1474 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1474 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- llvm/Analysis/TargetTransformInfo.cpp ------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/CFG.h"
 | |
| #include "llvm/Analysis/LoopIterator.h"
 | |
| #include "llvm/Analysis/TargetTransformInfoImpl.h"
 | |
| #include "llvm/IR/CFG.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/PatternMatch.h"
 | |
| #include "llvm/InitializePasses.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace PatternMatch;
 | |
| 
 | |
| #define DEBUG_TYPE "tti"
 | |
| 
 | |
| static cl::opt<bool> EnableReduxCost("costmodel-reduxcost", cl::init(false),
 | |
|                                      cl::Hidden,
 | |
|                                      cl::desc("Recognize reduction patterns."));
 | |
| 
 | |
| namespace {
 | |
| /// No-op implementation of the TTI interface using the utility base
 | |
| /// classes.
 | |
| ///
 | |
| /// This is used when no target specific information is available.
 | |
| struct NoTTIImpl : TargetTransformInfoImplCRTPBase<NoTTIImpl> {
 | |
|   explicit NoTTIImpl(const DataLayout &DL)
 | |
|       : TargetTransformInfoImplCRTPBase<NoTTIImpl>(DL) {}
 | |
| };
 | |
| } // namespace
 | |
| 
 | |
| bool HardwareLoopInfo::canAnalyze(LoopInfo &LI) {
 | |
|   // If the loop has irreducible control flow, it can not be converted to
 | |
|   // Hardware loop.
 | |
|   LoopBlocksRPO RPOT(L);
 | |
|   RPOT.perform(&LI);
 | |
|   if (containsIrreducibleCFG<const BasicBlock *>(RPOT, LI))
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| IntrinsicCostAttributes::IntrinsicCostAttributes(const IntrinsicInst &I) :
 | |
|     II(&I), RetTy(I.getType()), IID(I.getIntrinsicID()) {
 | |
| 
 | |
|  FunctionType *FTy = I.getCalledFunction()->getFunctionType();
 | |
|  ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
 | |
|  Arguments.insert(Arguments.begin(), I.arg_begin(), I.arg_end());
 | |
|  if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
 | |
|    FMF = FPMO->getFastMathFlags();
 | |
| }
 | |
| 
 | |
| IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
 | |
|                                                  const CallBase &CI) :
 | |
|   II(dyn_cast<IntrinsicInst>(&CI)),  RetTy(CI.getType()), IID(Id) {
 | |
| 
 | |
|   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
 | |
|     FMF = FPMO->getFastMathFlags();
 | |
| 
 | |
|   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
 | |
|   FunctionType *FTy =
 | |
|     CI.getCalledFunction()->getFunctionType();
 | |
|   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
 | |
| }
 | |
| 
 | |
| IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
 | |
|                                                  const CallBase &CI,
 | |
|                                                  ElementCount Factor)
 | |
|     : RetTy(CI.getType()), IID(Id), VF(Factor) {
 | |
| 
 | |
|   assert(!Factor.isScalable() && "Scalable vectors are not yet supported");
 | |
|   if (auto *FPMO = dyn_cast<FPMathOperator>(&CI))
 | |
|     FMF = FPMO->getFastMathFlags();
 | |
| 
 | |
|   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
 | |
|   FunctionType *FTy =
 | |
|     CI.getCalledFunction()->getFunctionType();
 | |
|   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
 | |
| }
 | |
| 
 | |
| IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id,
 | |
|                                                  const CallBase &CI,
 | |
|                                                  ElementCount Factor,
 | |
|                                                  unsigned ScalarCost)
 | |
|     : RetTy(CI.getType()), IID(Id), VF(Factor), ScalarizationCost(ScalarCost) {
 | |
| 
 | |
|   if (const auto *FPMO = dyn_cast<FPMathOperator>(&CI))
 | |
|     FMF = FPMO->getFastMathFlags();
 | |
| 
 | |
|   Arguments.insert(Arguments.begin(), CI.arg_begin(), CI.arg_end());
 | |
|   FunctionType *FTy =
 | |
|     CI.getCalledFunction()->getFunctionType();
 | |
|   ParamTys.insert(ParamTys.begin(), FTy->param_begin(), FTy->param_end());
 | |
| }
 | |
| 
 | |
| IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
 | |
|                                                  ArrayRef<Type *> Tys,
 | |
|                                                  FastMathFlags Flags) :
 | |
|     RetTy(RTy), IID(Id), FMF(Flags) {
 | |
|   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
 | |
| }
 | |
| 
 | |
| IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
 | |
|                                                  ArrayRef<Type *> Tys,
 | |
|                                                  FastMathFlags Flags,
 | |
|                                                  unsigned ScalarCost) :
 | |
|     RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
 | |
|   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
 | |
| }
 | |
| 
 | |
| IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
 | |
|                                                  ArrayRef<Type *> Tys,
 | |
|                                                  FastMathFlags Flags,
 | |
|                                                  unsigned ScalarCost,
 | |
|                                                  const IntrinsicInst *I) :
 | |
|     II(I), RetTy(RTy), IID(Id), FMF(Flags), ScalarizationCost(ScalarCost) {
 | |
|   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
 | |
| }
 | |
| 
 | |
| IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *RTy,
 | |
|                                                  ArrayRef<Type *> Tys) :
 | |
|     RetTy(RTy), IID(Id) {
 | |
|   ParamTys.insert(ParamTys.begin(), Tys.begin(), Tys.end());
 | |
| }
 | |
| 
 | |
| IntrinsicCostAttributes::IntrinsicCostAttributes(Intrinsic::ID Id, Type *Ty,
 | |
|                                                  ArrayRef<const Value *> Args)
 | |
|     : RetTy(Ty), IID(Id) {
 | |
| 
 | |
|   Arguments.insert(Arguments.begin(), Args.begin(), Args.end());
 | |
|   ParamTys.reserve(Arguments.size());
 | |
|   for (unsigned Idx = 0, Size = Arguments.size(); Idx != Size; ++Idx)
 | |
|     ParamTys.push_back(Arguments[Idx]->getType());
 | |
| }
 | |
| 
 | |
| bool HardwareLoopInfo::isHardwareLoopCandidate(ScalarEvolution &SE,
 | |
|                                                LoopInfo &LI, DominatorTree &DT,
 | |
|                                                bool ForceNestedLoop,
 | |
|                                                bool ForceHardwareLoopPHI) {
 | |
|   SmallVector<BasicBlock *, 4> ExitingBlocks;
 | |
|   L->getExitingBlocks(ExitingBlocks);
 | |
| 
 | |
|   for (BasicBlock *BB : ExitingBlocks) {
 | |
|     // If we pass the updated counter back through a phi, we need to know
 | |
|     // which latch the updated value will be coming from.
 | |
|     if (!L->isLoopLatch(BB)) {
 | |
|       if (ForceHardwareLoopPHI || CounterInReg)
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     const SCEV *EC = SE.getExitCount(L, BB);
 | |
|     if (isa<SCEVCouldNotCompute>(EC))
 | |
|       continue;
 | |
|     if (const SCEVConstant *ConstEC = dyn_cast<SCEVConstant>(EC)) {
 | |
|       if (ConstEC->getValue()->isZero())
 | |
|         continue;
 | |
|     } else if (!SE.isLoopInvariant(EC, L))
 | |
|       continue;
 | |
| 
 | |
|     if (SE.getTypeSizeInBits(EC->getType()) > CountType->getBitWidth())
 | |
|       continue;
 | |
| 
 | |
|     // If this exiting block is contained in a nested loop, it is not eligible
 | |
|     // for insertion of the branch-and-decrement since the inner loop would
 | |
|     // end up messing up the value in the CTR.
