477 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			477 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // The LiveRangeEdit class represents changes done to a virtual register when it
 | |
| // is spilled or split.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/LiveRangeEdit.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/CalcSpillWeights.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/VirtRegMap.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| 
 | |
| STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
 | |
| STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
 | |
| STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
 | |
| 
 | |
| void LiveRangeEdit::Delegate::anchor() { }
 | |
| 
 | |
| LiveInterval &LiveRangeEdit::createEmptyIntervalFrom(Register OldReg,
 | |
|                                                      bool createSubRanges) {
 | |
|   Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
 | |
|   if (VRM)
 | |
|     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
 | |
| 
 | |
|   LiveInterval &LI = LIS.createEmptyInterval(VReg);
 | |
|   if (Parent && !Parent->isSpillable())
 | |
|     LI.markNotSpillable();
 | |
|   if (createSubRanges) {
 | |
|     // Create empty subranges if the OldReg's interval has them. Do not create
 | |
|     // the main range here---it will be constructed later after the subranges
 | |
|     // have been finalized.
 | |
|     LiveInterval &OldLI = LIS.getInterval(OldReg);
 | |
|     VNInfo::Allocator &Alloc = LIS.getVNInfoAllocator();
 | |
|     for (LiveInterval::SubRange &S : OldLI.subranges())
 | |
|       LI.createSubRange(Alloc, S.LaneMask);
 | |
|   }
 | |
|   return LI;
 | |
| }
 | |
| 
 | |
| Register LiveRangeEdit::createFrom(Register OldReg) {
 | |
|   Register VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
 | |
|   if (VRM) {
 | |
|     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
 | |
|   }
 | |
|   // FIXME: Getting the interval here actually computes it.
 | |
|   // In theory, this may not be what we want, but in practice
 | |
|   // the createEmptyIntervalFrom API is used when this is not
 | |
|   // the case. Generally speaking we just want to annotate the
 | |
|   // LiveInterval when it gets created but we cannot do that at
 | |
|   // the moment.
 | |
|   if (Parent && !Parent->isSpillable())
 | |
|     LIS.getInterval(VReg).markNotSpillable();
 | |
|   return VReg;
 | |
| }
 | |
| 
 | |
| bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
 | |
|                                           const MachineInstr *DefMI,
 | |
|                                           AAResults *aa) {
 | |
|   assert(DefMI && "Missing instruction");
 | |
|   ScannedRemattable = true;
 | |
|   if (!TII.isTriviallyReMaterializable(*DefMI, aa))
 | |
|     return false;
 | |
|   Remattable.insert(VNI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void LiveRangeEdit::scanRemattable(AAResults *aa) {
 | |
|   for (VNInfo *VNI : getParent().valnos) {
 | |
|     if (VNI->isUnused())
 | |
|       continue;
 | |
|     unsigned Original = VRM->getOriginal(getReg());
 | |
|     LiveInterval &OrigLI = LIS.getInterval(Original);
 | |
|     VNInfo *OrigVNI = OrigLI.getVNInfoAt(VNI->def);
 | |
|     if (!OrigVNI)
 | |
|       continue;
 | |
|     MachineInstr *DefMI = LIS.getInstructionFromIndex(OrigVNI->def);
 | |
|     if (!DefMI)
 | |
|       continue;
 | |
|     checkRematerializable(OrigVNI, DefMI, aa);
 | |
|   }
 | |
|   ScannedRemattable = true;
 | |
| }
 | |
| 
 | |
| bool LiveRangeEdit::anyRematerializable(AAResults *aa) {
 | |
|   if (!ScannedRemattable)
 | |
|     scanRemattable(aa);
 | |
|   return !Remattable.empty();
 | |
| }
 | |
| 
 | |
| /// allUsesAvailableAt - Return true if all registers used by OrigMI at
 | |
| /// OrigIdx are also available with the same value at UseIdx.
 | |
| bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
 | |
|                                        SlotIndex OrigIdx,
 | |
|                                        SlotIndex UseIdx) const {
 | |
|   OrigIdx = OrigIdx.getRegSlot(true);
 | |
|   UseIdx = UseIdx.getRegSlot(true);
 | |
|   for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
 | |
|     const MachineOperand &MO = OrigMI->getOperand(i);
 | |
|     if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
 | |
|       continue;
 | |
| 
 | |
|     // We can't remat physreg uses, unless it is a constant.
