1459 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1459 lines
		
	
	
		
			52 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Implementation of the MC-JIT runtime dynamic linker.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ExecutionEngine/RuntimeDyld.h"
 | 
						|
#include "RuntimeDyldCOFF.h"
 | 
						|
#include "RuntimeDyldELF.h"
 | 
						|
#include "RuntimeDyldImpl.h"
 | 
						|
#include "RuntimeDyldMachO.h"
 | 
						|
#include "llvm/Object/COFF.h"
 | 
						|
#include "llvm/Object/ELFObjectFile.h"
 | 
						|
#include "llvm/Support/Alignment.h"
 | 
						|
#include "llvm/Support/MSVCErrorWorkarounds.h"
 | 
						|
#include "llvm/Support/ManagedStatic.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include <mutex>
 | 
						|
 | 
						|
#include <future>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::object;
 | 
						|
 | 
						|
#define DEBUG_TYPE "dyld"
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
enum RuntimeDyldErrorCode {
 | 
						|
  GenericRTDyldError = 1
 | 
						|
};
 | 
						|
 | 
						|
// FIXME: This class is only here to support the transition to llvm::Error. It
 | 
						|
// will be removed once this transition is complete. Clients should prefer to
 | 
						|
// deal with the Error value directly, rather than converting to error_code.
 | 
						|
class RuntimeDyldErrorCategory : public std::error_category {
 | 
						|
public:
 | 
						|
  const char *name() const noexcept override { return "runtimedyld"; }
 | 
						|
 | 
						|
  std::string message(int Condition) const override {
 | 
						|
    switch (static_cast<RuntimeDyldErrorCode>(Condition)) {
 | 
						|
      case GenericRTDyldError: return "Generic RuntimeDyld error";
 | 
						|
    }
 | 
						|
    llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
static ManagedStatic<RuntimeDyldErrorCategory> RTDyldErrorCategory;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
char RuntimeDyldError::ID = 0;
 | 
						|
 | 
						|
void RuntimeDyldError::log(raw_ostream &OS) const {
 | 
						|
  OS << ErrMsg << "\n";
 | 
						|
}
 | 
						|
 | 
						|
std::error_code RuntimeDyldError::convertToErrorCode() const {
 | 
						|
  return std::error_code(GenericRTDyldError, *RTDyldErrorCategory);
 | 
						|
}
 | 
						|
 | 
						|
// Empty out-of-line virtual destructor as the key function.
 | 
						|
RuntimeDyldImpl::~RuntimeDyldImpl() {}
 | 
						|
 | 
						|
// Pin LoadedObjectInfo's vtables to this file.
 | 
						|
void RuntimeDyld::LoadedObjectInfo::anchor() {}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
void RuntimeDyldImpl::registerEHFrames() {}
 | 
						|
 | 
						|
void RuntimeDyldImpl::deregisterEHFrames() {
 | 
						|
  MemMgr.deregisterEHFrames();
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
 | 
						|
  dbgs() << "----- Contents of section " << S.getName() << " " << State
 | 
						|
         << " -----";
 | 
						|
 | 
						|
  if (S.getAddress() == nullptr) {
 | 
						|
    dbgs() << "\n          <section not emitted>\n";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  const unsigned ColsPerRow = 16;
 | 
						|
 | 
						|
  uint8_t *DataAddr = S.getAddress();
 | 
						|
  uint64_t LoadAddr = S.getLoadAddress();
 | 
						|
 | 
						|
  unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
 | 
						|
  unsigned BytesRemaining = S.getSize();
 | 
						|
 | 
						|
  if (StartPadding) {
 | 
						|
    dbgs() << "\n" << format("0x%016" PRIx64,
 | 
						|
                             LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
 | 
						|
    while (StartPadding--)
 | 
						|
      dbgs() << "   ";
 | 
						|
  }
 | 
						|
 | 
						|
  while (BytesRemaining > 0) {
 | 
						|
    if ((LoadAddr & (ColsPerRow - 1)) == 0)
 | 
						|
      dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
 | 
						|
 | 
						|
    dbgs() << " " << format("%02x", *DataAddr);
 | 
						|
 | 
						|
    ++DataAddr;
 | 
						|
    ++LoadAddr;
 | 
						|
    --BytesRemaining;
 | 
						|
  }
 | 
						|
 | 
						|
  dbgs() << "\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// Resolve the relocations for all symbols we currently know about.
