1096 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1096 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the ValueEnumerator class.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ValueEnumerator.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/GlobalAlias.h"
 | 
						|
#include "llvm/IR/GlobalIFunc.h"
 | 
						|
#include "llvm/IR/GlobalObject.h"
 | 
						|
#include "llvm/IR/GlobalValue.h"
 | 
						|
#include "llvm/IR/GlobalVariable.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/ValueSymbolTable.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cstddef>
 | 
						|
#include <iterator>
 | 
						|
#include <tuple>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct OrderMap {
 | 
						|
  DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
 | 
						|
  unsigned LastGlobalConstantID = 0;
 | 
						|
  unsigned LastGlobalValueID = 0;
 | 
						|
 | 
						|
  OrderMap() = default;
 | 
						|
 | 
						|
  bool isGlobalConstant(unsigned ID) const {
 | 
						|
    return ID <= LastGlobalConstantID;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isGlobalValue(unsigned ID) const {
 | 
						|
    return ID <= LastGlobalValueID && !isGlobalConstant(ID);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned size() const { return IDs.size(); }
 | 
						|
  std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
 | 
						|
 | 
						|
  std::pair<unsigned, bool> lookup(const Value *V) const {
 | 
						|
    return IDs.lookup(V);
 | 
						|
  }
 | 
						|
 | 
						|
  void index(const Value *V) {
 | 
						|
    // Explicitly sequence get-size and insert-value operations to avoid UB.
 | 
						|
    unsigned ID = IDs.size() + 1;
 | 
						|
    IDs[V].first = ID;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Look for a value that might be wrapped as metadata, e.g. a value in a
 | 
						|
/// metadata operand. Returns nullptr for a non-wrapped input value if
 | 
						|
/// OnlyWrapped is true, or it returns the input value as-is if false.
 | 
						|
static const Value *skipMetadataWrapper(const Value *V, bool OnlyWrapped) {
 | 
						|
  if (const auto *MAV = dyn_cast<MetadataAsValue>(V))
 | 
						|
    if (const auto *VAM = dyn_cast<ValueAsMetadata>(MAV->getMetadata()))
 | 
						|
      return VAM->getValue();
 | 
						|
  return OnlyWrapped ? nullptr : V;
 | 
						|
}
 | 
						|
 | 
						|
static void orderValue(const Value *V, OrderMap &OM) {
 | 
						|
  if (OM.lookup(V).first)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (const Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    if (C->getNumOperands() && !isa<GlobalValue>(C)) {
 | 
						|
      for (const Value *Op : C->operands())
 | 
						|
        if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
 | 
						|
          orderValue(Op, OM);
 | 
						|
      if (auto *CE = dyn_cast<ConstantExpr>(C))
 | 
						|
        if (CE->getOpcode() == Instruction::ShuffleVector)
 | 
						|
          orderValue(CE->getShuffleMaskForBitcode(), OM);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Note: we cannot cache this lookup above, since inserting into the map
 | 
						|
  // changes the map's size, and thus affects the other IDs.
 | 
						|
  OM.index(V);
 | 
						|
}
 | 
						|
 | 
						|
static OrderMap orderModule(const Module &M) {
 | 
						|
  // This needs to match the order used by ValueEnumerator::ValueEnumerator()
 | 
						|
  // and ValueEnumerator::incorporateFunction().
 | 
						|
  OrderMap OM;
 | 
						|
 | 
						|
  // In the reader, initializers of GlobalValues are set *after* all the
 | 
						|
  // globals have been read.  Rather than awkwardly modeling this behaviour
 | 
						|
  // directly in predictValueUseListOrderImpl(), just assign IDs to
 | 
						|
  // initializers of GlobalValues before GlobalValues themselves to model this
 | 
						|
  // implicitly.
 | 
						|
  for (const GlobalVariable &G : M.globals())
 | 
						|
    if (G.hasInitializer())
 | 
						|
      if (!isa<GlobalValue>(G.getInitializer()))
 | 
						|
        orderValue(G.getInitializer(), OM);
 | 
						|
  for (const GlobalAlias &A : M.aliases())
 | 
						|
    if (!isa<GlobalValue>(A.getAliasee()))
 | 
						|
      orderValue(A.getAliasee(), OM);
 | 
						|
  for (const GlobalIFunc &I : M.ifuncs())
 | 
						|
    if (!isa<GlobalValue>(I.getResolver()))
 | 
						|
      orderValue(I.getResolver(), OM);
 | 
						|
  for (const Function &F : M) {
 | 
						|
    for (const Use &U : F.operands())
 | 
						|
      if (!isa<GlobalValue>(U.get()))
 | 
						|
        orderValue(U.get(), OM);
 | 
						|
  }
 | 
						|
 | 
						|
  // As constants used in metadata operands are emitted as module-level
 | 
						|
  // constants, we must order them before other operands. Also, we must order
 | 
						|
  // these before global values, as these will be read before setting the
 | 
						|
  // global values' initializers. The latter matters for constants which have
 | 
						|
  // uses towards other constants that are used as initializers.
 | 
						|
  for (const Function &F : M) {
 | 
						|
    if (F.isDeclaration())
 | 
						|
      continue;
 | 
						|
    for (const BasicBlock &BB : F)
 | 
						|
      for (const Instruction &I : BB)
 | 
						|
        for (const Value *V : I.operands()) {
 | 
						|
          if (const Value *Op = skipMetadataWrapper(V, true)) {
 | 
						|
            if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
 | 
						|
                isa<InlineAsm>(*Op))
 | 
						|
              orderValue(Op, OM);
 | 
						|
          }
 | 
						|
        }
 | 
						|
  }
 | 
						|
  OM.LastGlobalConstantID = OM.size();
 | 
						|
 | 
						|
  // Initializers of GlobalValues are processed in
 | 
						|
  // BitcodeReader::ResolveGlobalAndAliasInits().  Match the order there rather
 | 
						|
  // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
 | 
						|
  // by giving IDs in reverse order.
