getOne(Step->getType());
 | |
|   auto *MinusOne = getNegativeSCEV(One);
 | |
|   if (Step != One && Step != MinusOne)
 | |
|     return None;
 | |
| 
 | |
|   // Type mismatch here means that MaxIter is potentially larger than max
 | |
|   // unsigned value in start type, which mean we cannot prove no wrap for the
 | |
|   // indvar.
 | |
|   if (AR->getType() != MaxIter->getType())
 | |
|     return None;
 | |
| 
 | |
|   // Value of IV on suggested last iteration.
 | |
|   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
 | |
|   // Does it still meet the requirement?
 | |
|   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
 | |
|     return None;
 | |
|   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
 | |
|   // not exceed max unsigned value of this type), this effectively proves
 | |
|   // that there is no wrap during the iteration. To prove that there is no
 | |
|   // signed/unsigned wrap, we need to check that
 | |
|   // Start <= Last for step = 1 or Start >= Last for step = -1.
 | |
|   ICmpInst::Predicate NoOverflowPred =
 | |
|       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
 | |
|   if (Step == MinusOne)
 | |
|     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
 | |
|   const SCEV *Start = AR->getStart();
 | |
|   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
 | |
|     return None;
 | |
| 
 | |
|   // Everything is fine.
 | |
|   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownPredicateViaConstantRanges(
 | |
|     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
 | |
|   if (HasSameValue(LHS, RHS))
 | |
|     return ICmpInst::isTrueWhenEqual(Pred);
 | |
| 
 | |
|   // This code is split out from isKnownPredicate because it is called from
 | |
|   // within isLoopEntryGuardedByCond.
 | |
| 
 | |
|   auto CheckRanges =
 | |
|       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
 | |
|     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
 | |
|         .contains(RangeLHS);
 | |
|   };
 | |
| 
 | |
|   // The check at the top of the function catches the case where the values are
 | |
|   // known to be equal.
 | |
|   if (Pred == CmpInst::ICMP_EQ)
 | |
|     return false;
 | |
| 
 | |
|   if (Pred == CmpInst::ICMP_NE)
 | |
|     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
 | |
|            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
 | |
|            isKnownNonZero(getMinusSCEV(LHS, RHS));
 | |
| 
 | |
|   if (CmpInst::isSigned(Pred))
 | |
|     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
 | |
| 
 | |
|   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
 | |
|                                                     const SCEV *LHS,
 | |
|                                                     const SCEV *RHS) {
 | |
|   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
 | |
|   // Return Y via OutY.
 | |
|   auto MatchBinaryAddToConst =
 | |
|       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
 | |
|              SCEV::NoWrapFlags ExpectedFlags) {
 | |
|     const SCEV *NonConstOp, *ConstOp;
 | |
|     SCEV::NoWrapFlags FlagsPresent;
 | |
| 
 | |
|     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
 | |
|         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
 | |
|       return false;
 | |
| 
 | |
|     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
 | |
|     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
 | |
|   };
 | |
| 
 | |
|   APInt C;
 | |
| 
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     break;
 | |
| 
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     std::swap(LHS, RHS);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|     // X s<= (X + C)<nsw> if C >= 0
 | |
|     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
 | |
|       return true;
 | |
| 
 | |
|     // (X + C)<nsw> s<= X if C <= 0
 | |
|     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
 | |
|         !C.isStrictlyPositive())
 | |
|       return true;
 | |
|     break;
 | |
| 
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|     std::swap(LHS, RHS);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|     // X s< (X + C)<nsw> if C > 0
 | |
|     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
 | |
|         C.isStrictlyPositive())
 | |
|       return true;
 | |
| 
 | |
|     // (X + C)<nsw> s< X if C < 0
 | |
|     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
 | |
|       return true;
 | |
|     break;
 | |
| 
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     std::swap(LHS, RHS);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     // X u<= (X + C)<nuw> for any C
 | |
|     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW))
 | |
|       return true;
 | |
|     break;
 | |
| 
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|     std::swap(LHS, RHS);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|     // X u< (X + C)<nuw> if C != 0
 | |
|     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue())
 | |
|       return true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
 | |
|                                                    const SCEV *LHS,
 | |
|                                                    const SCEV *RHS) {
 | |
|   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
 | |
|     return false;
 | |
| 
 | |
|   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
 | |
|   // the stack can result in exponential time complexity.
 | |
|   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
 | |
| 
 | |
|   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
 | |
|   //
 | |
|   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
 | |
|   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
 | |
|   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
 | |
|   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
 | |
|   // use isKnownPredicate later if needed.
 | |
|   return isKnownNonNegative(RHS) &&
 | |
|          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
 | |
|          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
 | |
|                                         ICmpInst::Predicate Pred,
 | |
|                                         const SCEV *LHS, const SCEV *RHS) {
 | |
|   // No need to even try if we know the module has no guards.
 | |
|   if (!HasGuards)
 | |
|     return false;
 | |
| 
 | |
|   return any_of(*BB, [&](const Instruction &I) {
 | |
|     using namespace llvm::PatternMatch;
 | |
| 
 | |
|     Value *Condition;
 | |
|     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
 | |
|                          m_Value(Condition))) &&
 | |
|            isImpliedCond(Pred, LHS, RHS, Condition, false);
 | |
|   });
 | |
| }
 | |
| 
 | |
| /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
 | |
| /// protected by a conditional between LHS and RHS.  This is used to
 | |
| /// to eliminate casts.
 | |
| bool
 | |
| ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
 | |
|                                              ICmpInst::Predicate Pred,
 | |
|                                              const SCEV *LHS, const SCEV *RHS) {
 | |
|   // Interpret a null as meaning no loop, where there is obviously no guard
 | |
|   // (interprocedural conditions notwithstanding).
 | |
|   if (!L) return true;
 | |
| 
 | |
|   if (VerifyIR)
 | |
|     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
 | |
|            "This cannot be done on broken IR!");
 | |
| 
 | |
| 
 | |
|   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
 | |
|     return true;
 | |
| 
 | |
|   BasicBlock *Latch = L->getLoopLatch();
 | |
|   if (!Latch)
 | |
|     return false;
 | |
| 
 | |
|   BranchInst *LoopContinuePredicate =
 | |
|     dyn_cast<BranchInst>(Latch->getTerminator());
 | |
|   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
 | |
|       isImpliedCond(Pred, LHS, RHS,
 | |
|                     LoopContinuePredicate->getCondition(),
 | |
|                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
 | |
|     return true;
 | |
| 
 | |
|   // We don't want more than one activation of the following loops on the stack
 | |
|   // -- that can lead to O(n!) time complexity.
 | |
|   if (WalkingBEDominatingConds)
 | |
|     return false;
 | |
| 
 | |
|   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
 | |
| 
 | |
|   // See if we can exploit a trip count to prove the predicate.
 | |
|   const auto &BETakenInfo = getBackedgeTakenInfo(L);
 | |
|   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
 | |
|   if (LatchBECount != getCouldNotCompute()) {
 | |
|     // We know that Latch branches back to the loop header exactly
 | |
|     // LatchBECount times.  This means the backdege condition at Latch is
 | |
|     // equivalent to  "{0,+,1} u< LatchBECount".
 | |
|     Type *Ty = LatchBECount->getType();
 | |
|     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
 | |
|     const SCEV *LoopCounter =
 | |
|       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
 | |
|     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
 | |
|                       LatchBECount))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Check conditions due to any @llvm.assume intrinsics.
 | |
|   for (auto &AssumeVH : AC.assumptions()) {
 | |
|     if (!AssumeVH)
 | |
|       continue;
 | |
|     auto *CI = cast<CallInst>(AssumeVH);
 | |
|     if (!DT.dominates(CI, Latch->getTerminator()))
 | |
|       continue;
 | |
| 
 | |
|     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // If the loop is not reachable from the entry block, we risk running into an
 | |
|   // infinite loop as we walk up into the dom tree.  These loops do not matter
 | |
|   // anyway, so we just return a conservative answer when we see them.
 | |
|   if (!DT.isReachableFromEntry(L->getHeader()))
 | |
|     return false;
 | |
| 
 | |
|   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
 | |
|     return true;
 | |
| 
 | |
|   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
 | |
|        DTN != HeaderDTN; DTN = DTN->getIDom()) {
 | |
|     assert(DTN && "should reach the loop header before reaching the root!");
 | |
| 
 | |
|     BasicBlock *BB = DTN->getBlock();
 | |
|     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
 | |
|       return true;
 | |
| 
 | |
|     BasicBlock *PBB = BB->getSinglePredecessor();
 | |
|     if (!PBB)
 | |
|       continue;
 | |
| 
 | |
|     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
 | |
|     if (!ContinuePredicate || !ContinuePredicate->isConditional())
 | |
|       continue;
 | |
| 
 | |
|     Value *Condition = ContinuePredicate->getCondition();
 | |
| 
 | |
|     // If we have an edge `E` within the loop body that dominates the only
 | |
|     // latch, the condition guarding `E` also guards the backedge.  This
 | |
|     // reasoning works only for loops with a single latch.
 | |
| 
 | |
|     BasicBlockEdge DominatingEdge(PBB, BB);
 | |
|     if (DominatingEdge.isSingleEdge()) {
 | |
|       // We're constructively (and conservatively) enumerating edges within the
 | |
|       // loop body that dominate the latch.  The dominator tree better agree
 | |
|       // with us on this:
 | |
|       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
 | |
| 
 | |
|       if (isImpliedCond(Pred, LHS, RHS, Condition,
 | |
|                         BB != ContinuePredicate->getSuccessor(0)))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
 | |
|                                                      ICmpInst::Predicate Pred,
 | |
|                                                      const SCEV *LHS,
 | |
|                                                      const SCEV *RHS) {
 | |
|   if (VerifyIR)
 | |
|     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
 | |
|            "This cannot be done on broken IR!");
 | |
| 
 | |
|   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
 | |
|     return true;
 | |
| 
 | |
|   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
 | |
|   // the facts (a >= b && a != b) separately. A typical situation is when the
 | |
|   // non-strict comparison is known from ranges and non-equality is known from
 | |
|   // dominating predicates. If we are proving strict comparison, we always try
 | |
|   // to prove non-equality and non-strict comparison separately.
 | |
|   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
 | |
|   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
 | |
|   bool ProvedNonStrictComparison = false;
 | |
|   bool ProvedNonEquality = false;
 | |
| 
 | |
|   if (ProvingStrictComparison) {
 | |
|     ProvedNonStrictComparison =
 | |
|         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
 | |
|     ProvedNonEquality =
 | |
|         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
 | |
|     if (ProvedNonStrictComparison && ProvedNonEquality)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
 | |
|   auto ProveViaGuard = [&](const BasicBlock *Block) {
 | |
|     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
 | |
|       return true;
 | |
|     if (ProvingStrictComparison) {
 | |
|       if (!ProvedNonStrictComparison)
 | |
|         ProvedNonStrictComparison =
 | |
|             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
 | |
|       if (!ProvedNonEquality)
 | |
|         ProvedNonEquality =
 | |
|             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
 | |
|       if (ProvedNonStrictComparison && ProvedNonEquality)
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
 | |
|   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
 | |
|     const Instruction *Context = &BB->front();
 | |
|     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
 | |
|       return true;
 | |
|     if (ProvingStrictComparison) {
 | |
|       if (!ProvedNonStrictComparison)
 | |
|         ProvedNonStrictComparison = isImpliedCond(NonStrictPredicate, LHS, RHS,
 | |
|                                                   Condition, Inverse, Context);
 | |
|       if (!ProvedNonEquality)
 | |
|         ProvedNonEquality = isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS,
 | |
|                                           Condition, Inverse, Context);
 | |
|       if (ProvedNonStrictComparison && ProvedNonEquality)
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // Starting at the block's predecessor, climb up the predecessor chain, as long
 | |
|   // as there are predecessors that can be found that have unique successors
 | |
|   // leading to the original block.
 | |
|   const Loop *ContainingLoop = LI.getLoopFor(BB);
 | |
|   const BasicBlock *PredBB;
 | |
|   if (ContainingLoop && ContainingLoop->getHeader() == BB)
 | |
|     PredBB = ContainingLoop->getLoopPredecessor();
 | |
|   else
 | |
|     PredBB = BB->getSinglePredecessor();
 | |
|   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
 | |
|        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
 | |
|     if (ProveViaGuard(Pair.first))
 | |
|       return true;
 | |
| 
 | |
|     const BranchInst *LoopEntryPredicate =
 | |
|         dyn_cast<BranchInst>(Pair.first->getTerminator());
 | |
|     if (!LoopEntryPredicate ||
 | |
|         LoopEntryPredicate->isUnconditional())
 | |
|       continue;
 | |
| 
 | |
|     if (ProveViaCond(LoopEntryPredicate->getCondition(),
 | |
|                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Check conditions due to any @llvm.assume intrinsics.
 | |
|   for (auto &AssumeVH : AC.assumptions()) {
 | |
|     if (!AssumeVH)
 | |
|       continue;
 | |
|     auto *CI = cast<CallInst>(AssumeVH);
 | |
|     if (!DT.dominates(CI, BB))
 | |
|       continue;
 | |
| 
 | |
|     if (ProveViaCond(CI->getArgOperand(0), false))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
 | |
|                                                ICmpInst::Predicate Pred,
 | |
|                                                const SCEV *LHS,
 | |
|                                                const SCEV *RHS) {
 | |
|   // Interpret a null as meaning no loop, where there is obviously no guard
 | |
|   // (interprocedural conditions notwithstanding).
 | |
|   if (!L)
 | |
|     return false;
 | |
| 
 | |
|   // Both LHS and RHS must be available at loop entry.
 | |
|   assert(isAvailableAtLoopEntry(LHS, L) &&
 | |
|          "LHS is not available at Loop Entry");
 | |
|   assert(isAvailableAtLoopEntry(RHS, L) &&
 | |
|          "RHS is not available at Loop Entry");
 | |
|   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
 | |
|                                     const SCEV *RHS,
 | |
|                                     const Value *FoundCondValue, bool Inverse,
 | |
|                                     const Instruction *Context) {
 | |
|   if (!PendingLoopPredicates.insert(FoundCondValue).second)
 | |
|     return false;
 | |
| 
 | |
|   auto ClearOnExit =
 | |
|       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
 | |
| 
 | |
|   // Recursively handle And and Or conditions.
 | |
|   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
 | |
|     if (BO->getOpcode() == Instruction::And) {
 | |
|       if (!Inverse)
 | |
|         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
 | |
|                              Context) ||
 | |
|                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
 | |
|                              Context);
 | |
|     } else if (BO->getOpcode() == Instruction::Or) {
 | |
|       if (Inverse)
 | |
|         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse,
 | |
|                              Context) ||
 | |
|                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse,
 | |
|                              Context);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
 | |
|   if (!ICI) return false;
 | |
| 
 | |
|   // Now that we found a conditional branch that dominates the loop or controls
 | |
|   // the loop latch. Check to see if it is the comparison we are looking for.
 | |
|   ICmpInst::Predicate FoundPred;
 | |
|   if (Inverse)
 | |
|     FoundPred = ICI->getInversePredicate();
 | |
|   else
 | |
|     FoundPred = ICI->getPredicate();
 | |
| 
 | |
|   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
 | |
|   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
 | |
| 
 | |
|   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
 | |
|                                     const SCEV *RHS,
 | |
|                                     ICmpInst::Predicate FoundPred,
 | |
|                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
 | |
|                                     const Instruction *Context) {
 | |
|   // Balance the types.
 | |
|   if (getTypeSizeInBits(LHS->getType()) <
 | |
|       getTypeSizeInBits(FoundLHS->getType())) {
 | |
|     // For unsigned and equality predicates, try to prove that both found
 | |
|     // operands fit into narrow unsigned range. If so, try to prove facts in
 | |
|     // narrow types.