 | |
|     if (Register::isPhysicalRegister(MO.getReg())) {
 | |
|       if (MRI.isConstantPhysReg(MO.getReg()))
 | |
|         continue;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     LiveInterval &li = LIS.getInterval(MO.getReg());
 | |
|     const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
 | |
|     if (!OVNI)
 | |
|       continue;
 | |
| 
 | |
|     // Don't allow rematerialization immediately after the original def.
 | |
|     // It would be incorrect if OrigMI redefines the register.
 | |
|     // See PR14098.
 | |
|     if (SlotIndex::isSameInstr(OrigIdx, UseIdx))
 | |
|       return false;
 | |
| 
 | |
|     if (OVNI != li.getVNInfoAt(UseIdx))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LiveRangeEdit::canRematerializeAt(Remat &RM, VNInfo *OrigVNI,
 | |
|                                        SlotIndex UseIdx, bool cheapAsAMove) {
 | |
|   assert(ScannedRemattable && "Call anyRematerializable first");
 | |
| 
 | |
|   // Use scanRemattable info.
 | |
|   if (!Remattable.count(OrigVNI))
 | |
|     return false;
 | |
| 
 | |
|   // No defining instruction provided.
 | |
|   SlotIndex DefIdx;
 | |
|   assert(RM.OrigMI && "No defining instruction for remattable value");
 | |
|   DefIdx = LIS.getInstructionIndex(*RM.OrigMI);
 | |
| 
 | |
|   // If only cheap remats were requested, bail out early.
 | |
|   if (cheapAsAMove && !TII.isAsCheapAsAMove(*RM.OrigMI))
 | |
|     return false;
 | |
| 
 | |
|   // Verify that all used registers are available with the same values.
 | |
|   if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
 | |
|                                          MachineBasicBlock::iterator MI,
 | |
|                                          unsigned DestReg,
 | |
|                                          const Remat &RM,
 | |
|                                          const TargetRegisterInfo &tri,
 | |
|                                          bool Late) {
 | |
|   assert(RM.OrigMI && "Invalid remat");
 | |
|   TII.reMaterialize(MBB, MI, DestReg, 0, *RM.OrigMI, tri);
 | |
|   // DestReg of the cloned instruction cannot be Dead. Set isDead of DestReg
 | |
|   // to false anyway in case the isDead flag of RM.OrigMI's dest register
 | |
|   // is true.
 | |
|   (*--MI).getOperand(0).setIsDead(false);
 | |
|   Rematted.insert(RM.ParentVNI);
 | |
|   return LIS.getSlotIndexes()->insertMachineInstrInMaps(*MI, Late).getRegSlot();
 | |
| }
 | |
| 
 | |
| void LiveRangeEdit::eraseVirtReg(Register Reg) {
 | |
|   if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
 | |
|     LIS.removeInterval(Reg);
 | |
| }
 | |
| 
 | |
| bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
 | |
|                                SmallVectorImpl<MachineInstr*> &Dead) {
 | |
|   MachineInstr *DefMI = nullptr, *UseMI = nullptr;
 | |
| 
 | |
|   // Check that there is a single def and a single use.
 | |
|   for (MachineOperand &MO : MRI.reg_nodbg_operands(LI->reg())) {
 | |
|     MachineInstr *MI = MO.getParent();
 | |
|     if (MO.isDef()) {
 | |
|       if (DefMI && DefMI != MI)
 | |
|         return false;
 | |
|       if (!MI->canFoldAsLoad())
 | |
|         return false;
 | |
|       DefMI = MI;
 | |
|     } else if (!MO.isUndef()) {
 | |
|       if (UseMI && UseMI != MI)
 | |
|         return false;
 | |
|       // FIXME: Targets don't know how to fold subreg uses.
 | |
|       if (MO.getSubReg())
 | |
|         return false;
 | |
|       UseMI = MI;
 | |
|     }
 | |
|   }
 | |
|   if (!DefMI || !UseMI)
 | |
|     return false;
 | |
| 
 | |
|   // Since we're moving the DefMI load, make sure we're not extending any live
 | |
|   // ranges.