 | 
						|
  //
 | 
						|
  // Since GlobalValues never reference each other directly (just through
 | 
						|
  // initializers), their relative IDs only matter for determining order of
 | 
						|
  // uses in their initializers.
 | 
						|
  for (const Function &F : M)
 | 
						|
    orderValue(&F, OM);
 | 
						|
  for (const GlobalAlias &A : M.aliases())
 | 
						|
    orderValue(&A, OM);
 | 
						|
  for (const GlobalIFunc &I : M.ifuncs())
 | 
						|
    orderValue(&I, OM);
 | 
						|
  for (const GlobalVariable &G : M.globals())
 | 
						|
    orderValue(&G, OM);
 | 
						|
  OM.LastGlobalValueID = OM.size();
 | 
						|
 | 
						|
  for (const Function &F : M) {
 | 
						|
    if (F.isDeclaration())
 | 
						|
      continue;
 | 
						|
    // Here we need to match the union of ValueEnumerator::incorporateFunction()
 | 
						|
    // and WriteFunction().  Basic blocks are implicitly declared before
 | 
						|
    // anything else (by declaring their size).
 | 
						|
    for (const BasicBlock &BB : F)
 | 
						|
      orderValue(&BB, OM);
 | 
						|
    for (const Argument &A : F.args())
 | 
						|
      orderValue(&A, OM);
 | 
						|
    for (const BasicBlock &BB : F)
 | 
						|
      for (const Instruction &I : BB) {
 | 
						|
        for (const Value *Op : I.operands())
 | 
						|
          if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
 | 
						|
              isa<InlineAsm>(*Op))
 | 
						|
            orderValue(Op, OM);
 | 
						|
        if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
 | 
						|
          orderValue(SVI->getShuffleMaskForBitcode(), OM);
 | 
						|
      }
 | 
						|
    for (const BasicBlock &BB : F)
 | 
						|
      for (const Instruction &I : BB)
 | 
						|
        orderValue(&I, OM);
 | 
						|
  }
 | 
						|
  return OM;
 | 
						|
}
 | 
						|
 | 
						|
static void predictValueUseListOrderImpl(const Value *V, const Function *F,
 | 
						|
                                         unsigned ID, const OrderMap &OM,
 | 
						|
                                         UseListOrderStack &Stack) {
 | 
						|
  // Predict use-list order for this one.
 | 
						|
  using Entry = std::pair<const Use *, unsigned>;
 | 
						|
  SmallVector<Entry, 64> List;
 | 
						|
  for (const Use &U : V->uses())
 | 
						|
    // Check if this user will be serialized.
 | 
						|
    if (OM.lookup(U.getUser()).first)
 | 
						|
      List.push_back(std::make_pair(&U, List.size()));
 | 
						|
 | 
						|
  if (List.size() < 2)
 | 
						|
    // We may have lost some users.
 | 
						|
    return;
 | 
						|
 | 
						|
  bool IsGlobalValue = OM.isGlobalValue(ID);
 | 
						|
  llvm::sort(List, [&](const Entry &L, const Entry &R) {
 | 
						|
    const Use *LU = L.first;
 | 
						|
    const Use *RU = R.first;
 | 
						|
    if (LU == RU)
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto LID = OM.lookup(LU->getUser()).first;
 | 
						|
    auto RID = OM.lookup(RU->getUser()).first;
 | 
						|
 | 
						|
    // Global values are processed in reverse order.
 | 
						|
    //
 | 
						|
    // Moreover, initializers of GlobalValues are set *after* all the globals
 | 
						|
    // have been read (despite having earlier IDs).  Rather than awkwardly
 | 
						|
    // modeling this behaviour here, orderModule() has assigned IDs to
 | 
						|
    // initializers of GlobalValues before GlobalValues themselves.
 | 
						|
    if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID))
 | 
						|
      return LID < RID;
 | 
						|
 | 
						|
    // If ID is 4, then expect: 7 6 5 1 2 3.
 | 
						|
    if (LID < RID) {
 | 
						|
      if (RID <= ID)
 | 
						|
        if (!IsGlobalValue) // GlobalValue uses don't get reversed.
 | 
						|
          return true;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (RID < LID) {
 | 
						|
      if (LID <= ID)
 | 
						|
        if (!IsGlobalValue) // GlobalValue uses don't get reversed.
 | 
						|
          return false;
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // LID and RID are equal, so we have different operands of the same user.
 | 
						|
    // Assume operands are added in order for all instructions.
 | 
						|
    if (LID <= ID)
 | 
						|
      if (!IsGlobalValue) // GlobalValue uses don't get reversed.
 | 
						|
        return LU->getOperandNo() < RU->getOperandNo();
 | 
						|
    return LU->getOperandNo() > RU->getOperandNo();
 | 
						|
  });
 | 
						|
 | 
						|
  if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
 | 
						|
        return L.second < R.second;
 | 
						|
      }))
 | 
						|
    // Order is already correct.
 | 
						|
    return;
 | 
						|
 | 
						|
  // Store the shuffle.
 | 
						|
  Stack.emplace_back(V, F, List.size());
 | 
						|
  assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
 | 
						|
  for (size_t I = 0, E = List.size(); I != E; ++I)
 | 
						|
    Stack.back().Shuffle[I] = List[I].second;
 | 
						|
}
 | 
						|
 | 
						|
static void predictValueUseListOrder(const Value *V, const Function *F,
 | 
						|
                                     OrderMap &OM, UseListOrderStack &Stack) {
 | 
						|
  auto &IDPair = OM[V];
 | 
						|
  assert(IDPair.first && "Unmapped value");
 | 
						|
  if (IDPair.second)
 | 
						|
    // Already predicted.
 | 
						|
    return;
 | 
						|
 | 
						|
  // Do the actual prediction.
 | 
						|
  IDPair.second = true;
 | 
						|
  if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
 | 
						|
    predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
 | 
						|
 | 
						|
  // Recursive descent into constants.