 | |
|     if (!IsNestingLegal && LI.getLoopFor(BB) != L && !ForceNestedLoop)
 | |
|       continue;
 | |
| 
 | |
|     // We now have a loop-invariant count of loop iterations (which is not the
 | |
|     // constant zero) for which we know that this loop will not exit via this
 | |
|     // existing block.
 | |
| 
 | |
|     // We need to make sure that this block will run on every loop iteration.
 | |
|     // For this to be true, we must dominate all blocks with backedges. Such
 | |
|     // blocks are in-loop predecessors to the header block.
 | |
|     bool NotAlways = false;
 | |
|     for (BasicBlock *Pred : predecessors(L->getHeader())) {
 | |
|       if (!L->contains(Pred))
 | |
|         continue;
 | |
| 
 | |
|       if (!DT.dominates(BB, Pred)) {
 | |
|         NotAlways = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (NotAlways)
 | |
|       continue;
 | |
| 
 | |
|     // Make sure this blocks ends with a conditional branch.
 | |
|     Instruction *TI = BB->getTerminator();
 | |
|     if (!TI)
 | |
|       continue;
 | |
| 
 | |
|     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | |
|       if (!BI->isConditional())
 | |
|         continue;
 | |
| 
 | |
|       ExitBranch = BI;
 | |
|     } else
 | |
|       continue;
 | |
| 
 | |
|     // Note that this block may not be the loop latch block, even if the loop
 | |
|     // has a latch block.
 | |
|     ExitBlock = BB;
 | |
|     TripCount = SE.getAddExpr(EC, SE.getOne(EC->getType()));
 | |
| 
 | |
|     if (!EC->getType()->isPointerTy() && EC->getType() != CountType)
 | |
|       TripCount = SE.getZeroExtendExpr(TripCount, CountType);
 | |
| 
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (!ExitBlock)
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| TargetTransformInfo::TargetTransformInfo(const DataLayout &DL)
 | |
|     : TTIImpl(new Model<NoTTIImpl>(NoTTIImpl(DL))) {}
 | |
| 
 | |
| TargetTransformInfo::~TargetTransformInfo() {}
 | |
| 
 | |
| TargetTransformInfo::TargetTransformInfo(TargetTransformInfo &&Arg)
 | |
|     : TTIImpl(std::move(Arg.TTIImpl)) {}
 | |
| 
 | |
| TargetTransformInfo &TargetTransformInfo::operator=(TargetTransformInfo &&RHS) {
 | |
|   TTIImpl = std::move(RHS.TTIImpl);
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getInliningThresholdMultiplier() const {
 | |
|   return TTIImpl->getInliningThresholdMultiplier();
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| TargetTransformInfo::adjustInliningThreshold(const CallBase *CB) const {
 | |
|   return TTIImpl->adjustInliningThreshold(CB);
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getInlinerVectorBonusPercent() const {
 | |
|   return TTIImpl->getInlinerVectorBonusPercent();
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getGEPCost(Type *PointeeType, const Value *Ptr,
 | |
|                                     ArrayRef<const Value *> Operands,
 | |
|                                     TTI::TargetCostKind CostKind) const {
 | |
|   return TTIImpl->getGEPCost(PointeeType, Ptr, Operands, CostKind);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getEstimatedNumberOfCaseClusters(
 | |
|     const SwitchInst &SI, unsigned &JTSize, ProfileSummaryInfo *PSI,
 | |
|     BlockFrequencyInfo *BFI) const {
 | |
|   return TTIImpl->getEstimatedNumberOfCaseClusters(SI, JTSize, PSI, BFI);
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getUserCost(const User *U,
 | |
|                                      ArrayRef<const Value *> Operands,
 | |
|                                      enum TargetCostKind CostKind) const {
 | |
|   int Cost = TTIImpl->getUserCost(U, Operands, CostKind);
 | |
|   assert((CostKind == TTI::TCK_RecipThroughput || Cost >= 0) &&
 | |
|          "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::hasBranchDivergence() const {
 | |
|   return TTIImpl->hasBranchDivergence();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::useGPUDivergenceAnalysis() const {
 | |
|   return TTIImpl->useGPUDivergenceAnalysis();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isSourceOfDivergence(const Value *V) const {
 | |
|   return TTIImpl->isSourceOfDivergence(V);
 | |
| }
 | |
| 
 | |
| bool llvm::TargetTransformInfo::isAlwaysUniform(const Value *V) const {
 | |
|   return TTIImpl->isAlwaysUniform(V);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getFlatAddressSpace() const {
 | |
|   return TTIImpl->getFlatAddressSpace();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::collectFlatAddressOperands(
 | |
|     SmallVectorImpl<int> &OpIndexes, Intrinsic::ID IID) const {
 | |
|   return TTIImpl->collectFlatAddressOperands(OpIndexes, IID);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isNoopAddrSpaceCast(unsigned FromAS,
 | |
|                                               unsigned ToAS) const {
 | |
|   return TTIImpl->isNoopAddrSpaceCast(FromAS, ToAS);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getAssumedAddrSpace(const Value *V) const {
 | |
|   return TTIImpl->getAssumedAddrSpace(V);
 | |
| }
 | |
| 
 | |
| Value *TargetTransformInfo::rewriteIntrinsicWithAddressSpace(
 | |
|     IntrinsicInst *II, Value *OldV, Value *NewV) const {
 | |
|   return TTIImpl->rewriteIntrinsicWithAddressSpace(II, OldV, NewV);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLoweredToCall(const Function *F) const {
 | |
|   return TTIImpl->isLoweredToCall(F);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isHardwareLoopProfitable(
 | |
|     Loop *L, ScalarEvolution &SE, AssumptionCache &AC,
 | |
|     TargetLibraryInfo *LibInfo, HardwareLoopInfo &HWLoopInfo) const {
 | |
|   return TTIImpl->isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::preferPredicateOverEpilogue(
 | |
|     Loop *L, LoopInfo *LI, ScalarEvolution &SE, AssumptionCache &AC,
 | |
|     TargetLibraryInfo *TLI, DominatorTree *DT,
 | |
|     const LoopAccessInfo *LAI) const {
 | |
|   return TTIImpl->preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::emitGetActiveLaneMask() const {
 | |
|   return TTIImpl->emitGetActiveLaneMask();
 | |
| }
 | |
| 
 | |
| Optional<Instruction *>
 | |
| TargetTransformInfo::instCombineIntrinsic(InstCombiner &IC,
 | |
|                                           IntrinsicInst &II) const {
 | |
|   return TTIImpl->instCombineIntrinsic(IC, II);
 | |
| }
 | |
| 
 | |
| Optional<Value *> TargetTransformInfo::simplifyDemandedUseBitsIntrinsic(
 | |
|     InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
 | |
|     bool &KnownBitsComputed) const {
 | |
|   return TTIImpl->simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
 | |
|                                                    KnownBitsComputed);
 | |
| }
 | |
| 
 | |
| Optional<Value *> TargetTransformInfo::simplifyDemandedVectorEltsIntrinsic(
 | |
|     InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
 | |
|     APInt &UndefElts2, APInt &UndefElts3,
 | |
|     std::function<void(Instruction *, unsigned, APInt, APInt &)>
 | |
|         SimplifyAndSetOp) const {
 | |
|   return TTIImpl->simplifyDemandedVectorEltsIntrinsic(
 | |
|       IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
 | |
|       SimplifyAndSetOp);
 | |
| }
 | |
| 
 | |
| void TargetTransformInfo::getUnrollingPreferences(
 | |
|     Loop *L, ScalarEvolution &SE, UnrollingPreferences &UP) const {
 | |