 | 
						|
void RuntimeDyldImpl::resolveRelocations() {
 | 
						|
  std::lock_guard<sys::Mutex> locked(lock);
 | 
						|
 | 
						|
  // Print out the sections prior to relocation.
 | 
						|
  LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
 | 
						|
                 dumpSectionMemory(Sections[i], "before relocations"););
 | 
						|
 | 
						|
  // First, resolve relocations associated with external symbols.
 | 
						|
  if (auto Err = resolveExternalSymbols()) {
 | 
						|
    HasError = true;
 | 
						|
    ErrorStr = toString(std::move(Err));
 | 
						|
  }
 | 
						|
 | 
						|
  resolveLocalRelocations();
 | 
						|
 | 
						|
  // Print out sections after relocation.
 | 
						|
  LLVM_DEBUG(for (int i = 0, e = Sections.size(); i != e; ++i)
 | 
						|
                 dumpSectionMemory(Sections[i], "after relocations"););
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::resolveLocalRelocations() {
 | 
						|
  // Iterate over all outstanding relocations
 | 
						|
  for (auto it = Relocations.begin(), e = Relocations.end(); it != e; ++it) {
 | 
						|
    // The Section here (Sections[i]) refers to the section in which the
 | 
						|
    // symbol for the relocation is located.  The SectionID in the relocation
 | 
						|
    // entry provides the section to which the relocation will be applied.
 | 
						|
    int Idx = it->first;
 | 
						|
    uint64_t Addr = Sections[Idx].getLoadAddress();
 | 
						|
    LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx << "\t"
 | 
						|
                      << format("%p", (uintptr_t)Addr) << "\n");
 | 
						|
    resolveRelocationList(it->second, Addr);
 | 
						|
  }
 | 
						|
  Relocations.clear();
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
 | 
						|
                                        uint64_t TargetAddress) {
 | 
						|
  std::lock_guard<sys::Mutex> locked(lock);
 | 
						|
  for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
 | 
						|
    if (Sections[i].getAddress() == LocalAddress) {
 | 
						|
      reassignSectionAddress(i, TargetAddress);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Attempting to remap address of unknown section!");
 | 
						|
}
 | 
						|
 | 
						|
static Error getOffset(const SymbolRef &Sym, SectionRef Sec,
 | 
						|
                       uint64_t &Result) {
 | 
						|
  Expected<uint64_t> AddressOrErr = Sym.getAddress();
 | 
						|
  if (!AddressOrErr)
 | 
						|
    return AddressOrErr.takeError();
 | 
						|
  Result = *AddressOrErr - Sec.getAddress();
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
Expected<RuntimeDyldImpl::ObjSectionToIDMap>
 | 
						|
RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
 | 
						|
  std::lock_guard<sys::Mutex> locked(lock);
 | 
						|
 | 
						|
  // Save information about our target
 | 
						|
  Arch = (Triple::ArchType)Obj.getArch();
 | 
						|
  IsTargetLittleEndian = Obj.isLittleEndian();
 | 
						|
  setMipsABI(Obj);
 | 
						|
 | 
						|
  // Compute the memory size required to load all sections to be loaded
 | 
						|
  // and pass this information to the memory manager
 | 
						|
  if (MemMgr.needsToReserveAllocationSpace()) {
 | 
						|
    uint64_t CodeSize = 0, RODataSize = 0, RWDataSize = 0;
 | 
						|
    uint32_t CodeAlign = 1, RODataAlign = 1, RWDataAlign = 1;
 | 
						|
    if (auto Err = computeTotalAllocSize(Obj,
 | 
						|
                                         CodeSize, CodeAlign,
 | 
						|
                                         RODataSize, RODataAlign,
 | 
						|
                                         RWDataSize, RWDataAlign))
 | 
						|
      return std::move(Err);
 | 
						|
    MemMgr.reserveAllocationSpace(CodeSize, CodeAlign, RODataSize, RODataAlign,
 | 
						|
                                  RWDataSize, RWDataAlign);
 | 
						|
  }
 | 
						|
 | 
						|
  // Used sections from the object file
 | 
						|
  ObjSectionToIDMap LocalSections;
 | 
						|
 | 
						|
  // Common symbols requiring allocation, with their sizes and alignments
 | 
						|
  CommonSymbolList CommonSymbolsToAllocate;
 | 
						|
 | 
						|
  uint64_t CommonSize = 0;
 | 
						|
  uint32_t CommonAlign = 0;
 | 
						|
 | 
						|
  // First, collect all weak and common symbols. We need to know if stronger
 | 
						|
  // definitions occur elsewhere.