 | 
						|
  if (const Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    if (C->getNumOperands()) { // Visit GlobalValues.
 | 
						|
      for (const Value *Op : C->operands())
 | 
						|
        if (isa<Constant>(Op)) // Visit GlobalValues.
 | 
						|
          predictValueUseListOrder(Op, F, OM, Stack);
 | 
						|
      if (auto *CE = dyn_cast<ConstantExpr>(C))
 | 
						|
        if (CE->getOpcode() == Instruction::ShuffleVector)
 | 
						|
          predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
 | 
						|
                                   Stack);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static UseListOrderStack predictUseListOrder(const Module &M) {
 | 
						|
  OrderMap OM = orderModule(M);
 | 
						|
 | 
						|
  // Use-list orders need to be serialized after all the users have been added
 | 
						|
  // to a value, or else the shuffles will be incomplete.  Store them per
 | 
						|
  // function in a stack.
 | 
						|
  //
 | 
						|
  // Aside from function order, the order of values doesn't matter much here.
 | 
						|
  UseListOrderStack Stack;
 | 
						|
 | 
						|
  // We want to visit the functions backward now so we can list function-local
 | 
						|
  // constants in the last Function they're used in.  Module-level constants
 | 
						|
  // have already been visited above.
 | 
						|
  for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) {
 | 
						|
    const Function &F = *I;
 | 
						|
    if (F.isDeclaration())
 | 
						|
      continue;
 | 
						|
    for (const BasicBlock &BB : F)
 | 
						|
      predictValueUseListOrder(&BB, &F, OM, Stack);
 | 
						|
    for (const Argument &A : F.args())
 | 
						|
      predictValueUseListOrder(&A, &F, OM, Stack);
 | 
						|
    for (const BasicBlock &BB : F)
 | 
						|
      for (const Instruction &I : BB) {
 | 
						|
        for (const Value *Op : I.operands())
 | 
						|
          if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
 | 
						|
            predictValueUseListOrder(Op, &F, OM, Stack);
 | 
						|
        if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
 | 
						|
          predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
 | 
						|
                                   Stack);
 | 
						|
      }
 | 
						|
    for (const BasicBlock &BB : F)
 | 
						|
      for (const Instruction &I : BB)
 | 
						|
        predictValueUseListOrder(&I, &F, OM, Stack);
 | 
						|
  }
 | 
						|
 | 
						|
  // Visit globals last, since the module-level use-list block will be seen
 | 
						|
  // before the function bodies are processed.
 | 
						|
  for (const GlobalVariable &G : M.globals())
 | 
						|
    predictValueUseListOrder(&G, nullptr, OM, Stack);
 | 
						|
  for (const Function &F : M)
 | 
						|
    predictValueUseListOrder(&F, nullptr, OM, Stack);
 | 
						|
  for (const GlobalAlias &A : M.aliases())
 | 
						|
    predictValueUseListOrder(&A, nullptr, OM, Stack);
 | 
						|
  for (const GlobalIFunc &I : M.ifuncs())
 | 
						|
    predictValueUseListOrder(&I, nullptr, OM, Stack);
 | 
						|
  for (const GlobalVariable &G : M.globals())
 | 
						|
    if (G.hasInitializer())
 | 
						|
      predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
 | 
						|
  for (const GlobalAlias &A : M.aliases())
 | 
						|
    predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
 | 
						|
  for (const GlobalIFunc &I : M.ifuncs())
 | 
						|
    predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
 | 
						|
  for (const Function &F : M) {
 | 
						|
    for (const Use &U : F.operands())
 | 
						|
      predictValueUseListOrder(U.get(), nullptr, OM, Stack);
 | 
						|
  }
 | 
						|
 | 
						|
  return Stack;
 | 
						|
}
 | 
						|
 | 
						|
static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
 | 
						|
  return V.first->getType()->isIntOrIntVectorTy();
 | 
						|
}
 | 
						|
 | 
						|
ValueEnumerator::ValueEnumerator(const Module &M,
 | 
						|
                                 bool ShouldPreserveUseListOrder)
 | 
						|
    : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
 | 
						|
  if (ShouldPreserveUseListOrder)
 | 
						|
    UseListOrders = predictUseListOrder(M);
 | 
						|
 | 
						|
  // Enumerate the global variables.
 | 
						|
  for (const GlobalVariable &GV : M.globals())
 | 
						|
    EnumerateValue(&GV);
 | 
						|
 | 
						|
  // Enumerate the functions.
 | 
						|
  for (const Function & F : M) {
 | 
						|
    EnumerateValue(&F);
 | 
						|
    EnumerateAttributes(F.getAttributes());
 | 
						|
  }
 | 
						|
 | 
						|
  // Enumerate the aliases.
 | 
						|
  for (const GlobalAlias &GA : M.aliases())
 | 
						|
    EnumerateValue(&GA);
 | 
						|
 | 
						|
  // Enumerate the ifuncs.
 | 
						|
  for (const GlobalIFunc &GIF : M.ifuncs())
 | 
						|
    EnumerateValue(&GIF);
 | 
						|
 | 
						|
  // Remember what is the cutoff between globalvalue's and other constants.
 | 
						|
  unsigned FirstConstant = Values.size();
 | 
						|
 | 
						|
  // Enumerate the global variable initializers and attributes.
 | 
						|
  for (const GlobalVariable &GV : M.globals()) {
 | 
						|
    if (GV.hasInitializer())
 | 
						|
      EnumerateValue(GV.getInitializer());
 | 
						|
    if (GV.hasAttributes())
 | 
						|
      EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
 | 
						|
  }
 | 
						|
 | 
						|
  // Enumerate the aliasees.
 | 
						|
  for (const GlobalAlias &GA : M.aliases())
 | 
						|
    EnumerateValue(GA.getAliasee());
 | 
						|
 | 
						|
  // Enumerate the ifunc resolvers.