|   return TTIImpl->getUnrollingPreferences(L, SE, UP);
 | |
| }
 | |
| 
 | |
| void TargetTransformInfo::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
 | |
|                                                 PeelingPreferences &PP) const {
 | |
|   return TTIImpl->getPeelingPreferences(L, SE, PP);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalAddImmediate(int64_t Imm) const {
 | |
|   return TTIImpl->isLegalAddImmediate(Imm);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalICmpImmediate(int64_t Imm) const {
 | |
|   return TTIImpl->isLegalICmpImmediate(Imm);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
 | |
|                                                 int64_t BaseOffset,
 | |
|                                                 bool HasBaseReg, int64_t Scale,
 | |
|                                                 unsigned AddrSpace,
 | |
|                                                 Instruction *I) const {
 | |
|   return TTIImpl->isLegalAddressingMode(Ty, BaseGV, BaseOffset, HasBaseReg,
 | |
|                                         Scale, AddrSpace, I);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLSRCostLess(LSRCost &C1, LSRCost &C2) const {
 | |
|   return TTIImpl->isLSRCostLess(C1, C2);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isNumRegsMajorCostOfLSR() const {
 | |
|   return TTIImpl->isNumRegsMajorCostOfLSR();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isProfitableLSRChainElement(Instruction *I) const {
 | |
|   return TTIImpl->isProfitableLSRChainElement(I);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::canMacroFuseCmp() const {
 | |
|   return TTIImpl->canMacroFuseCmp();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::canSaveCmp(Loop *L, BranchInst **BI,
 | |
|                                      ScalarEvolution *SE, LoopInfo *LI,
 | |
|                                      DominatorTree *DT, AssumptionCache *AC,
 | |
|                                      TargetLibraryInfo *LibInfo) const {
 | |
|   return TTIImpl->canSaveCmp(L, BI, SE, LI, DT, AC, LibInfo);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::shouldFavorPostInc() const {
 | |
|   return TTIImpl->shouldFavorPostInc();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::shouldFavorBackedgeIndex(const Loop *L) const {
 | |
|   return TTIImpl->shouldFavorBackedgeIndex(L);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalMaskedStore(Type *DataType,
 | |
|                                              Align Alignment) const {
 | |
|   return TTIImpl->isLegalMaskedStore(DataType, Alignment);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalMaskedLoad(Type *DataType,
 | |
|                                             Align Alignment) const {
 | |
|   return TTIImpl->isLegalMaskedLoad(DataType, Alignment);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalNTStore(Type *DataType,
 | |
|                                          Align Alignment) const {
 | |
|   return TTIImpl->isLegalNTStore(DataType, Alignment);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalNTLoad(Type *DataType, Align Alignment) const {
 | |
|   return TTIImpl->isLegalNTLoad(DataType, Alignment);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalMaskedGather(Type *DataType,
 | |
|                                               Align Alignment) const {
 | |
|   return TTIImpl->isLegalMaskedGather(DataType, Alignment);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalMaskedScatter(Type *DataType,
 | |
|                                                Align Alignment) const {
 | |
|   return TTIImpl->isLegalMaskedScatter(DataType, Alignment);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalMaskedCompressStore(Type *DataType) const {
 | |
|   return TTIImpl->isLegalMaskedCompressStore(DataType);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalMaskedExpandLoad(Type *DataType) const {
 | |
|   return TTIImpl->isLegalMaskedExpandLoad(DataType);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::hasDivRemOp(Type *DataType, bool IsSigned) const {
 | |
|   return TTIImpl->hasDivRemOp(DataType, IsSigned);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::hasVolatileVariant(Instruction *I,
 | |
|                                              unsigned AddrSpace) const {
 | |
|   return TTIImpl->hasVolatileVariant(I, AddrSpace);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::prefersVectorizedAddressing() const {
 | |
|   return TTIImpl->prefersVectorizedAddressing();
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
 | |
|                                               int64_t BaseOffset,
 | |
|                                               bool HasBaseReg, int64_t Scale,
 | |
|                                               unsigned AddrSpace) const {
 | |
|   int Cost = TTIImpl->getScalingFactorCost(Ty, BaseGV, BaseOffset, HasBaseReg,
 | |
|                                            Scale, AddrSpace);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::LSRWithInstrQueries() const {
 | |
|   return TTIImpl->LSRWithInstrQueries();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isTruncateFree(Type *Ty1, Type *Ty2) const {
 | |
|   return TTIImpl->isTruncateFree(Ty1, Ty2);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isProfitableToHoist(Instruction *I) const {
 | |
|   return TTIImpl->isProfitableToHoist(I);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::useAA() const { return TTIImpl->useAA(); }
 | |
| 
 | |
| bool TargetTransformInfo::isTypeLegal(Type *Ty) const {
 | |
|   return TTIImpl->isTypeLegal(Ty);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getRegUsageForType(Type *Ty) const {
 | |
|   return TTIImpl->getRegUsageForType(Ty);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::shouldBuildLookupTables() const {
 | |
|   return TTIImpl->shouldBuildLookupTables();
 | |
| }
 | |
| bool TargetTransformInfo::shouldBuildLookupTablesForConstant(
 | |
|     Constant *C) const {
 | |
|   return TTIImpl->shouldBuildLookupTablesForConstant(C);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::useColdCCForColdCall(Function &F) const {
 | |
|   return TTIImpl->useColdCCForColdCall(F);
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| TargetTransformInfo::getScalarizationOverhead(VectorType *Ty,
 | |
|                                               const APInt &DemandedElts,
 | |
|                                               bool Insert, bool Extract) const {
 | |
|   return TTIImpl->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getOperandsScalarizationOverhead(
 | |
|     ArrayRef<const Value *> Args, unsigned VF) const {
 | |
|   return TTIImpl->getOperandsScalarizationOverhead(Args, VF);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::supportsEfficientVectorElementLoadStore() const {
 | |
|   return TTIImpl->supportsEfficientVectorElementLoadStore();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::enableAggressiveInterleaving(
 | |
|     bool LoopHasReductions) const {
 | |
|   return TTIImpl->enableAggressiveInterleaving(LoopHasReductions);
 | |
| }
 | |
| 
 | |
| TargetTransformInfo::MemCmpExpansionOptions
 | |
| TargetTransformInfo::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
 | |