 | 
						|
  JITSymbolResolver::LookupSet ResponsibilitySet;
 | 
						|
  {
 | 
						|
    JITSymbolResolver::LookupSet Symbols;
 | 
						|
    for (auto &Sym : Obj.symbols()) {
 | 
						|
      Expected<uint32_t> FlagsOrErr = Sym.getFlags();
 | 
						|
      if (!FlagsOrErr)
 | 
						|
        // TODO: Test this error.
 | 
						|
        return FlagsOrErr.takeError();
 | 
						|
      if ((*FlagsOrErr & SymbolRef::SF_Common) ||
 | 
						|
          (*FlagsOrErr & SymbolRef::SF_Weak)) {
 | 
						|
        // Get symbol name.
 | 
						|
        if (auto NameOrErr = Sym.getName())
 | 
						|
          Symbols.insert(*NameOrErr);
 | 
						|
        else
 | 
						|
          return NameOrErr.takeError();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (auto ResultOrErr = Resolver.getResponsibilitySet(Symbols))
 | 
						|
      ResponsibilitySet = std::move(*ResultOrErr);
 | 
						|
    else
 | 
						|
      return ResultOrErr.takeError();
 | 
						|
  }
 | 
						|
 | 
						|
  // Parse symbols
 | 
						|
  LLVM_DEBUG(dbgs() << "Parse symbols:\n");
 | 
						|
  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
 | 
						|
       ++I) {
 | 
						|
    Expected<uint32_t> FlagsOrErr = I->getFlags();
 | 
						|
    if (!FlagsOrErr)
 | 
						|
      // TODO: Test this error.
 | 
						|
      return FlagsOrErr.takeError();
 | 
						|
 | 
						|
    // Skip undefined symbols.
 | 
						|
    if (*FlagsOrErr & SymbolRef::SF_Undefined)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Get the symbol type.
 | 
						|
    object::SymbolRef::Type SymType;
 | 
						|
    if (auto SymTypeOrErr = I->getType())
 | 
						|
      SymType = *SymTypeOrErr;
 | 
						|
    else
 | 
						|
      return SymTypeOrErr.takeError();
 | 
						|
 | 
						|
    // Get symbol name.
 | 
						|
    StringRef Name;
 | 
						|
    if (auto NameOrErr = I->getName())
 | 
						|
      Name = *NameOrErr;
 | 
						|
    else
 | 
						|
      return NameOrErr.takeError();
 | 
						|
 | 
						|
    // Compute JIT symbol flags.
 | 
						|
    auto JITSymFlags = getJITSymbolFlags(*I);
 | 
						|
    if (!JITSymFlags)
 | 
						|
      return JITSymFlags.takeError();
 | 
						|
 | 
						|
    // If this is a weak definition, check to see if there's a strong one.
 | 
						|
    // If there is, skip this symbol (we won't be providing it: the strong
 | 
						|
    // definition will). If there's no strong definition, make this definition
 | 
						|
    // strong.
 | 
						|
    if (JITSymFlags->isWeak() || JITSymFlags->isCommon()) {
 | 
						|
      // First check whether there's already a definition in this instance.
 | 
						|
      if (GlobalSymbolTable.count(Name))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If we're not responsible for this symbol, skip it.
 | 
						|
      if (!ResponsibilitySet.count(Name))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Otherwise update the flags on the symbol to make this definition
 | 
						|
      // strong.
 | 
						|
      if (JITSymFlags->isWeak())
 | 
						|
        *JITSymFlags &= ~JITSymbolFlags::Weak;
 | 
						|
      if (JITSymFlags->isCommon()) {
 | 
						|
        *JITSymFlags &= ~JITSymbolFlags::Common;
 | 
						|
        uint32_t Align = I->getAlignment();
 | 
						|
        uint64_t Size = I->getCommonSize();
 | 
						|
        if (!CommonAlign)
 | 
						|
          CommonAlign = Align;
 | 
						|
        CommonSize = alignTo(CommonSize, Align) + Size;
 | 
						|
        CommonSymbolsToAllocate.push_back(*I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (*FlagsOrErr & SymbolRef::SF_Absolute &&
 | 
						|
        SymType != object::SymbolRef::ST_File) {
 | 
						|
      uint64_t Addr = 0;
 | 
						|
      if (auto AddrOrErr = I->getAddress())
 | 
						|
        Addr = *AddrOrErr;
 | 
						|
      else
 | 
						|
        return AddrOrErr.takeError();
 | 
						|
 | 
						|
      unsigned SectionID = AbsoluteSymbolSection;
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "\tType: " << SymType << " (absolute) Name: " << Name
 | 
						|
                        << " SID: " << SectionID
 | 
						|
                        << " Offset: " << format("%p", (uintptr_t)Addr)
 | 
						|
                        << " flags: " << *FlagsOrErr << "\n");
 | 
						|
      if (!Name.empty()) // Skip absolute symbol relocations.