 | 
						|
  for (const GlobalIFunc &GIF : M.ifuncs())
 | 
						|
    EnumerateValue(GIF.getResolver());
 | 
						|
 | 
						|
  // Enumerate any optional Function data.
 | 
						|
  for (const Function &F : M)
 | 
						|
    for (const Use &U : F.operands())
 | 
						|
      EnumerateValue(U.get());
 | 
						|
 | 
						|
  // Enumerate the metadata type.
 | 
						|
  //
 | 
						|
  // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
 | 
						|
  // only encodes the metadata type when it's used as a value.
 | 
						|
  EnumerateType(Type::getMetadataTy(M.getContext()));
 | 
						|
 | 
						|
  // Insert constants and metadata that are named at module level into the slot
 | 
						|
  // pool so that the module symbol table can refer to them...
 | 
						|
  EnumerateValueSymbolTable(M.getValueSymbolTable());
 | 
						|
  EnumerateNamedMetadata(M);
 | 
						|
 | 
						|
  SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
 | 
						|
  for (const GlobalVariable &GV : M.globals()) {
 | 
						|
    MDs.clear();
 | 
						|
    GV.getAllMetadata(MDs);
 | 
						|
    for (const auto &I : MDs)
 | 
						|
      // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
 | 
						|
      // to write metadata to the global variable's own metadata block
 | 
						|
      // (PR28134).
 | 
						|
      EnumerateMetadata(nullptr, I.second);
 | 
						|
  }
 | 
						|
 | 
						|
  // Enumerate types used by function bodies and argument lists.
 | 
						|
  for (const Function &F : M) {
 | 
						|
    for (const Argument &A : F.args())
 | 
						|
      EnumerateType(A.getType());
 | 
						|
 | 
						|
    // Enumerate metadata attached to this function.
 | 
						|
    MDs.clear();
 | 
						|
    F.getAllMetadata(MDs);
 | 
						|
    for (const auto &I : MDs)
 | 
						|
      EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
 | 
						|
 | 
						|
    for (const BasicBlock &BB : F)
 | 
						|
      for (const Instruction &I : BB) {
 | 
						|
        for (const Use &Op : I.operands()) {
 | 
						|
          auto *MD = dyn_cast<MetadataAsValue>(&Op);
 | 
						|
          if (!MD) {
 | 
						|
            EnumerateOperandType(Op);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
 | 
						|
          // Local metadata is enumerated during function-incorporation.
 | 
						|
          if (isa<LocalAsMetadata>(MD->getMetadata()))
 | 
						|
            continue;
 | 
						|
 | 
						|
          EnumerateMetadata(&F, MD->getMetadata());
 | 
						|
        }
 | 
						|
        if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
 | 
						|
          EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
 | 
						|
        EnumerateType(I.getType());
 | 
						|
        if (const auto *Call = dyn_cast<CallBase>(&I))
 | 
						|
          EnumerateAttributes(Call->getAttributes());
 | 
						|
 | 
						|
        // Enumerate metadata attached with this instruction.
 | 
						|
        MDs.clear();
 | 
						|
        I.getAllMetadataOtherThanDebugLoc(MDs);
 | 
						|
        for (unsigned i = 0, e = MDs.size(); i != e; ++i)
 | 
						|
          EnumerateMetadata(&F, MDs[i].second);
 | 
						|
 | 
						|
        // Don't enumerate the location directly -- it has a special record
 | 
						|
        // type -- but enumerate its operands.
 | 
						|
        if (DILocation *L = I.getDebugLoc())
 | 
						|
          for (const Metadata *Op : L->operands())
 | 
						|
            EnumerateMetadata(&F, Op);
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  // Optimize constant ordering.
 | 
						|
  OptimizeConstants(FirstConstant, Values.size());
 | 
						|
 | 
						|
  // Organize metadata ordering.
 | 
						|
  organizeMetadata();
 | 
						|
}
 | 
						|
 | 
						|
unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
 | 
						|
  InstructionMapType::const_iterator I = InstructionMap.find(Inst);
 | 
						|
  assert(I != InstructionMap.end() && "Instruction is not mapped!");
 | 
						|
  return I->second;
 | 
						|
}
 | 
						|
 | 
						|
unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
 | 
						|
  unsigned ComdatID = Comdats.idFor(C);
 | 
						|
  assert(ComdatID && "Comdat not found!");
 | 
						|
  return ComdatID;
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::setInstructionID(const Instruction *I) {
 | 
						|
  InstructionMap[I] = InstructionCount++;
 | 
						|
}
 | 
						|
 | 
						|
unsigned ValueEnumerator::getValueID(const Value *V) const {
 | 
						|
  if (auto *MD = dyn_cast<MetadataAsValue>(V))
 | 
						|
    return getMetadataID(MD->getMetadata());
 | 
						|
 | 
						|
  ValueMapType::const_iterator I = ValueMap.find(V);
 | 
						|
  assert(I != ValueMap.end() && "Value not in slotcalculator!");
 | 
						|
  return I->second-1;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
 | 
						|
  print(dbgs(), ValueMap, "Default");
 | 
						|
  dbgs() << '\n';
 | 
						|
  print(dbgs(), MetadataMap, "MetaData");
 | 
						|
  dbgs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
 | 
						|
                            const char *Name) const {
 | 
						|
  OS << "Map Name: " << Name << "\n";
 | 
						|
  OS << "Size: " << Map.size() << "\n";
 | 
						|
  for (ValueMapType::const_iterator I = Map.begin(),
 | 
						|
         E = Map.end(); I != E; ++I) {
 | 
						|
    const Value *V = I->first;
 | 
						|
    if (V->hasName())
 | 
						|
      OS << "Value: " << V->getName();
 | 
						|
    else
 | 
						|
      OS << "Value: [null]\n";
 | 
						|
    V->print(errs());
 | 
						|
    errs() << '\n';
 | 
						|
 | 
						|
    OS << " Uses(" << V->getNumUses() << "):";
 | 
						|
    for (const Use &U : V->uses()) {
 | 
						|
      if (&U != &*V->use_begin())
 | 
						|
        OS << ",";
 | 
						|
      if(U->hasName())
 | 
						|
        OS << " " << U->getName();
 | 
						|
      else
 | 
						|
        OS << " [null]";
 | 
						|
 | 
						|
    }
 | 
						|
    OS <<  "\n\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
 | 
						|
                            const char *Name) const {
 | 
						|
  OS << "Map Name: " << Name << "\n";
 | 
						|
  OS << "Size: " << Map.size() << "\n";
 | 
						|
  for (auto I = Map.begin(), E = Map.end(); I != E; ++I) {
 | 
						|
    const Metadata *MD = I->first;
 | 
						|
    OS << "Metadata: slot = " << I->second.ID << "\n";
 | 
						|
    OS << "Metadata: function = " << I->second.F << "\n";
 | 
						|
    MD->print(OS);
 | 
						|
    OS << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeConstants - Reorder constant pool for denser encoding.