 | |
|     if (!CmpInst::isSigned(FoundPred)) {
 | |
|       auto *NarrowType = LHS->getType();
 | |
|       auto *WideType = FoundLHS->getType();
 | |
|       auto BitWidth = getTypeSizeInBits(NarrowType);
 | |
|       const SCEV *MaxValue = getZeroExtendExpr(
 | |
|           getConstant(APInt::getMaxValue(BitWidth)), WideType);
 | |
|       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
 | |
|           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
 | |
|         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
 | |
|         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
 | |
|         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
 | |
|                                        TruncFoundRHS, Context))
 | |
|           return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (CmpInst::isSigned(Pred)) {
 | |
|       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
 | |
|       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
 | |
|     } else {
 | |
|       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
 | |
|       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
 | |
|     }
 | |
|   } else if (getTypeSizeInBits(LHS->getType()) >
 | |
|       getTypeSizeInBits(FoundLHS->getType())) {
 | |
|     if (CmpInst::isSigned(FoundPred)) {
 | |
|       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
 | |
|       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
 | |
|     } else {
 | |
|       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
 | |
|       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
 | |
|     }
 | |
|   }
 | |
|   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
 | |
|                                     FoundRHS, Context);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isImpliedCondBalancedTypes(
 | |
|     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
 | |
|     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
 | |
|     const Instruction *Context) {
 | |
|   assert(getTypeSizeInBits(LHS->getType()) ==
 | |
|              getTypeSizeInBits(FoundLHS->getType()) &&
 | |
|          "Types should be balanced!");
 | |
|   // Canonicalize the query to match the way instcombine will have
 | |
|   // canonicalized the comparison.
 | |
|   if (SimplifyICmpOperands(Pred, LHS, RHS))
 | |
|     if (LHS == RHS)
 | |
|       return CmpInst::isTrueWhenEqual(Pred);
 | |
|   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
 | |
|     if (FoundLHS == FoundRHS)
 | |
|       return CmpInst::isFalseWhenEqual(FoundPred);
 | |
| 
 | |
|   // Check to see if we can make the LHS or RHS match.
 | |
|   if (LHS == FoundRHS || RHS == FoundLHS) {
 | |
|     if (isa<SCEVConstant>(RHS)) {
 | |
|       std::swap(FoundLHS, FoundRHS);
 | |
|       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
 | |
|     } else {
 | |
|       std::swap(LHS, RHS);
 | |
|       Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check whether the found predicate is the same as the desired predicate.
 | |
|   if (FoundPred == Pred)
 | |
|     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
 | |
| 
 | |
|   // Check whether swapping the found predicate makes it the same as the
 | |
|   // desired predicate.
 | |
|   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
 | |
|     if (isa<SCEVConstant>(RHS))
 | |
|       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
 | |
|     else
 | |
|       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), RHS,
 | |
|                                    LHS, FoundLHS, FoundRHS, Context);
 | |
|   }
 | |
| 
 | |
|   // Unsigned comparison is the same as signed comparison when both the operands
 | |
|   // are non-negative.
 | |
|   if (CmpInst::isUnsigned(FoundPred) &&
 | |
|       CmpInst::getSignedPredicate(FoundPred) == Pred &&
 | |
|       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
 | |
|     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
 | |
| 
 | |
|   // Check if we can make progress by sharpening ranges.
 | |
|   if (FoundPred == ICmpInst::ICMP_NE &&
 | |
|       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
 | |
| 
 | |
|     const SCEVConstant *C = nullptr;
 | |
|     const SCEV *V = nullptr;
 | |
| 
 | |
|     if (isa<SCEVConstant>(FoundLHS)) {
 | |
|       C = cast<SCEVConstant>(FoundLHS);
 | |
|       V = FoundRHS;
 | |
|     } else {
 | |
|       C = cast<SCEVConstant>(FoundRHS);
 | |
|       V = FoundLHS;
 | |
|     }
 | |
| 
 | |
|     // The guarding predicate tells us that C != V. If the known range
 | |
|     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
 | |
|     // range we consider has to correspond to same signedness as the
 | |
|     // predicate we're interested in folding.
 | |
| 
 | |
|     APInt Min = ICmpInst::isSigned(Pred) ?
 | |
|         getSignedRangeMin(V) : getUnsignedRangeMin(V);
 | |
| 
 | |
|     if (Min == C->getAPInt()) {
 | |
|       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
 | |
|       // This is true even if (Min + 1) wraps around -- in case of
 | |
|       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
 | |
| 
 | |
|       APInt SharperMin = Min + 1;
 | |
| 
 | |
|       switch (Pred) {
 | |
|         case ICmpInst::ICMP_SGE:
 | |
|         case ICmpInst::ICMP_UGE:
 | |
|           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
 | |
|           // RHS, we're done.
 | |
|           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
 | |
|                                     Context))
 | |
|             return true;
 | |
|           LLVM_FALLTHROUGH;
 | |
| 
 | |
|         case ICmpInst::ICMP_SGT:
 | |
|         case ICmpInst::ICMP_UGT:
 | |
|           // We know from the range information that (V `Pred` Min ||
 | |
|           // V == Min).  We know from the guarding condition that !(V
 | |
|           // == Min).  This gives us
 | |
|           //
 | |
|           //       V `Pred` Min || V == Min && !(V == Min)
 | |
|           //   =>  V `Pred` Min
 | |
|           //
 | |
|           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
 | |
| 
 | |
|           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
 | |
|                                     Context))
 | |
|             return true;
 | |
|           break;
 | |
| 
 | |
|         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
 | |
|         case ICmpInst::ICMP_SLE:
 | |
|         case ICmpInst::ICMP_ULE:
 | |
|           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
 | |
|                                     LHS, V, getConstant(SharperMin), Context))
 | |
|             return true;
 | |
|           LLVM_FALLTHROUGH;
 | |
| 
 | |
|         case ICmpInst::ICMP_SLT:
 | |
|         case ICmpInst::ICMP_ULT:
 | |
|           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
 | |
|                                     LHS, V, getConstant(Min), Context))
 | |
|             return true;
 | |
|           break;
 | |
| 
 | |
|         default:
 | |
|           // No change
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check whether the actual condition is beyond sufficient.
 | |
|   if (FoundPred == ICmpInst::ICMP_EQ)
 | |
|     if (ICmpInst::isTrueWhenEqual(Pred))
 | |
|       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
 | |
|         return true;
 | |
|   if (Pred == ICmpInst::ICMP_NE)
 | |
|     if (!ICmpInst::isTrueWhenEqual(FoundPred))
 | |
|       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
 | |
|                                 Context))
 | |
|         return true;
 | |
| 
 | |
|   // Otherwise assume the worst.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
 | |
|                                      const SCEV *&L, const SCEV *&R,
 | |
|                                      SCEV::NoWrapFlags &Flags) {
 | |
|   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
 | |
|   if (!AE || AE->getNumOperands() != 2)
 | |
|     return false;
 | |
| 
 | |
|   L = AE->getOperand(0);
 | |
|   R = AE->getOperand(1);
 | |
|   Flags = AE->getNoWrapFlags();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
 | |
|                                                            const SCEV *Less) {
 | |
|   // We avoid subtracting expressions here because this function is usually
 | |
|   // fairly deep in the call stack (i.e. is called many times).
 | |
| 
 | |
|   // X - X = 0.
 | |
|   if (More == Less)
 | |
|     return APInt(getTypeSizeInBits(More->getType()), 0);
 | |
| 
 | |
|   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
 | |
|     const auto *LAR = cast<SCEVAddRecExpr>(Less);
 | |
|     const auto *MAR = cast<SCEVAddRecExpr>(More);
 | |
| 
 | |
|     if (LAR->getLoop() != MAR->getLoop())
 | |
|       return None;
 | |
| 
 | |
|     // We look at affine expressions only; not for correctness but to keep
 | |
|     // getStepRecurrence cheap.
 | |
|     if (!LAR->isAffine() || !MAR->isAffine())
 | |
|       return None;
 | |
| 
 | |
|     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
 | |
|       return None;
 | |
| 
 | |
|     Less = LAR->getStart();
 | |
|     More = MAR->getStart();
 | |
| 
 | |
|     // fall through
 | |
|   }
 | |
| 
 | |
|   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
 | |
|     const auto &M = cast<SCEVConstant>(More)->getAPInt();
 | |
|     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
 | |
|     return M - L;
 | |
|   }
 | |
| 
 | |
|   SCEV::NoWrapFlags Flags;
 | |
|   const SCEV *LLess = nullptr, *RLess = nullptr;
 | |
|   const SCEV *LMore = nullptr, *RMore = nullptr;
 | |
|   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
 | |
|   // Compare (X + C1) vs X.
 | |
|   if (splitBinaryAdd(Less, LLess, RLess, Flags))
 | |
|     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
 | |
|       if (RLess == More)
 | |
|         return -(C1->getAPInt());
 | |
| 
 | |
|   // Compare X vs (X + C2).
 | |
|   if (splitBinaryAdd(More, LMore, RMore, Flags))
 | |
|     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
 | |
|       if (RMore == Less)
 | |
|         return C2->getAPInt();
 | |
| 
 | |
|   // Compare (X + C1) vs (X + C2).
 | |
|   if (C1 && C2 && RLess == RMore)
 | |
|     return C2->getAPInt() - C1->getAPInt();
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
 | |
|     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
 | |
|     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
 | |
|   // Try to recognize the following pattern:
 | |
|   //
 | |
|   //   FoundRHS = ...
 | |
|   // ...
 | |
|   // loop:
 | |
|   //   FoundLHS = {Start,+,W}
 | |
|   // context_bb: // Basic block from the same loop
 | |
|   //   known(Pred, FoundLHS, FoundRHS)
 | |
|   //
 | |
|   // If some predicate is known in the context of a loop, it is also known on
 | |
|   // each iteration of this loop, including the first iteration. Therefore, in
 | |
|   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
 | |
|   // prove the original pred using this fact.
 | |
|   if (!Context)
 | |
|     return false;
 | |
|   const BasicBlock *ContextBB = Context->getParent();
 | |
|   // Make sure AR varies in the context block.
 | |
|   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
 | |
|     const Loop *L = AR->getLoop();
 | |
|     // Make sure that context belongs to the loop and executes on 1st iteration
 | |
|     // (if it ever executes at all).
 | |
|     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
 | |
|       return false;
 | |
|     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
 | |
|       return false;
 | |
|     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
 | |
|   }
 | |
| 
 | |
|   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
 | |
|     const Loop *L = AR->getLoop();
 | |
|     // Make sure that context belongs to the loop and executes on 1st iteration
 | |
|     // (if it ever executes at all).
 | |
|     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
 | |
|       return false;
 | |
|     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
 | |
|       return false;
 | |
|     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
 | |
|     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
 | |
|     const SCEV *FoundLHS, const SCEV *FoundRHS) {
 | |
|   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
 | |
|     return false;
 | |
| 
 | |
|   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
 | |
|   if (!AddRecLHS)
 | |
|     return false;
 | |
| 
 | |
|   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
 | |
|   if (!AddRecFoundLHS)
 | |
|     return false;
 | |
| 
 | |
|   // We'd like to let SCEV reason about control dependencies, so we constrain
 | |
|   // both the inequalities to be about add recurrences on the same loop.  This
 | |
|   // way we can use isLoopEntryGuardedByCond later.
 | |
| 
 | |
|   const Loop *L = AddRecFoundLHS->getLoop();
 | |
|   if (L != AddRecLHS->getLoop())
 | |
|     return false;
 | |
| 
 | |
|   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
 | |
|   //
 | |
|   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
 | |
|   //                                                                  ... (2)
 | |
|   //
 | |
|   // Informal proof for (2), assuming (1) [*]:
 | |
|   //
 | |
|   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
 | |
|   //
 | |
|   // Then
 | |
|   //
 | |
|   //       FoundLHS s< FoundRHS s< INT_MIN - C
 | |
|   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
 | |
|   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
 | |
|   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
 | |
|   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
 | |
|   // <=>  FoundLHS + C s< FoundRHS + C
 | |
|   //
 | |
|   // [*]: (1) can be proved by ruling out overflow.
 | |
|   //
 | |
|   // [**]: This can be proved by analyzing all the four possibilities:
 | |
|   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
 | |
|   //    (A s>= 0, B s>= 0).
 | |
|   //
 | |
|   // Note:
 | |
|   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
 | |
|   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
 | |
|   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
 | |
|   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
 | |
|   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
 | |
|   // C)".
 | |
| 
 | |
|   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
 | |
|   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
 | |
|   if (!LDiff || !RDiff || *LDiff != *RDiff)
 | |
|     return false;
 | |
| 
 | |
|   if (LDiff->isMinValue())
 | |
|     return true;
 | |
| 
 | |
|   APInt FoundRHSLimit;
 | |
| 
 | |
|   if (Pred == CmpInst::ICMP_ULT) {
 | |
|     FoundRHSLimit = -(*RDiff);
 | |
|   } else {
 | |
|     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
 | |
|     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
 | |
|   }
 | |
| 
 | |
|   // Try to prove (1) or (2), as needed.
 | |
|   return isAvailableAtLoopEntry(FoundRHS, L) &&
 | |
|          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
 | |
|                                   getConstant(FoundRHSLimit));
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
 | |
|                                         const SCEV *LHS, const SCEV *RHS,
 | |
|                                         const SCEV *FoundLHS,
 | |
|                                         const SCEV *FoundRHS, unsigned Depth) {
 | |
|   const PHINode *LPhi = nullptr, *RPhi = nullptr;
 | |
| 
 | |
|   auto ClearOnExit = make_scope_exit([&]() {
 | |
|     if (LPhi) {
 | |
|       bool Erased = PendingMerges.erase(LPhi);
 | |
|       assert(Erased && "Failed to erase LPhi!");
 | |
|       (void)Erased;
 | |
|     }
 | |
|     if (RPhi) {
 | |
|       bool Erased = PendingMerges.erase(RPhi);
 | |
|       assert(Erased && "Failed to erase RPhi!");
 | |
|       (void)Erased;
 | |
|     }
 | |
|   });
 | |
| 
 | |
|   // Find respective Phis and check that they are not being pending.
 | |
|   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
 | |
|     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
 | |
|       if (!PendingMerges.insert(Phi).second)
 | |
|         return false;
 | |
|       LPhi = Phi;
 | |
|     }
 | |
|   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
 | |
|     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
 | |
|       // If we detect a loop of Phi nodes being processed by this method, for
 | |
|       // example:
 | |
|       //
 | |
|       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
 | |
|       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
 | |
|       //
 | |
|       // we don't want to deal with a case that complex, so return conservative
 | |
|       // answer false.
 | |
|       if (!PendingMerges.insert(Phi).second)
 | |
|         return false;
 | |
|       RPhi = Phi;
 | |
|     }
 | |
| 
 | |
|   // If none of LHS, RHS is a Phi, nothing to do here.
 | |
|   if (!LPhi && !RPhi)
 | |
|     return false;
 | |
| 
 | |
|   // If there is a SCEVUnknown Phi we are interested in, make it left.
 | |
|   if (!LPhi) {
 | |
|     std::swap(LHS, RHS);
 | |
|     std::swap(FoundLHS, FoundRHS);
 | |
|     std::swap(LPhi, RPhi);
 | |
|     Pred = ICmpInst::getSwappedPredicate(Pred);
 | |
|   }
 | |
| 
 | |
|   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
 | |
|   const BasicBlock *LBB = LPhi->getParent();
 | |
|   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
 | |
| 
 | |
|   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
 | |
|     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
 | |
|            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
 | |
|            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
 | |
|   };
 | |
| 
 | |
|   if (RPhi && RPhi->getParent() == LBB) {
 | |
|     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
 | |
|     // If we compare two Phis from the same block, and for each entry block
 | |
|     // the predicate is true for incoming values from this block, then the
 | |
|     // predicate is also true for the Phis.
 | |
|     for (const BasicBlock *IncBB : predecessors(LBB)) {
 | |
|       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
 | |
|       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
 | |
|       if (!ProvedEasily(L, R))
 | |
|         return false;
 | |
|     }
 | |
|   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
 | |
|     // Case two: RHS is also a Phi from the same basic block, and it is an
 | |
|     // AddRec. It means that there is a loop which has both AddRec and Unknown
 | |
|     // PHIs, for it we can compare incoming values of AddRec from above the loop
 | |
|     // and latch with their respective incoming values of LPhi.
 | |
|     // TODO: Generalize to handle loops with many inputs in a header.