 | 
						|
        GlobalSymbolTable[Name] =
 | 
						|
            SymbolTableEntry(SectionID, Addr, *JITSymFlags);
 | 
						|
    } else if (SymType == object::SymbolRef::ST_Function ||
 | 
						|
               SymType == object::SymbolRef::ST_Data ||
 | 
						|
               SymType == object::SymbolRef::ST_Unknown ||
 | 
						|
               SymType == object::SymbolRef::ST_Other) {
 | 
						|
 | 
						|
      section_iterator SI = Obj.section_end();
 | 
						|
      if (auto SIOrErr = I->getSection())
 | 
						|
        SI = *SIOrErr;
 | 
						|
      else
 | 
						|
        return SIOrErr.takeError();
 | 
						|
 | 
						|
      if (SI == Obj.section_end())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Get symbol offset.
 | 
						|
      uint64_t SectOffset;
 | 
						|
      if (auto Err = getOffset(*I, *SI, SectOffset))
 | 
						|
        return std::move(Err);
 | 
						|
 | 
						|
      bool IsCode = SI->isText();
 | 
						|
      unsigned SectionID;
 | 
						|
      if (auto SectionIDOrErr =
 | 
						|
              findOrEmitSection(Obj, *SI, IsCode, LocalSections))
 | 
						|
        SectionID = *SectionIDOrErr;
 | 
						|
      else
 | 
						|
        return SectionIDOrErr.takeError();
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
 | 
						|
                        << " SID: " << SectionID
 | 
						|
                        << " Offset: " << format("%p", (uintptr_t)SectOffset)
 | 
						|
                        << " flags: " << *FlagsOrErr << "\n");
 | 
						|
      if (!Name.empty()) // Skip absolute symbol relocations
 | 
						|
        GlobalSymbolTable[Name] =
 | 
						|
            SymbolTableEntry(SectionID, SectOffset, *JITSymFlags);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Allocate common symbols
 | 
						|
  if (auto Err = emitCommonSymbols(Obj, CommonSymbolsToAllocate, CommonSize,
 | 
						|
                                   CommonAlign))
 | 
						|
    return std::move(Err);
 | 
						|
 | 
						|
  // Parse and process relocations
 | 
						|
  LLVM_DEBUG(dbgs() << "Parse relocations:\n");
 | 
						|
  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | 
						|
       SI != SE; ++SI) {
 | 
						|
    StubMap Stubs;
 | 
						|
 | 
						|
    Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
 | 
						|
    if (!RelSecOrErr)
 | 
						|
      return RelSecOrErr.takeError();
 | 
						|
 | 
						|
    section_iterator RelocatedSection = *RelSecOrErr;
 | 
						|
    if (RelocatedSection == SE)
 | 
						|
      continue;
 | 
						|
 | 
						|
    relocation_iterator I = SI->relocation_begin();
 | 
						|
    relocation_iterator E = SI->relocation_end();
 | 
						|
 | 
						|
    if (I == E && !ProcessAllSections)
 | 
						|
      continue;
 | 
						|
 | 
						|
    bool IsCode = RelocatedSection->isText();
 | 
						|
    unsigned SectionID = 0;
 | 
						|
    if (auto SectionIDOrErr = findOrEmitSection(Obj, *RelocatedSection, IsCode,
 | 
						|
                                                LocalSections))
 | 
						|
      SectionID = *SectionIDOrErr;
 | 
						|
    else
 | 
						|
      return SectionIDOrErr.takeError();
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
 | 
						|
 | 
						|
    for (; I != E;)
 | 
						|
      if (auto IOrErr = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs))
 | 
						|
        I = *IOrErr;
 | 
						|
      else
 | 
						|
        return IOrErr.takeError();
 | 
						|
 | 
						|
    // If there is a NotifyStubEmitted callback set, call it to register any
 | 
						|
    // stubs created for this section.