 | 
						|
void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
 | 
						|
  if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
 | 
						|
 | 
						|
  if (ShouldPreserveUseListOrder)
 | 
						|
    // Optimizing constants makes the use-list order difficult to predict.
 | 
						|
    // Disable it for now when trying to preserve the order.
 | 
						|
    return;
 | 
						|
 | 
						|
  std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd,
 | 
						|
                   [this](const std::pair<const Value *, unsigned> &LHS,
 | 
						|
                          const std::pair<const Value *, unsigned> &RHS) {
 | 
						|
    // Sort by plane.
 | 
						|
    if (LHS.first->getType() != RHS.first->getType())
 | 
						|
      return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType());
 | 
						|
    // Then by frequency.
 | 
						|
    return LHS.second > RHS.second;
 | 
						|
  });
 | 
						|
 | 
						|
  // Ensure that integer and vector of integer constants are at the start of the
 | 
						|
  // constant pool.  This is important so that GEP structure indices come before
 | 
						|
  // gep constant exprs.
 | 
						|
  std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd,
 | 
						|
                        isIntOrIntVectorValue);
 | 
						|
 | 
						|
  // Rebuild the modified portion of ValueMap.
 | 
						|
  for (; CstStart != CstEnd; ++CstStart)
 | 
						|
    ValueMap[Values[CstStart].first] = CstStart+1;
 | 
						|
}
 | 
						|
 | 
						|
/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
 | 
						|
/// table into the values table.
 | 
						|
void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
 | 
						|
  for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
 | 
						|
       VI != VE; ++VI)
 | 
						|
    EnumerateValue(VI->getValue());
 | 
						|
}
 | 
						|
 | 
						|
/// Insert all of the values referenced by named metadata in the specified
 | 
						|
/// module.
 | 
						|
void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
 | 
						|
  for (const auto &I : M.named_metadata())
 | 
						|
    EnumerateNamedMDNode(&I);
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
 | 
						|
  for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
 | 
						|
    EnumerateMetadata(nullptr, MD->getOperand(i));
 | 
						|
}
 | 
						|
 | 
						|
unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
 | 
						|
  return F ? getValueID(F) + 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
 | 
						|
  EnumerateMetadata(getMetadataFunctionID(F), MD);
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::EnumerateFunctionLocalMetadata(
 | 
						|
    const Function &F, const LocalAsMetadata *Local) {
 | 
						|
  EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::dropFunctionFromMetadata(
 | 
						|
    MetadataMapType::value_type &FirstMD) {
 | 
						|
  SmallVector<const MDNode *, 64> Worklist;
 | 
						|
  auto push = [&Worklist](MetadataMapType::value_type &MD) {
 | 
						|
    auto &Entry = MD.second;
 | 
						|
 | 
						|
    // Nothing to do if this metadata isn't tagged.
 | 
						|
    if (!Entry.F)
 | 
						|
      return;
 | 
						|
 | 
						|
    // Drop the function tag.
 | 
						|
    Entry.F = 0;
 | 
						|
 | 
						|
    // If this is has an ID and is an MDNode, then its operands have entries as
 | 
						|
    // well.  We need to drop the function from them too.
 | 
						|
    if (Entry.ID)
 | 
						|
      if (auto *N = dyn_cast<MDNode>(MD.first))
 | 
						|
        Worklist.push_back(N);
 | 
						|
  };
 | 
						|
  push(FirstMD);
 | 
						|
  while (!Worklist.empty())
 | 
						|
    for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
 | 
						|
      if (!Op)
 | 
						|
        continue;
 | 
						|
      auto MD = MetadataMap.find(Op);
 | 
						|
      if (MD != MetadataMap.end())
 | 
						|
        push(*MD);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
 | 
						|
  // It's vital for reader efficiency that uniqued subgraphs are done in
 | 
						|
  // post-order; it's expensive when their operands have forward references.
 | 
						|
  // If a distinct node is referenced from a uniqued node, it'll be delayed
 | 
						|
  // until the uniqued subgraph has been completely traversed.
 | 
						|
  SmallVector<const MDNode *, 32> DelayedDistinctNodes;
 | 
						|
 | 
						|
  // Start by enumerating MD, and then work through its transitive operands in
 | 
						|
  // post-order.  This requires a depth-first search.
 | 
						|
  SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
 | 
						|
  if (const MDNode *N = enumerateMetadataImpl(F, MD))
 | 
						|
    Worklist.push_back(std::make_pair(N, N->op_begin()));
 | 
						|
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    const MDNode *N = Worklist.back().first;
 | 
						|
 | 
						|
    // Enumerate operands until we hit a new node.  We need to traverse these
 | 
						|
    // nodes' operands before visiting the rest of N's operands.
 | 
						|
    MDNode::op_iterator I = std::find_if(
 | 
						|
        Worklist.back().second, N->op_end(),
 | 
						|
        [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
 | 
						|
    if (I != N->op_end()) {
 | 
						|
      auto *Op = cast<MDNode>(*I);
 | 
						|
      Worklist.back().second = ++I;
 | 
						|
 | 
						|
      // Delay traversing Op if it's a distinct node and N is uniqued.
