1530 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1530 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C++
		
	
	
	
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file This implements the ScheduleDAGInstrs class, which implements
 | 
						|
/// re-scheduling of MachineInstrs.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
 | 
						|
#include "llvm/ADT/IntEqClasses.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/SparseSet.h"
 | 
						|
#include "llvm/ADT/iterator_range.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervals.h"
 | 
						|
#include "llvm/CodeGen/LivePhysRegs.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBundle.h"
 | 
						|
#include "llvm/CodeGen/MachineMemOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineOperand.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/PseudoSourceValue.h"
 | 
						|
#include "llvm/CodeGen/RegisterPressure.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDAG.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDFS.h"
 | 
						|
#include "llvm/CodeGen/SlotIndexes.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
 | 
						|
#include "llvm/Config/llvm-config.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/MC/LaneBitmask.h"
 | 
						|
#include "llvm/MC/MCRegisterInfo.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/Format.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <iterator>
 | 
						|
#include <string>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "machine-scheduler"
 | 
						|
 | 
						|
static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
 | 
						|
    cl::ZeroOrMore, cl::init(false),
 | 
						|
    cl::desc("Enable use of AA during MI DAG construction"));
 | 
						|
 | 
						|
static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
 | 
						|
    cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));
 | 
						|
 | 
						|
// Note: the two options below might be used in tuning compile time vs
 | 
						|
// output quality. Setting HugeRegion so large that it will never be
 | 
						|
// reached means best-effort, but may be slow.
 | 
						|
 | 
						|
// When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
 | 
						|
// together hold this many SUs, a reduction of maps will be done.
 | 
						|
static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
 | 
						|
    cl::init(1000), cl::desc("The limit to use while constructing the DAG "
 | 
						|
                             "prior to scheduling, at which point a trade-off "
 | 
						|
                             "is made to avoid excessive compile time."));
 | 
						|
 | 
						|
static cl::opt<unsigned> ReductionSize(
 | 
						|
    "dag-maps-reduction-size", cl::Hidden,
 | 
						|
    cl::desc("A huge scheduling region will have maps reduced by this many "
 | 
						|
             "nodes at a time. Defaults to HugeRegion / 2."));
 | 
						|
 | 
						|
static unsigned getReductionSize() {
 | 
						|
  // Always reduce a huge region with half of the elements, except
 | 
						|
  // when user sets this number explicitly.
 | 
						|
  if (ReductionSize.getNumOccurrences() == 0)
 | 
						|
    return HugeRegion / 2;
 | 
						|
  return ReductionSize;
 | 
						|
}
 | 
						|
 | 
						|
static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
  dbgs() << "{ ";
 | 
						|
  for (const SUnit *su : L) {
 | 
						|
    dbgs() << "SU(" << su->NodeNum << ")";
 | 
						|
    if (su != L.back())
 | 
						|
      dbgs() << ", ";
 | 
						|
  }
 | 
						|
  dbgs() << "}\n";
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
 | 
						|
                                     const MachineLoopInfo *mli,
 | 
						|
                                     bool RemoveKillFlags)
 | 
						|
    : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
 | 
						|
      RemoveKillFlags(RemoveKillFlags),
 | 
						|
      UnknownValue(UndefValue::get(
 | 
						|
                             Type::getVoidTy(mf.getFunction().getContext()))), Topo(SUnits, &ExitSU) {
 | 
						|
  DbgValues.clear();
 | 
						|
 | 
						|
  const TargetSubtargetInfo &ST = mf.getSubtarget();
 | 
						|
  SchedModel.init(&ST);
 | 
						|
}
 | 
						|
 | 
						|
/// If this machine instr has memory reference information and it can be
 | 
						|
/// tracked to a normal reference to a known object, return the Value
 | 
						|
/// for that object. This function returns false the memory location is
 | 
						|
/// unknown or may alias anything.
 | 
						|
static bool getUnderlyingObjectsForInstr(const MachineInstr *MI,
 | 
						|
                                         const MachineFrameInfo &MFI,
 | 
						|
                                         UnderlyingObjectsVector &Objects,
 | 
						|
                                         const DataLayout &DL) {
 | 
						|
  auto allMMOsOkay = [&]() {
 | 
						|
    for (const MachineMemOperand *MMO : MI->memoperands()) {
 | 
						|
      // TODO: Figure out whether isAtomic is really necessary (see D57601).
 | 
						|
      if (MMO->isVolatile() || MMO->isAtomic())
 | 
						|
        return false;
 | 
						|
 | 
						|
      if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
 | 
						|
        // Function that contain tail calls don't have unique PseudoSourceValue
 | 
						|
        // objects. Two PseudoSourceValues might refer to the same or
 | 
						|
        // overlapping locations. The client code calling this function assumes
 | 
						|
        // this is not the case. So return a conservative answer of no known
 | 
						|
        // object.
 | 
						|
        if (MFI.hasTailCall())
 | 
						|
          return false;
 | 
						|
 | 
						|
        // For now, ignore PseudoSourceValues which may alias LLVM IR values
 | 
						|
        // because the code that uses this function has no way to cope with
 | 
						|
        // such aliases.
 | 
						|
        if (PSV->isAliased(&MFI))
 | 
						|
          return false;
 | 
						|
 | 
						|
        bool MayAlias = PSV->mayAlias(&MFI);
 | 
						|
        Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
 | 
						|
      } else if (const Value *V = MMO->getValue()) {
 | 
						|
        SmallVector<Value *, 4> Objs;
 | 
						|
        if (!getUnderlyingObjectsForCodeGen(V, Objs))
 | 
						|
          return false;
 | 
						|
 | 
						|
        for (Value *V : Objs) {
 | 
						|
          assert(isIdentifiedObject(V));
 | 
						|
          Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  if (!allMMOsOkay()) {
 | 
						|
    Objects.clear();
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
 | 
						|
  BB = bb;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::finishBlock() {
 | 
						|
  // Subclasses should no longer refer to the old block.
 | 
						|
  BB = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
 | 
						|
                                    MachineBasicBlock::iterator begin,
 | 
						|
                                    MachineBasicBlock::iterator end,
 | 
						|
                                    unsigned regioninstrs) {
 | 
						|
  assert(bb == BB && "startBlock should set BB");
 | 
						|
  RegionBegin = begin;
 | 
						|
  RegionEnd = end;
 | 
						|
  NumRegionInstrs = regioninstrs;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::exitRegion() {
 | 
						|
  // Nothing to do.
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::addSchedBarrierDeps() {
 | 
						|
  MachineInstr *ExitMI =
 | 
						|
      RegionEnd != BB->end()
 | 
						|
          ? &*skipDebugInstructionsBackward(RegionEnd, RegionBegin)
 | 
						|
          : nullptr;
 | 
						|
  ExitSU.setInstr(ExitMI);
 | 
						|
  // Add dependencies on the defs and uses of the instruction.
 | 
						|
  if (ExitMI) {
 | 
						|
    for (const MachineOperand &MO : ExitMI->operands()) {
 | 
						|
      if (!MO.isReg() || MO.isDef()) continue;
 | 
						|
      Register Reg = MO.getReg();
 | 
						|
      if (Register::isPhysicalRegister(Reg)) {
 | 
						|
        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
 | 
						|
      } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
 | 
						|
        addVRegUseDeps(&ExitSU, ExitMI->getOperandNo(&MO));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!ExitMI || (!ExitMI->isCall() && !ExitMI->isBarrier())) {
 | 
						|
    // For others, e.g. fallthrough, conditional branch, assume the exit
 | 
						|
    // uses all the registers that are livein to the successor blocks.
 | 
						|
    for (const MachineBasicBlock *Succ : BB->successors()) {
 | 
						|
      for (const auto &LI : Succ->liveins()) {
 | 
						|
        if (!Uses.contains(LI.PhysReg))
 | 
						|
          Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// MO is an operand of SU's instruction that defines a physical register. Adds
 | 
						|
/// data dependencies from SU to any uses of the physical register.
 | 
						|
void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
 | 
						|
  assert(MO.isDef() && "expect physreg def");
 | 
						|
 | 
						|
  // Ask the target if address-backscheduling is desirable, and if so how much.
 | 
						|
  const TargetSubtargetInfo &ST = MF.getSubtarget();
 | 
						|
 | 
						|
  // Only use any non-zero latency for real defs/uses, in contrast to
 | 
						|
  // "fake" operands added by regalloc.