 | 
						|
    if (NotifyStubEmitted) {
 | 
						|
      StringRef FileName = Obj.getFileName();
 | 
						|
      StringRef SectionName = Sections[SectionID].getName();
 | 
						|
      for (auto &KV : Stubs) {
 | 
						|
 | 
						|
        auto &VR = KV.first;
 | 
						|
        uint64_t StubAddr = KV.second;
 | 
						|
 | 
						|
        // If this is a named stub, just call NotifyStubEmitted.
 | 
						|
        if (VR.SymbolName) {
 | 
						|
          NotifyStubEmitted(FileName, SectionName, VR.SymbolName, SectionID,
 | 
						|
                            StubAddr);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // Otherwise we will have to try a reverse lookup on the globla symbol table.
 | 
						|
        for (auto &GSTMapEntry : GlobalSymbolTable) {
 | 
						|
          StringRef SymbolName = GSTMapEntry.first();
 | 
						|
          auto &GSTEntry = GSTMapEntry.second;
 | 
						|
          if (GSTEntry.getSectionID() == VR.SectionID &&
 | 
						|
              GSTEntry.getOffset() == VR.Offset) {
 | 
						|
            NotifyStubEmitted(FileName, SectionName, SymbolName, SectionID,
 | 
						|
                              StubAddr);
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Process remaining sections
 | 
						|
  if (ProcessAllSections) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
 | 
						|
    for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | 
						|
         SI != SE; ++SI) {
 | 
						|
 | 
						|
      /* Ignore already loaded sections */
 | 
						|
      if (LocalSections.find(*SI) != LocalSections.end())
 | 
						|
        continue;
 | 
						|
 | 
						|
      bool IsCode = SI->isText();
 | 
						|
      if (auto SectionIDOrErr =
 | 
						|
              findOrEmitSection(Obj, *SI, IsCode, LocalSections))
 | 
						|
        LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr) << "\n");
 | 
						|
      else
 | 
						|
        return SectionIDOrErr.takeError();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Give the subclasses a chance to tie-up any loose ends.
 | 
						|
  if (auto Err = finalizeLoad(Obj, LocalSections))
 | 
						|
    return std::move(Err);
 | 
						|
 | 
						|
//   for (auto E : LocalSections)
 | 
						|
//     llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
 | 
						|
 | 
						|
  return LocalSections;
 | 
						|
}
 | 
						|
 | 
						|
// A helper method for computeTotalAllocSize.
 | 
						|
// Computes the memory size required to allocate sections with the given sizes,
 | 
						|
// assuming that all sections are allocated with the given alignment
 | 
						|
static uint64_t
 | 
						|
computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
 | 
						|
                                 uint64_t Alignment) {
 | 
						|
  uint64_t TotalSize = 0;
 | 
						|
  for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
 | 
						|
    uint64_t AlignedSize =
 | 
						|
        (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
 | 
						|
    TotalSize += AlignedSize;
 | 
						|
  }
 | 
						|
  return TotalSize;
 | 
						|
}
 | 
						|
 | 
						|
static bool isRequiredForExecution(const SectionRef Section) {
 | 
						|
  const ObjectFile *Obj = Section.getObject();
 | 
						|
  if (isa<object::ELFObjectFileBase>(Obj))
 | 
						|
    return ELFSectionRef(Section).getFlags() & ELF::SHF_ALLOC;
 | 
						|
  if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
 | 
						|
    const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
 | 
						|
    // Avoid loading zero-sized COFF sections.
 | 
						|
    // In PE files, VirtualSize gives the section size, and SizeOfRawData
 | 
						|
    // may be zero for sections with content. In Obj files, SizeOfRawData
 | 
						|
    // gives the section size, and VirtualSize is always zero. Hence
 | 
						|
    // the need to check for both cases below.