|   return TTIImpl->enableMemCmpExpansion(OptSize, IsZeroCmp);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::enableInterleavedAccessVectorization() const {
 | |
|   return TTIImpl->enableInterleavedAccessVectorization();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::enableMaskedInterleavedAccessVectorization() const {
 | |
|   return TTIImpl->enableMaskedInterleavedAccessVectorization();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isFPVectorizationPotentiallyUnsafe() const {
 | |
|   return TTIImpl->isFPVectorizationPotentiallyUnsafe();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::allowsMisalignedMemoryAccesses(LLVMContext &Context,
 | |
|                                                          unsigned BitWidth,
 | |
|                                                          unsigned AddressSpace,
 | |
|                                                          unsigned Alignment,
 | |
|                                                          bool *Fast) const {
 | |
|   return TTIImpl->allowsMisalignedMemoryAccesses(Context, BitWidth,
 | |
|                                                  AddressSpace, Alignment, Fast);
 | |
| }
 | |
| 
 | |
| TargetTransformInfo::PopcntSupportKind
 | |
| TargetTransformInfo::getPopcntSupport(unsigned IntTyWidthInBit) const {
 | |
|   return TTIImpl->getPopcntSupport(IntTyWidthInBit);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::haveFastSqrt(Type *Ty) const {
 | |
|   return TTIImpl->haveFastSqrt(Ty);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isFCmpOrdCheaperThanFCmpZero(Type *Ty) const {
 | |
|   return TTIImpl->isFCmpOrdCheaperThanFCmpZero(Ty);
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getFPOpCost(Type *Ty) const {
 | |
|   int Cost = TTIImpl->getFPOpCost(Ty);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getIntImmCodeSizeCost(unsigned Opcode, unsigned Idx,
 | |
|                                                const APInt &Imm,
 | |
|                                                Type *Ty) const {
 | |
|   int Cost = TTIImpl->getIntImmCodeSizeCost(Opcode, Idx, Imm, Ty);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getIntImmCost(const APInt &Imm, Type *Ty,
 | |
|                                        TTI::TargetCostKind CostKind) const {
 | |
|   int Cost = TTIImpl->getIntImmCost(Imm, Ty, CostKind);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getIntImmCostInst(unsigned Opcode, unsigned Idx,
 | |
|                                            const APInt &Imm, Type *Ty,
 | |
|                                            TTI::TargetCostKind CostKind,
 | |
|                                            Instruction *Inst) const {
 | |
|   int Cost = TTIImpl->getIntImmCostInst(Opcode, Idx, Imm, Ty, CostKind, Inst);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int
 | |
| TargetTransformInfo::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
 | |
|                                          const APInt &Imm, Type *Ty,
 | |
|                                          TTI::TargetCostKind CostKind) const {
 | |
|   int Cost = TTIImpl->getIntImmCostIntrin(IID, Idx, Imm, Ty, CostKind);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getNumberOfRegisters(unsigned ClassID) const {
 | |
|   return TTIImpl->getNumberOfRegisters(ClassID);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getRegisterClassForType(bool Vector,
 | |
|                                                       Type *Ty) const {
 | |
|   return TTIImpl->getRegisterClassForType(Vector, Ty);
 | |
| }
 | |
| 
 | |
| const char *TargetTransformInfo::getRegisterClassName(unsigned ClassID) const {
 | |
|   return TTIImpl->getRegisterClassName(ClassID);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getRegisterBitWidth(bool Vector) const {
 | |
|   return TTIImpl->getRegisterBitWidth(Vector);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getMinVectorRegisterBitWidth() const {
 | |
|   return TTIImpl->getMinVectorRegisterBitWidth();
 | |
| }
 | |
| 
 | |
| Optional<unsigned> TargetTransformInfo::getMaxVScale() const {
 | |
|   return TTIImpl->getMaxVScale();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::shouldMaximizeVectorBandwidth(bool OptSize) const {
 | |
|   return TTIImpl->shouldMaximizeVectorBandwidth(OptSize);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getMinimumVF(unsigned ElemWidth) const {
 | |
|   return TTIImpl->getMinimumVF(ElemWidth);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getMaximumVF(unsigned ElemWidth,
 | |
|                                            unsigned Opcode) const {
 | |
|   return TTIImpl->getMaximumVF(ElemWidth, Opcode);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::shouldConsiderAddressTypePromotion(
 | |
|     const Instruction &I, bool &AllowPromotionWithoutCommonHeader) const {
 | |
|   return TTIImpl->shouldConsiderAddressTypePromotion(
 | |
|       I, AllowPromotionWithoutCommonHeader);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getCacheLineSize() const {
 | |
|   return TTIImpl->getCacheLineSize();
 | |
| }
 | |
| 
 | |
| llvm::Optional<unsigned>
 | |
| TargetTransformInfo::getCacheSize(CacheLevel Level) const {
 | |
|   return TTIImpl->getCacheSize(Level);
 | |
| }
 | |
| 
 | |
| llvm::Optional<unsigned>
 | |
| TargetTransformInfo::getCacheAssociativity(CacheLevel Level) const {
 | |
|   return TTIImpl->getCacheAssociativity(Level);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getPrefetchDistance() const {
 | |
|   return TTIImpl->getPrefetchDistance();
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getMinPrefetchStride(
 | |
|     unsigned NumMemAccesses, unsigned NumStridedMemAccesses,
 | |
|     unsigned NumPrefetches, bool HasCall) const {
 | |
|   return TTIImpl->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
 | |
|                                        NumPrefetches, HasCall);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getMaxPrefetchIterationsAhead() const {
 | |
|   return TTIImpl->getMaxPrefetchIterationsAhead();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::enableWritePrefetching() const {
 | |
|   return TTIImpl->enableWritePrefetching();
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getMaxInterleaveFactor(unsigned VF) const {
 | |
|   return TTIImpl->getMaxInterleaveFactor(VF);
 | |
| }
 | |
| 
 | |
| TargetTransformInfo::OperandValueKind
 | |
| TargetTransformInfo::getOperandInfo(const Value *V,
 | |
|                                     OperandValueProperties &OpProps) {
 | |
|   OperandValueKind OpInfo = OK_AnyValue;
 | |
|   OpProps = OP_None;
 | |
| 
 | |
|   if (const auto *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     if (CI->getValue().isPowerOf2())
 | |
|       OpProps = OP_PowerOf2;
 | |
|     return OK_UniformConstantValue;
 | |
|   }
 | |
| 
 | |
|   // A broadcast shuffle creates a uniform value.
 | |
|   // TODO: Add support for non-zero index broadcasts.
 | |
|   // TODO: Add support for different source vector width.
 | |
|   if (const auto *ShuffleInst = dyn_cast<ShuffleVectorInst>(V))
 | |
|     if (ShuffleInst->isZeroEltSplat())
 | |
|       OpInfo = OK_UniformValue;
 | |
| 
 | |
|   const Value *Splat = getSplatValue(V);
 | |
| 
 | |
|   // Check for a splat of a constant or for a non uniform vector of constants
 | |
|   // and check if the constant(s) are all powers of two.