 | 
						|
  const MCInstrDesc *DefMIDesc = &SU->getInstr()->getDesc();
 | 
						|
  bool ImplicitPseudoDef = (OperIdx >= DefMIDesc->getNumOperands() &&
 | 
						|
                            !DefMIDesc->hasImplicitDefOfPhysReg(MO.getReg()));
 | 
						|
  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
 | 
						|
       Alias.isValid(); ++Alias) {
 | 
						|
    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
 | 
						|
      SUnit *UseSU = I->SU;
 | 
						|
      if (UseSU == SU)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Adjust the dependence latency using operand def/use information,
 | 
						|
      // then allow the target to perform its own adjustments.
 | 
						|
      int UseOp = I->OpIdx;
 | 
						|
      MachineInstr *RegUse = nullptr;
 | 
						|
      SDep Dep;
 | 
						|
      if (UseOp < 0)
 | 
						|
        Dep = SDep(SU, SDep::Artificial);
 | 
						|
      else {
 | 
						|
        // Set the hasPhysRegDefs only for physreg defs that have a use within
 | 
						|
        // the scheduling region.
 | 
						|
        SU->hasPhysRegDefs = true;
 | 
						|
        Dep = SDep(SU, SDep::Data, *Alias);
 | 
						|
        RegUse = UseSU->getInstr();
 | 
						|
      }
 | 
						|
      const MCInstrDesc *UseMIDesc =
 | 
						|
          (RegUse ? &UseSU->getInstr()->getDesc() : nullptr);
 | 
						|
      bool ImplicitPseudoUse =
 | 
						|
          (UseMIDesc && UseOp >= ((int)UseMIDesc->getNumOperands()) &&
 | 
						|
           !UseMIDesc->hasImplicitUseOfPhysReg(*Alias));
 | 
						|
      if (!ImplicitPseudoDef && !ImplicitPseudoUse) {
 | 
						|
        Dep.setLatency(SchedModel.computeOperandLatency(SU->getInstr(), OperIdx,
 | 
						|
                                                        RegUse, UseOp));
 | 
						|
        ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep);
 | 
						|
      } else {
 | 
						|
        Dep.setLatency(0);
 | 
						|
        // FIXME: We could always let target to adjustSchedDependency(), and
 | 
						|
        // remove this condition, but that currently asserts in Hexagon BE.
 | 
						|
        if (SU->getInstr()->isBundle() || (RegUse && RegUse->isBundle()))
 | 
						|
          ST.adjustSchedDependency(SU, OperIdx, UseSU, UseOp, Dep);
 | 
						|
      }
 | 
						|
 | 
						|
      UseSU->addPred(Dep);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Adds register dependencies (data, anti, and output) from this SUnit
 | 
						|
/// to following instructions in the same scheduling region that depend the
 | 
						|
/// physical register referenced at OperIdx.
 | 
						|
void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  MachineInstr *MI = SU->getInstr();
 | 
						|
  MachineOperand &MO = MI->getOperand(OperIdx);
 | 
						|
  Register Reg = MO.getReg();
 | 
						|
  // We do not need to track any dependencies for constant registers.
 | 
						|
  if (MRI.isConstantPhysReg(Reg))
 | 
						|
    return;
 | 
						|
 | 
						|
  const TargetSubtargetInfo &ST = MF.getSubtarget();
 | 
						|
 | 
						|
  // Optionally add output and anti dependencies. For anti
 | 
						|
  // dependencies we use a latency of 0 because for a multi-issue
 | 
						|
  // target we want to allow the defining instruction to issue
 | 
						|
  // in the same cycle as the using instruction.
 | 
						|
  // TODO: Using a latency of 1 here for output dependencies assumes
 | 
						|
  //       there's no cost for reusing registers.
 | 
						|
  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
 | 
						|
  for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
 | 
						|
    if (!Defs.contains(*Alias))
 | 
						|
      continue;
 | 
						|
    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
 | 
						|
      SUnit *DefSU = I->SU;
 | 
						|
      if (DefSU == &ExitSU)
 | 
						|
        continue;
 | 
						|
      if (DefSU != SU &&
 | 
						|
          (Kind != SDep::Output || !MO.isDead() ||
 | 
						|
           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
 | 
						|
        SDep Dep(SU, Kind, /*Reg=*/*Alias);
 | 
						|
        if (Kind != SDep::Anti)
 | 
						|
          Dep.setLatency(
 | 
						|
            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
 | 
						|
        ST.adjustSchedDependency(SU, OperIdx, DefSU, I->OpIdx, Dep);
 | 
						|
        DefSU->addPred(Dep);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!MO.isDef()) {
 | 
						|
    SU->hasPhysRegUses = true;
 | 
						|
    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
 | 
						|
    // retrieve the existing SUnits list for this register's uses.
 | 
						|
    // Push this SUnit on the use list.
 | 
						|
    Uses.insert(PhysRegSUOper(SU, OperIdx, Reg));
 | 
						|
    if (RemoveKillFlags)
 | 
						|
      MO.setIsKill(false);
 | 
						|
  } else {
 | 
						|
    addPhysRegDataDeps(SU, OperIdx);
 | 
						|
 | 
						|
    // Clear previous uses and defs of this register and its subergisters.
 | 
						|
    for (MCSubRegIterator SubReg(Reg, TRI, true); SubReg.isValid(); ++SubReg) {
 | 
						|
      if (Uses.contains(*SubReg))
 | 
						|
        Uses.eraseAll(*SubReg);
 | 
						|
      if (!MO.isDead())
 | 
						|
        Defs.eraseAll(*SubReg);
 | 
						|
    }
 | 
						|
    if (MO.isDead() && SU->isCall) {
 | 
						|
      // Calls will not be reordered because of chain dependencies (see
 | 
						|
      // below). Since call operands are dead, calls may continue to be added
 | 
						|
      // to the DefList making dependence checking quadratic in the size of
 | 
						|
      // the block. Instead, we leave only one call at the back of the
 | 
						|
      // DefList.
 | 
						|
      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
 | 
						|
      Reg2SUnitsMap::iterator B = P.first;
 | 
						|
      Reg2SUnitsMap::iterator I = P.second;
 | 
						|
      for (bool isBegin = I == B; !isBegin; /* empty */) {
 | 
						|
        isBegin = (--I) == B;
 | 
						|
        if (!I->SU->isCall)
 | 
						|
          break;
 | 
						|
        I = Defs.erase(I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Defs are pushed in the order they are visited and never reordered.
 | 
						|
    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
 | 
						|
{
 | 
						|
  Register Reg = MO.getReg();
 | 
						|
  // No point in tracking lanemasks if we don't have interesting subregisters.
 | 
						|
  const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
 | 
						|
  if (!RC.HasDisjunctSubRegs)
 | 
						|
    return LaneBitmask::getAll();
 | 
						|
 | 
						|
  unsigned SubReg = MO.getSubReg();
 | 
						|
  if (SubReg == 0)
 | 
						|
    return RC.getLaneMask();
 | 
						|
  return TRI->getSubRegIndexLaneMask(SubReg);
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGInstrs::deadDefHasNoUse(const MachineOperand &MO) {
 | 
						|
  auto RegUse = CurrentVRegUses.find(MO.getReg());
 | 
						|
  if (RegUse == CurrentVRegUses.end())
 | 
						|
    return true;
 | 
						|
  return (RegUse->LaneMask & getLaneMaskForMO(MO)).none();
 | 
						|
}
 | 
						|
 | 
						|
/// Adds register output and data dependencies from this SUnit to instructions
 | 
						|
/// that occur later in the same scheduling region if they read from or write to
 | 
						|
/// the virtual register defined at OperIdx.
 | 
						|
///
 | 
						|
/// TODO: Hoist loop induction variable increments. This has to be
 | 
						|
/// reevaluated. Generally, IV scheduling should be done before coalescing.
 | 
						|
void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  MachineInstr *MI = SU->getInstr();
 | 
						|
  MachineOperand &MO = MI->getOperand(OperIdx);
 | 
						|
  Register Reg = MO.getReg();
 | 
						|
 | 
						|
  LaneBitmask DefLaneMask;
 | 
						|
  LaneBitmask KillLaneMask;
 | 
						|
  if (TrackLaneMasks) {
 | 
						|
    bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
 | 
						|
    DefLaneMask = getLaneMaskForMO(MO);
 | 
						|
    // If we have a <read-undef> flag, none of the lane values comes from an
 | 
						|
    // earlier instruction.