 | 
						|
    bool HasContent =
 | 
						|
        (CoffSection->VirtualSize > 0) || (CoffSection->SizeOfRawData > 0);
 | 
						|
    bool IsDiscardable =
 | 
						|
        CoffSection->Characteristics &
 | 
						|
        (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
 | 
						|
    return HasContent && !IsDiscardable;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(isa<MachOObjectFile>(Obj));
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isReadOnlyData(const SectionRef Section) {
 | 
						|
  const ObjectFile *Obj = Section.getObject();
 | 
						|
  if (isa<object::ELFObjectFileBase>(Obj))
 | 
						|
    return !(ELFSectionRef(Section).getFlags() &
 | 
						|
             (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
 | 
						|
  if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
 | 
						|
    return ((COFFObj->getCOFFSection(Section)->Characteristics &
 | 
						|
             (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
 | 
						|
             | COFF::IMAGE_SCN_MEM_READ
 | 
						|
             | COFF::IMAGE_SCN_MEM_WRITE))
 | 
						|
             ==
 | 
						|
             (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
 | 
						|
             | COFF::IMAGE_SCN_MEM_READ));
 | 
						|
 | 
						|
  assert(isa<MachOObjectFile>(Obj));
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isZeroInit(const SectionRef Section) {
 | 
						|
  const ObjectFile *Obj = Section.getObject();
 | 
						|
  if (isa<object::ELFObjectFileBase>(Obj))
 | 
						|
    return ELFSectionRef(Section).getType() == ELF::SHT_NOBITS;
 | 
						|
  if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
 | 
						|
    return COFFObj->getCOFFSection(Section)->Characteristics &
 | 
						|
            COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
 | 
						|
 | 
						|
  auto *MachO = cast<MachOObjectFile>(Obj);
 | 
						|
  unsigned SectionType = MachO->getSectionType(Section);
 | 
						|
  return SectionType == MachO::S_ZEROFILL ||
 | 
						|
         SectionType == MachO::S_GB_ZEROFILL;
 | 
						|
}
 | 
						|
 | 
						|
// Compute an upper bound of the memory size that is required to load all
 | 
						|
// sections
 | 
						|
Error RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
 | 
						|
                                             uint64_t &CodeSize,
 | 
						|
                                             uint32_t &CodeAlign,
 | 
						|
                                             uint64_t &RODataSize,
 | 
						|
                                             uint32_t &RODataAlign,
 | 
						|
                                             uint64_t &RWDataSize,
 | 
						|
                                             uint32_t &RWDataAlign) {
 | 
						|
  // Compute the size of all sections required for execution
 | 
						|
  std::vector<uint64_t> CodeSectionSizes;
 | 
						|
  std::vector<uint64_t> ROSectionSizes;
 | 
						|
  std::vector<uint64_t> RWSectionSizes;
 | 
						|
 | 
						|
  // Collect sizes of all sections to be loaded;
 | 
						|
  // also determine the max alignment of all sections
 | 
						|
  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | 
						|
       SI != SE; ++SI) {
 | 
						|
    const SectionRef &Section = *SI;
 | 
						|
 | 
						|
    bool IsRequired = isRequiredForExecution(Section) || ProcessAllSections;
 | 
						|
 | 
						|
    // Consider only the sections that are required to be loaded for execution
 | 
						|
    if (IsRequired) {
 | 
						|
      uint64_t DataSize = Section.getSize();
 | 
						|
      uint64_t Alignment64 = Section.getAlignment();
 | 
						|
      unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
 | 
						|
      bool IsCode = Section.isText();
 | 
						|
      bool IsReadOnly = isReadOnlyData(Section);
 | 
						|
 | 
						|
      Expected<StringRef> NameOrErr = Section.getName();
 | 
						|
      if (!NameOrErr)
 | 
						|
        return NameOrErr.takeError();
 | 
						|
      StringRef Name = *NameOrErr;
 | 
						|
 | 
						|
      uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
 | 
						|
 | 
						|
      uint64_t PaddingSize = 0;
 | 
						|
      if (Name == ".eh_frame")
 | 
						|
        PaddingSize += 4;
 | 
						|
      if (StubBufSize != 0)
 | 
						|
        PaddingSize += getStubAlignment() - 1;
 | 
						|
 | 
						|
      uint64_t SectionSize = DataSize + PaddingSize + StubBufSize;
 | 
						|
 | 
						|
      // The .eh_frame section (at least on Linux) needs an extra four bytes
 | 
						|
      // padded
 | 
						|
      // with zeroes added at the end.  For MachO objects, this section has a
 | 
						|
      // slightly different name, so this won't have any effect for MachO
 | 
						|
      // objects.
 | 
						|
      if (Name == ".eh_frame")
 | 
						|
        SectionSize += 4;
 | 
						|
 | 
						|
      if (!SectionSize)
 | 
						|
        SectionSize = 1;
 | 
						|
 | 
						|
      if (IsCode) {
 | 
						|
        CodeAlign = std::max(CodeAlign, Alignment);
 | 
						|
        CodeSectionSizes.push_back(SectionSize);
 | 
						|
      } else if (IsReadOnly) {
 | 
						|
        RODataAlign = std::max(RODataAlign, Alignment);
 | 
						|
        ROSectionSizes.push_back(SectionSize);
 | 
						|
      } else {
 | 
						|
        RWDataAlign = std::max(RWDataAlign, Alignment);
 | 
						|
        RWSectionSizes.push_back(SectionSize);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute Global Offset Table size. If it is not zero we
 | 
						|
  // also update alignment, which is equal to a size of a
 | 
						|
  // single GOT entry.