 | |
|   if (isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) {
 | |
|     OpInfo = OK_NonUniformConstantValue;
 | |
|     if (Splat) {
 | |
|       OpInfo = OK_UniformConstantValue;
 | |
|       if (auto *CI = dyn_cast<ConstantInt>(Splat))
 | |
|         if (CI->getValue().isPowerOf2())
 | |
|           OpProps = OP_PowerOf2;
 | |
|     } else if (const auto *CDS = dyn_cast<ConstantDataSequential>(V)) {
 | |
|       OpProps = OP_PowerOf2;
 | |
|       for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
 | |
|         if (auto *CI = dyn_cast<ConstantInt>(CDS->getElementAsConstant(I)))
 | |
|           if (CI->getValue().isPowerOf2())
 | |
|             continue;
 | |
|         OpProps = OP_None;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check for a splat of a uniform value. This is not loop aware, so return
 | |
|   // true only for the obviously uniform cases (argument, globalvalue)
 | |
|   if (Splat && (isa<Argument>(Splat) || isa<GlobalValue>(Splat)))
 | |
|     OpInfo = OK_UniformValue;
 | |
| 
 | |
|   return OpInfo;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getArithmeticInstrCost(
 | |
|     unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
 | |
|     OperandValueKind Opd1Info,
 | |
|     OperandValueKind Opd2Info, OperandValueProperties Opd1PropInfo,
 | |
|     OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
 | |
|     const Instruction *CxtI) const {
 | |
|   int Cost = TTIImpl->getArithmeticInstrCost(
 | |
|       Opcode, Ty, CostKind, Opd1Info, Opd2Info, Opd1PropInfo, Opd2PropInfo,
 | |
|       Args, CxtI);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getShuffleCost(ShuffleKind Kind, VectorType *Ty,
 | |
|                                         int Index, VectorType *SubTp) const {
 | |
|   int Cost = TTIImpl->getShuffleCost(Kind, Ty, Index, SubTp);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| TTI::CastContextHint
 | |
| TargetTransformInfo::getCastContextHint(const Instruction *I) {
 | |
|   if (!I)
 | |
|     return CastContextHint::None;
 | |
| 
 | |
|   auto getLoadStoreKind = [](const Value *V, unsigned LdStOp, unsigned MaskedOp,
 | |
|                              unsigned GatScatOp) {
 | |
|     const Instruction *I = dyn_cast<Instruction>(V);
 | |
|     if (!I)
 | |
|       return CastContextHint::None;
 | |
| 
 | |
|     if (I->getOpcode() == LdStOp)
 | |
|       return CastContextHint::Normal;
 | |
| 
 | |
|     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|       if (II->getIntrinsicID() == MaskedOp)
 | |
|         return TTI::CastContextHint::Masked;
 | |
|       if (II->getIntrinsicID() == GatScatOp)
 | |
|         return TTI::CastContextHint::GatherScatter;
 | |
|     }
 | |
| 
 | |
|     return TTI::CastContextHint::None;
 | |
|   };
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPExt:
 | |
|     return getLoadStoreKind(I->getOperand(0), Instruction::Load,
 | |
|                             Intrinsic::masked_load, Intrinsic::masked_gather);
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::FPTrunc:
 | |
|     if (I->hasOneUse())
 | |
|       return getLoadStoreKind(*I->user_begin(), Instruction::Store,
 | |
|                               Intrinsic::masked_store,
 | |
|                               Intrinsic::masked_scatter);
 | |
|     break;
 | |
|   default:
 | |
|     return CastContextHint::None;
 | |
|   }
 | |
| 
 | |
|   return TTI::CastContextHint::None;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
 | |
|                                           CastContextHint CCH,
 | |
|                                           TTI::TargetCostKind CostKind,
 | |
|                                           const Instruction *I) const {
 | |
|   assert((I == nullptr || I->getOpcode() == Opcode) &&
 | |
|          "Opcode should reflect passed instruction.");
 | |
|   int Cost = TTIImpl->getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getExtractWithExtendCost(unsigned Opcode, Type *Dst,
 | |
|                                                   VectorType *VecTy,
 | |
|                                                   unsigned Index) const {
 | |
|   int Cost = TTIImpl->getExtractWithExtendCost(Opcode, Dst, VecTy, Index);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getCFInstrCost(unsigned Opcode,
 | |
|                                         TTI::TargetCostKind CostKind) const {
 | |
|   int Cost = TTIImpl->getCFInstrCost(Opcode, CostKind);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | |
|                                             Type *CondTy,
 | |
|                                             CmpInst::Predicate VecPred,
 | |
|                                             TTI::TargetCostKind CostKind,
 | |
|                                             const Instruction *I) const {
 | |
|   assert((I == nullptr || I->getOpcode() == Opcode) &&
 | |
|          "Opcode should reflect passed instruction.");
 | |
|   int Cost =
 | |
|       TTIImpl->getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getVectorInstrCost(unsigned Opcode, Type *Val,
 | |
|                                             unsigned Index) const {
 | |
|   int Cost = TTIImpl->getVectorInstrCost(Opcode, Val, Index);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getMemoryOpCost(unsigned Opcode, Type *Src,
 | |
|                                          Align Alignment, unsigned AddressSpace,
 | |
|                                          TTI::TargetCostKind CostKind,
 | |
|                                          const Instruction *I) const {
 | |
|   assert((I == nullptr || I->getOpcode() == Opcode) &&
 | |
|          "Opcode should reflect passed instruction.");
 | |
|   int Cost = TTIImpl->getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
 | |
|                                       CostKind, I);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getMaskedMemoryOpCost(
 | |
|     unsigned Opcode, Type *Src, Align Alignment, unsigned AddressSpace,
 | |
|     TTI::TargetCostKind CostKind) const {
 | |
|   int Cost =
 | |
|       TTIImpl->getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
 | |
|                                      CostKind);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getGatherScatterOpCost(
 | |
|     unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
 | |
|     Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) const {
 | |
|   int Cost = TTIImpl->getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
 | |
|                                              Alignment, CostKind, I);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getInterleavedMemoryOpCost(
 | |
|     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
 | |
|     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
 | |
|     bool UseMaskForCond, bool UseMaskForGaps) const {
 | |
|   int Cost = TTIImpl->getInterleavedMemoryOpCost(
 | |
|       Opcode, VecTy, Factor, Indices, Alignment, AddressSpace, CostKind,
 | |
|       UseMaskForCond, UseMaskForGaps);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int
 | |
| TargetTransformInfo::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
 | |
|                                            TTI::TargetCostKind CostKind) const {
 | |
|   int Cost = TTIImpl->getIntrinsicInstrCost(ICA, CostKind);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getCallInstrCost(Function *F, Type *RetTy,
 | |
|                                           ArrayRef<Type *> Tys,
 | |
|                                           TTI::TargetCostKind CostKind) const {
 | |
|   int Cost = TTIImpl->getCallInstrCost(F, RetTy, Tys, CostKind);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getNumberOfParts(Type *Tp) const {
 | |
|   return TTIImpl->getNumberOfParts(Tp);
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getAddressComputationCost(Type *Tp,
 | |
|                                                    ScalarEvolution *SE,
 | |
|                                                    const SCEV *Ptr) const {
 | |
|   int Cost = TTIImpl->getAddressComputationCost(Tp, SE, Ptr);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getMemcpyCost(const Instruction *I) const {
 | |
|   int Cost = TTIImpl->getMemcpyCost(I);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getArithmeticReductionCost(unsigned Opcode,
 | |
|                                                     VectorType *Ty,
 | |
|                                                     bool IsPairwiseForm,
 | |
|                                                     TTI::TargetCostKind CostKind) const {
 | |
|   int Cost = TTIImpl->getArithmeticReductionCost(Opcode, Ty, IsPairwiseForm,
 | |
|                                                  CostKind);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getMinMaxReductionCost(
 | |
|     VectorType *Ty, VectorType *CondTy, bool IsPairwiseForm, bool IsUnsigned,
 | |