 | |
|     if (LPhi->getNumIncomingValues() != 2) return false;
 | |
| 
 | |
|     auto *RLoop = RAR->getLoop();
 | |
|     auto *Predecessor = RLoop->getLoopPredecessor();
 | |
|     assert(Predecessor && "Loop with AddRec with no predecessor?");
 | |
|     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
 | |
|     if (!ProvedEasily(L1, RAR->getStart()))
 | |
|       return false;
 | |
|     auto *Latch = RLoop->getLoopLatch();
 | |
|     assert(Latch && "Loop with AddRec with no latch?");
 | |
|     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
 | |
|     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
 | |
|       return false;
 | |
|   } else {
 | |
|     // In all other cases go over inputs of LHS and compare each of them to RHS,
 | |
|     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
 | |
|     // At this point RHS is either a non-Phi, or it is a Phi from some block
 | |
|     // different from LBB.
 | |
|     for (const BasicBlock *IncBB : predecessors(LBB)) {
 | |
|       // Check that RHS is available in this block.
 | |
|       if (!dominates(RHS, IncBB))
 | |
|         return false;
 | |
|       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
 | |
|       if (!ProvedEasily(L, RHS))
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
 | |
|                                             const SCEV *LHS, const SCEV *RHS,
 | |
|                                             const SCEV *FoundLHS,
 | |
|                                             const SCEV *FoundRHS,
 | |
|                                             const Instruction *Context) {
 | |
|   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
 | |
|     return true;
 | |
| 
 | |
|   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
 | |
|     return true;
 | |
| 
 | |
|   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
 | |
|                                           Context))
 | |
|     return true;
 | |
| 
 | |
|   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
 | |
|                                      FoundLHS, FoundRHS) ||
 | |
|          // ~x < ~y --> x > y
 | |
|          isImpliedCondOperandsHelper(Pred, LHS, RHS,
 | |
|                                      getNotSCEV(FoundRHS),
 | |
|                                      getNotSCEV(FoundLHS));
 | |
| }
 | |
| 
 | |
| /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
 | |
| template <typename MinMaxExprType>
 | |
| static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
 | |
|                                  const SCEV *Candidate) {
 | |
|   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
 | |
|   if (!MinMaxExpr)
 | |
|     return false;
 | |
| 
 | |
|   return is_contained(MinMaxExpr->operands(), Candidate);
 | |
| }
 | |
| 
 | |
| static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
 | |
|                                            ICmpInst::Predicate Pred,
 | |
|                                            const SCEV *LHS, const SCEV *RHS) {
 | |
|   // If both sides are affine addrecs for the same loop, with equal
 | |
|   // steps, and we know the recurrences don't wrap, then we only
 | |
|   // need to check the predicate on the starting values.
 | |
| 
 | |
|   if (!ICmpInst::isRelational(Pred))
 | |
|     return false;
 | |
| 
 | |
|   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
 | |
|   if (!LAR)
 | |
|     return false;
 | |
|   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
 | |
|   if (!RAR)
 | |
|     return false;
 | |
|   if (LAR->getLoop() != RAR->getLoop())
 | |
|     return false;
 | |
|   if (!LAR->isAffine() || !RAR->isAffine())
 | |
|     return false;
 | |
| 
 | |
|   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
 | |
|     return false;
 | |
| 
 | |
|   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
 | |
|                          SCEV::FlagNSW : SCEV::FlagNUW;
 | |
|   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
 | |
|     return false;
 | |
| 
 | |
|   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
 | |
| }
 | |
| 
 | |
| /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
 | |
| /// expression?
 | |
| static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
 | |
|                                         ICmpInst::Predicate Pred,
 | |
|                                         const SCEV *LHS, const SCEV *RHS) {
 | |
|   switch (Pred) {
 | |
|   default:
 | |
|     return false;
 | |
| 
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     std::swap(LHS, RHS);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|     return
 | |
|         // min(A, ...) <= A
 | |
|         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
 | |
|         // A <= max(A, ...)
 | |
|         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
 | |
| 
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     std::swap(LHS, RHS);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     return
 | |
|         // min(A, ...) <= A
 | |
|         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
 | |
|         // A <= max(A, ...)
 | |
|         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("covered switch fell through?!");
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
 | |
|                                              const SCEV *LHS, const SCEV *RHS,
 | |
|                                              const SCEV *FoundLHS,
 | |
|                                              const SCEV *FoundRHS,
 | |
|                                              unsigned Depth) {
 | |
|   assert(getTypeSizeInBits(LHS->getType()) ==
 | |
|              getTypeSizeInBits(RHS->getType()) &&
 | |
|          "LHS and RHS have different sizes?");
 | |
|   assert(getTypeSizeInBits(FoundLHS->getType()) ==
 | |
|              getTypeSizeInBits(FoundRHS->getType()) &&
 | |
|          "FoundLHS and FoundRHS have different sizes?");
 | |
|   // We want to avoid hurting the compile time with analysis of too big trees.
 | |
|   if (Depth > MaxSCEVOperationsImplicationDepth)
 | |
|     return false;
 | |
| 
 | |
|   // We only want to work with GT comparison so far.
 | |
|   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
 | |
|     Pred = CmpInst::getSwappedPredicate(Pred);
 | |
|     std::swap(LHS, RHS);
 | |
|     std::swap(FoundLHS, FoundRHS);
 | |
|   }
 | |
| 
 | |
|   // For unsigned, try to reduce it to corresponding signed comparison.
 | |
|   if (Pred == ICmpInst::ICMP_UGT)
 | |
|     // We can replace unsigned predicate with its signed counterpart if all
 | |
|     // involved values are non-negative.
 | |
|     // TODO: We could have better support for unsigned.
 | |
|     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
 | |
|       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
 | |
|       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
 | |
|       // use this fact to prove that LHS and RHS are non-negative.
 | |
|       const SCEV *MinusOne = getMinusOne(LHS->getType());
 | |
|       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
 | |
|                                 FoundRHS) &&
 | |
|           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
 | |
|                                 FoundRHS))
 | |
|         Pred = ICmpInst::ICMP_SGT;
 | |
|     }
 | |
| 
 | |
|   if (Pred != ICmpInst::ICMP_SGT)
 | |
|     return false;
 | |
| 
 | |
|   auto GetOpFromSExt = [&](const SCEV *S) {
 | |
|     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
 | |
|       return Ext->getOperand();
 | |
|     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
 | |
|     // the constant in some cases.
 | |
|     return S;
 | |
|   };
 | |
| 
 | |
|   // Acquire values from extensions.
 | |
|   auto *OrigLHS = LHS;
 | |
|   auto *OrigFoundLHS = FoundLHS;
 | |
|   LHS = GetOpFromSExt(LHS);
 | |
|   FoundLHS = GetOpFromSExt(FoundLHS);
 | |
| 
 | |
|   // Is the SGT predicate can be proved trivially or using the found context.
 | |
|   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
 | |
|     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
 | |
|            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
 | |
|                                   FoundRHS, Depth + 1);
 | |
|   };
 | |
| 
 | |
|   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
 | |
|     // We want to avoid creation of any new non-constant SCEV. Since we are
 | |
|     // going to compare the operands to RHS, we should be certain that we don't
 | |
|     // need any size extensions for this. So let's decline all cases when the
 | |
|     // sizes of types of LHS and RHS do not match.
 | |
|     // TODO: Maybe try to get RHS from sext to catch more cases?
 | |
|     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
 | |
|       return false;
 | |
| 
 | |
|     // Should not overflow.
 | |
|     if (!LHSAddExpr->hasNoSignedWrap())
 | |
|       return false;
 | |
| 
 | |
|     auto *LL = LHSAddExpr->getOperand(0);
 | |
|     auto *LR = LHSAddExpr->getOperand(1);
 | |
|     auto *MinusOne = getMinusOne(RHS->getType());
 | |
| 
 | |
|     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
 | |
|     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
 | |
|       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
 | |
|     };
 | |
|     // Try to prove the following rule:
 | |
|     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
 | |
|     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
 | |
|     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
 | |
|       return true;
 | |
|   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
 | |
|     Value *LL, *LR;
 | |
|     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
 | |
| 
 | |
|     using namespace llvm::PatternMatch;
 | |
| 
 | |
|     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
 | |
|       // Rules for division.
 | |
|       // We are going to perform some comparisons with Denominator and its
 | |
|       // derivative expressions. In general case, creating a SCEV for it may
 | |
|       // lead to a complex analysis of the entire graph, and in particular it
 | |
|       // can request trip count recalculation for the same loop. This would
 | |
|       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
 | |
|       // this, we only want to create SCEVs that are constants in this section.
 | |
|       // So we bail if Denominator is not a constant.
 | |
|       if (!isa<ConstantInt>(LR))
 | |
|         return false;
 | |
| 
 | |
|       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
 | |
| 
 | |
|       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
 | |
|       // then a SCEV for the numerator already exists and matches with FoundLHS.
 | |
|       auto *Numerator = getExistingSCEV(LL);
 | |
|       if (!Numerator || Numerator->getType() != FoundLHS->getType())
 | |
|         return false;
 | |
| 
 | |
|       // Make sure that the numerator matches with FoundLHS and the denominator
 | |
|       // is positive.
 | |
|       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
 | |
|         return false;
 | |
| 
 | |
|       auto *DTy = Denominator->getType();
 | |
|       auto *FRHSTy = FoundRHS->getType();
 | |
|       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
 | |
|         // One of types is a pointer and another one is not. We cannot extend
 | |
|         // them properly to a wider type, so let us just reject this case.
 | |
|         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
 | |
|         // to avoid this check.
 | |
|         return false;
 | |
| 
 | |
|       // Given that:
 | |
|       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
 | |
|       auto *WTy = getWiderType(DTy, FRHSTy);
 | |
|       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
 | |
|       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
 | |
| 
 | |
|       // Try to prove the following rule:
 | |
|       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
 | |
|       // For example, given that FoundLHS > 2. It means that FoundLHS is at
 | |
|       // least 3. If we divide it by Denominator < 4, we will have at least 1.
 | |
|       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
 | |
|       if (isKnownNonPositive(RHS) &&
 | |
|           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
 | |
|         return true;
 | |
| 
 | |
|       // Try to prove the following rule:
 | |
|       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
 | |
|       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
 | |
|       // If we divide it by Denominator > 2, then:
 | |
|       // 1. If FoundLHS is negative, then the result is 0.
 | |
|       // 2. If FoundLHS is non-negative, then the result is non-negative.
 | |
|       // Anyways, the result is non-negative.
 | |
|       auto *MinusOne = getMinusOne(WTy);
 | |
|       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
 | |
|       if (isKnownNegative(RHS) &&
 | |
|           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If our expression contained SCEVUnknown Phis, and we split it down and now
 | |
|   // need to prove something for them, try to prove the predicate for every
 | |
|   // possible incoming values of those Phis.
 | |
|   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
 | |
|                                         const SCEV *LHS, const SCEV *RHS) {
 | |
|   // zext x u<= sext x, sext x s<= zext x
 | |
|   switch (Pred) {
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     std::swap(LHS, RHS);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_SLE: {
 | |
|     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
 | |
|     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
 | |
|     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
 | |
|     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
 | |
|       return true;
 | |
|     break;
 | |
|   }
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     std::swap(LHS, RHS);
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case ICmpInst::ICMP_ULE: {
 | |
|     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
 | |
|     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
 | |
|     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
 | |
|     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
 | |
|       return true;
 | |
|     break;
 | |
|   }
 | |
|   default:
 | |
|     break;
 | |
|   };
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool
 | |
| ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
 | |
|                                            const SCEV *LHS, const SCEV *RHS) {
 | |
|   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
 | |
|          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
 | |
|          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
 | |
|          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
 | |
|          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
 | |
| }
 | |
| 
 | |
| bool
 | |
| ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
 | |
|                                              const SCEV *LHS, const SCEV *RHS,
 | |
|                                              const SCEV *FoundLHS,
 | |
|                                              const SCEV *FoundRHS) {
 | |
|   switch (Pred) {
 | |
|   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
 | |
|   case ICmpInst::ICMP_EQ:
 | |
|   case ICmpInst::ICMP_NE:
 | |
|     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
 | |
|       return true;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SLT:
 | |
|   case ICmpInst::ICMP_SLE:
 | |
|     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
 | |
|         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
 | |
|       return true;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_SGT:
 | |
|   case ICmpInst::ICMP_SGE:
 | |
|     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
 | |
|         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
 | |
|       return true;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_ULT:
 | |
|   case ICmpInst::ICMP_ULE:
 | |
|     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
 | |
|         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
 | |
|       return true;
 | |
|     break;
 | |
|   case ICmpInst::ICMP_UGT:
 | |
|   case ICmpInst::ICMP_UGE:
 | |
|     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
 | |
|         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
 | |
|       return true;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // Maybe it can be proved via operations?
 | |
|   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
 | |
|                                                      const SCEV *LHS,
 | |
|                                                      const SCEV *RHS,
 | |
|                                                      const SCEV *FoundLHS,
 | |
|                                                      const SCEV *FoundRHS) {
 | |
|   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
 | |
|     // The restriction on `FoundRHS` be lifted easily -- it exists only to
 | |
|     // reduce the compile time impact of this optimization.
 | |
|     return false;
 | |
| 
 | |
|   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
 | |
|   if (!Addend)
 | |
|     return false;
 | |
| 
 | |
|   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
 | |
| 
 | |
|   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
 | |
|   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
 | |
|   ConstantRange FoundLHSRange =
 | |
|       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
 | |
| 
 | |
|   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
 | |
|   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
 | |
| 
 | |
|   // We can also compute the range of values for `LHS` that satisfy the
 | |
|   // consequent, "`LHS` `Pred` `RHS`":
 | |
|   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
 | |
|   ConstantRange SatisfyingLHSRange =
 | |
|       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
 | |
| 
 | |
|   // The antecedent implies the consequent if every value of `LHS` that
 | |
|   // satisfies the antecedent also satisfies the consequent.
 | |
|   return SatisfyingLHSRange.contains(LHSRange);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
 | |
|                                          bool IsSigned, bool NoWrap) {
 | |
|   assert(isKnownPositive(Stride) && "Positive stride expected!");
 | |
| 
 | |
|   if (NoWrap) return false;
 | |
| 
 | |
|   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
 | |
|   const SCEV *One = getOne(Stride->getType());
 | |
| 
 | |
|   if (IsSigned) {
 | |
|     APInt MaxRHS = getSignedRangeMax(RHS);
 | |
|     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
 | |
|     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
 | |
| 
 | |
|     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
 | |
|     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
 | |
|   }
 | |
| 
 | |
|   APInt MaxRHS = getUnsignedRangeMax(RHS);
 | |
|   APInt MaxValue = APInt::getMaxValue(BitWidth);
 | |
|   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
 | |
| 
 | |
|   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
 | |
|   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
 | |
|                                          bool IsSigned, bool NoWrap) {
 | |
|   if (NoWrap) return false;
 | |
| 
 | |
|   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
 | |
|   const SCEV *One = getOne(Stride->getType());
 | |
| 
 | |
|   if (IsSigned) {
 | |
|     APInt MinRHS = getSignedRangeMin(RHS);
 | |
|     APInt MinValue = APInt::getSignedMinValue(BitWidth);
 | |
|     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
 | |
| 
 | |
|     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
 | |
|     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
 | |
|   }
 | |
| 
 | |
|   APInt MinRHS = getUnsignedRangeMin(RHS);
 | |
|   APInt MinValue = APInt::getMinValue(BitWidth);
 | |
|   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
 | |
| 
 | |
|   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
 | |
|   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
 | |
|                                             bool Equality) {
 | |
|   const SCEV *One = getOne(Step->getType());
 | |
|   Delta = Equality ? getAddExpr(Delta, Step)
 | |
|                    : getAddExpr(Delta, getMinusSCEV(Step, One));
 | |
|   return getUDivExpr(Delta, Step);
 | |
| }
 | |
| 
 | |
| const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
 | |
|                                                     const SCEV *Stride,
 | |
|                                                     const SCEV *End,
 | |
|                                                     unsigned BitWidth,
 | |
|                                                     bool IsSigned) {
 | |
| 
 | |
|   assert(!isKnownNonPositive(Stride) &&
 | |
|          "Stride is expected strictly positive!");
 | |
|   // Calculate the maximum backedge count based on the range of values
 | |
|   // permitted by Start, End, and Stride.
 | |
|   const SCEV *MaxBECount;
 | |
|   APInt MinStart =
 | |
|       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
 | |
| 
 | |
|   APInt StrideForMaxBECount =
 | |
|       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
 | |
| 
 | |
|   // We already know that the stride is positive, so we paper over conservatism
 | |
|   // in our range computation by forcing StrideForMaxBECount to be at least one.