 | |
|   if (!allUsesAvailableAt(DefMI, LIS.getInstructionIndex(*DefMI),
 | |
|                           LIS.getInstructionIndex(*UseMI)))
 | |
|     return false;
 | |
| 
 | |
|   // We also need to make sure it is safe to move the load.
 | |
|   // Assume there are stores between DefMI and UseMI.
 | |
|   bool SawStore = true;
 | |
|   if (!DefMI->isSafeToMove(nullptr, SawStore))
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Try to fold single def: " << *DefMI
 | |
|                     << "       into single use: " << *UseMI);
 | |
| 
 | |
|   SmallVector<unsigned, 8> Ops;
 | |
|   if (UseMI->readsWritesVirtualRegister(LI->reg(), &Ops).second)
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *FoldMI = TII.foldMemoryOperand(*UseMI, Ops, *DefMI, &LIS);
 | |
|   if (!FoldMI)
 | |
|     return false;
 | |
|   LLVM_DEBUG(dbgs() << "                folded: " << *FoldMI);
 | |
|   LIS.ReplaceMachineInstrInMaps(*UseMI, *FoldMI);
 | |
|   // Update the call site info.
 | |
|   if (UseMI->shouldUpdateCallSiteInfo())
 | |
|     UseMI->getMF()->moveCallSiteInfo(UseMI, FoldMI);
 | |
|   UseMI->eraseFromParent();
 | |
|   DefMI->addRegisterDead(LI->reg(), nullptr);
 | |
|   Dead.push_back(DefMI);
 | |
|   ++NumDCEFoldedLoads;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool LiveRangeEdit::useIsKill(const LiveInterval &LI,
 | |
|                               const MachineOperand &MO) const {
 | |
|   const MachineInstr &MI = *MO.getParent();
 | |
|   SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
 | |
|   if (LI.Query(Idx).isKill())
 | |
|     return true;
 | |
|   const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
 | |
|   unsigned SubReg = MO.getSubReg();
 | |
|   LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubReg);
 | |
|   for (const LiveInterval::SubRange &S : LI.subranges()) {
 | |
|     if ((S.LaneMask & LaneMask).any() && S.Query(Idx).isKill())
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Find all live intervals that need to shrink, then remove the instruction.
 | |
| void LiveRangeEdit::eliminateDeadDef(MachineInstr *MI, ToShrinkSet &ToShrink,
 | |
|                                      AAResults *AA) {
 | |
|   assert(MI->allDefsAreDead() && "Def isn't really dead");
 | |
|   SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
 | |
| 
 | |
|   // Never delete a bundled instruction.
 | |
|   if (MI->isBundled()) {
 | |
|     return;
 | |
|   }
 | |
|   // Never delete inline asm.
 | |
|   if (MI->isInlineAsm()) {
 | |
|     LLVM_DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Use the same criteria as DeadMachineInstructionElim.
 | |
|   bool SawStore = false;
 | |
|   if (!MI->isSafeToMove(nullptr, SawStore)) {
 | |
|     LLVM_DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
 | |
| 
 | |
|   // Collect virtual registers to be erased after MI is gone.
 | |
|   SmallVector<unsigned, 8> RegsToErase;
 | |
|   bool ReadsPhysRegs = false;
 | |
|   bool isOrigDef = false;
 | |
|   unsigned Dest;
 | |
|   // Only optimize rematerialize case when the instruction has one def, since
 | |
|   // otherwise we could leave some dead defs in the code.  This case is
 | |
|   // extremely rare.
 | |
|   if (VRM && MI->getOperand(0).isReg() && MI->getOperand(0).isDef() &&
 | |
|       MI->getDesc().getNumDefs() == 1) {
 | |
|     Dest = MI->getOperand(0).getReg();
 | |
|     unsigned Original = VRM->getOriginal(Dest);
 | |
|     LiveInterval &OrigLI = LIS.getInterval(Original);
 | |
|     VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
 | |
|     // The original live-range may have been shrunk to
 | |
|     // an empty live-range. It happens when it is dead, but
 | |
|     // we still keep it around to be able to rematerialize
 | |
|     // other values that depend on it.