|     TTI::TargetCostKind CostKind) const {
 | |
|   int Cost =
 | |
|       TTIImpl->getMinMaxReductionCost(Ty, CondTy, IsPairwiseForm, IsUnsigned,
 | |
|                                       CostKind);
 | |
|   assert(Cost >= 0 && "TTI should not produce negative costs!");
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| InstructionCost TargetTransformInfo::getExtendedAddReductionCost(
 | |
|     bool IsMLA, bool IsUnsigned, Type *ResTy, VectorType *Ty,
 | |
|     TTI::TargetCostKind CostKind) const {
 | |
|   return TTIImpl->getExtendedAddReductionCost(IsMLA, IsUnsigned, ResTy, Ty,
 | |
|                                               CostKind);
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| TargetTransformInfo::getCostOfKeepingLiveOverCall(ArrayRef<Type *> Tys) const {
 | |
|   return TTIImpl->getCostOfKeepingLiveOverCall(Tys);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::getTgtMemIntrinsic(IntrinsicInst *Inst,
 | |
|                                              MemIntrinsicInfo &Info) const {
 | |
|   return TTIImpl->getTgtMemIntrinsic(Inst, Info);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getAtomicMemIntrinsicMaxElementSize() const {
 | |
|   return TTIImpl->getAtomicMemIntrinsicMaxElementSize();
 | |
| }
 | |
| 
 | |
| Value *TargetTransformInfo::getOrCreateResultFromMemIntrinsic(
 | |
|     IntrinsicInst *Inst, Type *ExpectedType) const {
 | |
|   return TTIImpl->getOrCreateResultFromMemIntrinsic(Inst, ExpectedType);
 | |
| }
 | |
| 
 | |
| Type *TargetTransformInfo::getMemcpyLoopLoweringType(
 | |
|     LLVMContext &Context, Value *Length, unsigned SrcAddrSpace,
 | |
|     unsigned DestAddrSpace, unsigned SrcAlign, unsigned DestAlign) const {
 | |
|   return TTIImpl->getMemcpyLoopLoweringType(Context, Length, SrcAddrSpace,
 | |
|                                             DestAddrSpace, SrcAlign, DestAlign);
 | |
| }
 | |
| 
 | |
| void TargetTransformInfo::getMemcpyLoopResidualLoweringType(
 | |
|     SmallVectorImpl<Type *> &OpsOut, LLVMContext &Context,
 | |
|     unsigned RemainingBytes, unsigned SrcAddrSpace, unsigned DestAddrSpace,
 | |
|     unsigned SrcAlign, unsigned DestAlign) const {
 | |
|   TTIImpl->getMemcpyLoopResidualLoweringType(OpsOut, Context, RemainingBytes,
 | |
|                                              SrcAddrSpace, DestAddrSpace,
 | |
|                                              SrcAlign, DestAlign);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::areInlineCompatible(const Function *Caller,
 | |
|                                               const Function *Callee) const {
 | |
|   return TTIImpl->areInlineCompatible(Caller, Callee);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::areFunctionArgsABICompatible(
 | |
|     const Function *Caller, const Function *Callee,
 | |
|     SmallPtrSetImpl<Argument *> &Args) const {
 | |
|   return TTIImpl->areFunctionArgsABICompatible(Caller, Callee, Args);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isIndexedLoadLegal(MemIndexedMode Mode,
 | |
|                                              Type *Ty) const {
 | |
|   return TTIImpl->isIndexedLoadLegal(Mode, Ty);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isIndexedStoreLegal(MemIndexedMode Mode,
 | |
|                                               Type *Ty) const {
 | |
|   return TTIImpl->isIndexedStoreLegal(Mode, Ty);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getLoadStoreVecRegBitWidth(unsigned AS) const {
 | |
|   return TTIImpl->getLoadStoreVecRegBitWidth(AS);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalToVectorizeLoad(LoadInst *LI) const {
 | |
|   return TTIImpl->isLegalToVectorizeLoad(LI);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalToVectorizeStore(StoreInst *SI) const {
 | |
|   return TTIImpl->isLegalToVectorizeStore(SI);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalToVectorizeLoadChain(
 | |
|     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
 | |
|   return TTIImpl->isLegalToVectorizeLoadChain(ChainSizeInBytes, Alignment,
 | |
|                                               AddrSpace);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::isLegalToVectorizeStoreChain(
 | |
|     unsigned ChainSizeInBytes, Align Alignment, unsigned AddrSpace) const {
 | |
|   return TTIImpl->isLegalToVectorizeStoreChain(ChainSizeInBytes, Alignment,
 | |
|                                                AddrSpace);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getLoadVectorFactor(unsigned VF,
 | |
|                                                   unsigned LoadSize,
 | |
|                                                   unsigned ChainSizeInBytes,
 | |
|                                                   VectorType *VecTy) const {
 | |
|   return TTIImpl->getLoadVectorFactor(VF, LoadSize, ChainSizeInBytes, VecTy);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getStoreVectorFactor(unsigned VF,
 | |
|                                                    unsigned StoreSize,
 | |
|                                                    unsigned ChainSizeInBytes,
 | |
|                                                    VectorType *VecTy) const {
 | |
|   return TTIImpl->getStoreVectorFactor(VF, StoreSize, ChainSizeInBytes, VecTy);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::useReductionIntrinsic(unsigned Opcode, Type *Ty,
 | |
|                                                 ReductionFlags Flags) const {
 | |
|   return TTIImpl->useReductionIntrinsic(Opcode, Ty, Flags);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::preferInLoopReduction(unsigned Opcode, Type *Ty,
 | |
|                                                 ReductionFlags Flags) const {
 | |
|   return TTIImpl->preferInLoopReduction(Opcode, Ty, Flags);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::preferPredicatedReductionSelect(
 | |
|     unsigned Opcode, Type *Ty, ReductionFlags Flags) const {
 | |
|   return TTIImpl->preferPredicatedReductionSelect(Opcode, Ty, Flags);
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::shouldExpandReduction(const IntrinsicInst *II) const {
 | |
|   return TTIImpl->shouldExpandReduction(II);
 | |
| }
 | |
| 
 | |
| unsigned TargetTransformInfo::getGISelRematGlobalCost() const {
 | |
|   return TTIImpl->getGISelRematGlobalCost();
 | |
| }
 | |
| 
 | |
| bool TargetTransformInfo::supportsScalableVectors() const {
 | |
|   return TTIImpl->supportsScalableVectors();
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getInstructionLatency(const Instruction *I) const {
 | |
|   return TTIImpl->getInstructionLatency(I);
 | |
| }
 | |
| 
 | |
| static bool matchPairwiseShuffleMask(ShuffleVectorInst *SI, bool IsLeft,
 | |
|                                      unsigned Level) {
 | |
|   // We don't need a shuffle if we just want to have element 0 in position 0 of
 | |
|   // the vector.
 | |
|   if (!SI && Level == 0 && IsLeft)
 | |
|     return true;
 | |
|   else if (!SI)
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<int, 32> Mask(
 | |
|       cast<FixedVectorType>(SI->getType())->getNumElements(), -1);
 | |
| 
 | |
|   // Build a mask of 0, 2, ... (left) or 1, 3, ... (right) depending on whether
 | |
|   // we look at the left or right side.
 | |
|   for (unsigned i = 0, e = (1 << Level), val = !IsLeft; i != e; ++i, val += 2)
 | |
|     Mask[i] = val;
 | |
| 
 | |
|   ArrayRef<int> ActualMask = SI->getShuffleMask();
 | |
|   return Mask == ActualMask;
 | |
| }
 | |
| 
 | |
| static Optional<TTI::ReductionData> getReductionData(Instruction *I) {
 | |
|   Value *L, *R;
 | |
|   if (m_BinOp(m_Value(L), m_Value(R)).match(I))
 | |
|     return TTI::ReductionData(TTI::RK_Arithmetic, I->getOpcode(), L, R);
 | |
|   if (auto *SI = dyn_cast<SelectInst>(I)) {
 | |
|     if (m_SMin(m_Value(L), m_Value(R)).match(SI) ||
 | |
|         m_SMax(m_Value(L), m_Value(R)).match(SI) ||
 | |
|         m_OrdFMin(m_Value(L), m_Value(R)).match(SI) ||
 | |
|         m_OrdFMax(m_Value(L), m_Value(R)).match(SI) ||
 | |
|         m_UnordFMin(m_Value(L), m_Value(R)).match(SI) ||
 | |
|         m_UnordFMax(m_Value(L), m_Value(R)).match(SI)) {
 | |
|       auto *CI = cast<CmpInst>(SI->getCondition());
 | |
|       return TTI::ReductionData(TTI::RK_MinMax, CI->getOpcode(), L, R);
 | |
|     }
 | |
|     if (m_UMin(m_Value(L), m_Value(R)).match(SI) ||
 | |
|         m_UMax(m_Value(L), m_Value(R)).match(SI)) {
 | |
|       auto *CI = cast<CmpInst>(SI->getCondition());
 | |
|       return TTI::ReductionData(TTI::RK_UnsignedMinMax, CI->getOpcode(), L, R);
 | |
|     }
 | |
|   }
 | |
|   return llvm::None;
 | |
| }
 | |
| 
 | |
| static TTI::ReductionKind matchPairwiseReductionAtLevel(Instruction *I,
 | |
|                                                         unsigned Level,
 | |
|                                                         unsigned NumLevels) {
 | |
|   // Match one level of pairwise operations.