 | |
|   // In theory this is unnecessary, but we expect MaxBECount to be a
 | |
|   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
 | |
|   // is nothing to constant fold it to).
 | |
|   APInt One(BitWidth, 1, IsSigned);
 | |
|   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
 | |
| 
 | |
|   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
 | |
|                             : APInt::getMaxValue(BitWidth);
 | |
|   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
 | |
| 
 | |
|   // Although End can be a MAX expression we estimate MaxEnd considering only
 | |
|   // the case End = RHS of the loop termination condition. This is safe because
 | |
|   // in the other case (End - Start) is zero, leading to a zero maximum backedge
 | |
|   // taken count.
 | |
|   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
 | |
|                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
 | |
| 
 | |
|   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
 | |
|                               getConstant(StrideForMaxBECount) /* Step */,
 | |
|                               false /* Equality */);
 | |
| 
 | |
|   return MaxBECount;
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
 | |
|                                   const Loop *L, bool IsSigned,
 | |
|                                   bool ControlsExit, bool AllowPredicates) {
 | |
|   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
 | |
| 
 | |
|   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
 | |
|   bool PredicatedIV = false;
 | |
| 
 | |
|   if (!IV && AllowPredicates) {
 | |
|     // Try to make this an AddRec using runtime tests, in the first X
 | |
|     // iterations of this loop, where X is the SCEV expression found by the
 | |
|     // algorithm below.
 | |
|     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
 | |
|     PredicatedIV = true;
 | |
|   }
 | |
| 
 | |
|   // Avoid weird loops
 | |
|   if (!IV || IV->getLoop() != L || !IV->isAffine())
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   bool NoWrap = ControlsExit &&
 | |
|                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
 | |
| 
 | |
|   const SCEV *Stride = IV->getStepRecurrence(*this);
 | |
| 
 | |
|   bool PositiveStride = isKnownPositive(Stride);
 | |
| 
 | |
|   // Avoid negative or zero stride values.
 | |
|   if (!PositiveStride) {
 | |
|     // We can compute the correct backedge taken count for loops with unknown
 | |
|     // strides if we can prove that the loop is not an infinite loop with side
 | |
|     // effects. Here's the loop structure we are trying to handle -
 | |
|     //
 | |
|     // i = start
 | |
|     // do {
 | |
|     //   A[i] = i;
 | |
|     //   i += s;
 | |
|     // } while (i < end);
 | |
|     //
 | |
|     // The backedge taken count for such loops is evaluated as -
 | |
|     // (max(end, start + stride) - start - 1) /u stride
 | |
|     //
 | |
|     // The additional preconditions that we need to check to prove correctness
 | |
|     // of the above formula is as follows -
 | |
|     //
 | |
|     // a) IV is either nuw or nsw depending upon signedness (indicated by the
 | |
|     //    NoWrap flag).
 | |
|     // b) loop is single exit with no side effects.
 | |
|     //
 | |
|     //
 | |
|     // Precondition a) implies that if the stride is negative, this is a single
 | |
|     // trip loop. The backedge taken count formula reduces to zero in this case.
 | |
|     //
 | |
|     // Precondition b) implies that the unknown stride cannot be zero otherwise
 | |
|     // we have UB.
 | |
|     //
 | |
|     // The positive stride case is the same as isKnownPositive(Stride) returning
 | |
|     // true (original behavior of the function).
 | |
|     //
 | |
|     // We want to make sure that the stride is truly unknown as there are edge
 | |
|     // cases where ScalarEvolution propagates no wrap flags to the
 | |
|     // post-increment/decrement IV even though the increment/decrement operation
 | |
|     // itself is wrapping. The computed backedge taken count may be wrong in
 | |
|     // such cases. This is prevented by checking that the stride is not known to
 | |
|     // be either positive or non-positive. For example, no wrap flags are
 | |
|     // propagated to the post-increment IV of this loop with a trip count of 2 -
 | |
|     //
 | |
|     // unsigned char i;
 | |
|     // for(i=127; i<128; i+=129)
 | |
|     //   A[i] = i;
 | |
|     //
 | |
|     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
 | |
|         !loopHasNoSideEffects(L))
 | |
|       return getCouldNotCompute();
 | |
|   } else if (!Stride->isOne() &&
 | |
|              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
 | |
|     // Avoid proven overflow cases: this will ensure that the backedge taken
 | |
|     // count will not generate any unsigned overflow. Relaxed no-overflow
 | |
|     // conditions exploit NoWrapFlags, allowing to optimize in presence of
 | |
|     // undefined behaviors like the case of C language.
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
 | |
|                                       : ICmpInst::ICMP_ULT;
 | |
|   const SCEV *Start = IV->getStart();
 | |
|   const SCEV *End = RHS;
 | |
|   // When the RHS is not invariant, we do not know the end bound of the loop and
 | |
|   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
 | |
|   // calculate the MaxBECount, given the start, stride and max value for the end
 | |
|   // bound of the loop (RHS), and the fact that IV does not overflow (which is
 | |
|   // checked above).
 | |
|   if (!isLoopInvariant(RHS, L)) {
 | |
|     const SCEV *MaxBECount = computeMaxBECountForLT(
 | |
|         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
 | |
|     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
 | |
|                      false /*MaxOrZero*/, Predicates);
 | |
|   }
 | |
|   // If the backedge is taken at least once, then it will be taken
 | |
|   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
 | |
|   // is the LHS value of the less-than comparison the first time it is evaluated
 | |
|   // and End is the RHS.
 | |
|   const SCEV *BECountIfBackedgeTaken =
 | |
|     computeBECount(getMinusSCEV(End, Start), Stride, false);
 | |
|   // If the loop entry is guarded by the result of the backedge test of the
 | |
|   // first loop iteration, then we know the backedge will be taken at least
 | |
|   // once and so the backedge taken count is as above. If not then we use the
 | |
|   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
 | |
|   // as if the backedge is taken at least once max(End,Start) is End and so the
 | |
|   // result is as above, and if not max(End,Start) is Start so we get a backedge
 | |
|   // count of zero.
 | |
|   const SCEV *BECount;
 | |
|   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
 | |
|     BECount = BECountIfBackedgeTaken;
 | |
|   else {
 | |
|     // If we know that RHS >= Start in the context of loop, then we know that
 | |
|     // max(RHS, Start) = RHS at this point.
 | |
|     if (isLoopEntryGuardedByCond(
 | |
|             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start))
 | |
|       End = RHS;
 | |
|     else
 | |
|       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
 | |
|     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
 | |
|   }
 | |
| 
 | |
|   const SCEV *MaxBECount;
 | |
|   bool MaxOrZero = false;
 | |
|   if (isa<SCEVConstant>(BECount))
 | |
|     MaxBECount = BECount;
 | |
|   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
 | |
|     // If we know exactly how many times the backedge will be taken if it's
 | |
|     // taken at least once, then the backedge count will either be that or
 | |
|     // zero.
 | |
|     MaxBECount = BECountIfBackedgeTaken;
 | |
|     MaxOrZero = true;
 | |
|   } else {
 | |
|     MaxBECount = computeMaxBECountForLT(
 | |
|         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
 | |
|   }
 | |
| 
 | |
|   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
 | |
|       !isa<SCEVCouldNotCompute>(BECount))
 | |
|     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
 | |
| 
 | |
|   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ExitLimit
 | |
| ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
 | |
|                                      const Loop *L, bool IsSigned,
 | |
|                                      bool ControlsExit, bool AllowPredicates) {
 | |
|   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
 | |
|   // We handle only IV > Invariant
 | |
|   if (!isLoopInvariant(RHS, L))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
 | |
|   if (!IV && AllowPredicates)
 | |
|     // Try to make this an AddRec using runtime tests, in the first X
 | |
|     // iterations of this loop, where X is the SCEV expression found by the
 | |
|     // algorithm below.
 | |
|     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
 | |
| 
 | |
|   // Avoid weird loops
 | |
|   if (!IV || IV->getLoop() != L || !IV->isAffine())
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   bool NoWrap = ControlsExit &&
 | |
|                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
 | |
| 
 | |
|   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
 | |
| 
 | |
|   // Avoid negative or zero stride values
 | |
|   if (!isKnownPositive(Stride))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   // Avoid proven overflow cases: this will ensure that the backedge taken count
 | |
|   // will not generate any unsigned overflow. Relaxed no-overflow conditions
 | |
|   // exploit NoWrapFlags, allowing to optimize in presence of undefined
 | |
|   // behaviors like the case of C language.
 | |
|   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
 | |
|     return getCouldNotCompute();
 | |
| 
 | |
|   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
 | |
|                                       : ICmpInst::ICMP_UGT;
 | |
| 
 | |
|   const SCEV *Start = IV->getStart();
 | |
|   const SCEV *End = RHS;
 | |
|   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
 | |
|     // If we know that Start >= RHS in the context of loop, then we know that
 | |
|     // min(RHS, Start) = RHS at this point.
 | |
|     if (isLoopEntryGuardedByCond(
 | |
|             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
 | |
|       End = RHS;
 | |
|     else
 | |
|       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
 | |
|   }
 | |
| 
 | |
|   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
 | |
| 
 | |
|   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
 | |
|                             : getUnsignedRangeMax(Start);
 | |
| 
 | |
|   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
 | |
|                              : getUnsignedRangeMin(Stride);
 | |
| 
 | |
|   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
 | |
|   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
 | |
|                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
 | |
| 
 | |
|   // Although End can be a MIN expression we estimate MinEnd considering only
 | |
|   // the case End = RHS. This is safe because in the other case (Start - End)
 | |
|   // is zero, leading to a zero maximum backedge taken count.
 | |
|   APInt MinEnd =
 | |
|     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
 | |
|              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
 | |
| 
 | |
|   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
 | |
|                                ? BECount
 | |
|                                : computeBECount(getConstant(MaxStart - MinEnd),
 | |
|                                                 getConstant(MinStride), false);
 | |
| 
 | |
|   if (isa<SCEVCouldNotCompute>(MaxBECount))
 | |
|     MaxBECount = BECount;
 | |
| 
 | |
|   return ExitLimit(BECount, MaxBECount, false, Predicates);
 | |
| }
 | |
| 
 | |
| const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
 | |
|                                                     ScalarEvolution &SE) const {
 | |
|   if (Range.isFullSet())  // Infinite loop.
 | |
|     return SE.getCouldNotCompute();
 | |
| 
 | |
|   // If the start is a non-zero constant, shift the range to simplify things.
 | |
|   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
 | |
|     if (!SC->getValue()->isZero()) {
 | |
|       SmallVector<const SCEV *, 4> Operands(operands());
 | |
|       Operands[0] = SE.getZero(SC->getType());
 | |
|       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
 | |
|                                              getNoWrapFlags(FlagNW));
 | |
|       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
 | |
|         return ShiftedAddRec->getNumIterationsInRange(
 | |
|             Range.subtract(SC->getAPInt()), SE);
 | |
|       // This is strange and shouldn't happen.
 | |
|       return SE.getCouldNotCompute();
 | |
|     }
 | |
| 
 | |
|   // The only time we can solve this is when we have all constant indices.
 | |
|   // Otherwise, we cannot determine the overflow conditions.
 | |
|   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
 | |
|     return SE.getCouldNotCompute();
 | |
| 
 | |
|   // Okay at this point we know that all elements of the chrec are constants and
 | |
|   // that the start element is zero.
 | |
| 
 | |
|   // First check to see if the range contains zero.  If not, the first
 | |
|   // iteration exits.
 | |
|   unsigned BitWidth = SE.getTypeSizeInBits(getType());
 | |
|   if (!Range.contains(APInt(BitWidth, 0)))
 | |
|     return SE.getZero(getType());
 | |
| 
 | |
|   if (isAffine()) {
 | |
|     // If this is an affine expression then we have this situation:
 | |
|     //   Solve {0,+,A} in Range  ===  Ax in Range
 | |
| 
 | |
|     // We know that zero is in the range.  If A is positive then we know that
 | |
|     // the upper value of the range must be the first possible exit value.
 | |
|     // If A is negative then the lower of the range is the last possible loop
 | |
|     // value.  Also note that we already checked for a full range.
 | |
|     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
 | |
|     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
 | |
| 
 | |
|     // The exit value should be (End+A)/A.
 | |
|     APInt ExitVal = (End + A).udiv(A);
 | |
|     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
 | |
| 
 | |
|     // Evaluate at the exit value.  If we really did fall out of the valid
 | |
|     // range, then we computed our trip count, otherwise wrap around or other
 | |
|     // things must have happened.
 | |
|     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
 | |
|     if (Range.contains(Val->getValue()))
 | |
|       return SE.getCouldNotCompute();  // Something strange happened
 | |
| 
 | |
|     // Ensure that the previous value is in the range.  This is a sanity check.
 | |
|     assert(Range.contains(
 | |
|            EvaluateConstantChrecAtConstant(this,
 | |
|            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
 | |
|            "Linear scev computation is off in a bad way!");
 | |
|     return SE.getConstant(ExitValue);
 | |
|   }
 | |
| 
 | |
|   if (isQuadratic()) {
 | |
|     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
 | |
|       return SE.getConstant(S.getValue());
 | |
|   }
 | |
| 
 | |
|   return SE.getCouldNotCompute();
 | |
| }
 | |
| 
 | |
| const SCEVAddRecExpr *
 | |
| SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
 | |
|   assert(getNumOperands() > 1 && "AddRec with zero step?");
 | |
|   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
 | |
|   // but in this case we cannot guarantee that the value returned will be an
 | |
|   // AddRec because SCEV does not have a fixed point where it stops
 | |
|   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
 | |
|   // may happen if we reach arithmetic depth limit while simplifying. So we
 | |
|   // construct the returned value explicitly.
 | |
|   SmallVector<const SCEV *, 3> Ops;
 | |
|   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
 | |
|   // (this + Step) is {A+B,+,B+C,+...,+,N}.
 | |
|   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
 | |
|     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
 | |
|   // We know that the last operand is not a constant zero (otherwise it would
 | |
|   // have been popped out earlier). This guarantees us that if the result has
 | |
|   // the same last operand, then it will also not be popped out, meaning that
 | |
|   // the returned value will be an AddRec.
 | |
|   const SCEV *Last = getOperand(getNumOperands() - 1);
 | |
|   assert(!Last->isZero() && "Recurrency with zero step?");
 | |
|   Ops.push_back(Last);
 | |
|   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
 | |
|                                                SCEV::FlagAnyWrap));
 | |
| }
 | |
| 
 | |
| // Return true when S contains at least an undef value.
 | |
| static inline bool containsUndefs(const SCEV *S) {
 | |
|   return SCEVExprContains(S, [](const SCEV *S) {
 | |
|     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
 | |
|       return isa<UndefValue>(SU->getValue());
 | |
|     return false;
 | |
|   });
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| // Collect all steps of SCEV expressions.
 | |
| struct SCEVCollectStrides {
 | |
|   ScalarEvolution &SE;
 | |
|   SmallVectorImpl<const SCEV *> &Strides;
 | |
| 
 | |
|   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
 | |
|       : SE(SE), Strides(S) {}
 | |
| 
 | |
|   bool follow(const SCEV *S) {
 | |
|     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
 | |
|       Strides.push_back(AR->getStepRecurrence(SE));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool isDone() const { return false; }
 | |
| };
 | |
| 
 | |
| // Collect all SCEVUnknown and SCEVMulExpr expressions.
 | |
| struct SCEVCollectTerms {
 | |
|   SmallVectorImpl<const SCEV *> &Terms;
 | |
| 
 | |
|   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
 | |
| 
 | |
|   bool follow(const SCEV *S) {
 | |
|     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
 | |
|         isa<SCEVSignExtendExpr>(S)) {
 | |
|       if (!containsUndefs(S))
 | |
|         Terms.push_back(S);
 | |
| 
 | |
|       // Stop recursion: once we collected a term, do not walk its operands.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Keep looking.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool isDone() const { return false; }
 | |
| };
 | |
| 
 | |
| // Check if a SCEV contains an AddRecExpr.
 | |
| struct SCEVHasAddRec {
 | |
|   bool &ContainsAddRec;
 | |
| 
 | |
|   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
 | |
|     ContainsAddRec = false;
 | |
|   }
 | |
| 
 | |
|   bool follow(const SCEV *S) {
 | |
|     if (isa<SCEVAddRecExpr>(S)) {
 | |
|       ContainsAddRec = true;
 | |
| 
 | |
|       // Stop recursion: once we collected a term, do not walk its operands.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Keep looking.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool isDone() const { return false; }
 | |
| };
 | |
| 
 | |
| // Find factors that are multiplied with an expression that (possibly as a
 | |
| // subexpression) contains an AddRecExpr. In the expression:
 | |
| //
 | |
| //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
 | |
| //
 | |
| // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
 | |
| // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
 | |
| // parameters as they form a product with an induction variable.
 | |
| //
 | |
| // This collector expects all array size parameters to be in the same MulExpr.
 | |
| // It might be necessary to later add support for collecting parameters that are
 | |
| // spread over different nested MulExpr.
 | |
| struct SCEVCollectAddRecMultiplies {
 | |
|   SmallVectorImpl<const SCEV *> &Terms;
 | |
|   ScalarEvolution &SE;
 | |
| 
 | |
|   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
 | |
|       : Terms(T), SE(SE) {}
 | |
| 
 | |
|   bool follow(const SCEV *S) {
 | |
|     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
 | |
|       bool HasAddRec = false;
 | |
|       SmallVector<const SCEV *, 0> Operands;
 | |
|       for (auto Op : Mul->operands()) {
 | |
|         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
 | |
|         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
 | |
|           Operands.push_back(Op);
 | |
|         } else if (Unknown) {
 | |
|           HasAddRec = true;
 | |
|         } else {
 | |
|           bool ContainsAddRec = false;
 | |
|           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
 | |
|           visitAll(Op, ContiansAddRec);
 | |
|           HasAddRec |= ContainsAddRec;
 | |
|         }
 | |
|       }
 | |
|       if (Operands.size() == 0)
 | |
|         return true;
 | |
| 
 | |
|       if (!HasAddRec)
 | |
|         return false;
 | |
| 
 | |
|       Terms.push_back(SE.getMulExpr(Operands));
 | |
|       // Stop recursion: once we collected a term, do not walk its operands.