 | 
						|
      if (Op->isDistinct() && !N->isDistinct())
 | 
						|
        DelayedDistinctNodes.push_back(Op);
 | 
						|
      else
 | 
						|
        Worklist.push_back(std::make_pair(Op, Op->op_begin()));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // All the operands have been visited.  Now assign an ID.
 | 
						|
    Worklist.pop_back();
 | 
						|
    MDs.push_back(N);
 | 
						|
    MetadataMap[N].ID = MDs.size();
 | 
						|
 | 
						|
    // Flush out any delayed distinct nodes; these are all the distinct nodes
 | 
						|
    // that are leaves in last uniqued subgraph.
 | 
						|
    if (Worklist.empty() || Worklist.back().first->isDistinct()) {
 | 
						|
      for (const MDNode *N : DelayedDistinctNodes)
 | 
						|
        Worklist.push_back(std::make_pair(N, N->op_begin()));
 | 
						|
      DelayedDistinctNodes.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) {
 | 
						|
  if (!MD)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  assert(
 | 
						|
      (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
 | 
						|
      "Invalid metadata kind");
 | 
						|
 | 
						|
  auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
 | 
						|
  MDIndex &Entry = Insertion.first->second;
 | 
						|
  if (!Insertion.second) {
 | 
						|
    // Already mapped.  If F doesn't match the function tag, drop it.
 | 
						|
    if (Entry.hasDifferentFunction(F))
 | 
						|
      dropFunctionFromMetadata(*Insertion.first);
 | 
						|
    return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't assign IDs to metadata nodes.
 | 
						|
  if (auto *N = dyn_cast<MDNode>(MD))
 | 
						|
    return N;
 | 
						|
 | 
						|
  // Save the metadata.
 | 
						|
  MDs.push_back(MD);
 | 
						|
  Entry.ID = MDs.size();
 | 
						|
 | 
						|
  // Enumerate the constant, if any.
 | 
						|
  if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
 | 
						|
    EnumerateValue(C->getValue());
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
 | 
						|
/// information reachable from the metadata.
 | 
						|
void ValueEnumerator::EnumerateFunctionLocalMetadata(
 | 
						|
    unsigned F, const LocalAsMetadata *Local) {
 | 
						|
  assert(F && "Expected a function");
 | 
						|
 | 
						|
  // Check to see if it's already in!
 | 
						|
  MDIndex &Index = MetadataMap[Local];
 | 
						|
  if (Index.ID) {
 | 
						|
    assert(Index.F == F && "Expected the same function");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  MDs.push_back(Local);
 | 
						|
  Index.F = F;
 | 
						|
  Index.ID = MDs.size();
 | 
						|
 | 
						|
  EnumerateValue(Local->getValue());
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getMetadataTypeOrder(const Metadata *MD) {
 | 
						|
  // Strings are emitted in bulk and must come first.
 | 
						|
  if (isa<MDString>(MD))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // ConstantAsMetadata doesn't reference anything.  We may as well shuffle it
 | 
						|
  // to the front since we can detect it.
 | 
						|
  auto *N = dyn_cast<MDNode>(MD);
 | 
						|
  if (!N)
 | 
						|
    return 1;
 | 
						|
 | 
						|
  // The reader is fast forward references for distinct node operands, but slow
 | 
						|
  // when uniqued operands are unresolved.
 | 
						|
  return N->isDistinct() ? 2 : 3;
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::organizeMetadata() {
 | 
						|
  assert(MetadataMap.size() == MDs.size() &&
 | 
						|
         "Metadata map and vector out of sync");
 | 
						|
 | 
						|
  if (MDs.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Copy out the index information from MetadataMap in order to choose a new
 | 
						|
  // order.
 | 
						|
  SmallVector<MDIndex, 64> Order;
 | 
						|
  Order.reserve(MetadataMap.size());
 | 
						|
  for (const Metadata *MD : MDs)
 | 
						|
    Order.push_back(MetadataMap.lookup(MD));
 | 
						|
 | 
						|
  // Partition:
 | 
						|
  //   - by function, then
 | 
						|
  //   - by isa<MDString>
 | 
						|
  // and then sort by the original/current ID.  Since the IDs are guaranteed to
 | 
						|
  // be unique, the result of std::sort will be deterministic.  There's no need
 | 
						|
  // for std::stable_sort.
 | 
						|
  llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
 | 
						|
    return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
 | 
						|
           std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
 | 
						|
  });
 | 
						|
 | 
						|
  // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
 | 
						|
  // and fix up MetadataMap.
 | 
						|
  std::vector<const Metadata *> OldMDs;
 | 
						|
  MDs.swap(OldMDs);
 | 
						|
  MDs.reserve(OldMDs.size());
 | 
						|
  for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
 | 
						|
    auto *MD = Order[I].get(OldMDs);
 | 
						|
    MDs.push_back(MD);
 | 
						|
    MetadataMap[MD].ID = I + 1;
 | 
						|
    if (isa<MDString>(MD))
 | 
						|
      ++NumMDStrings;
 | 
						|
  }
 | 
						|
 | 
						|
  // Return early if there's nothing for the functions.
 | 
						|
  if (MDs.size() == Order.size())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Build the function metadata ranges.