 | |
|   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
 | |
|   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
 | |
|   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
 | |
|   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
 | |
|   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
 | |
|   if (!I)
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   assert(I->getType()->isVectorTy() && "Expecting a vector type");
 | |
| 
 | |
|   Optional<TTI::ReductionData> RD = getReductionData(I);
 | |
|   if (!RD)
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   ShuffleVectorInst *LS = dyn_cast<ShuffleVectorInst>(RD->LHS);
 | |
|   if (!LS && Level)
 | |
|     return TTI::RK_None;
 | |
|   ShuffleVectorInst *RS = dyn_cast<ShuffleVectorInst>(RD->RHS);
 | |
|   if (!RS && Level)
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   // On level 0 we can omit one shufflevector instruction.
 | |
|   if (!Level && !RS && !LS)
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   // Shuffle inputs must match.
 | |
|   Value *NextLevelOpL = LS ? LS->getOperand(0) : nullptr;
 | |
|   Value *NextLevelOpR = RS ? RS->getOperand(0) : nullptr;
 | |
|   Value *NextLevelOp = nullptr;
 | |
|   if (NextLevelOpR && NextLevelOpL) {
 | |
|     // If we have two shuffles their operands must match.
 | |
|     if (NextLevelOpL != NextLevelOpR)
 | |
|       return TTI::RK_None;
 | |
| 
 | |
|     NextLevelOp = NextLevelOpL;
 | |
|   } else if (Level == 0 && (NextLevelOpR || NextLevelOpL)) {
 | |
|     // On the first level we can omit the shufflevector <0, undef,...>. So the
 | |
|     // input to the other shufflevector <1, undef> must match with one of the
 | |
|     // inputs to the current binary operation.
 | |
|     // Example:
 | |
|     //  %NextLevelOpL = shufflevector %R, <1, undef ...>
 | |
|     //  %BinOp        = fadd          %NextLevelOpL, %R
 | |
|     if (NextLevelOpL && NextLevelOpL != RD->RHS)
 | |
|       return TTI::RK_None;
 | |
|     else if (NextLevelOpR && NextLevelOpR != RD->LHS)
 | |
|       return TTI::RK_None;
 | |
| 
 | |
|     NextLevelOp = NextLevelOpL ? RD->RHS : RD->LHS;
 | |
|   } else
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   // Check that the next levels binary operation exists and matches with the
 | |
|   // current one.
 | |
|   if (Level + 1 != NumLevels) {
 | |
|     if (!isa<Instruction>(NextLevelOp))
 | |
|       return TTI::RK_None;
 | |
|     Optional<TTI::ReductionData> NextLevelRD =
 | |
|         getReductionData(cast<Instruction>(NextLevelOp));
 | |
|     if (!NextLevelRD || !RD->hasSameData(*NextLevelRD))
 | |
|       return TTI::RK_None;
 | |
|   }
 | |
| 
 | |
|   // Shuffle mask for pairwise operation must match.
 | |
|   if (matchPairwiseShuffleMask(LS, /*IsLeft=*/true, Level)) {
 | |
|     if (!matchPairwiseShuffleMask(RS, /*IsLeft=*/false, Level))
 | |
|       return TTI::RK_None;
 | |
|   } else if (matchPairwiseShuffleMask(RS, /*IsLeft=*/true, Level)) {
 | |
|     if (!matchPairwiseShuffleMask(LS, /*IsLeft=*/false, Level))
 | |
|       return TTI::RK_None;
 | |
|   } else {
 | |
|     return TTI::RK_None;
 | |
|   }
 | |
| 
 | |
|   if (++Level == NumLevels)
 | |
|     return RD->Kind;
 | |
| 
 | |
|   // Match next level.
 | |
|   return matchPairwiseReductionAtLevel(dyn_cast<Instruction>(NextLevelOp), Level,
 | |
|                                        NumLevels);
 | |
| }
 | |
| 
 | |
| TTI::ReductionKind TTI::matchPairwiseReduction(
 | |
|   const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
 | |
|   if (!EnableReduxCost)
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   // Need to extract the first element.
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
 | |
|   unsigned Idx = ~0u;
 | |
|   if (CI)
 | |
|     Idx = CI->getZExtValue();
 | |
|   if (Idx != 0)
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
 | |
|   if (!RdxStart)
 | |
|     return TTI::RK_None;
 | |
|   Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
 | |
|   if (!RD)
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   auto *VecTy = cast<FixedVectorType>(RdxStart->getType());
 | |
|   unsigned NumVecElems = VecTy->getNumElements();
 | |
|   if (!isPowerOf2_32(NumVecElems))
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   // We look for a sequence of shuffle,shuffle,add triples like the following
 | |
|   // that builds a pairwise reduction tree.
 | |
|   //
 | |
|   //  (X0, X1, X2, X3)
 | |
|   //   (X0 + X1, X2 + X3, undef, undef)
 | |
|   //    ((X0 + X1) + (X2 + X3), undef, undef, undef)
 | |
|   //
 | |
|   // %rdx.shuf.0.0 = shufflevector <4 x float> %rdx, <4 x float> undef,
 | |
|   //       <4 x i32> <i32 0, i32 2 , i32 undef, i32 undef>
 | |
|   // %rdx.shuf.0.1 = shufflevector <4 x float> %rdx, <4 x float> undef,
 | |
|   //       <4 x i32> <i32 1, i32 3, i32 undef, i32 undef>
 | |
|   // %bin.rdx.0 = fadd <4 x float> %rdx.shuf.0.0, %rdx.shuf.0.1
 | |
|   // %rdx.shuf.1.0 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
 | |
|   //       <4 x i32> <i32 0, i32 undef, i32 undef, i32 undef>
 | |
|   // %rdx.shuf.1.1 = shufflevector <4 x float> %bin.rdx.0, <4 x float> undef,
 | |
|   //       <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
 | |
|   // %bin.rdx8 = fadd <4 x float> %rdx.shuf.1.0, %rdx.shuf.1.1
 | |
|   // %r = extractelement <4 x float> %bin.rdx8, i32 0
 | |
|   if (matchPairwiseReductionAtLevel(RdxStart, 0, Log2_32(NumVecElems)) ==
 | |
|       TTI::RK_None)
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   Opcode = RD->Opcode;
 | |
|   Ty = VecTy;
 | |
| 
 | |
|   return RD->Kind;
 | |
| }
 | |
| 
 | |
| static std::pair<Value *, ShuffleVectorInst *>
 | |
| getShuffleAndOtherOprd(Value *L, Value *R) {
 | |
|   ShuffleVectorInst *S = nullptr;
 | |
| 
 | |
|   if ((S = dyn_cast<ShuffleVectorInst>(L)))
 | |
|     return std::make_pair(R, S);
 | |
| 
 | |
|   S = dyn_cast<ShuffleVectorInst>(R);
 | |
|   return std::make_pair(L, S);
 | |
| }
 | |
| 
 | |
| TTI::ReductionKind TTI::matchVectorSplittingReduction(
 | |
|   const ExtractElementInst *ReduxRoot, unsigned &Opcode, VectorType *&Ty) {
 | |
| 
 | |
|   if (!EnableReduxCost)
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   // Need to extract the first element.