 | 
						|
    KillLaneMask = IsKill ? LaneBitmask::getAll() : DefLaneMask;
 | 
						|
 | 
						|
    if (MO.getSubReg() != 0 && MO.isUndef()) {
 | 
						|
      // There may be other subregister defs on the same instruction of the same
 | 
						|
      // register in later operands. The lanes of other defs will now be live
 | 
						|
      // after this instruction, so these should not be treated as killed by the
 | 
						|
      // instruction even though they appear to be killed in this one operand.
 | 
						|
      for (int I = OperIdx + 1, E = MI->getNumOperands(); I != E; ++I) {
 | 
						|
        const MachineOperand &OtherMO = MI->getOperand(I);
 | 
						|
        if (OtherMO.isReg() && OtherMO.isDef() && OtherMO.getReg() == Reg)
 | 
						|
          KillLaneMask &= ~getLaneMaskForMO(OtherMO);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Clear undef flag, we'll re-add it later once we know which subregister
 | 
						|
    // Def is first.
 | 
						|
    MO.setIsUndef(false);
 | 
						|
  } else {
 | 
						|
    DefLaneMask = LaneBitmask::getAll();
 | 
						|
    KillLaneMask = LaneBitmask::getAll();
 | 
						|
  }
 | 
						|
 | 
						|
  if (MO.isDead()) {
 | 
						|
    assert(deadDefHasNoUse(MO) && "Dead defs should have no uses");
 | 
						|
  } else {
 | 
						|
    // Add data dependence to all uses we found so far.
 | 
						|
    const TargetSubtargetInfo &ST = MF.getSubtarget();
 | 
						|
    for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
 | 
						|
         E = CurrentVRegUses.end(); I != E; /*empty*/) {
 | 
						|
      LaneBitmask LaneMask = I->LaneMask;
 | 
						|
      // Ignore uses of other lanes.
 | 
						|
      if ((LaneMask & KillLaneMask).none()) {
 | 
						|
        ++I;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if ((LaneMask & DefLaneMask).any()) {
 | 
						|
        SUnit *UseSU = I->SU;
 | 
						|
        MachineInstr *Use = UseSU->getInstr();
 | 
						|
        SDep Dep(SU, SDep::Data, Reg);
 | 
						|
        Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
 | 
						|
                                                        I->OperandIndex));
 | 
						|
        ST.adjustSchedDependency(SU, OperIdx, UseSU, I->OperandIndex, Dep);
 | 
						|
        UseSU->addPred(Dep);
 | 
						|
      }
 | 
						|
 | 
						|
      LaneMask &= ~KillLaneMask;
 | 
						|
      // If we found a Def for all lanes of this use, remove it from the list.
 | 
						|
      if (LaneMask.any()) {
 | 
						|
        I->LaneMask = LaneMask;
 | 
						|
        ++I;
 | 
						|
      } else
 | 
						|
        I = CurrentVRegUses.erase(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Shortcut: Singly defined vregs do not have output/anti dependencies.
 | 
						|
  if (MRI.hasOneDef(Reg))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Add output dependence to the next nearest defs of this vreg.
 | 
						|
  //
 | 
						|
  // Unless this definition is dead, the output dependence should be
 | 
						|
  // transitively redundant with antidependencies from this definition's
 | 
						|
  // uses. We're conservative for now until we have a way to guarantee the uses
 | 
						|
  // are not eliminated sometime during scheduling. The output dependence edge
 | 
						|
  // is also useful if output latency exceeds def-use latency.
 | 
						|
  LaneBitmask LaneMask = DefLaneMask;
 | 
						|
  for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
 | 
						|
                                     CurrentVRegDefs.end())) {
 | 
						|
    // Ignore defs for other lanes.
 | 
						|
    if ((V2SU.LaneMask & LaneMask).none())
 | 
						|
      continue;
 | 
						|
    // Add an output dependence.
 | 
						|
    SUnit *DefSU = V2SU.SU;
 | 
						|
    // Ignore additional defs of the same lanes in one instruction. This can
 | 
						|
    // happen because lanemasks are shared for targets with too many
 | 
						|
    // subregisters. We also use some representration tricks/hacks where we
 | 
						|
    // add super-register defs/uses, to imply that although we only access parts
 | 
						|
    // of the reg we care about the full one.
 | 
						|
    if (DefSU == SU)
 | 
						|
      continue;
 | 
						|
    SDep Dep(SU, SDep::Output, Reg);
 | 
						|
    Dep.setLatency(
 | 
						|
      SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
 | 
						|
    DefSU->addPred(Dep);
 | 
						|
 | 
						|
    // Update current definition. This can get tricky if the def was about a
 | 
						|
    // bigger lanemask before. We then have to shrink it and create a new
 | 
						|
    // VReg2SUnit for the non-overlapping part.
 | 
						|
    LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
 | 
						|
    LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
 | 
						|
    V2SU.SU = SU;
 | 
						|
    V2SU.LaneMask = OverlapMask;
 | 
						|
    if (NonOverlapMask.any())
 | 
						|
      CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
 | 
						|
  }
 | 
						|
  // If there was no CurrentVRegDefs entry for some lanes yet, create one.
 | 
						|
  if (LaneMask.any())
 | 
						|
    CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
 | 
						|
}
 | 
						|
 | 
						|
/// Adds a register data dependency if the instruction that defines the
 | 
						|
/// virtual register used at OperIdx is mapped to an SUnit. Add a register
 | 
						|
/// antidependency from this SUnit to instructions that occur later in the same
 | 
						|
/// scheduling region if they write the virtual register.
 | 
						|
///
 | 
						|
/// TODO: Handle ExitSU "uses" properly.
 | 
						|
void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
 | 
						|
  const MachineInstr *MI = SU->getInstr();
 | 
						|
  assert(!MI->isDebugInstr());
 | 
						|
 | 
						|
  const MachineOperand &MO = MI->getOperand(OperIdx);
 | 
						|
  Register Reg = MO.getReg();
 | 
						|
 | 
						|
  // Remember the use. Data dependencies will be added when we find the def.
 | 
						|
  LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO)
 | 
						|
                                        : LaneBitmask::getAll();
 | 
						|
  CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));
 | 
						|
 | 
						|
  // Add antidependences to the following defs of the vreg.
 | 
						|
  for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
 | 
						|
                                     CurrentVRegDefs.end())) {
 | 
						|
    // Ignore defs for unrelated lanes.
 | 
						|
    LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
 | 
						|
    if ((PrevDefLaneMask & LaneMask).none())
 | 
						|
      continue;
 | 
						|
    if (V2SU.SU == SU)
 | 
						|
      continue;
 | 
						|
 | 
						|
    V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if MI is an instruction we are unable to reason about
 | 
						|
/// (like a call or something with unmodeled side effects).
 | 
						|
static inline bool isGlobalMemoryObject(AAResults *AA, MachineInstr *MI) {
 | 
						|
  return MI->isCall() || MI->hasUnmodeledSideEffects() ||
 | 
						|
         (MI->hasOrderedMemoryRef() && !MI->isDereferenceableInvariantLoad(AA));
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
 | 
						|
                                            unsigned Latency) {
 | 
						|
  if (SUa->getInstr()->mayAlias(AAForDep, *SUb->getInstr(), UseTBAA)) {
 | 
						|
    SDep Dep(SUa, SDep::MayAliasMem);
 | 
						|
    Dep.setLatency(Latency);
 | 
						|
    SUb->addPred(Dep);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Creates an SUnit for each real instruction, numbered in top-down
 | 
						|
/// topological order. The instruction order A < B, implies that no edge exists
 | 
						|
/// from B to A.
 | 
						|
///
 | 
						|
/// Map each real instruction to its SUnit.
 | 
						|
///
 | 
						|
/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
 | 
						|
/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
 | 
						|
/// instead of pointers.
 | 
						|
///
 | 
						|
/// MachineScheduler relies on initSUnits numbering the nodes by their order in
 | 
						|
/// the original instruction list.
 | 
						|
void ScheduleDAGInstrs::initSUnits() {
 | 
						|
  // We'll be allocating one SUnit for each real instruction in the region,
 | 
						|
  // which is contained within a basic block.