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Keep looking.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool isDone() const { return false; }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
 | |
| /// two places:
 | |
| ///   1) The strides of AddRec expressions.
 | |
| ///   2) Unknowns that are multiplied with AddRec expressions.
 | |
| void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
 | |
|     SmallVectorImpl<const SCEV *> &Terms) {
 | |
|   SmallVector<const SCEV *, 4> Strides;
 | |
|   SCEVCollectStrides StrideCollector(*this, Strides);
 | |
|   visitAll(Expr, StrideCollector);
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "Strides:\n";
 | |
|     for (const SCEV *S : Strides)
 | |
|       dbgs() << *S << "\n";
 | |
|   });
 | |
| 
 | |
|   for (const SCEV *S : Strides) {
 | |
|     SCEVCollectTerms TermCollector(Terms);
 | |
|     visitAll(S, TermCollector);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "Terms:\n";
 | |
|     for (const SCEV *T : Terms)
 | |
|       dbgs() << *T << "\n";
 | |
|   });
 | |
| 
 | |
|   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
 | |
|   visitAll(Expr, MulCollector);
 | |
| }
 | |
| 
 | |
| static bool findArrayDimensionsRec(ScalarEvolution &SE,
 | |
|                                    SmallVectorImpl<const SCEV *> &Terms,
 | |
|                                    SmallVectorImpl<const SCEV *> &Sizes) {
 | |
|   int Last = Terms.size() - 1;
 | |
|   const SCEV *Step = Terms[Last];
 | |
| 
 | |
|   // End of recursion.
 | |
|   if (Last == 0) {
 | |
|     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
 | |
|       SmallVector<const SCEV *, 2> Qs;
 | |
|       for (const SCEV *Op : M->operands())
 | |
|         if (!isa<SCEVConstant>(Op))
 | |
|           Qs.push_back(Op);
 | |
| 
 | |
|       Step = SE.getMulExpr(Qs);
 | |
|     }
 | |
| 
 | |
|     Sizes.push_back(Step);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   for (const SCEV *&Term : Terms) {
 | |
|     // Normalize the terms before the next call to findArrayDimensionsRec.
 | |
|     const SCEV *Q, *R;
 | |
|     SCEVDivision::divide(SE, Term, Step, &Q, &R);
 | |
| 
 | |
|     // Bail out when GCD does not evenly divide one of the terms.
 | |
|     if (!R->isZero())
 | |
|       return false;
 | |
| 
 | |
|     Term = Q;
 | |
|   }
 | |
| 
 | |
|   // Remove all SCEVConstants.
 | |
|   erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); });
 | |
| 
 | |
|   if (Terms.size() > 0)
 | |
|     if (!findArrayDimensionsRec(SE, Terms, Sizes))
 | |
|       return false;
 | |
| 
 | |
|   Sizes.push_back(Step);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
 | |
| static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
 | |
|   for (const SCEV *T : Terms)
 | |
|     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
 | |
|       return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return the number of product terms in S.
 | |
| static inline int numberOfTerms(const SCEV *S) {
 | |
|   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
 | |
|     return Expr->getNumOperands();
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
 | |
|   if (isa<SCEVConstant>(T))
 | |
|     return nullptr;
 | |
| 
 | |
|   if (isa<SCEVUnknown>(T))
 | |
|     return T;
 | |
| 
 | |
|   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
 | |
|     SmallVector<const SCEV *, 2> Factors;
 | |
|     for (const SCEV *Op : M->operands())
 | |
|       if (!isa<SCEVConstant>(Op))
 | |
|         Factors.push_back(Op);
 | |
| 
 | |
|     return SE.getMulExpr(Factors);
 | |
|   }
 | |
| 
 | |
|   return T;
 | |
| }
 | |
| 
 | |
| /// Return the size of an element read or written by Inst.
 | |
| const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
 | |
|   Type *Ty;
 | |
|   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
 | |
|     Ty = Store->getValueOperand()->getType();
 | |
|   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
 | |
|     Ty = Load->getType();
 | |
|   else
 | |
|     return nullptr;
 | |
| 
 | |
|   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
 | |
|   return getSizeOfExpr(ETy, Ty);
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
 | |
|                                           SmallVectorImpl<const SCEV *> &Sizes,
 | |
|                                           const SCEV *ElementSize) {
 | |
|   if (Terms.size() < 1 || !ElementSize)
 | |
|     return;
 | |
| 
 | |
|   // Early return when Terms do not contain parameters: we do not delinearize
 | |
|   // non parametric SCEVs.
 | |
|   if (!containsParameters(Terms))
 | |
|     return;
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "Terms:\n";
 | |
|     for (const SCEV *T : Terms)
 | |
|       dbgs() << *T << "\n";
 | |
|   });
 | |
| 
 | |
|   // Remove duplicates.
 | |
|   array_pod_sort(Terms.begin(), Terms.end());
 | |
|   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
 | |
| 
 | |
|   // Put larger terms first.
 | |
|   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
 | |
|     return numberOfTerms(LHS) > numberOfTerms(RHS);
 | |
|   });
 | |
| 
 | |
|   // Try to divide all terms by the element size. If term is not divisible by
 | |
|   // element size, proceed with the original term.
 | |
|   for (const SCEV *&Term : Terms) {
 | |
|     const SCEV *Q, *R;
 | |
|     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
 | |
|     if (!Q->isZero())
 | |
|       Term = Q;
 | |
|   }
 | |
| 
 | |
|   SmallVector<const SCEV *, 4> NewTerms;
 | |
| 
 | |
|   // Remove constant factors.
 | |
|   for (const SCEV *T : Terms)
 | |
|     if (const SCEV *NewT = removeConstantFactors(*this, T))
 | |
|       NewTerms.push_back(NewT);
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "Terms after sorting:\n";
 | |
|     for (const SCEV *T : NewTerms)
 | |
|       dbgs() << *T << "\n";
 | |
|   });
 | |
| 
 | |
|   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
 | |
|     Sizes.clear();
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // The last element to be pushed into Sizes is the size of an element.
 | |
|   Sizes.push_back(ElementSize);
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "Sizes:\n";
 | |
|     for (const SCEV *S : Sizes)
 | |
|       dbgs() << *S << "\n";
 | |
|   });
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::computeAccessFunctions(
 | |
|     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
 | |
|     SmallVectorImpl<const SCEV *> &Sizes) {
 | |
|   // Early exit in case this SCEV is not an affine multivariate function.
 | |
|   if (Sizes.empty())
 | |
|     return;
 | |
| 
 | |
|   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
 | |
|     if (!AR->isAffine())
 | |
|       return;
 | |
| 
 | |
|   const SCEV *Res = Expr;
 | |
|   int Last = Sizes.size() - 1;
 | |
|   for (int i = Last; i >= 0; i--) {
 | |
|     const SCEV *Q, *R;
 | |
|     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
 | |
| 
 | |
|     LLVM_DEBUG({
 | |
|       dbgs() << "Res: " << *Res << "\n";
 | |
|       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
 | |
|       dbgs() << "Res divided by Sizes[i]:\n";
 | |
|       dbgs() << "Quotient: " << *Q << "\n";
 | |
|       dbgs() << "Remainder: " << *R << "\n";
 | |
|     });
 | |
| 
 | |
|     Res = Q;
 | |
| 
 | |
|     // Do not record the last subscript corresponding to the size of elements in
 | |
|     // the array.
 | |
|     if (i == Last) {
 | |
| 
 | |
|       // Bail out if the remainder is too complex.
 | |
|       if (isa<SCEVAddRecExpr>(R)) {
 | |
|         Subscripts.clear();
 | |
|         Sizes.clear();
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Record the access function for the current subscript.
 | |
|     Subscripts.push_back(R);
 | |
|   }
 | |
| 
 | |
|   // Also push in last position the remainder of the last division: it will be
 | |
|   // the access function of the innermost dimension.
 | |
|   Subscripts.push_back(Res);
 | |
| 
 | |
|   std::reverse(Subscripts.begin(), Subscripts.end());
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "Subscripts:\n";
 | |
|     for (const SCEV *S : Subscripts)
 | |
|       dbgs() << *S << "\n";
 | |
|   });
 | |
| }
 | |
| 
 | |
| /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
 | |
| /// sizes of an array access. Returns the remainder of the delinearization that
 | |
| /// is the offset start of the array.  The SCEV->delinearize algorithm computes
 | |
| /// the multiples of SCEV coefficients: that is a pattern matching of sub
 | |
| /// expressions in the stride and base of a SCEV corresponding to the
 | |
| /// computation of a GCD (greatest common divisor) of base and stride.  When
 | |
| /// SCEV->delinearize fails, it returns the SCEV unchanged.
 | |
| ///
 | |
| /// For example: when analyzing the memory access A[i][j][k] in this loop nest
 | |
| ///
 | |
| ///  void foo(long n, long m, long o, double A[n][m][o]) {
 | |
| ///
 | |
| ///    for (long i = 0; i < n; i++)
 | |
| ///      for (long j = 0; j < m; j++)
 | |
| ///        for (long k = 0; k < o; k++)
 | |
| ///          A[i][j][k] = 1.0;
 | |
| ///  }
 | |
| ///
 | |
| /// the delinearization input is the following AddRec SCEV:
 | |
| ///
 | |
| ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
 | |
| ///
 | |
| /// From this SCEV, we are able to say that the base offset of the access is %A
 | |
| /// because it appears as an offset that does not divide any of the strides in
 | |
| /// the loops:
 | |
| ///
 | |
| ///  CHECK: Base offset: %A
 | |
| ///
 | |
| /// and then SCEV->delinearize determines the size of some of the dimensions of
 | |
| /// the array as these are the multiples by which the strides are happening:
 | |
| ///
 | |
| ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
 | |
| ///
 | |
| /// Note that the outermost dimension remains of UnknownSize because there are
 | |
| /// no strides that would help identifying the size of the last dimension: when
 | |
| /// the array has been statically allocated, one could compute the size of that
 | |
| /// dimension by dividing the overall size of the array by the size of the known
 | |
| /// dimensions: %m * %o * 8.
 | |
| ///
 | |
| /// Finally delinearize provides the access functions for the array reference
 | |
| /// that does correspond to A[i][j][k] of the above C testcase:
 | |
| ///
 | |
| ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
 | |
| ///
 | |
| /// The testcases are checking the output of a function pass:
 | |
| /// DelinearizationPass that walks through all loads and stores of a function
 | |
| /// asking for the SCEV of the memory access with respect to all enclosing
 | |
| /// loops, calling SCEV->delinearize on that and printing the results.
 | |
| void ScalarEvolution::delinearize(const SCEV *Expr,
 | |
|                                  SmallVectorImpl<const SCEV *> &Subscripts,
 | |
|                                  SmallVectorImpl<const SCEV *> &Sizes,
 | |
|                                  const SCEV *ElementSize) {
 | |
|   // First step: collect parametric terms.
 | |
|   SmallVector<const SCEV *, 4> Terms;
 | |
|   collectParametricTerms(Expr, Terms);
 | |
| 
 | |
|   if (Terms.empty())
 | |
|     return;
 | |
| 
 | |
|   // Second step: find subscript sizes.
 | |
|   findArrayDimensions(Terms, Sizes, ElementSize);
 | |
| 
 | |
|   if (Sizes.empty())
 | |
|     return;
 | |
| 
 | |
|   // Third step: compute the access functions for each subscript.
 | |
|   computeAccessFunctions(Expr, Subscripts, Sizes);
 | |
| 
 | |
|   if (Subscripts.empty())
 | |
|     return;
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "succeeded to delinearize " << *Expr << "\n";
 | |
|     dbgs() << "ArrayDecl[UnknownSize]";
 | |
|     for (const SCEV *S : Sizes)
 | |
|       dbgs() << "[" << *S << "]";
 | |
| 
 | |
|     dbgs() << "\nArrayRef";
 | |
|     for (const SCEV *S : Subscripts)
 | |
|       dbgs() << "[" << *S << "]";
 | |
|     dbgs() << "\n";
 | |
|   });
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::getIndexExpressionsFromGEP(
 | |
|     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
 | |
|     SmallVectorImpl<int> &Sizes) {
 | |
|   assert(Subscripts.empty() && Sizes.empty() &&
 | |
|          "Expected output lists to be empty on entry to this function.");
 | |
|   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
 | |
|   Type *Ty = GEP->getPointerOperandType();
 | |
|   bool DroppedFirstDim = false;
 | |
|   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
 | |
|     const SCEV *Expr = getSCEV(GEP->getOperand(i));
 | |
|     if (i == 1) {
 | |
|       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
 | |
|         Ty = PtrTy->getElementType();
 | |
|       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
 | |
|         Ty = ArrayTy->getElementType();
 | |
|       } else {
 | |
|         Subscripts.clear();
 | |
|         Sizes.clear();
 | |
|         return false;
 | |
|       }
 | |
|       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
 | |
|         if (Const->getValue()->isZero()) {
 | |
|           DroppedFirstDim = true;
 | |
|           continue;
 | |
|         }
 | |
|       Subscripts.push_back(Expr);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
 | |
|     if (!ArrayTy) {
 | |
|       Subscripts.clear();
 | |
|       Sizes.clear();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     Subscripts.push_back(Expr);
 | |
|     if (!(DroppedFirstDim && i == 2))
 | |
|       Sizes.push_back(ArrayTy->getNumElements());
 | |
| 
 | |
|     Ty = ArrayTy->getElementType();
 | |
|   }
 | |
|   return !Subscripts.empty();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   SCEVCallbackVH Class Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void ScalarEvolution::SCEVCallbackVH::deleted() {
 | |
|   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
 | |
|     SE->ConstantEvolutionLoopExitValue.erase(PN);
 | |
|   SE->eraseValueFromMap(getValPtr());
 | |
|   // this now dangles!