 | 
						|
  MDRange R;
 | 
						|
  FunctionMDs.reserve(OldMDs.size());
 | 
						|
  unsigned PrevF = 0;
 | 
						|
  for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
 | 
						|
       ++I) {
 | 
						|
    unsigned F = Order[I].F;
 | 
						|
    if (!PrevF) {
 | 
						|
      PrevF = F;
 | 
						|
    } else if (PrevF != F) {
 | 
						|
      R.Last = FunctionMDs.size();
 | 
						|
      std::swap(R, FunctionMDInfo[PrevF]);
 | 
						|
      R.First = FunctionMDs.size();
 | 
						|
 | 
						|
      ID = MDs.size();
 | 
						|
      PrevF = F;
 | 
						|
    }
 | 
						|
 | 
						|
    auto *MD = Order[I].get(OldMDs);
 | 
						|
    FunctionMDs.push_back(MD);
 | 
						|
    MetadataMap[MD].ID = ++ID;
 | 
						|
    if (isa<MDString>(MD))
 | 
						|
      ++R.NumStrings;
 | 
						|
  }
 | 
						|
  R.Last = FunctionMDs.size();
 | 
						|
  FunctionMDInfo[PrevF] = R;
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
 | 
						|
  NumModuleMDs = MDs.size();
 | 
						|
 | 
						|
  auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
 | 
						|
  NumMDStrings = R.NumStrings;
 | 
						|
  MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
 | 
						|
             FunctionMDs.begin() + R.Last);
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::EnumerateValue(const Value *V) {
 | 
						|
  assert(!V->getType()->isVoidTy() && "Can't insert void values!");
 | 
						|
  assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
 | 
						|
 | 
						|
  // Check to see if it's already in!
 | 
						|
  unsigned &ValueID = ValueMap[V];
 | 
						|
  if (ValueID) {
 | 
						|
    // Increment use count.
 | 
						|
    Values[ValueID-1].second++;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *GO = dyn_cast<GlobalObject>(V))
 | 
						|
    if (const Comdat *C = GO->getComdat())
 | 
						|
      Comdats.insert(C);
 | 
						|
 | 
						|
  // Enumerate the type of this value.
 | 
						|
  EnumerateType(V->getType());
 | 
						|
 | 
						|
  if (const Constant *C = dyn_cast<Constant>(V)) {
 | 
						|
    if (isa<GlobalValue>(C)) {
 | 
						|
      // Initializers for globals are handled explicitly elsewhere.
 | 
						|
    } else if (C->getNumOperands()) {
 | 
						|
      // If a constant has operands, enumerate them.  This makes sure that if a
 | 
						|
      // constant has uses (for example an array of const ints), that they are
 | 
						|
      // inserted also.
 | 
						|
 | 
						|
      // We prefer to enumerate them with values before we enumerate the user
 | 
						|
      // itself.  This makes it more likely that we can avoid forward references
 | 
						|
      // in the reader.  We know that there can be no cycles in the constants
 | 
						|
      // graph that don't go through a global variable.
 | 
						|
      for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
 | 
						|
           I != E; ++I)
 | 
						|
        if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
 | 
						|
          EnumerateValue(*I);
 | 
						|
      if (auto *CE = dyn_cast<ConstantExpr>(C))
 | 
						|
        if (CE->getOpcode() == Instruction::ShuffleVector)
 | 
						|
          EnumerateValue(CE->getShuffleMaskForBitcode());
 | 
						|
 | 
						|
      // Finally, add the value.  Doing this could make the ValueID reference be
 | 
						|
      // dangling, don't reuse it.
 | 
						|
      Values.push_back(std::make_pair(V, 1U));
 | 
						|
      ValueMap[V] = Values.size();
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add the value.
 | 
						|
  Values.push_back(std::make_pair(V, 1U));
 | 
						|
  ValueID = Values.size();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ValueEnumerator::EnumerateType(Type *Ty) {
 | 
						|
  unsigned *TypeID = &TypeMap[Ty];
 | 
						|
 | 
						|
  // We've already seen this type.
 | 
						|
  if (*TypeID)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If it is a non-anonymous struct, mark the type as being visited so that we
 | 
						|
  // don't recursively visit it.  This is safe because we allow forward
 | 
						|
  // references of these in the bitcode reader.
 | 
						|
  if (StructType *STy = dyn_cast<StructType>(Ty))
 | 
						|
    if (!STy->isLiteral())
 | 
						|
      *TypeID = ~0U;
 | 
						|
 | 
						|
  // Enumerate all of the subtypes before we enumerate this type.  This ensures
 | 
						|
  // that the type will be enumerated in an order that can be directly built.
 | 
						|
  for (Type *SubTy : Ty->subtypes())
 | 
						|
    EnumerateType(SubTy);
 | 
						|
 | 
						|
  // Refresh the TypeID pointer in case the table rehashed.
 | 
						|
  TypeID = &TypeMap[Ty];
 | 
						|
 | 
						|
  // Check to see if we got the pointer another way.  This can happen when
 | 
						|
  // enumerating recursive types that hit the base case deeper than they start.
 | 
						|
  //
 | 
						|
  // If this is actually a struct that we are treating as forward ref'able,
 | 
						|
  // then emit the definition now that all of its contents are available.
 | 
						|
  if (*TypeID && *TypeID != ~0U)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Add this type now that its contents are all happily enumerated.
 | 
						|
  Types.push_back(Ty);
 | 
						|
 | 
						|
  *TypeID = Types.size();
 | 
						|
}
 | 
						|
 | 
						|
// Enumerate the types for the specified value.  If the value is a constant,
 | 
						|
// walk through it, enumerating the types of the constant.
 | 
						|
void ValueEnumerator::EnumerateOperandType(const Value *V) {
 | 
						|
  EnumerateType(V->getType());
 | 
						|
 | 
						|
  assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
 | 
						|
 | 
						|
  const Constant *C = dyn_cast<Constant>(V);
 | 
						|
  if (!C)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this constant is already enumerated, ignore it, we know its type must
 | 
						|
  // be enumerated.
 | 
						|
  if (ValueMap.count(C))
 | 
						|
    return;
 | 
						|
 | 
						|
  // This constant may have operands, make sure to enumerate the types in
 | 
						|
  // them.
 | 
						|
  for (const Value *Op : C->operands()) {
 | 
						|
    // Don't enumerate basic blocks here, this happens as operands to
 | 
						|
    // blockaddress.