 | 
						|
  SUnits.reserve(NumRegionInstrs);
 | 
						|
 | 
						|
  for (MachineInstr &MI : make_range(RegionBegin, RegionEnd)) {
 | 
						|
    if (MI.isDebugInstr())
 | 
						|
      continue;
 | 
						|
 | 
						|
    SUnit *SU = newSUnit(&MI);
 | 
						|
    MISUnitMap[&MI] = SU;
 | 
						|
 | 
						|
    SU->isCall = MI.isCall();
 | 
						|
    SU->isCommutable = MI.isCommutable();
 | 
						|
 | 
						|
    // Assign the Latency field of SU using target-provided information.
 | 
						|
    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
 | 
						|
 | 
						|
    // If this SUnit uses a reserved or unbuffered resource, mark it as such.
 | 
						|
    //
 | 
						|
    // Reserved resources block an instruction from issuing and stall the
 | 
						|
    // entire pipeline. These are identified by BufferSize=0.
 | 
						|
    //
 | 
						|
    // Unbuffered resources prevent execution of subsequent instructions that
 | 
						|
    // require the same resources. This is used for in-order execution pipelines
 | 
						|
    // within an out-of-order core. These are identified by BufferSize=1.
 | 
						|
    if (SchedModel.hasInstrSchedModel()) {
 | 
						|
      const MCSchedClassDesc *SC = getSchedClass(SU);
 | 
						|
      for (const MCWriteProcResEntry &PRE :
 | 
						|
           make_range(SchedModel.getWriteProcResBegin(SC),
 | 
						|
                      SchedModel.getWriteProcResEnd(SC))) {
 | 
						|
        switch (SchedModel.getProcResource(PRE.ProcResourceIdx)->BufferSize) {
 | 
						|
        case 0:
 | 
						|
          SU->hasReservedResource = true;
 | 
						|
          break;
 | 
						|
        case 1:
 | 
						|
          SU->isUnbuffered = true;
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {
 | 
						|
  /// Current total number of SUs in map.
 | 
						|
  unsigned NumNodes = 0;
 | 
						|
 | 
						|
  /// 1 for loads, 0 for stores. (see comment in SUList)
 | 
						|
  unsigned TrueMemOrderLatency;
 | 
						|
 | 
						|
public:
 | 
						|
  Value2SUsMap(unsigned lat = 0) : TrueMemOrderLatency(lat) {}
 | 
						|
 | 
						|
  /// To keep NumNodes up to date, insert() is used instead of
 | 
						|
  /// this operator w/ push_back().
 | 
						|
  ValueType &operator[](const SUList &Key) {
 | 
						|
    llvm_unreachable("Don't use. Use insert() instead."); };
 | 
						|
 | 
						|
  /// Adds SU to the SUList of V. If Map grows huge, reduce its size by calling
 | 
						|
  /// reduce().
 | 
						|
  void inline insert(SUnit *SU, ValueType V) {
 | 
						|
    MapVector::operator[](V).push_back(SU);
 | 
						|
    NumNodes++;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Clears the list of SUs mapped to V.
 | 
						|
  void inline clearList(ValueType V) {
 | 
						|
    iterator Itr = find(V);
 | 
						|
    if (Itr != end()) {
 | 
						|
      assert(NumNodes >= Itr->second.size());
 | 
						|
      NumNodes -= Itr->second.size();
 | 
						|
 | 
						|
      Itr->second.clear();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /// Clears map from all contents.
 | 
						|
  void clear() {
 | 
						|
    MapVector<ValueType, SUList>::clear();
 | 
						|
    NumNodes = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned inline size() const { return NumNodes; }
 | 
						|
 | 
						|
  /// Counts the number of SUs in this map after a reduction.
 | 
						|
  void reComputeSize() {
 | 
						|
    NumNodes = 0;
 | 
						|
    for (auto &I : *this)
 | 
						|
      NumNodes += I.second.size();
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned inline getTrueMemOrderLatency() const {
 | 
						|
    return TrueMemOrderLatency;
 | 
						|
  }
 | 
						|
 | 
						|
  void dump();
 | 
						|
};
 | 
						|
 | 
						|
void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
 | 
						|
                                             Value2SUsMap &Val2SUsMap) {
 | 
						|
  for (auto &I : Val2SUsMap)
 | 
						|
    addChainDependencies(SU, I.second,
 | 
						|
                         Val2SUsMap.getTrueMemOrderLatency());
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
 | 
						|
                                             Value2SUsMap &Val2SUsMap,
 | 
						|
                                             ValueType V) {
 | 
						|
  Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
 | 
						|
  if (Itr != Val2SUsMap.end())
 | 
						|
    addChainDependencies(SU, Itr->second,
 | 
						|
                         Val2SUsMap.getTrueMemOrderLatency());
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
 | 
						|
  assert(BarrierChain != nullptr);
 | 
						|
 | 
						|
  for (auto &I : map) {
 | 
						|
    SUList &sus = I.second;
 | 
						|
    for (auto *SU : sus)
 | 
						|
      SU->addPredBarrier(BarrierChain);
 | 
						|
  }
 | 
						|
  map.clear();
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
 | 
						|
  assert(BarrierChain != nullptr);
 | 
						|
 | 
						|
  // Go through all lists of SUs.
 | 
						|
  for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
 | 
						|
    Value2SUsMap::iterator CurrItr = I++;
 | 
						|
    SUList &sus = CurrItr->second;
 | 
						|
    SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
 | 
						|
    for (; SUItr != SUEE; ++SUItr) {
 | 
						|
      // Stop on BarrierChain or any instruction above it.
 | 
						|
      if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
 | 
						|
        break;
 | 
						|
 | 
						|
      (*SUItr)->addPredBarrier(BarrierChain);
 | 
						|
    }
 | 
						|
 | 
						|
    // Remove also the BarrierChain from list if present.
 | 
						|
    if (SUItr != SUEE && *SUItr == BarrierChain)
 | 
						|
      SUItr++;
 | 
						|
 | 
						|
    // Remove all SUs that are now successors of BarrierChain.
 | 
						|
    if (SUItr != sus.begin())
 | 
						|
      sus.erase(sus.begin(), SUItr);
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove all entries with empty su lists.
 | 
						|
  map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
 | 
						|
      return (mapEntry.second.empty()); });
 | 
						|
 | 
						|
  // Recompute the size of the map (NumNodes).
 | 
						|
  map.reComputeSize();
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::buildSchedGraph(AAResults *AA,
 | 
						|
                                        RegPressureTracker *RPTracker,
 | 
						|
                                        PressureDiffs *PDiffs,
 | 
						|
                                        LiveIntervals *LIS,
 | 
						|
                                        bool TrackLaneMasks) {
 | 
						|
  const TargetSubtargetInfo &ST = MF.getSubtarget();
 | 
						|
  bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
 | 
						|
                                                       : ST.useAA();
 | 
						|
  AAForDep = UseAA ? AA : nullptr;
 | 
						|
 | 
						|
  BarrierChain = nullptr;
 | 
						|
 | 
						|
  this->TrackLaneMasks = TrackLaneMasks;
 | 
						|
  MISUnitMap.clear();
 | 
						|
  ScheduleDAG::clearDAG();
 | 
						|
 | 
						|
  // Create an SUnit for each real instruction.
 | 
						|
  initSUnits();
 | 
						|
 | 
						|
  if (PDiffs)
 | 
						|
    PDiffs->init(SUnits.size());
 | 
						|
 | 
						|
  // We build scheduling units by walking a block's instruction list
 | 
						|
  // from bottom to top.
 | 
						|
 | 
						|
  // Each MIs' memory operand(s) is analyzed to a list of underlying
 | 
						|
  // objects. The SU is then inserted in the SUList(s) mapped from the
 | 
						|
  // Value(s). Each Value thus gets mapped to lists of SUs depending
 | 
						|
  // on it, stores and loads kept separately. Two SUs are trivially
 | 
						|
  // non-aliasing if they both depend on only identified Values and do
 | 
						|
  // not share any common Value.