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
 | |
|   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
 | |
| 
 | |
|   // Forget all the expressions associated with users of the old value,
 | |
|   // so that future queries will recompute the expressions using the new
 | |
|   // value.
 | |
|   Value *Old = getValPtr();
 | |
|   SmallVector<User *, 16> Worklist(Old->users());
 | |
|   SmallPtrSet<User *, 8> Visited;
 | |
|   while (!Worklist.empty()) {
 | |
|     User *U = Worklist.pop_back_val();
 | |
|     // Deleting the Old value will cause this to dangle. Postpone
 | |
|     // that until everything else is done.
 | |
|     if (U == Old)
 | |
|       continue;
 | |
|     if (!Visited.insert(U).second)
 | |
|       continue;
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(U))
 | |
|       SE->ConstantEvolutionLoopExitValue.erase(PN);
 | |
|     SE->eraseValueFromMap(U);
 | |
|     llvm::append_range(Worklist, U->users());
 | |
|   }
 | |
|   // Delete the Old value.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(Old))
 | |
|     SE->ConstantEvolutionLoopExitValue.erase(PN);
 | |
|   SE->eraseValueFromMap(Old);
 | |
|   // this now dangles!
 | |
| }
 | |
| 
 | |
| ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
 | |
|   : CallbackVH(V), SE(se) {}
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                   ScalarEvolution Class Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
 | |
|                                  AssumptionCache &AC, DominatorTree &DT,
 | |
|                                  LoopInfo &LI)
 | |
|     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
 | |
|       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
 | |
|       LoopDispositions(64), BlockDispositions(64) {
 | |
|   // To use guards for proving predicates, we need to scan every instruction in
 | |
|   // relevant basic blocks, and not just terminators.  Doing this is a waste of
 | |
|   // time if the IR does not actually contain any calls to
 | |
|   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
 | |
|   //
 | |
|   // This pessimizes the case where a pass that preserves ScalarEvolution wants
 | |
|   // to _add_ guards to the module when there weren't any before, and wants
 | |
|   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
 | |
|   // efficient in lieu of being smart in that rather obscure case.
 | |
| 
 | |
|   auto *GuardDecl = F.getParent()->getFunction(
 | |
|       Intrinsic::getName(Intrinsic::experimental_guard));
 | |
|   HasGuards = GuardDecl && !GuardDecl->use_empty();
 | |
| }
 | |
| 
 | |
| ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
 | |
|     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
 | |
|       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
 | |
|       ValueExprMap(std::move(Arg.ValueExprMap)),
 | |
|       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
 | |
|       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
 | |
|       PendingMerges(std::move(Arg.PendingMerges)),
 | |
|       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
 | |
|       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
 | |
|       PredicatedBackedgeTakenCounts(
 | |
|           std::move(Arg.PredicatedBackedgeTakenCounts)),
 | |
|       ConstantEvolutionLoopExitValue(
 | |
|           std::move(Arg.ConstantEvolutionLoopExitValue)),
 | |
|       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
 | |
|       LoopDispositions(std::move(Arg.LoopDispositions)),
 | |
|       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
 | |
|       BlockDispositions(std::move(Arg.BlockDispositions)),
 | |
|       UnsignedRanges(std::move(Arg.UnsignedRanges)),
 | |
|       SignedRanges(std::move(Arg.SignedRanges)),
 | |
|       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
 | |
|       UniquePreds(std::move(Arg.UniquePreds)),
 | |
|       SCEVAllocator(std::move(Arg.SCEVAllocator)),
 | |
|       LoopUsers(std::move(Arg.LoopUsers)),
 | |
|       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
 | |
|       FirstUnknown(Arg.FirstUnknown) {
 | |
|   Arg.FirstUnknown = nullptr;
 | |
| }
 | |
| 
 | |
| ScalarEvolution::~ScalarEvolution() {
 | |
|   // Iterate through all the SCEVUnknown instances and call their
 | |
|   // destructors, so that they release their references to their values.
 | |
|   for (SCEVUnknown *U = FirstUnknown; U;) {
 | |
|     SCEVUnknown *Tmp = U;
 | |
|     U = U->Next;
 | |
|     Tmp->~SCEVUnknown();
 | |
|   }
 | |
|   FirstUnknown = nullptr;
 | |
| 
 | |
|   ExprValueMap.clear();
 | |
|   ValueExprMap.clear();
 | |
|   HasRecMap.clear();
 | |
| 
 | |
|   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
 | |
|   // that a loop had multiple computable exits.
 | |
|   for (auto &BTCI : BackedgeTakenCounts)
 | |
|     BTCI.second.clear();
 | |
|   for (auto &BTCI : PredicatedBackedgeTakenCounts)
 | |
|     BTCI.second.clear();
 | |
| 
 | |
|   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
 | |
|   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
 | |
|   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
 | |
|   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
 | |
|   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
 | |
|   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
 | |
| }
 | |
| 
 | |
| static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
 | |
|                           const Loop *L) {
 | |
|   // Print all inner loops first
 | |
|   for (Loop *I : *L)
 | |
|     PrintLoopInfo(OS, SE, I);
 | |
| 
 | |
|   OS << "Loop ";
 | |
|   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
 | |
|   OS << ": ";
 | |
| 
 | |
|   SmallVector<BasicBlock *, 8> ExitingBlocks;
 | |
|   L->getExitingBlocks(ExitingBlocks);
 | |
|   if (ExitingBlocks.size() != 1)
 | |
|     OS << "<multiple exits> ";
 | |
| 
 | |
|   if (SE->hasLoopInvariantBackedgeTakenCount(L))
 | |
|     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
 | |
|   else
 | |
|     OS << "Unpredictable backedge-taken count.\n";
 | |
| 
 | |
|   if (ExitingBlocks.size() > 1)
 | |
|     for (BasicBlock *ExitingBlock : ExitingBlocks) {
 | |
|       OS << "  exit count for " << ExitingBlock->getName() << ": "
 | |
|          << *SE->getExitCount(L, ExitingBlock) << "\n";
 | |
|     }
 | |
| 
 | |
|   OS << "Loop ";
 | |
|   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
 | |
|   OS << ": ";
 | |
| 
 | |
|   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
 | |
|     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
 | |
|     if (SE->isBackedgeTakenCountMaxOrZero(L))
 | |
|       OS << ", actual taken count either this or zero.";
 | |
|   } else {
 | |
|     OS << "Unpredictable max backedge-taken count. ";
 | |
|   }
 | |
| 
 | |
|   OS << "\n"
 | |
|         "Loop ";
 | |
|   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
 | |
|   OS << ": ";
 | |
| 
 | |
|   SCEVUnionPredicate Pred;
 | |
|   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
 | |
|   if (!isa<SCEVCouldNotCompute>(PBT)) {
 | |
|     OS << "Predicated backedge-taken count is " << *PBT << "\n";
 | |
|     OS << " Predicates:\n";
 | |
|     Pred.print(OS, 4);
 | |
|   } else {
 | |
|     OS << "Unpredictable predicated backedge-taken count. ";
 | |
|   }
 | |
|   OS << "\n";
 | |
| 
 | |
|   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
 | |
|     OS << "Loop ";
 | |
|     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
 | |
|     OS << ": ";
 | |
|     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
 | |
|   }
 | |
| }
 | |
| 
 | |
| static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
 | |
|   switch (LD) {
 | |
|   case ScalarEvolution::LoopVariant:
 | |
|     return "Variant";
 | |
|   case ScalarEvolution::LoopInvariant:
 | |
|     return "Invariant";
 | |
|   case ScalarEvolution::LoopComputable:
 | |
|     return "Computable";
 | |
|   }
 | |
|   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::print(raw_ostream &OS) const {
 | |
|   // ScalarEvolution's implementation of the print method is to print
 | |
|   // out SCEV values of all instructions that are interesting. Doing
 | |
|   // this potentially causes it to create new SCEV objects though,
 | |
|   // which technically conflicts with the const qualifier. This isn't
 | |
|   // observable from outside the class though, so casting away the
 | |
|   // const isn't dangerous.
 | |
|   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
 | |
| 
 | |
|   if (ClassifyExpressions) {
 | |
|     OS << "Classifying expressions for: ";
 | |
|     F.printAsOperand(OS, /*PrintType=*/false);
 | |
|     OS << "\n";
 | |
|     for (Instruction &I : instructions(F))
 | |
|       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
 | |
|         OS << I << '\n';
 | |
|         OS << "  -->  ";
 | |
|         const SCEV *SV = SE.getSCEV(&I);
 | |
|         SV->print(OS);
 | |
|         if (!isa<SCEVCouldNotCompute>(SV)) {
 | |
|           OS << " U: ";
 | |
|           SE.getUnsignedRange(SV).print(OS);
 | |
|           OS << " S: ";
 | |
|           SE.getSignedRange(SV).print(OS);
 | |
|         }
 | |
| 
 | |
|         const Loop *L = LI.getLoopFor(I.getParent());
 | |
| 
 | |
|         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
 | |
|         if (AtUse != SV) {
 | |
|           OS << "  -->  ";
 | |
|           AtUse->print(OS);
 | |
|           if (!isa<SCEVCouldNotCompute>(AtUse)) {
 | |
|             OS << " U: ";
 | |
|             SE.getUnsignedRange(AtUse).print(OS);
 | |
|             OS << " S: ";
 | |
|             SE.getSignedRange(AtUse).print(OS);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         if (L) {
 | |
|           OS << "\t\t" "Exits: ";
 | |
|           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
 | |
|           if (!SE.isLoopInvariant(ExitValue, L)) {
 | |
|             OS << "<<Unknown>>";
 | |
|           } else {
 | |
|             OS << *ExitValue;
 | |
|           }
 | |
| 
 | |
|           bool First = true;
 | |
|           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
 | |
|             if (First) {
 | |
|               OS << "\t\t" "LoopDispositions: { ";
 | |
|               First = false;
 | |
|             } else {
 | |
|               OS << ", ";
 | |
|             }
 | |
| 
 | |
|             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
 | |
|             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
 | |
|           }
 | |
| 
 | |
|           for (auto *InnerL : depth_first(L)) {
 | |
|             if (InnerL == L)
 | |
|               continue;
 | |
|             if (First) {
 | |
|               OS << "\t\t" "LoopDispositions: { ";
 | |
|               First = false;
 | |
|             } else {
 | |
|               OS << ", ";
 | |
|             }
 | |
| 
 | |
|             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
 | |
|             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
 | |
|           }
 | |
| 
 | |
|           OS << " }";
 | |
|         }
 | |
| 
 | |
|         OS << "\n";
 | |
|       }
 | |
|   }
 | |
| 
 | |
|   OS << "Determining loop execution counts for: ";
 | |
|   F.printAsOperand(OS, /*PrintType=*/false);
 | |
|   OS << "\n";
 | |
|   for (Loop *I : LI)
 | |
|     PrintLoopInfo(OS, &SE, I);
 | |
| }
 | |
| 
 | |
| ScalarEvolution::LoopDisposition
 | |
| ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
 | |
|   auto &Values = LoopDispositions[S];
 | |
|   for (auto &V : Values) {
 | |
|     if (V.getPointer() == L)
 | |
|       return V.getInt();
 | |
|   }
 | |
|   Values.emplace_back(L, LoopVariant);
 | |
|   LoopDisposition D = computeLoopDisposition(S, L);
 | |
|   auto &Values2 = LoopDispositions[S];
 | |
|   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
 | |
|     if (V.getPointer() == L) {
 | |
|       V.setInt(D);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return D;
 | |
| }
 | |
| 
 | |
| ScalarEvolution::LoopDisposition
 | |
| ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
 | |
|   switch (S->getSCEVType()) {
 | |
|   case scConstant:
 | |
|     return LoopInvariant;
 | |
|   case scPtrToInt:
 | |
|   case scTruncate:
 | |
|   case scZeroExtend:
 | |
|   case scSignExtend:
 | |
|     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
 | |
|   case scAddRecExpr: {
 | |
|     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
 | |
| 
 | |
|     // If L is the addrec's loop, it's computable.
 | |
|     if (AR->getLoop() == L)
 | |
|       return LoopComputable;
 | |
| 
 | |
|     // Add recurrences are never invariant in the function-body (null loop).
 | |
|     if (!L)
 | |
|       return LoopVariant;
 | |
| 
 | |
|     // Everything that is not defined at loop entry is variant.
 | |
|     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
 | |
|       return LoopVariant;
 | |
|     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
 | |
|            " dominate the contained loop's header?");
 | |
| 
 | |
|     // This recurrence is invariant w.r.t. L if AR's loop contains L.
 | |
|     if (AR->getLoop()->contains(L))
 | |
|       return LoopInvariant;
 | |
| 
 | |
|     // This recurrence is variant w.r.t. L if any of its operands
 | |
|     // are variant.
 | |
|     for (auto *Op : AR->operands())
 | |
|       if (!isLoopInvariant(Op, L))
 | |
|         return LoopVariant;
 | |
| 
 | |
|     // Otherwise it's loop-invariant.
 | |
|     return LoopInvariant;
 | |
|   }
 | |
|   case scAddExpr:
 | |
|   case scMulExpr:
 | |
|   case scUMaxExpr:
 | |
|   case scSMaxExpr:
 | |
|   case scUMinExpr:
 | |
|   case scSMinExpr: {
 | |
|     bool HasVarying = false;
 | |
|     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
 | |
|       LoopDisposition D = getLoopDisposition(Op, L);
 | |
|       if (D == LoopVariant)
 | |
|         return LoopVariant;
 | |
|       if (D == LoopComputable)
 | |
|         HasVarying = true;
 | |
|     }
 | |
|     return HasVarying ? LoopComputable : LoopInvariant;
 | |
|   }
 | |
|   case scUDivExpr: {
 | |
|     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
 | |
|     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
 | |
|     if (LD == LoopVariant)
 | |
|       return LoopVariant;
 | |
|     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
 | |
|     if (RD == LoopVariant)
 | |
|       return LoopVariant;
 | |
|     return (LD == LoopInvariant && RD == LoopInvariant) ?
 | |
|            LoopInvariant : LoopComputable;
 | |
|   }
 | |
|   case scUnknown:
 | |
|     // All non-instruction values are loop invariant.  All instructions are loop
 | |
|     // invariant if they are not contained in the specified loop.
 | |
|     // Instructions are never considered invariant in the function body
 | |
|     // (null loop) because they are defined within the "loop".
 | |
|     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
 | |
|       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
 | |
|     return LoopInvariant;
 | |
|   case scCouldNotCompute:
 | |
|     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 | |
|   }
 | |
|   llvm_unreachable("Unknown SCEV kind!");
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
 | |
|   return getLoopDisposition(S, L) == LoopInvariant;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
 | |
|   return getLoopDisposition(S, L) == LoopComputable;
 | |
| }
 | |
| 
 | |
| ScalarEvolution::BlockDisposition
 | |
| ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
 | |
|   auto &Values = BlockDispositions[S];
 | |
|   for (auto &V : Values) {
 | |
|     if (V.getPointer() == BB)
 | |
|       return V.getInt();
 | |
|   }
 | |
|   Values.emplace_back(BB, DoesNotDominateBlock);
 | |
|   BlockDisposition D = computeBlockDisposition(S, BB);
 | |
|   auto &Values2 = BlockDispositions[S];
 | |
|   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
 | |
|     if (V.getPointer() == BB) {
 | |
|       V.setInt(D);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return D;
 | |
| }
 | |
| 
 | |
| ScalarEvolution::BlockDisposition
 | |
| ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
 | |
|   switch (S->getSCEVType()) {
 | |
|   case scConstant:
 | |
|     return ProperlyDominatesBlock;
 | |
|   case scPtrToInt:
 | |
|   case scTruncate:
 | |
|   case scZeroExtend:
 | |
|   case scSignExtend:
 | |
|     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
 | |
|   case scAddRecExpr: {
 | |
|     // This uses a "dominates" query instead of "properly dominates" query
 | |
|     // to test for proper dominance too, because the instruction which
 | |
|     // produces the addrec's value is a PHI, and a PHI effectively properly
 | |
|     // dominates its entire containing block.
 | |
|     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
 | |
|     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
 | |
|       return DoesNotDominateBlock;
 | |
| 
 | |
|     // Fall through into SCEVNAryExpr handling.