 | |
|     if (OrigVNI)
 | |
|       isOrigDef = SlotIndex::isSameInstr(OrigVNI->def, Idx);
 | |
|   }
 | |
| 
 | |
|   // Check for live intervals that may shrink
 | |
|   for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
 | |
|          MOE = MI->operands_end(); MOI != MOE; ++MOI) {
 | |
|     if (!MOI->isReg())
 | |
|       continue;
 | |
|     Register Reg = MOI->getReg();
 | |
|     if (!Register::isVirtualRegister(Reg)) {
 | |
|       // Check if MI reads any unreserved physregs.
 | |
|       if (Reg && MOI->readsReg() && !MRI.isReserved(Reg))
 | |
|         ReadsPhysRegs = true;
 | |
|       else if (MOI->isDef())
 | |
|         LIS.removePhysRegDefAt(Reg.asMCReg(), Idx);
 | |
|       continue;
 | |
|     }
 | |
|     LiveInterval &LI = LIS.getInterval(Reg);
 | |
| 
 | |
|     // Shrink read registers, unless it is likely to be expensive and
 | |
|     // unlikely to change anything. We typically don't want to shrink the
 | |
|     // PIC base register that has lots of uses everywhere.
 | |
|     // Always shrink COPY uses that probably come from live range splitting.
 | |
|     if ((MI->readsVirtualRegister(Reg) && (MI->isCopy() || MOI->isDef())) ||
 | |
|         (MOI->readsReg() && (MRI.hasOneNonDBGUse(Reg) || useIsKill(LI, *MOI))))
 | |
|       ToShrink.insert(&LI);
 | |
| 
 | |
|     // Remove defined value.
 | |
|     if (MOI->isDef()) {
 | |
|       if (TheDelegate && LI.getVNInfoAt(Idx) != nullptr)
 | |
|         TheDelegate->LRE_WillShrinkVirtReg(LI.reg());
 | |
|       LIS.removeVRegDefAt(LI, Idx);
 | |
|       if (LI.empty())
 | |
|         RegsToErase.push_back(Reg);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Currently, we don't support DCE of physreg live ranges. If MI reads
 | |
|   // any unreserved physregs, don't erase the instruction, but turn it into
 | |
|   // a KILL instead. This way, the physreg live ranges don't end up
 | |
|   // dangling.
 | |
|   // FIXME: It would be better to have something like shrinkToUses() for
 | |
|   // physregs. That could potentially enable more DCE and it would free up
 | |
|   // the physreg. It would not happen often, though.
 | |
|   if (ReadsPhysRegs) {
 | |
|     MI->setDesc(TII.get(TargetOpcode::KILL));
 | |
|     // Remove all operands that aren't physregs.
 | |
|     for (unsigned i = MI->getNumOperands(); i; --i) {
 | |
|       const MachineOperand &MO = MI->getOperand(i-1);
 | |
|       if (MO.isReg() && Register::isPhysicalRegister(MO.getReg()))
 | |
|         continue;
 | |
|       MI->RemoveOperand(i-1);
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
 | |
|   } else {
 | |
|     // If the dest of MI is an original reg and MI is reMaterializable,
 | |
|     // don't delete the inst. Replace the dest with a new reg, and keep
 | |
|     // the inst for remat of other siblings. The inst is saved in
 | |
|     // LiveRangeEdit::DeadRemats and will be deleted after all the
 | |
|     // allocations of the func are done.
 | |
|     if (isOrigDef && DeadRemats && TII.isTriviallyReMaterializable(*MI, AA)) {
 | |
|       LiveInterval &NewLI = createEmptyIntervalFrom(Dest, false);
 | |
|       VNInfo *VNI = NewLI.getNextValue(Idx, LIS.getVNInfoAllocator());
 | |
|       NewLI.addSegment(LiveInterval::Segment(Idx, Idx.getDeadSlot(), VNI));
 | |
|       pop_back();
 | |
|       DeadRemats->insert(MI);
 | |
|       const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
 | |
|       MI->substituteRegister(Dest, NewLI.reg(), 0, TRI);
 | |
|       MI->getOperand(0).setIsDead(true);
 | |
|     } else {
 | |
|       if (TheDelegate)
 | |
|         TheDelegate->LRE_WillEraseInstruction(MI);
 | |
|       LIS.RemoveMachineInstrFromMaps(*MI);
 | |
|       MI->eraseFromParent();
 | |
|       ++NumDCEDeleted;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Erase any virtregs that are now empty and unused. There may be <undef>
 | |
|   // uses around. Keep the empty live range in that case.