 | 
						|
  if (unsigned GotSize = computeGOTSize(Obj)) {
 | 
						|
    RWSectionSizes.push_back(GotSize);
 | 
						|
    RWDataAlign = std::max<uint32_t>(RWDataAlign, getGOTEntrySize());
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the size of all common symbols
 | 
						|
  uint64_t CommonSize = 0;
 | 
						|
  uint32_t CommonAlign = 1;
 | 
						|
  for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
 | 
						|
       ++I) {
 | 
						|
    Expected<uint32_t> FlagsOrErr = I->getFlags();
 | 
						|
    if (!FlagsOrErr)
 | 
						|
      // TODO: Test this error.
 | 
						|
      return FlagsOrErr.takeError();
 | 
						|
    if (*FlagsOrErr & SymbolRef::SF_Common) {
 | 
						|
      // Add the common symbols to a list.  We'll allocate them all below.
 | 
						|
      uint64_t Size = I->getCommonSize();
 | 
						|
      uint32_t Align = I->getAlignment();
 | 
						|
      // If this is the first common symbol, use its alignment as the alignment
 | 
						|
      // for the common symbols section.
 | 
						|
      if (CommonSize == 0)
 | 
						|
        CommonAlign = Align;
 | 
						|
      CommonSize = alignTo(CommonSize, Align) + Size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (CommonSize != 0) {
 | 
						|
    RWSectionSizes.push_back(CommonSize);
 | 
						|
    RWDataAlign = std::max(RWDataAlign, CommonAlign);
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute the required allocation space for each different type of sections
 | 
						|
  // (code, read-only data, read-write data) assuming that all sections are
 | 
						|
  // allocated with the max alignment. Note that we cannot compute with the
 | 
						|
  // individual alignments of the sections, because then the required size
 | 
						|
  // depends on the order, in which the sections are allocated.
 | 
						|
  CodeSize = computeAllocationSizeForSections(CodeSectionSizes, CodeAlign);
 | 
						|
  RODataSize = computeAllocationSizeForSections(ROSectionSizes, RODataAlign);
 | 
						|
  RWDataSize = computeAllocationSizeForSections(RWSectionSizes, RWDataAlign);
 | 
						|
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
// compute GOT size
 | 
						|
unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile &Obj) {
 | 
						|
  size_t GotEntrySize = getGOTEntrySize();
 | 
						|
  if (!GotEntrySize)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  size_t GotSize = 0;
 | 
						|
  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | 
						|
       SI != SE; ++SI) {
 | 
						|
 | 
						|
    for (const RelocationRef &Reloc : SI->relocations())
 | 
						|
      if (relocationNeedsGot(Reloc))
 | 
						|
        GotSize += GotEntrySize;
 | 
						|
  }
 | 
						|
 | 
						|
  return GotSize;
 | 
						|
}
 | 
						|
 | 
						|
// compute stub buffer size for the given section
 | 
						|
unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
 | 
						|
                                                    const SectionRef &Section) {
 | 
						|
  unsigned StubSize = getMaxStubSize();
 | 
						|
  if (StubSize == 0) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  // FIXME: this is an inefficient way to handle this. We should computed the
 | 
						|
  // necessary section allocation size in loadObject by walking all the sections
 | 
						|
  // once.