 | |
|     LLVM_FALLTHROUGH;
 | |
|   }
 | |
|   case scAddExpr:
 | |
|   case scMulExpr:
 | |
|   case scUMaxExpr:
 | |
|   case scSMaxExpr:
 | |
|   case scUMinExpr:
 | |
|   case scSMinExpr: {
 | |
|     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
 | |
|     bool Proper = true;
 | |
|     for (const SCEV *NAryOp : NAry->operands()) {
 | |
|       BlockDisposition D = getBlockDisposition(NAryOp, BB);
 | |
|       if (D == DoesNotDominateBlock)
 | |
|         return DoesNotDominateBlock;
 | |
|       if (D == DominatesBlock)
 | |
|         Proper = false;
 | |
|     }
 | |
|     return Proper ? ProperlyDominatesBlock : DominatesBlock;
 | |
|   }
 | |
|   case scUDivExpr: {
 | |
|     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
 | |
|     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
 | |
|     BlockDisposition LD = getBlockDisposition(LHS, BB);
 | |
|     if (LD == DoesNotDominateBlock)
 | |
|       return DoesNotDominateBlock;
 | |
|     BlockDisposition RD = getBlockDisposition(RHS, BB);
 | |
|     if (RD == DoesNotDominateBlock)
 | |
|       return DoesNotDominateBlock;
 | |
|     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
 | |
|       ProperlyDominatesBlock : DominatesBlock;
 | |
|   }
 | |
|   case scUnknown:
 | |
|     if (Instruction *I =
 | |
|           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
 | |
|       if (I->getParent() == BB)
 | |
|         return DominatesBlock;
 | |
|       if (DT.properlyDominates(I->getParent(), BB))
 | |
|         return ProperlyDominatesBlock;
 | |
|       return DoesNotDominateBlock;
 | |
|     }
 | |
|     return ProperlyDominatesBlock;
 | |
|   case scCouldNotCompute:
 | |
|     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
 | |
|   }
 | |
|   llvm_unreachable("Unknown SCEV kind!");
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
 | |
|   return getBlockDisposition(S, BB) >= DominatesBlock;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
 | |
|   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
 | |
|   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
 | |
|   auto IsS = [&](const SCEV *X) { return S == X; };
 | |
|   auto ContainsS = [&](const SCEV *X) {
 | |
|     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
 | |
|   };
 | |
|   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
 | |
| }
 | |
| 
 | |
| void
 | |
| ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
 | |
|   ValuesAtScopes.erase(S);
 | |
|   LoopDispositions.erase(S);
 | |
|   BlockDispositions.erase(S);
 | |
|   UnsignedRanges.erase(S);
 | |
|   SignedRanges.erase(S);
 | |
|   ExprValueMap.erase(S);
 | |
|   HasRecMap.erase(S);
 | |
|   MinTrailingZerosCache.erase(S);
 | |
| 
 | |
|   for (auto I = PredicatedSCEVRewrites.begin();
 | |
|        I != PredicatedSCEVRewrites.end();) {
 | |
|     std::pair<const SCEV *, const Loop *> Entry = I->first;
 | |
|     if (Entry.first == S)
 | |
|       PredicatedSCEVRewrites.erase(I++);
 | |
|     else
 | |
|       ++I;
 | |
|   }
 | |
| 
 | |
|   auto RemoveSCEVFromBackedgeMap =
 | |
|       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
 | |
|         for (auto I = Map.begin(), E = Map.end(); I != E;) {
 | |
|           BackedgeTakenInfo &BEInfo = I->second;
 | |
|           if (BEInfo.hasOperand(S, this)) {
 | |
|             BEInfo.clear();
 | |
|             Map.erase(I++);
 | |
|           } else
 | |
|             ++I;
 | |
|         }
 | |
|       };
 | |
| 
 | |
|   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
 | |
|   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
 | |
| }
 | |
| 
 | |
| void
 | |
| ScalarEvolution::getUsedLoops(const SCEV *S,
 | |
|                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
 | |
|   struct FindUsedLoops {
 | |
|     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
 | |
|         : LoopsUsed(LoopsUsed) {}
 | |
|     SmallPtrSetImpl<const Loop *> &LoopsUsed;
 | |
|     bool follow(const SCEV *S) {
 | |
|       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
 | |
|         LoopsUsed.insert(AR->getLoop());
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     bool isDone() const { return false; }
 | |
|   };
 | |
| 
 | |
|   FindUsedLoops F(LoopsUsed);
 | |
|   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
 | |
|   SmallPtrSet<const Loop *, 8> LoopsUsed;
 | |
|   getUsedLoops(S, LoopsUsed);
 | |
|   for (auto *L : LoopsUsed)
 | |
|     LoopUsers[L].push_back(S);
 | |
| }
 | |
| 
 | |
| void ScalarEvolution::verify() const {
 | |
|   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
 | |
|   ScalarEvolution SE2(F, TLI, AC, DT, LI);
 | |
| 
 | |
|   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
 | |
| 
 | |
|   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
 | |
|   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
 | |
|     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
 | |
| 
 | |
|     const SCEV *visitConstant(const SCEVConstant *Constant) {
 | |
|       return SE.getConstant(Constant->getAPInt());
 | |
|     }
 | |
| 
 | |
|     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
 | |
|       return SE.getUnknown(Expr->getValue());
 | |
|     }
 | |
| 
 | |
|     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
 | |
|       return SE.getCouldNotCompute();
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   SCEVMapper SCM(SE2);
 | |
| 
 | |
|   while (!LoopStack.empty()) {
 | |
|     auto *L = LoopStack.pop_back_val();
 | |
|     llvm::append_range(LoopStack, *L);
 | |
| 
 | |
|     auto *CurBECount = SCM.visit(
 | |
|         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
 | |
|     auto *NewBECount = SE2.getBackedgeTakenCount(L);
 | |
| 
 | |
|     if (CurBECount == SE2.getCouldNotCompute() ||
 | |
|         NewBECount == SE2.getCouldNotCompute()) {
 | |
|       // NB! This situation is legal, but is very suspicious -- whatever pass
 | |
|       // change the loop to make a trip count go from could not compute to
 | |
|       // computable or vice-versa *should have* invalidated SCEV.  However, we
 | |
|       // choose not to assert here (for now) since we don't want false
 | |
|       // positives.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
 | |
|       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
 | |
|       // not propagate undef aggressively).  This means we can (and do) fail
 | |
|       // verification in cases where a transform makes the trip count of a loop
 | |
|       // go from "undef" to "undef+1" (say).  The transform is fine, since in
 | |
|       // both cases the loop iterates "undef" times, but SCEV thinks we
 | |
|       // increased the trip count of the loop by 1 incorrectly.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (SE.getTypeSizeInBits(CurBECount->getType()) >
 | |
|         SE.getTypeSizeInBits(NewBECount->getType()))
 | |
|       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
 | |
|     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
 | |
|              SE.getTypeSizeInBits(NewBECount->getType()))
 | |
|       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
 | |
| 
 | |
|     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
 | |
| 
 | |
|     // Unless VerifySCEVStrict is set, we only compare constant deltas.
 | |
|     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
 | |
|       dbgs() << "Trip Count for " << *L << " Changed!\n";
 | |
|       dbgs() << "Old: " << *CurBECount << "\n";
 | |
|       dbgs() << "New: " << *NewBECount << "\n";
 | |
|       dbgs() << "Delta: " << *Delta << "\n";
 | |
|       std::abort();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Collect all valid loops currently in LoopInfo.
 | |
|   SmallPtrSet<Loop *, 32> ValidLoops;
 | |
|   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
 | |
|   while (!Worklist.empty()) {
 | |
|     Loop *L = Worklist.pop_back_val();
 | |
|     if (ValidLoops.contains(L))
 | |
|       continue;
 | |
|     ValidLoops.insert(L);
 | |
|     Worklist.append(L->begin(), L->end());
 | |
|   }
 | |
|   // Check for SCEV expressions referencing invalid/deleted loops.
 | |
|   for (auto &KV : ValueExprMap) {
 | |
|     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
 | |
|     if (!AR)
 | |
|       continue;
 | |
|     assert(ValidLoops.contains(AR->getLoop()) &&
 | |
|            "AddRec references invalid loop");
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool ScalarEvolution::invalidate(
 | |
|     Function &F, const PreservedAnalyses &PA,
 | |
|     FunctionAnalysisManager::Invalidator &Inv) {
 | |
|   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
 | |
|   // of its dependencies is invalidated.
 | |
|   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
 | |
|   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
 | |
|          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
 | |
|          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
 | |
|          Inv.invalidate<LoopAnalysis>(F, PA);
 | |
| }
 | |
| 
 | |
| AnalysisKey ScalarEvolutionAnalysis::Key;
 | |
| 
 | |
| ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
 | |
|                                              FunctionAnalysisManager &AM) {
 | |
|   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
 | |
|                          AM.getResult<AssumptionAnalysis>(F),
 | |
|                          AM.getResult<DominatorTreeAnalysis>(F),
 | |
|                          AM.getResult<LoopAnalysis>(F));
 | |
| }
 | |
| 
 | |
| PreservedAnalyses
 | |
| ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| PreservedAnalyses
 | |
| ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
 | |
|   // For compatibility with opt's -analyze feature under legacy pass manager
 | |
|   // which was not ported to NPM. This keeps tests using
 | |
|   // update_analyze_test_checks.py working.
 | |
|   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
 | |
|      << F.getName() << "':\n";
 | |
|   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
 | |
|                       "Scalar Evolution Analysis", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | |
| INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
 | |
|                     "Scalar Evolution Analysis", false, true)
 | |
| 
 | |
| char ScalarEvolutionWrapperPass::ID = 0;
 | |
| 
 | |
| ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
 | |
|   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
 | |
|   SE.reset(new ScalarEvolution(
 | |
|       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
 | |
|       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
 | |
|       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
 | |
|       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
 | |
| 
 | |
| void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
 | |
|   SE->print(OS);
 | |
| }
 | |
| 
 | |
| void ScalarEvolutionWrapperPass::verifyAnalysis() const {
 | |
|   if (!VerifySCEV)
 | |
|     return;
 | |
| 
 | |
|   SE->verify();
 | |
| }
 | |
| 
 | |
| void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
|   AU.addRequiredTransitive<AssumptionCacheTracker>();
 | |
|   AU.addRequiredTransitive<LoopInfoWrapperPass>();
 | |
|   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
 | |
|   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
 | |
| }
 | |
| 
 | |
| const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
 | |
|                                                         const SCEV *RHS) {
 | |
|   FoldingSetNodeID ID;
 | |
|   assert(LHS->getType() == RHS->getType() &&
 | |
|          "Type mismatch between LHS and RHS");
 | |
|   // Unique this node based on the arguments
 | |
|   ID.AddInteger(SCEVPredicate::P_Equal);
 | |
|   ID.AddPointer(LHS);
 | |
|   ID.AddPointer(RHS);
 | |
|   void *IP = nullptr;
 | |
|   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
 | |
|     return S;
 | |
|   SCEVEqualPredicate *Eq = new (SCEVAllocator)
 | |
|       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
 | |
|   UniquePreds.InsertNode(Eq, IP);
 | |
|   return Eq;
 | |
| }
 | |
| 
 | |
| const SCEVPredicate *ScalarEvolution::getWrapPredicate(
 | |
|     const SCEVAddRecExpr *AR,
 | |
|     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
 | |
|   FoldingSetNodeID ID;
 | |
|   // Unique this node based on the arguments
 | |
|   ID.AddInteger(SCEVPredicate::P_Wrap);
 | |
|   ID.AddPointer(AR);
 | |
|   ID.AddInteger(AddedFlags);
 | |
|   void *IP = nullptr;
 | |
|   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
 | |
|     return S;
 | |
|   auto *OF = new (SCEVAllocator)
 | |
|       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
 | |
|   UniquePreds.InsertNode(OF, IP);
 | |
|   return OF;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
 | |
| public:
 | |
| 
 | |
|   /// Rewrites \p S in the context of a loop L and the SCEV predication
 | |
|   /// infrastructure.
 | |
|   ///
 | |
|   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
 | |
|   /// equivalences present in \p Pred.
 | |
|   ///
 | |
|   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
 | |
|   /// \p NewPreds such that the result will be an AddRecExpr.
 | |
|   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
 | |
|                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
 | |
|                              SCEVUnionPredicate *Pred) {
 | |
|     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
 | |
|     return Rewriter.visit(S);
 | |
|   }
 | |
| 
 | |
|   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
 | |
|     if (Pred) {
 | |
|       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
 | |
|       for (auto *Pred : ExprPreds)
 | |
|         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
 | |
|           if (IPred->getLHS() == Expr)
 | |
|             return IPred->getRHS();
 | |
|     }
 | |
|     return convertToAddRecWithPreds(Expr);
 | |
|   }
 | |
| 
 | |
|   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
 | |
|     const SCEV *Operand = visit(Expr->getOperand());
 | |
|     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
 | |
|     if (AR && AR->getLoop() == L && AR->isAffine()) {
 | |
|       // This couldn't be folded because the operand didn't have the nuw
 | |
|       // flag. Add the nusw flag as an assumption that we could make.
 | |
|       const SCEV *Step = AR->getStepRecurrence(SE);
 | |
|       Type *Ty = Expr->getType();
 | |
|       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
 | |
|         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
 | |
|                                 SE.getSignExtendExpr(Step, Ty), L,
 | |
|                                 AR->getNoWrapFlags());
 | |
|     }
 | |
|     return SE.getZeroExtendExpr(Operand, Expr->getType());
 | |
|   }
 | |
| 
 | |
|   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
 | |
|     const SCEV *Operand = visit(Expr->getOperand());
 | |
|     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
 | |
|     if (AR && AR->getLoop() == L && AR->isAffine()) {
 | |
|       // This couldn't be folded because the operand didn't have the nsw
 | |
|       // flag. Add the nssw flag as an assumption that we could make.
 | |
|       const SCEV *Step = AR->getStepRecurrence(SE);
 | |
|       Type *Ty = Expr->getType();
 | |
|       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
 | |
|         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
 | |
|                                 SE.getSignExtendExpr(Step, Ty), L,
 | |
|                                 AR->getNoWrapFlags());
 | |
|     }
 | |
|     return SE.getSignExtendExpr(Operand, Expr->getType());
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
 | |
|                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
 | |
|                         SCEVUnionPredicate *Pred)
 | |
|       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
 | |
| 
 | |
|   bool addOverflowAssumption(const SCEVPredicate *P) {
 | |
|     if (!NewPreds) {
 | |
|       // Check if we've already made this assumption.
 | |
|       return Pred && Pred->implies(P);
 | |
|     }
 | |
|     NewPreds->insert(P);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
 | |
|                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
 | |
|     auto *A = SE.getWrapPredicate(AR, AddedFlags);
 | |
|     return addOverflowAssumption(A);
 | |
|   }
 | |
| 
 | |
|   // If \p Expr represents a PHINode, we try to see if it can be represented
 | |
|   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
 | |
|   // to add this predicate as a runtime overflow check, we return the AddRec.
 | |
|   // If \p Expr does not meet these conditions (is not a PHI node, or we
 | |
|   // couldn't create an AddRec for it, or couldn't add the predicate), we just
 | |
|   // return \p Expr.
 | |
|   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
 | |
|     if (!isa<PHINode>(Expr->getValue()))
 | |
|       return Expr;
 | |
|     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
 | |
|     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
 | |
|     if (!PredicatedRewrite)
 | |
|       return Expr;
 | |
|     for (auto *P : PredicatedRewrite->second){
 | |
|       // Wrap predicates from outer loops are not supported.
 | |
|       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
 | |
|         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
 | |
|         if (L != AR->getLoop())
 | |
|           return Expr;
 | |
|       }
 | |
|       if (!addOverflowAssumption(P))
 | |
|         return Expr;
 | |
|     }
 | |
|     return PredicatedRewrite->first;
 | |
|   }
 | |
| 
 | |
|   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
 | |
|   SCEVUnionPredicate *Pred;
 | |
|   const Loop *L;
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
 | |
|                                                    SCEVUnionPredicate &Preds) {
 | |
|   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
 | |
| }
 | |
| 
 | |
| const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
 | |
|     const SCEV *S, const Loop *L,
 | |
|     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
 | |
|   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
 | |
|   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
 | |
|   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
 | |
| 
 | |
|   if (!AddRec)
 | |
|     return nullptr;
 | |
| 
 | |
|   // Since the transformation was successful, we can now transfer the SCEV
 | |
|   // predicates.