 | |
|   for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
 | |
|     Register Reg = RegsToErase[i];
 | |
|     if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
 | |
|       ToShrink.remove(&LIS.getInterval(Reg));
 | |
|       eraseVirtReg(Reg);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr *> &Dead,
 | |
|                                       ArrayRef<Register> RegsBeingSpilled,
 | |
|                                       AAResults *AA) {
 | |
|   ToShrinkSet ToShrink;
 | |
| 
 | |
|   for (;;) {
 | |
|     // Erase all dead defs.
 | |
|     while (!Dead.empty())
 | |
|       eliminateDeadDef(Dead.pop_back_val(), ToShrink, AA);
 | |
| 
 | |
|     if (ToShrink.empty())
 | |
|       break;
 | |
| 
 | |
|     // Shrink just one live interval. Then delete new dead defs.
 | |
|     LiveInterval *LI = ToShrink.back();
 | |
|     ToShrink.pop_back();
 | |
|     if (foldAsLoad(LI, Dead))
 | |
|       continue;
 | |
|     unsigned VReg = LI->reg();
 | |
|     if (TheDelegate)
 | |
|       TheDelegate->LRE_WillShrinkVirtReg(VReg);
 | |
|     if (!LIS.shrinkToUses(LI, &Dead))
 | |
|       continue;
 | |
| 
 | |
|     // Don't create new intervals for a register being spilled.
 | |
|     // The new intervals would have to be spilled anyway so its not worth it.
 | |
|     // Also they currently aren't spilled so creating them and not spilling
 | |
|     // them results in incorrect code.
 | |
|     bool BeingSpilled = false;
 | |
|     for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
 | |
|       if (VReg == RegsBeingSpilled[i]) {
 | |
|         BeingSpilled = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (BeingSpilled) continue;
 | |
| 
 | |
|     // LI may have been separated, create new intervals.
 | |
|     LI->RenumberValues();
 | |
|     SmallVector<LiveInterval*, 8> SplitLIs;
 | |
|     LIS.splitSeparateComponents(*LI, SplitLIs);
 | |
|     if (!SplitLIs.empty())
 | |
|       ++NumFracRanges;
 | |
| 
 | |
|     Register Original = VRM ? VRM->getOriginal(VReg) : Register();
 | |
|     for (const LiveInterval *SplitLI : SplitLIs) {
 | |
|       // If LI is an original interval that hasn't been split yet, make the new
 | |
|       // intervals their own originals instead of referring to LI. The original
 | |
|       // interval must contain all the split products, and LI doesn't.
 | |
|       if (Original != VReg && Original != 0)
 | |
|         VRM->setIsSplitFromReg(SplitLI->reg(), Original);
 | |
|       if (TheDelegate)
 | |
|         TheDelegate->LRE_DidCloneVirtReg(SplitLI->reg(), VReg);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Keep track of new virtual registers created via
 | |
| // MachineRegisterInfo::createVirtualRegister.
 | |
| void
 | |
| LiveRangeEdit::MRI_NoteNewVirtualRegister(Register VReg) {
 | |
|   if (VRM)
 | |
|     VRM->grow();
 | |
| 
 | |
|   NewRegs.push_back(VReg);
 | |
| }
 | |
| 
 | |
| void
 | |
| LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
 | |
|                                         const MachineLoopInfo &Loops,
 | |
|                                         const MachineBlockFrequencyInfo &MBFI) {
 | |
|   VirtRegAuxInfo VRAI(MF, LIS, *VRM, Loops, MBFI);
 | |
|   for (unsigned I = 0, Size = size(); I < Size; ++I) {
 | |
|     LiveInterval &LI = LIS.getInterval(get(I));
 | |
|     if (MRI.recomputeRegClass(LI.reg()))
 | |
|       LLVM_DEBUG({
 | |
|         const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | |
|         dbgs() << "Inflated " << printReg(LI.reg()) << " to "
 | |
|                << TRI->getRegClassName(MRI.getRegClass(LI.reg())) << '\n';
 | |
|       });
 | |
|     VRAI.calculateSpillWeightAndHint(LI);
 | |
|   }
 | |
| }
 |