 | 
						|
  Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);
 | 
						|
 | 
						|
  // Certain memory accesses are known to not alias any SU in Stores
 | 
						|
  // or Loads, and have therefore their own 'NonAlias'
 | 
						|
  // domain. E.g. spill / reload instructions never alias LLVM I/R
 | 
						|
  // Values. It would be nice to assume that this type of memory
 | 
						|
  // accesses always have a proper memory operand modelling, and are
 | 
						|
  // therefore never unanalyzable, but this is conservatively not
 | 
						|
  // done.
 | 
						|
  Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);
 | 
						|
 | 
						|
  // Track all instructions that may raise floating-point exceptions.
 | 
						|
  // These do not depend on one other (or normal loads or stores), but
 | 
						|
  // must not be rescheduled across global barriers.  Note that we don't
 | 
						|
  // really need a "map" here since we don't track those MIs by value;
 | 
						|
  // using the same Value2SUsMap data type here is simply a matter of
 | 
						|
  // convenience.
 | 
						|
  Value2SUsMap FPExceptions;
 | 
						|
 | 
						|
  // Remove any stale debug info; sometimes BuildSchedGraph is called again
 | 
						|
  // without emitting the info from the previous call.
 | 
						|
  DbgValues.clear();
 | 
						|
  FirstDbgValue = nullptr;
 | 
						|
 | 
						|
  assert(Defs.empty() && Uses.empty() &&
 | 
						|
         "Only BuildGraph should update Defs/Uses");
 | 
						|
  Defs.setUniverse(TRI->getNumRegs());
 | 
						|
  Uses.setUniverse(TRI->getNumRegs());
 | 
						|
 | 
						|
  assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
 | 
						|
  assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
 | 
						|
  unsigned NumVirtRegs = MRI.getNumVirtRegs();
 | 
						|
  CurrentVRegDefs.setUniverse(NumVirtRegs);
 | 
						|
  CurrentVRegUses.setUniverse(NumVirtRegs);
 | 
						|
 | 
						|
  // Model data dependencies between instructions being scheduled and the
 | 
						|
  // ExitSU.
 | 
						|
  addSchedBarrierDeps();
 | 
						|
 | 
						|
  // Walk the list of instructions, from bottom moving up.
 | 
						|
  MachineInstr *DbgMI = nullptr;
 | 
						|
  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
 | 
						|
       MII != MIE; --MII) {
 | 
						|
    MachineInstr &MI = *std::prev(MII);
 | 
						|
    if (DbgMI) {
 | 
						|
      DbgValues.push_back(std::make_pair(DbgMI, &MI));
 | 
						|
      DbgMI = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    if (MI.isDebugValue() || MI.isDebugRef()) {
 | 
						|
      DbgMI = &MI;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (MI.isDebugLabel())
 | 
						|
      continue;
 | 
						|
 | 
						|
    SUnit *SU = MISUnitMap[&MI];
 | 
						|
    assert(SU && "No SUnit mapped to this MI");
 | 
						|
 | 
						|
    if (RPTracker) {
 | 
						|
      RegisterOperands RegOpers;
 | 
						|
      RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
 | 
						|
      if (TrackLaneMasks) {
 | 
						|
        SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
 | 
						|
        RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
 | 
						|
      }
 | 
						|
      if (PDiffs != nullptr)
 | 
						|
        PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);
 | 
						|
 | 
						|
      if (RPTracker->getPos() == RegionEnd || &*RPTracker->getPos() != &MI)
 | 
						|
        RPTracker->recedeSkipDebugValues();
 | 
						|
      assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
 | 
						|
      RPTracker->recede(RegOpers);
 | 
						|
    }
 | 
						|
 | 
						|
    assert(
 | 
						|
        (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
 | 
						|
        "Cannot schedule terminators or labels!");
 | 
						|
 | 
						|
    // Add register-based dependencies (data, anti, and output).
 | 
						|
    // For some instructions (calls, returns, inline-asm, etc.) there can
 | 
						|
    // be explicit uses and implicit defs, in which case the use will appear
 | 
						|
    // on the operand list before the def. Do two passes over the operand
 | 
						|
    // list to make sure that defs are processed before any uses.
 | 
						|
    bool HasVRegDef = false;
 | 
						|
    for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
 | 
						|
      const MachineOperand &MO = MI.getOperand(j);
 | 
						|
      if (!MO.isReg() || !MO.isDef())
 | 
						|
        continue;
 | 
						|
      Register Reg = MO.getReg();
 | 
						|
      if (Register::isPhysicalRegister(Reg)) {
 | 
						|
        addPhysRegDeps(SU, j);
 | 
						|
      } else if (Register::isVirtualRegister(Reg)) {
 | 
						|
        HasVRegDef = true;
 | 
						|
        addVRegDefDeps(SU, j);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Now process all uses.
 | 
						|
    for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
 | 
						|
      const MachineOperand &MO = MI.getOperand(j);
 | 
						|
      // Only look at use operands.
 | 
						|
      // We do not need to check for MO.readsReg() here because subsequent
 | 
						|
      // subregister defs will get output dependence edges and need no
 | 
						|
      // additional use dependencies.
 | 
						|
      if (!MO.isReg() || !MO.isUse())
 | 
						|
        continue;
 | 
						|
      Register Reg = MO.getReg();
 | 
						|
      if (Register::isPhysicalRegister(Reg)) {
 | 
						|
        addPhysRegDeps(SU, j);
 | 
						|
      } else if (Register::isVirtualRegister(Reg) && MO.readsReg()) {
 | 
						|
        addVRegUseDeps(SU, j);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we haven't seen any uses in this scheduling region, create a
 | 
						|
    // dependence edge to ExitSU to model the live-out latency. This is required
 | 
						|
    // for vreg defs with no in-region use, and prefetches with no vreg def.
 | 
						|
    //
 | 
						|
    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
 | 
						|
    // check currently relies on being called before adding chain deps.
 | 
						|
    if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
 | 
						|
      SDep Dep(SU, SDep::Artificial);
 | 
						|
      Dep.setLatency(SU->Latency - 1);
 | 
						|
      ExitSU.addPred(Dep);
 | 
						|
    }
 | 
						|
 | 
						|
    // Add memory dependencies (Note: isStoreToStackSlot and
 | 
						|
    // isLoadFromStackSLot are not usable after stack slots are lowered to
 | 
						|
    // actual addresses).
 | 
						|
 | 
						|
    // This is a barrier event that acts as a pivotal node in the DAG.
 | 
						|
    if (isGlobalMemoryObject(AA, &MI)) {
 | 
						|
 | 
						|
      // Become the barrier chain.
 | 
						|
      if (BarrierChain)
 | 
						|
        BarrierChain->addPredBarrier(SU);
 | 
						|
      BarrierChain = SU;
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
 | 
						|
                        << BarrierChain->NodeNum << ").\n";);
 | 
						|
 | 
						|
      // Add dependencies against everything below it and clear maps.
 | 
						|
      addBarrierChain(Stores);
 | 
						|
      addBarrierChain(Loads);
 | 
						|
      addBarrierChain(NonAliasStores);
 | 
						|
      addBarrierChain(NonAliasLoads);
 | 
						|
      addBarrierChain(FPExceptions);
 | 
						|
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Instructions that may raise FP exceptions may not be moved
 | 
						|
    // across any global barriers.
 | 
						|
    if (MI.mayRaiseFPException()) {
 | 
						|
      if (BarrierChain)
 | 
						|
        BarrierChain->addPredBarrier(SU);
 | 
						|
 | 
						|
      FPExceptions.insert(SU, UnknownValue);
 | 
						|
 | 
						|
      if (FPExceptions.size() >= HugeRegion) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Reducing FPExceptions map.\n";);
 | 
						|
        Value2SUsMap empty;
 | 
						|
        reduceHugeMemNodeMaps(FPExceptions, empty, getReductionSize());
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If it's not a store or a variant load, we're done.
 | 
						|
    if (!MI.mayStore() &&
 | 
						|
        !(MI.mayLoad() && !MI.isDereferenceableInvariantLoad(AA)))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Always add dependecy edge to BarrierChain if present.
 | 
						|
    if (BarrierChain)
 | 
						|
      BarrierChain->addPredBarrier(SU);
 | 
						|
 | 
						|
    // Find the underlying objects for MI. The Objs vector is either
 | 
						|
    // empty, or filled with the Values of memory locations which this
 | 
						|
    // SU depends on.