 | |
|   for (auto *P : TransformPreds)
 | |
|     Preds.insert(P);
 | |
| 
 | |
|   return AddRec;
 | |
| }
 | |
| 
 | |
| /// SCEV predicates
 | |
| SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
 | |
|                              SCEVPredicateKind Kind)
 | |
|     : FastID(ID), Kind(Kind) {}
 | |
| 
 | |
| SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
 | |
|                                        const SCEV *LHS, const SCEV *RHS)
 | |
|     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
 | |
|   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
 | |
|   assert(LHS != RHS && "LHS and RHS are the same SCEV");
 | |
| }
 | |
| 
 | |
| bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
 | |
|   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
 | |
| 
 | |
|   if (!Op)
 | |
|     return false;
 | |
| 
 | |
|   return Op->LHS == LHS && Op->RHS == RHS;
 | |
| }
 | |
| 
 | |
| bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
 | |
| 
 | |
| const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
 | |
| 
 | |
| void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
 | |
|   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
 | |
| }
 | |
| 
 | |
| SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
 | |
|                                      const SCEVAddRecExpr *AR,
 | |
|                                      IncrementWrapFlags Flags)
 | |
|     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
 | |
| 
 | |
| const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
 | |
| 
 | |
| bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
 | |
|   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
 | |
| 
 | |
|   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
 | |
| }
 | |
| 
 | |
| bool SCEVWrapPredicate::isAlwaysTrue() const {
 | |
|   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
 | |
|   IncrementWrapFlags IFlags = Flags;
 | |
| 
 | |
|   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
 | |
|     IFlags = clearFlags(IFlags, IncrementNSSW);
 | |
| 
 | |
|   return IFlags == IncrementAnyWrap;
 | |
| }
 | |
| 
 | |
| void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
 | |
|   OS.indent(Depth) << *getExpr() << " Added Flags: ";
 | |
|   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
 | |
|     OS << "<nusw>";
 | |
|   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
 | |
|     OS << "<nssw>";
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| SCEVWrapPredicate::IncrementWrapFlags
 | |
| SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
 | |
|                                    ScalarEvolution &SE) {
 | |
|   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
 | |
|   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
 | |
| 
 | |
|   // We can safely transfer the NSW flag as NSSW.
 | |
|   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
 | |
|     ImpliedFlags = IncrementNSSW;
 | |
| 
 | |
|   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
 | |
|     // If the increment is positive, the SCEV NUW flag will also imply the
 | |
|     // WrapPredicate NUSW flag.
 | |
|     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
 | |
|       if (Step->getValue()->getValue().isNonNegative())
 | |
|         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
 | |
|   }
 | |
| 
 | |
|   return ImpliedFlags;
 | |
| }
 | |
| 
 | |
| /// Union predicates don't get cached so create a dummy set ID for it.
 | |
| SCEVUnionPredicate::SCEVUnionPredicate()
 | |
|     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
 | |
| 
 | |
| bool SCEVUnionPredicate::isAlwaysTrue() const {
 | |
|   return all_of(Preds,
 | |
|                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
 | |
| }
 | |
| 
 | |
| ArrayRef<const SCEVPredicate *>
 | |
| SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
 | |
|   auto I = SCEVToPreds.find(Expr);
 | |
|   if (I == SCEVToPreds.end())
 | |
|     return ArrayRef<const SCEVPredicate *>();
 | |
|   return I->second;
 | |
| }
 | |
| 
 | |
| bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
 | |
|   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
 | |
|     return all_of(Set->Preds,
 | |
|                   [this](const SCEVPredicate *I) { return this->implies(I); });
 | |
| 
 | |
|   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
 | |
|   if (ScevPredsIt == SCEVToPreds.end())
 | |
|     return false;
 | |
|   auto &SCEVPreds = ScevPredsIt->second;
 | |
| 
 | |
|   return any_of(SCEVPreds,
 | |
|                 [N](const SCEVPredicate *I) { return I->implies(N); });
 | |
| }
 | |
| 
 | |
| const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
 | |
| 
 | |
| void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
 | |
|   for (auto Pred : Preds)
 | |
|     Pred->print(OS, Depth);
 | |
| }
 | |
| 
 | |
| void SCEVUnionPredicate::add(const SCEVPredicate *N) {
 | |
|   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
 | |
|     for (auto Pred : Set->Preds)
 | |
|       add(Pred);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   if (implies(N))
 | |
|     return;
 | |
| 
 | |
|   const SCEV *Key = N->getExpr();
 | |
|   assert(Key && "Only SCEVUnionPredicate doesn't have an "
 | |
|                 " associated expression!");
 | |
| 
 | |
|   SCEVToPreds[Key].push_back(N);
 | |
|   Preds.push_back(N);
 | |
| }
 | |
| 
 | |
| PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
 | |
|                                                      Loop &L)
 | |
|     : SE(SE), L(L) {}
 | |
| 
 | |
| const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
 | |
|   const SCEV *Expr = SE.getSCEV(V);
 | |
|   RewriteEntry &Entry = RewriteMap[Expr];
 | |
| 
 | |
|   // If we already have an entry and the version matches, return it.
 | |
|   if (Entry.second && Generation == Entry.first)
 | |
|     return Entry.second;
 | |
| 
 | |
|   // We found an entry but it's stale. Rewrite the stale entry
 | |
|   // according to the current predicate.
 | |
|   if (Entry.second)
 | |
|     Expr = Entry.second;
 | |
| 
 | |
|   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
 | |
|   Entry = {Generation, NewSCEV};
 | |
| 
 | |
|   return NewSCEV;
 | |
| }
 | |
| 
 | |
| const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
 | |
|   if (!BackedgeCount) {
 | |
|     SCEVUnionPredicate BackedgePred;
 | |
|     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
 | |
|     addPredicate(BackedgePred);
 | |
|   }
 | |
|   return BackedgeCount;
 | |
| }
 | |
| 
 | |
| void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
 | |
|   if (Preds.implies(&Pred))
 | |
|     return;
 | |
|   Preds.add(&Pred);
 | |
|   updateGeneration();
 | |
| }
 | |
| 
 | |
| const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
 | |
|   return Preds;
 | |
| }
 | |
| 
 | |
| void PredicatedScalarEvolution::updateGeneration() {
 | |
|   // If the generation number wrapped recompute everything.
 | |
|   if (++Generation == 0) {
 | |
|     for (auto &II : RewriteMap) {
 | |
|       const SCEV *Rewritten = II.second.second;
 | |
|       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void PredicatedScalarEvolution::setNoOverflow(
 | |
|     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
 | |
|   const SCEV *Expr = getSCEV(V);
 | |
|   const auto *AR = cast<SCEVAddRecExpr>(Expr);
 | |
| 
 | |
|   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
 | |
| 
 | |
|   // Clear the statically implied flags.
 | |
|   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
 | |
|   addPredicate(*SE.getWrapPredicate(AR, Flags));
 | |
| 
 | |
|   auto II = FlagsMap.insert({V, Flags});
 | |
|   if (!II.second)
 | |
|     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
 | |
| }
 | |
| 
 | |
| bool PredicatedScalarEvolution::hasNoOverflow(
 | |
|     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
 | |
|   const SCEV *Expr = getSCEV(V);
 | |
|   const auto *AR = cast<SCEVAddRecExpr>(Expr);
 | |
| 
 | |
|   Flags = SCEVWrapPredicate::clearFlags(
 | |
|       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
 | |
| 
 | |
|   auto II = FlagsMap.find(V);
 | |
| 
 | |
|   if (II != FlagsMap.end())
 | |
|     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
 | |
| 
 | |
|   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
 | |
| }
 | |
| 
 | |
| const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
 | |
|   const SCEV *Expr = this->getSCEV(V);
 | |
|   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
 | |
|   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
 | |
| 
 | |
|   if (!New)
 | |
|     return nullptr;
 | |
| 
 | |
|   for (auto *P : NewPreds)
 | |
|     Preds.add(P);
 | |
| 
 | |
|   updateGeneration();
 | |
|   RewriteMap[SE.getSCEV(V)] = {Generation, New};
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| PredicatedScalarEvolution::PredicatedScalarEvolution(
 | |
|     const PredicatedScalarEvolution &Init)
 | |
|     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
 | |
|       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
 | |
|   for (auto I : Init.FlagsMap)
 | |
|     FlagsMap.insert(I);
 | |
| }
 | |
| 
 | |
| void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
 | |
|   // For each block.
 | |
|   for (auto *BB : L.getBlocks())
 | |
|     for (auto &I : *BB) {
 | |
|       if (!SE.isSCEVable(I.getType()))
 | |
|         continue;
 | |
| 
 | |
|       auto *Expr = SE.getSCEV(&I);
 | |
|       auto II = RewriteMap.find(Expr);
 | |
| 
 | |
|       if (II == RewriteMap.end())
 | |
|         continue;
 | |
| 
 | |
|       // Don't print things that are not interesting.
 | |
|       if (II->second.second == Expr)
 | |
|         continue;
 | |
| 
 | |
|       OS.indent(Depth) << "[PSE]" << I << ":\n";
 | |
|       OS.indent(Depth + 2) << *Expr << "\n";
 | |
|       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Match the mathematical pattern A - (A / B) * B, where A and B can be
 | |
| // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
 | |
| // for URem with constant power-of-2 second operands.
 | |
| // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
 | |
| // 4, A / B becomes X / 8).
 | |
| bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
 | |
|                                 const SCEV *&RHS) {
 | |
|   // Try to match 'zext (trunc A to iB) to iY', which is used
 | |
|   // for URem with constant power-of-2 second operands. Make sure the size of
 | |
|   // the operand A matches the size of the whole expressions.
 | |
|   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
 | |
|     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
 | |
|       LHS = Trunc->getOperand();
 | |
|       if (LHS->getType() != Expr->getType())
 | |
|         LHS = getZeroExtendExpr(LHS, Expr->getType());
 | |
|       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
 | |
|                         << getTypeSizeInBits(Trunc->getType()));
 | |
|       return true;
 | |
|     }
 | |
|   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
 | |
|   if (Add == nullptr || Add->getNumOperands() != 2)
 | |
|     return false;
 | |
| 
 | |
|   const SCEV *A = Add->getOperand(1);
 | |
|   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
 | |
| 
 | |
|   if (Mul == nullptr)
 | |
|     return false;
 | |
| 
 | |
|   const auto MatchURemWithDivisor = [&](const SCEV *B) {
 | |
|     // (SomeExpr + (-(SomeExpr / B) * B)).
 | |
|     if (Expr == getURemExpr(A, B)) {
 | |
|       LHS = A;
 | |
|       RHS = B;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
 | |
|   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
 | |
|     return MatchURemWithDivisor(Mul->getOperand(1)) ||
 | |
|            MatchURemWithDivisor(Mul->getOperand(2));
 | |
| 
 | |
|   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
 | |
|   if (Mul->getNumOperands() == 2)
 | |
|     return MatchURemWithDivisor(Mul->getOperand(1)) ||
 | |
|            MatchURemWithDivisor(Mul->getOperand(0)) ||
 | |
|            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
 | |
|            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| const SCEV *
 | |
| ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
 | |
|   SmallVector<BasicBlock*, 16> ExitingBlocks;
 | |
|   L->getExitingBlocks(ExitingBlocks);
 | |
| 
 | |
|   // Form an expression for the maximum exit count possible for this loop. We
 | |
|   // merge the max and exact information to approximate a version of
 | |
|   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
 | |
|   SmallVector<const SCEV*, 4> ExitCounts;
 | |
|   for (BasicBlock *ExitingBB : ExitingBlocks) {
 | |
|     const SCEV *ExitCount = getExitCount(L, ExitingBB);
 | |
|     if (isa<SCEVCouldNotCompute>(ExitCount))
 | |
|       ExitCount = getExitCount(L, ExitingBB,
 | |
|                                   ScalarEvolution::ConstantMaximum);
 | |
|     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
 | |
|       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
 | |
|              "We should only have known counts for exiting blocks that "
 | |
|              "dominate latch!");
 | |
|       ExitCounts.push_back(ExitCount);
 | |
|     }
 | |
|   }
 | |
|   if (ExitCounts.empty())
 | |
|     return getCouldNotCompute();
 | |
|   return getUMinFromMismatchedTypes(ExitCounts);
 | |
| }
 | |
| 
 | |
| /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
 | |
| /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
 | |
| /// we cannot guarantee that the replacement is loop invariant in the loop of
 | |
| /// the AddRec.
 | |
| class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
 | |
|   ValueToSCEVMapTy ⤅
 | |
| 
 | |
| public:
 | |
|   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
 | |
|       : SCEVRewriteVisitor(SE), Map(M) {}
 | |
| 
 | |
|   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
 | |
| 
 | |
|   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
 | |
|     auto I = Map.find(Expr->getValue());
 | |
|     if (I == Map.end())
 | |
|       return Expr;
 | |
|     return I->second;
 | |
|   }
 | |
| };
 | |
| 
 | |
| const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
 | |
|   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
 | |
|                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
 | |
|     if (!isa<SCEVUnknown>(LHS)) {
 | |
|       std::swap(LHS, RHS);
 | |
|       Predicate = CmpInst::getSwappedPredicate(Predicate);
 | |
|     }
 | |
| 
 | |
|     // For now, limit to conditions that provide information about unknown
 | |
|     // expressions.
 | |
|     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
 | |
|     if (!LHSUnknown)
 | |
|       return;
 | |
| 
 | |
|     // TODO: use information from more predicates.
 | |
|     switch (Predicate) {
 | |
|     case CmpInst::ICMP_ULT: {
 | |
|       if (!containsAddRecurrence(RHS)) {
 | |
|         const SCEV *Base = LHS;
 | |
|         auto I = RewriteMap.find(LHSUnknown->getValue());
 | |
|         if (I != RewriteMap.end())
 | |
|           Base = I->second;
 | |
| 
 | |
|         RewriteMap[LHSUnknown->getValue()] =
 | |
|             getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType())));
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case CmpInst::ICMP_ULE: {
 | |
|       if (!containsAddRecurrence(RHS)) {
 | |
|         const SCEV *Base = LHS;
 | |
|         auto I = RewriteMap.find(LHSUnknown->getValue());
 | |
|         if (I != RewriteMap.end())
 | |
|           Base = I->second;
 | |
|         RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     case CmpInst::ICMP_EQ:
 | |
|       if (isa<SCEVConstant>(RHS))
 | |
|         RewriteMap[LHSUnknown->getValue()] = RHS;
 | |
|       break;
 | |
|     case CmpInst::ICMP_NE:
 | |
|       if (isa<SCEVConstant>(RHS) &&
 | |
|           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
 | |
|         RewriteMap[LHSUnknown->getValue()] =
 | |
|             getUMaxExpr(LHS, getOne(RHS->getType()));
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   };
 | |
|   // Starting at the loop predecessor, climb up the predecessor chain, as long
 | |
|   // as there are predecessors that can be found that have unique successors
 | |
|   // leading to the original header.
 | |
|   // TODO: share this logic with isLoopEntryGuardedByCond.
 | |
|   ValueToSCEVMapTy RewriteMap;
 | |
|   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
 | |
|            L->getLoopPredecessor(), L->getHeader());
 | |
|        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
 | |
| 
 | |
|     const BranchInst *LoopEntryPredicate =
 | |
|         dyn_cast<BranchInst>(Pair.first->getTerminator());
 | |
|     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
 | |
|       continue;
 | |
| 
 | |
|     // TODO: use information from more complex conditions, e.g. AND expressions.
 | |
|     auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition());
 | |
|     if (!Cmp)
 | |
|       continue;
 | |
| 
 | |
|     auto Predicate = Cmp->getPredicate();
 | |
|     if (LoopEntryPredicate->getSuccessor(1) == Pair.second)
 | |
|       Predicate = CmpInst::getInversePredicate(Predicate);
 | |
|     CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
 | |
|                      getSCEV(Cmp->getOperand(1)), RewriteMap);
 | |
|   }
 | |
| 
 | |
|   // Also collect information from assumptions dominating the loop.
 | |
|   for (auto &AssumeVH : AC.assumptions()) {
 | |
|     if (!AssumeVH)
 | |
|       continue;
 | |
|     auto *AssumeI = cast<CallInst>(AssumeVH);
 | |
|     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
 | |
|     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
 | |
|       continue;
 | |
|     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
 | |
|                      getSCEV(Cmp->getOperand(1)), RewriteMap);
 | |
|   }
 | |
| 
 | |
|   if (RewriteMap.empty())
 | |
|     return Expr;
 | |
|   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
 | |
|   return Rewriter.visit(Expr);
 | |
| }
 |