 | 
						|
    if (isa<BasicBlock>(Op))
 | 
						|
      continue;
 | 
						|
 | 
						|
    EnumerateOperandType(Op);
 | 
						|
  }
 | 
						|
  if (auto *CE = dyn_cast<ConstantExpr>(C))
 | 
						|
    if (CE->getOpcode() == Instruction::ShuffleVector)
 | 
						|
      EnumerateOperandType(CE->getShuffleMaskForBitcode());
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
 | 
						|
  if (PAL.isEmpty()) return;  // null is always 0.
 | 
						|
 | 
						|
  // Do a lookup.
 | 
						|
  unsigned &Entry = AttributeListMap[PAL];
 | 
						|
  if (Entry == 0) {
 | 
						|
    // Never saw this before, add it.
 | 
						|
    AttributeLists.push_back(PAL);
 | 
						|
    Entry = AttributeLists.size();
 | 
						|
  }
 | 
						|
 | 
						|
  // Do lookups for all attribute groups.
 | 
						|
  for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) {
 | 
						|
    AttributeSet AS = PAL.getAttributes(i);
 | 
						|
    if (!AS.hasAttributes())
 | 
						|
      continue;
 | 
						|
    IndexAndAttrSet Pair = {i, AS};
 | 
						|
    unsigned &Entry = AttributeGroupMap[Pair];
 | 
						|
    if (Entry == 0) {
 | 
						|
      AttributeGroups.push_back(Pair);
 | 
						|
      Entry = AttributeGroups.size();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::incorporateFunction(const Function &F) {
 | 
						|
  InstructionCount = 0;
 | 
						|
  NumModuleValues = Values.size();
 | 
						|
 | 
						|
  // Add global metadata to the function block.  This doesn't include
 | 
						|
  // LocalAsMetadata.
 | 
						|
  incorporateFunctionMetadata(F);
 | 
						|
 | 
						|
  // Adding function arguments to the value table.
 | 
						|
  for (const auto &I : F.args()) {
 | 
						|
    EnumerateValue(&I);
 | 
						|
    if (I.hasAttribute(Attribute::ByVal))
 | 
						|
      EnumerateType(I.getParamByValType());
 | 
						|
    else if (I.hasAttribute(Attribute::StructRet))
 | 
						|
      EnumerateType(I.getParamStructRetType());
 | 
						|
  }
 | 
						|
  FirstFuncConstantID = Values.size();
 | 
						|
 | 
						|
  // Add all function-level constants to the value table.
 | 
						|
  for (const BasicBlock &BB : F) {
 | 
						|
    for (const Instruction &I : BB) {
 | 
						|
      for (const Use &OI : I.operands()) {
 | 
						|
        if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
 | 
						|
          EnumerateValue(OI);
 | 
						|
      }
 | 
						|
      if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
 | 
						|
        EnumerateValue(SVI->getShuffleMaskForBitcode());
 | 
						|
    }
 | 
						|
    BasicBlocks.push_back(&BB);
 | 
						|
    ValueMap[&BB] = BasicBlocks.size();
 | 
						|
  }
 | 
						|
 | 
						|
  // Optimize the constant layout.
 | 
						|
  OptimizeConstants(FirstFuncConstantID, Values.size());
 | 
						|
 | 
						|
  // Add the function's parameter attributes so they are available for use in
 | 
						|
  // the function's instruction.
 | 
						|
  EnumerateAttributes(F.getAttributes());
 | 
						|
 | 
						|
  FirstInstID = Values.size();
 | 
						|
 | 
						|
  SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
 | 
						|
  // Add all of the instructions.
 | 
						|
  for (const BasicBlock &BB : F) {
 | 
						|
    for (const Instruction &I : BB) {
 | 
						|
      for (const Use &OI : I.operands()) {
 | 
						|
        if (auto *MD = dyn_cast<MetadataAsValue>(&OI))
 | 
						|
          if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata()))
 | 
						|
            // Enumerate metadata after the instructions they might refer to.
 | 
						|
            FnLocalMDVector.push_back(Local);
 | 
						|
      }
 | 
						|
 | 
						|
      if (!I.getType()->isVoidTy())
 | 
						|
        EnumerateValue(&I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Add all of the function-local metadata.
 | 
						|
  for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
 | 
						|
    // At this point, every local values have been incorporated, we shouldn't
 | 
						|
    // have a metadata operand that references a value that hasn't been seen.
 | 
						|
    assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
 | 
						|
           "Missing value for metadata operand");
 | 
						|
    EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ValueEnumerator::purgeFunction() {
 | 
						|
  /// Remove purged values from the ValueMap.
 | 
						|
  for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
 | 
						|
    ValueMap.erase(Values[i].first);
 | 
						|
  for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
 | 
						|
    MetadataMap.erase(MDs[i]);
 | 
						|
  for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
 | 
						|
    ValueMap.erase(BasicBlocks[i]);
 | 
						|
 | 
						|
  Values.resize(NumModuleValues);
 | 
						|
  MDs.resize(NumModuleMDs);
 | 
						|
  BasicBlocks.clear();
 | 
						|
  NumMDStrings = 0;
 | 
						|
}
 | 
						|
 | 
						|
static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
 | 
						|
                                 DenseMap<const BasicBlock*, unsigned> &IDMap) {
 | 
						|
  unsigned Counter = 0;
 | 
						|
  for (const BasicBlock &BB : *F)
 | 
						|
    IDMap[&BB] = ++Counter;
 | 
						|
}
 | 
						|
 | 
						|
/// getGlobalBasicBlockID - This returns the function-specific ID for the
 | 
						|
/// specified basic block.  This is relatively expensive information, so it
 | 
						|
/// should only be used by rare constructs such as address-of-label.
 | 
						|
unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
 | 
						|
  unsigned &Idx = GlobalBasicBlockIDs[BB];
 | 
						|
  if (Idx != 0)
 | 
						|
    return Idx-1;
 | 
						|
 | 
						|
  IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
 | 
						|
  return getGlobalBasicBlockID(BB);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
 | 
						|
  return Log2_32_Ceil(getTypes().size() + 1);
 | 
						|
}
 |