 | 
						|
    UnderlyingObjectsVector Objs;
 | 
						|
    bool ObjsFound = getUnderlyingObjectsForInstr(&MI, MFI, Objs,
 | 
						|
                                                  MF.getDataLayout());
 | 
						|
 | 
						|
    if (MI.mayStore()) {
 | 
						|
      if (!ObjsFound) {
 | 
						|
        // An unknown store depends on all stores and loads.
 | 
						|
        addChainDependencies(SU, Stores);
 | 
						|
        addChainDependencies(SU, NonAliasStores);
 | 
						|
        addChainDependencies(SU, Loads);
 | 
						|
        addChainDependencies(SU, NonAliasLoads);
 | 
						|
 | 
						|
        // Map this store to 'UnknownValue'.
 | 
						|
        Stores.insert(SU, UnknownValue);
 | 
						|
      } else {
 | 
						|
        // Add precise dependencies against all previously seen memory
 | 
						|
        // accesses mapped to the same Value(s).
 | 
						|
        for (const UnderlyingObject &UnderlObj : Objs) {
 | 
						|
          ValueType V = UnderlObj.getValue();
 | 
						|
          bool ThisMayAlias = UnderlObj.mayAlias();
 | 
						|
 | 
						|
          // Add dependencies to previous stores and loads mapped to V.
 | 
						|
          addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
 | 
						|
          addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
 | 
						|
        }
 | 
						|
        // Update the store map after all chains have been added to avoid adding
 | 
						|
        // self-loop edge if multiple underlying objects are present.
 | 
						|
        for (const UnderlyingObject &UnderlObj : Objs) {
 | 
						|
          ValueType V = UnderlObj.getValue();
 | 
						|
          bool ThisMayAlias = UnderlObj.mayAlias();
 | 
						|
 | 
						|
          // Map this store to V.
 | 
						|
          (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
 | 
						|
        }
 | 
						|
        // The store may have dependencies to unanalyzable loads and
 | 
						|
        // stores.
 | 
						|
        addChainDependencies(SU, Loads, UnknownValue);
 | 
						|
        addChainDependencies(SU, Stores, UnknownValue);
 | 
						|
      }
 | 
						|
    } else { // SU is a load.
 | 
						|
      if (!ObjsFound) {
 | 
						|
        // An unknown load depends on all stores.
 | 
						|
        addChainDependencies(SU, Stores);
 | 
						|
        addChainDependencies(SU, NonAliasStores);
 | 
						|
 | 
						|
        Loads.insert(SU, UnknownValue);
 | 
						|
      } else {
 | 
						|
        for (const UnderlyingObject &UnderlObj : Objs) {
 | 
						|
          ValueType V = UnderlObj.getValue();
 | 
						|
          bool ThisMayAlias = UnderlObj.mayAlias();
 | 
						|
 | 
						|
          // Add precise dependencies against all previously seen stores
 | 
						|
          // mapping to the same Value(s).
 | 
						|
          addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
 | 
						|
 | 
						|
          // Map this load to V.
 | 
						|
          (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
 | 
						|
        }
 | 
						|
        // The load may have dependencies to unanalyzable stores.
 | 
						|
        addChainDependencies(SU, Stores, UnknownValue);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Reduce maps if they grow huge.
 | 
						|
    if (Stores.size() + Loads.size() >= HugeRegion) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
 | 
						|
      reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
 | 
						|
    }
 | 
						|
    if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
 | 
						|
      reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (DbgMI)
 | 
						|
    FirstDbgValue = DbgMI;
 | 
						|
 | 
						|
  Defs.clear();
 | 
						|
  Uses.clear();
 | 
						|
  CurrentVRegDefs.clear();
 | 
						|
  CurrentVRegUses.clear();
 | 
						|
 | 
						|
  Topo.MarkDirty();
 | 
						|
}
 | 
						|
 | 
						|
raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
 | 
						|
  PSV->printCustom(OS);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::Value2SUsMap::dump() {
 | 
						|
  for (auto &Itr : *this) {
 | 
						|
    if (Itr.first.is<const Value*>()) {
 | 
						|
      const Value *V = Itr.first.get<const Value*>();
 | 
						|
      if (isa<UndefValue>(V))
 | 
						|
        dbgs() << "Unknown";
 | 
						|
      else
 | 
						|
        V->printAsOperand(dbgs());
 | 
						|
    }
 | 
						|
    else if (Itr.first.is<const PseudoSourceValue*>())
 | 
						|
      dbgs() <<  Itr.first.get<const PseudoSourceValue*>();
 | 
						|
    else
 | 
						|
      llvm_unreachable("Unknown Value type.");
 | 
						|
 | 
						|
    dbgs() << " : ";
 | 
						|
    dumpSUList(Itr.second);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
 | 
						|
                                              Value2SUsMap &loads, unsigned N) {
 | 
						|
  LLVM_DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n"; stores.dump();
 | 
						|
             dbgs() << "Loading SUnits:\n"; loads.dump());
 | 
						|
 | 
						|
  // Insert all SU's NodeNums into a vector and sort it.
 | 
						|
  std::vector<unsigned> NodeNums;
 | 
						|
  NodeNums.reserve(stores.size() + loads.size());
 | 
						|
  for (auto &I : stores)
 | 
						|
    for (auto *SU : I.second)
 | 
						|
      NodeNums.push_back(SU->NodeNum);
 | 
						|
  for (auto &I : loads)
 | 
						|
    for (auto *SU : I.second)
 | 
						|
      NodeNums.push_back(SU->NodeNum);
 | 
						|
  llvm::sort(NodeNums);
 | 
						|
 | 
						|
  // The N last elements in NodeNums will be removed, and the SU with
 | 
						|
  // the lowest NodeNum of them will become the new BarrierChain to
 | 
						|
  // let the not yet seen SUs have a dependency to the removed SUs.
 | 
						|
  assert(N <= NodeNums.size());
 | 
						|
  SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
 | 
						|
  if (BarrierChain) {
 | 
						|
    // The aliasing and non-aliasing maps reduce independently of each
 | 
						|
    // other, but share a common BarrierChain. Check if the
 | 
						|
    // newBarrierChain is above the former one. If it is not, it may
 | 
						|
    // introduce a loop to use newBarrierChain, so keep the old one.
 | 
						|
    if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
 | 
						|
      BarrierChain->addPredBarrier(newBarrierChain);
 | 
						|
      BarrierChain = newBarrierChain;
 | 
						|
      LLVM_DEBUG(dbgs() << "Inserting new barrier chain: SU("
 | 
						|
                        << BarrierChain->NodeNum << ").\n";);
 | 
						|
    }
 | 
						|
    else
 | 
						|
      LLVM_DEBUG(dbgs() << "Keeping old barrier chain: SU("
 | 
						|
                        << BarrierChain->NodeNum << ").\n";);
 | 
						|
  }
 | 
						|
  else
 | 
						|
    BarrierChain = newBarrierChain;
 | 
						|
 | 
						|
  insertBarrierChain(stores);
 | 
						|
  insertBarrierChain(loads);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n"; stores.dump();
 | 
						|
             dbgs() << "Loading SUnits:\n"; loads.dump());
 | 
						|
}
 | 
						|
 | 
						|
static void toggleKills(const MachineRegisterInfo &MRI, LivePhysRegs &LiveRegs,
 | 
						|
                        MachineInstr &MI, bool addToLiveRegs) {
 | 
						|
  for (MachineOperand &MO : MI.operands()) {
 | 
						|
    if (!MO.isReg() || !MO.readsReg())
 | 
						|
      continue;
 | 
						|
    Register Reg = MO.getReg();
 | 
						|
    if (!Reg)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Things that are available after the instruction are killed by it.
 | 
						|
    bool IsKill = LiveRegs.available(MRI, Reg);
 | 
						|
    MO.setIsKill(IsKill);
 | 
						|
    if (addToLiveRegs)
 | 
						|
      LiveRegs.addReg(Reg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::fixupKills(MachineBasicBlock &MBB) {
 | 
						|
  LLVM_DEBUG(dbgs() << "Fixup kills for " << printMBBReference(MBB) << '\n');
 | 
						|
 | 
						|
  LiveRegs.init(*TRI);
 | 
						|
  LiveRegs.addLiveOuts(MBB);
 | 
						|
 | 
						|
  // Examine block from end to start...