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(ReduxRoot->getOperand(1));
 | |
|   unsigned Idx = ~0u;
 | |
|   if (CI)
 | |
|     Idx = CI->getZExtValue();
 | |
|   if (Idx != 0)
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   auto *RdxStart = dyn_cast<Instruction>(ReduxRoot->getOperand(0));
 | |
|   if (!RdxStart)
 | |
|     return TTI::RK_None;
 | |
|   Optional<TTI::ReductionData> RD = getReductionData(RdxStart);
 | |
|   if (!RD)
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   auto *VecTy = cast<FixedVectorType>(ReduxRoot->getOperand(0)->getType());
 | |
|   unsigned NumVecElems = VecTy->getNumElements();
 | |
|   if (!isPowerOf2_32(NumVecElems))
 | |
|     return TTI::RK_None;
 | |
| 
 | |
|   // We look for a sequence of shuffles and adds like the following matching one
 | |
|   // fadd, shuffle vector pair at a time.
 | |
|   //
 | |
|   // %rdx.shuf = shufflevector <4 x float> %rdx, <4 x float> undef,
 | |
|   //                           <4 x i32> <i32 2, i32 3, i32 undef, i32 undef>
 | |
|   // %bin.rdx = fadd <4 x float> %rdx, %rdx.shuf
 | |
|   // %rdx.shuf7 = shufflevector <4 x float> %bin.rdx, <4 x float> undef,
 | |
|   //                          <4 x i32> <i32 1, i32 undef, i32 undef, i32 undef>
 | |
|   // %bin.rdx8 = fadd <4 x float> %bin.rdx, %rdx.shuf7
 | |
|   // %r = extractelement <4 x float> %bin.rdx8, i32 0
 | |
| 
 | |
|   unsigned MaskStart = 1;
 | |
|   Instruction *RdxOp = RdxStart;
 | |
|   SmallVector<int, 32> ShuffleMask(NumVecElems, 0);
 | |
|   unsigned NumVecElemsRemain = NumVecElems;
 | |
|   while (NumVecElemsRemain - 1) {
 | |
|     // Check for the right reduction operation.
 | |
|     if (!RdxOp)
 | |
|       return TTI::RK_None;
 | |
|     Optional<TTI::ReductionData> RDLevel = getReductionData(RdxOp);
 | |
|     if (!RDLevel || !RDLevel->hasSameData(*RD))
 | |
|       return TTI::RK_None;
 | |
| 
 | |
|     Value *NextRdxOp;
 | |
|     ShuffleVectorInst *Shuffle;
 | |
|     std::tie(NextRdxOp, Shuffle) =
 | |
|         getShuffleAndOtherOprd(RDLevel->LHS, RDLevel->RHS);
 | |
| 
 | |
|     // Check the current reduction operation and the shuffle use the same value.
 | |
|     if (Shuffle == nullptr)
 | |
|       return TTI::RK_None;
 | |
|     if (Shuffle->getOperand(0) != NextRdxOp)
 | |
|       return TTI::RK_None;
 | |
| 
 | |
|     // Check that shuffle masks matches.
 | |
|     for (unsigned j = 0; j != MaskStart; ++j)
 | |
|       ShuffleMask[j] = MaskStart + j;
 | |
|     // Fill the rest of the mask with -1 for undef.
 | |
|     std::fill(&ShuffleMask[MaskStart], ShuffleMask.end(), -1);
 | |
| 
 | |
|     ArrayRef<int> Mask = Shuffle->getShuffleMask();
 | |
|     if (ShuffleMask != Mask)
 | |
|       return TTI::RK_None;
 | |
| 
 | |
|     RdxOp = dyn_cast<Instruction>(NextRdxOp);
 | |
|     NumVecElemsRemain /= 2;
 | |
|     MaskStart *= 2;
 | |
|   }
 | |
| 
 | |
|   Opcode = RD->Opcode;
 | |
|   Ty = VecTy;
 | |
|   return RD->Kind;
 | |
| }
 | |
| 
 | |
| TTI::ReductionKind
 | |
| TTI::matchVectorReduction(const ExtractElementInst *Root, unsigned &Opcode,
 | |
|                           VectorType *&Ty, bool &IsPairwise) {
 | |
|   TTI::ReductionKind RdxKind = matchVectorSplittingReduction(Root, Opcode, Ty);
 | |
|   if (RdxKind != TTI::ReductionKind::RK_None) {
 | |
|     IsPairwise = false;
 | |
|     return RdxKind;
 | |
|   }
 | |
|   IsPairwise = true;
 | |
|   return matchPairwiseReduction(Root, Opcode, Ty);
 | |
| }
 | |
| 
 | |
| int TargetTransformInfo::getInstructionThroughput(const Instruction *I) const {
 | |
|   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   case Instruction::GetElementPtr:
 | |
|   case Instruction::Ret:
 | |
|   case Instruction::PHI:
 | |
|   case Instruction::Br:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::FAdd:
 | |
|   case Instruction::Sub:
 | |
|   case Instruction::FSub:
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::FMul:
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::FDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|   case Instruction::FRem:
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|   case Instruction::FNeg:
 | |
|   case Instruction::Select:
 | |
|   case Instruction::ICmp:
 | |
|   case Instruction::FCmp:
 | |
|   case Instruction::Store:
 | |
|   case Instruction::Load:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::AddrSpaceCast:
 | |
|   case Instruction::ExtractElement:
 | |
|   case Instruction::InsertElement:
 | |
|   case Instruction::ExtractValue:
 | |
|   case Instruction::ShuffleVector:
 | |
|   case Instruction::Call:
 | |
|     return getUserCost(I, CostKind);
 | |
|   default:
 | |
|     // We don't have any information on this instruction.
 | |
|     return -1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| TargetTransformInfo::Concept::~Concept() {}
 | |
| 
 | |
| TargetIRAnalysis::TargetIRAnalysis() : TTICallback(&getDefaultTTI) {}
 | |
| 
 | |
| TargetIRAnalysis::TargetIRAnalysis(
 | |
|     std::function<Result(const Function &)> TTICallback)
 | |
|     : TTICallback(std::move(TTICallback)) {}
 | |
| 
 | |
| TargetIRAnalysis::Result TargetIRAnalysis::run(const Function &F,
 | |
|                                                FunctionAnalysisManager &) {
 | |
|   return TTICallback(F);
 | |
| }
 | |
| 
 | |
| AnalysisKey TargetIRAnalysis::Key;
 | |
| 
 | |
| TargetIRAnalysis::Result TargetIRAnalysis::getDefaultTTI(const Function &F) {
 | |
|   return Result(F.getParent()->getDataLayout());
 | |
| }
 | |
| 
 | |
| // Register the basic pass.
 | |
| INITIALIZE_PASS(TargetTransformInfoWrapperPass, "tti",
 | |
|                 "Target Transform Information", false, true)
 | |
| char TargetTransformInfoWrapperPass::ID = 0;
 | |
| 
 | |
| void TargetTransformInfoWrapperPass::anchor() {}
 | |
| 
 | |
| TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass()
 | |
|     : ImmutablePass(ID) {
 | |
|   initializeTargetTransformInfoWrapperPassPass(
 | |
|       *PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| TargetTransformInfoWrapperPass::TargetTransformInfoWrapperPass(
 | |
|     TargetIRAnalysis TIRA)
 | |
|     : ImmutablePass(ID), TIRA(std::move(TIRA)) {
 | |
|   initializeTargetTransformInfoWrapperPassPass(
 | |
|       *PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| TargetTransformInfo &TargetTransformInfoWrapperPass::getTTI(const Function &F) {
 | |
|   FunctionAnalysisManager DummyFAM;
 | |
|   TTI = TIRA.run(F, DummyFAM);
 | |
|   return *TTI;
 | |
| }
 | |
| 
 | |
| ImmutablePass *
 | |
| llvm::createTargetTransformInfoWrapperPass(TargetIRAnalysis TIRA) {
 | |
|   return new TargetTransformInfoWrapperPass(std::move(TIRA));
 | |
| }
 |