 | 
						|
  for (MachineInstr &MI : make_range(MBB.rbegin(), MBB.rend())) {
 | 
						|
    if (MI.isDebugInstr())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Update liveness.  Registers that are defed but not used in this
 | 
						|
    // instruction are now dead. Mark register and all subregs as they
 | 
						|
    // are completely defined.
 | 
						|
    for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
 | 
						|
      const MachineOperand &MO = *O;
 | 
						|
      if (MO.isReg()) {
 | 
						|
        if (!MO.isDef())
 | 
						|
          continue;
 | 
						|
        Register Reg = MO.getReg();
 | 
						|
        if (!Reg)
 | 
						|
          continue;
 | 
						|
        LiveRegs.removeReg(Reg);
 | 
						|
      } else if (MO.isRegMask()) {
 | 
						|
        LiveRegs.removeRegsInMask(MO);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If there is a bundle header fix it up first.
 | 
						|
    if (!MI.isBundled()) {
 | 
						|
      toggleKills(MRI, LiveRegs, MI, true);
 | 
						|
    } else {
 | 
						|
      MachineBasicBlock::instr_iterator Bundle = MI.getIterator();
 | 
						|
      if (MI.isBundle())
 | 
						|
        toggleKills(MRI, LiveRegs, MI, false);
 | 
						|
 | 
						|
      // Some targets make the (questionable) assumtion that the instructions
 | 
						|
      // inside the bundle are ordered and consequently only the last use of
 | 
						|
      // a register inside the bundle can kill it.
 | 
						|
      MachineBasicBlock::instr_iterator I = std::next(Bundle);
 | 
						|
      while (I->isBundledWithSucc())
 | 
						|
        ++I;
 | 
						|
      do {
 | 
						|
        if (!I->isDebugInstr())
 | 
						|
          toggleKills(MRI, LiveRegs, *I, true);
 | 
						|
        --I;
 | 
						|
      } while (I != Bundle);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::dumpNode(const SUnit &SU) const {
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
  dumpNodeName(SU);
 | 
						|
  dbgs() << ": ";
 | 
						|
  SU.getInstr()->dump();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGInstrs::dump() const {
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
  if (EntrySU.getInstr() != nullptr)
 | 
						|
    dumpNodeAll(EntrySU);
 | 
						|
  for (const SUnit &SU : SUnits)
 | 
						|
    dumpNodeAll(SU);
 | 
						|
  if (ExitSU.getInstr() != nullptr)
 | 
						|
    dumpNodeAll(ExitSU);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
 | 
						|
  std::string s;
 | 
						|
  raw_string_ostream oss(s);
 | 
						|
  if (SU == &EntrySU)
 | 
						|
    oss << "<entry>";
 | 
						|
  else if (SU == &ExitSU)
 | 
						|
    oss << "<exit>";
 | 
						|
  else
 | 
						|
    SU->getInstr()->print(oss, /*IsStandalone=*/true);
 | 
						|
  return oss.str();
 | 
						|
}
 | 
						|
 | 
						|
/// Return the basic block label. It is not necessarilly unique because a block
 | 
						|
/// contains multiple scheduling regions. But it is fine for visualization.
 | 
						|
std::string ScheduleDAGInstrs::getDAGName() const {
 | 
						|
  return "dag." + BB->getFullName();
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGInstrs::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
 | 
						|
  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGInstrs::addEdge(SUnit *SuccSU, const SDep &PredDep) {
 | 
						|
  if (SuccSU != &ExitSU) {
 | 
						|
    // Do not use WillCreateCycle, it assumes SD scheduling.
 | 
						|
    // If Pred is reachable from Succ, then the edge creates a cycle.
 | 
						|
    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
 | 
						|
      return false;
 | 
						|
    Topo.AddPredQueued(SuccSU, PredDep.getSUnit());
 | 
						|
  }
 | 
						|
  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
 | 
						|
  // Return true regardless of whether a new edge needed to be inserted.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SchedDFSResult Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
/// Internal state used to compute SchedDFSResult.
 | 
						|
class SchedDFSImpl {
 | 
						|
  SchedDFSResult &R;
 | 
						|
 | 
						|
  /// Join DAG nodes into equivalence classes by their subtree.
 | 
						|
  IntEqClasses SubtreeClasses;
 | 
						|
  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
 | 
						|
  std::vector<std::pair<const SUnit *, const SUnit*>> ConnectionPairs;
 | 
						|
 | 
						|
  struct RootData {
 | 
						|
    unsigned NodeID;
 | 
						|
    unsigned ParentNodeID;  ///< Parent node (member of the parent subtree).
 | 
						|
    unsigned SubInstrCount = 0; ///< Instr count in this tree only, not
 | 
						|
                                /// children.
 | 
						|
 | 
						|
    RootData(unsigned id): NodeID(id),
 | 
						|
                           ParentNodeID(SchedDFSResult::InvalidSubtreeID) {}
 | 
						|
 | 
						|
    unsigned getSparseSetIndex() const { return NodeID; }
 | 
						|
  };
 | 
						|
 | 
						|
  SparseSet<RootData> RootSet;
 | 
						|
 | 
						|
public:
 | 
						|
  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
 | 
						|
    RootSet.setUniverse(R.DFSNodeData.size());
 | 
						|
  }
 | 
						|
 | 
						|
  /// Returns true if this node been visited by the DFS traversal.
 | 
						|
  ///
 | 
						|
  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
 | 
						|
  /// ID. Later, SubtreeID is updated but remains valid.
 | 
						|
  bool isVisited(const SUnit *SU) const {
 | 
						|
    return R.DFSNodeData[SU->NodeNum].SubtreeID
 | 
						|
      != SchedDFSResult::InvalidSubtreeID;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Initializes this node's instruction count. We don't need to flag the node
 | 
						|
  /// visited until visitPostorder because the DAG cannot have cycles.
 | 
						|
  void visitPreorder(const SUnit *SU) {
 | 
						|
    R.DFSNodeData[SU->NodeNum].InstrCount =
 | 
						|
      SU->getInstr()->isTransient() ? 0 : 1;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Called once for each node after all predecessors are visited. Revisit this
 | 
						|
  /// node's predecessors and potentially join them now that we know the ILP of
 | 
						|
  /// the other predecessors.
 | 
						|
  void visitPostorderNode(const SUnit *SU) {
 | 
						|
    // Mark this node as the root of a subtree. It may be joined with its
 | 
						|
    // successors later.
 | 
						|
    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
 | 
						|
    RootData RData(SU->NodeNum);
 | 
						|
    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
 | 
						|
 | 
						|
    // If any predecessors are still in their own subtree, they either cannot be
 | 
						|
    // joined or are large enough to remain separate. If this parent node's
 | 
						|
    // total instruction count is not greater than a child subtree by at least
 | 
						|
    // the subtree limit, then try to join it now since splitting subtrees is
 | 
						|
    // only useful if multiple high-pressure paths are possible.
 | 
						|
    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
 | 
						|
    for (const SDep &PredDep : SU->Preds) {
 | 
						|
      if (PredDep.getKind() != SDep::Data)
 | 
						|
        continue;
 | 
						|
      unsigned PredNum = PredDep.getSUnit()->NodeNum;
 | 
						|
      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
 | 
						|
        joinPredSubtree(PredDep, SU, /*CheckLimit=*/false);
 | 
						|
 | 
						|
      // Either link or merge the TreeData entry from the child to the parent.
 | 
						|
      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
 | 
						|
        // If the predecessor's parent is invalid, this is a tree edge and the
 | 
						|
        // current node is the parent.
 | 
						|
        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
 | 
						|
          RootSet[PredNum].ParentNodeID = SU->NodeNum;
 | 
						|
      }
 | 
						|
      else if (RootSet.count(PredNum)) {
 | 
						|
        // The predecessor is not a root, but is still in the root set. This
 | 
						|
        // must be the new parent that it was just joined to. Note that
 | 
						|
        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
 | 
						|
        // set to the original parent.
 | 
						|
        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
 | 
						|
        RootSet.erase(PredNum);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    RootSet[SU->NodeNum] = RData;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Called once for each tree edge after calling visitPostOrderNode on
 | 
						|
  /// the predecessor. Increment the parent node's instruction count and
 | 
						|
  /// preemptively join this subtree to its parent's if it is small enough.
 | 
						|
  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
 | 
						|
    R.DFSNodeData[Succ->NodeNum].InstrCount
 | 
						|
      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
 | 
						|
    joinPredSubtree(PredDep, Succ);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Adds a connection for cross edges.
 | 
						|
  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
 | 
						|
    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
 | 
						|
  }
 | 
						|
 | 
						|
  /// Sets each node's subtree ID to the representative ID and record
 | 
						|
  /// connections between trees.
 | 
						|
  void finalize() {
 | 
						|
    SubtreeClasses.compress();
 | 
						|
    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
 | 
						|
    assert(SubtreeClasses.getNumClasses() == RootSet.size()
 | 
						|
           && "number of roots should match trees");
 | 
						|
    for (const RootData &Root : RootSet) {
 | 
						|
      unsigned TreeID = SubtreeClasses[Root.NodeID];
 | 
						|
      if (Root.ParentNodeID != SchedDFSResult::InvalidSubtreeID)
 | 
						|
        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[Root.ParentNodeID];
 | 
						|
      R.DFSTreeData[TreeID].SubInstrCount = Root.SubInstrCount;
 | 
						|
      // Note that SubInstrCount may be greater than InstrCount if we joined
 | 
						|
      // subtrees across a cross edge. InstrCount will be attributed to the
 | 
						|
      // original parent, while SubInstrCount will be attributed to the joined
 | 
						|
      // parent.
 | 
						|
    }
 | 
						|
    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
 | 
						|
    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
 | 
						|
    LLVM_DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
 | 
						|
    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
 | 
						|
      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
 | 
						|
      LLVM_DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
 | 
						|
                        << R.DFSNodeData[Idx].SubtreeID << '\n');
 | 
						|
    }
 | 
						|
    for (const std::pair<const SUnit*, const SUnit*> &P : ConnectionPairs) {
 | 
						|
      unsigned PredTree = SubtreeClasses[P.first->NodeNum];
 | 
						|
      unsigned SuccTree = SubtreeClasses[P.second->NodeNum];
 | 
						|
      if (PredTree == SuccTree)
 | 
						|
        continue;
 | 
						|
      unsigned Depth = P.first->getDepth();
 | 
						|
      addConnection(PredTree, SuccTree, Depth);
 | 
						|
      addConnection(SuccTree, PredTree, Depth);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
protected:
 | 
						|
  /// Joins the predecessor subtree with the successor that is its DFS parent.
 | 
						|
  /// Applies some heuristics before joining.
 | 
						|
  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
 | 
						|
                       bool CheckLimit = true) {
 | 
						|
    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
 | 
						|
 | 
						|
    // Check if the predecessor is already joined.
 | 
						|
    const SUnit *PredSU = PredDep.getSUnit();
 | 
						|
    unsigned PredNum = PredSU->NodeNum;
 | 
						|
    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Four is the magic number of successors before a node is considered a
 | 
						|
    // pinch point.
 | 
						|
    unsigned NumDataSucs = 0;
 | 
						|
    for (const SDep &SuccDep : PredSU->Succs) {
 | 
						|
      if (SuccDep.getKind() == SDep::Data) {
 | 
						|
        if (++NumDataSucs >= 4)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
 | 
						|
      return false;
 | 
						|
    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
 | 
						|
    SubtreeClasses.join(Succ->NodeNum, PredNum);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  /// Called by finalize() to record a connection between trees.
 | 
						|
  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
 | 
						|
    if (!Depth)
 | 
						|
      return;
 | 
						|
 | 
						|
    do {
 | 
						|
      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
 | 
						|
        R.SubtreeConnections[FromTree];
 | 
						|
      for (SchedDFSResult::Connection &C : Connections) {
 | 
						|
        if (C.TreeID == ToTree) {
 | 
						|
          C.Level = std::max(C.Level, Depth);
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
 | 
						|
      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
 | 
						|
    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// Manage the stack used by a reverse depth-first search over the DAG.
 | 
						|
class SchedDAGReverseDFS {
 | 
						|
  std::vector<std::pair<const SUnit *, SUnit::const_pred_iterator>> DFSStack;
 | 
						|
 | 
						|
public:
 | 
						|
  bool isComplete() const { return DFSStack.empty(); }
 | 
						|
 | 
						|
  void follow(const SUnit *SU) {
 | 
						|
    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
 | 
						|
  }
 | 
						|
  void advance() { ++DFSStack.back().second; }
 | 
						|
 | 
						|
  const SDep *backtrack() {
 | 
						|
    DFSStack.pop_back();
 | 
						|
    return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
 | 
						|
  }
 | 
						|
 | 
						|
  const SUnit *getCurr() const { return DFSStack.back().first; }
 | 
						|
 | 
						|
  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
 | 
						|
 | 
						|
  SUnit::const_pred_iterator getPredEnd() const {
 | 
						|
    return getCurr()->Preds.end();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static bool hasDataSucc(const SUnit *SU) {
 | 
						|
  for (const SDep &SuccDep : SU->Succs) {
 | 
						|
    if (SuccDep.getKind() == SDep::Data &&
 | 
						|
        !SuccDep.getSUnit()->isBoundaryNode())
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Computes an ILP metric for all nodes in the subDAG reachable via depth-first
 | 
						|
/// search from this root.
 | 
						|
void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
 | 
						|
  if (!IsBottomUp)
 | 
						|
    llvm_unreachable("Top-down ILP metric is unimplemented");
 | 
						|
 | 
						|
  SchedDFSImpl Impl(*this);
 | 
						|
  for (const SUnit &SU : SUnits) {
 | 
						|
    if (Impl.isVisited(&SU) || hasDataSucc(&SU))
 | 
						|
      continue;
 | 
						|
 | 
						|
    SchedDAGReverseDFS DFS;
 | 
						|
    Impl.visitPreorder(&SU);
 | 
						|
    DFS.follow(&SU);
 | 
						|
    while (true) {
 | 
						|
      // Traverse the leftmost path as far as possible.
 | 
						|
      while (DFS.getPred() != DFS.getPredEnd()) {
 | 
						|
        const SDep &PredDep = *DFS.getPred();
 | 
						|
        DFS.advance();
 | 
						|
        // Ignore non-data edges.
 | 
						|
        if (PredDep.getKind() != SDep::Data
 | 
						|
            || PredDep.getSUnit()->isBoundaryNode()) {
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // An already visited edge is a cross edge, assuming an acyclic DAG.
 | 
						|
        if (Impl.isVisited(PredDep.getSUnit())) {
 | 
						|
          Impl.visitCrossEdge(PredDep, DFS.getCurr());
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        Impl.visitPreorder(PredDep.getSUnit());
 | 
						|
        DFS.follow(PredDep.getSUnit());
 | 
						|
      }
 | 
						|
      // Visit the top of the stack in postorder and backtrack.
 | 
						|
      const SUnit *Child = DFS.getCurr();
 | 
						|
      const SDep *PredDep = DFS.backtrack();
 | 
						|
      Impl.visitPostorderNode(Child);
 | 
						|
      if (PredDep)
 | 
						|
        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
 | 
						|
      if (DFS.isComplete())
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  Impl.finalize();
 | 
						|
}
 | 
						|
 | 
						|
/// The root of the given SubtreeID was just scheduled. For all subtrees
 | 
						|
/// connected to this tree, record the depth of the connection so that the
 | 
						|
/// nearest connected subtrees can be prioritized.
 | 
						|
void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
 | 
						|
  for (const Connection &C : SubtreeConnections[SubtreeID]) {
 | 
						|
    SubtreeConnectLevels[C.TreeID] =
 | 
						|
      std::max(SubtreeConnectLevels[C.TreeID], C.Level);
 | 
						|
    LLVM_DEBUG(dbgs() << "  Tree: " << C.TreeID << " @"
 | 
						|
                      << SubtreeConnectLevels[C.TreeID] << '\n');
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
LLVM_DUMP_METHOD void ILPValue::print(raw_ostream &OS) const {
 | 
						|
  OS << InstrCount << " / " << Length << " = ";
 | 
						|
  if (!Length)
 | 
						|
    OS << "BADILP";
 | 
						|
  else
 | 
						|
    OS << format("%g", ((double)InstrCount / Length));
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD void ILPValue::dump() const {
 | 
						|
  dbgs() << *this << '\n';
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
 | 
						|
  Val.print(OS);
 | 
						|
  return OS;
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
#endif
 |