 | 
						|
  unsigned StubBufSize = 0;
 | 
						|
  for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
 | 
						|
       SI != SE; ++SI) {
 | 
						|
 | 
						|
    Expected<section_iterator> RelSecOrErr = SI->getRelocatedSection();
 | 
						|
    if (!RelSecOrErr)
 | 
						|
      report_fatal_error(toString(RelSecOrErr.takeError()));
 | 
						|
 | 
						|
    section_iterator RelSecI = *RelSecOrErr;
 | 
						|
    if (!(RelSecI == Section))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (const RelocationRef &Reloc : SI->relocations())
 | 
						|
      if (relocationNeedsStub(Reloc))
 | 
						|
        StubBufSize += StubSize;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get section data size and alignment
 | 
						|
  uint64_t DataSize = Section.getSize();
 | 
						|
  uint64_t Alignment64 = Section.getAlignment();
 | 
						|
 | 
						|
  // Add stubbuf size alignment
 | 
						|
  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
 | 
						|
  unsigned StubAlignment = getStubAlignment();
 | 
						|
  unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
 | 
						|
  if (StubAlignment > EndAlignment)
 | 
						|
    StubBufSize += StubAlignment - EndAlignment;
 | 
						|
  return StubBufSize;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
 | 
						|
                                             unsigned Size) const {
 | 
						|
  uint64_t Result = 0;
 | 
						|
  if (IsTargetLittleEndian) {
 | 
						|
    Src += Size - 1;
 | 
						|
    while (Size--)
 | 
						|
      Result = (Result << 8) | *Src--;
 | 
						|
  } else
 | 
						|
    while (Size--)
 | 
						|
      Result = (Result << 8) | *Src++;
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
 | 
						|
                                          unsigned Size) const {
 | 
						|
  if (IsTargetLittleEndian) {
 | 
						|
    while (Size--) {
 | 
						|
      *Dst++ = Value & 0xFF;
 | 
						|
      Value >>= 8;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    Dst += Size - 1;
 | 
						|
    while (Size--) {
 | 
						|
      *Dst-- = Value & 0xFF;
 | 
						|
      Value >>= 8;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Expected<JITSymbolFlags>
 | 
						|
RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef &SR) {
 | 
						|
  return JITSymbolFlags::fromObjectSymbol(SR);
 | 
						|
}
 | 
						|
 | 
						|
Error RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
 | 
						|
                                         CommonSymbolList &SymbolsToAllocate,
 | 
						|
                                         uint64_t CommonSize,
 | 
						|
                                         uint32_t CommonAlign) {
 | 
						|
  if (SymbolsToAllocate.empty())
 | 
						|
    return Error::success();
 | 
						|
 | 
						|
  // Allocate memory for the section
 | 
						|
  unsigned SectionID = Sections.size();
 | 
						|
  uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, CommonAlign, SectionID,
 | 
						|
                                             "<common symbols>", false);
 | 
						|
  if (!Addr)
 | 
						|
    report_fatal_error("Unable to allocate memory for common symbols!");
 | 
						|
  uint64_t Offset = 0;
 | 
						|
  Sections.push_back(
 | 
						|
      SectionEntry("<common symbols>", Addr, CommonSize, CommonSize, 0));
 | 
						|
  memset(Addr, 0, CommonSize);
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
 | 
						|
                    << " new addr: " << format("%p", Addr)
 | 
						|
                    << " DataSize: " << CommonSize << "\n");
 | 
						|
 | 
						|
  // Assign the address of each symbol
 | 
						|
  for (auto &Sym : SymbolsToAllocate) {
 | 
						|
    uint32_t Alignment = Sym.getAlignment();
 | 
						|
    uint64_t Size = Sym.getCommonSize();
 | 
						|
    StringRef Name;
 | 
						|
    if (auto NameOrErr = Sym.getName())
 | 
						|
      Name = *NameOrErr;
 | 
						|
    else
 | 
						|
      return NameOrErr.takeError();
 | 
						|
    if (Alignment) {
 | 
						|
      // This symbol has an alignment requirement.
 | 
						|
      uint64_t AlignOffset =
 | 
						|
          offsetToAlignment((uint64_t)Addr, Align(Alignment));
 | 
						|
      Addr += AlignOffset;
 | 
						|
      Offset += AlignOffset;
 | 
						|
    }
 | 
						|
    auto JITSymFlags = getJITSymbolFlags(Sym);
 | 
						|
 | 
						|
    if (!JITSymFlags)
 | 
						|
      return JITSymFlags.takeError();
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
 | 
						|
                      << format("%p", Addr) << "\n");
 | 
						|
    if (!Name.empty()) // Skip absolute symbol relocations.
 | 
						|
      GlobalSymbolTable[Name] =
 | 
						|
          SymbolTableEntry(SectionID, Offset, std::move(*JITSymFlags));
 | 
						|
    Offset += Size;
 | 
						|
    Addr += Size;
 | 
						|
  }
 | 
						|
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
Expected<unsigned>
 | 
						|
RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
 | 
						|
                             const SectionRef &Section,
 | 
						|
                             bool IsCode) {
 | 
						|
  StringRef data;
 | 
						|
  uint64_t Alignment64 = Section.getAlignment();
 | 
						|
 | 
						|
  unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
 | 
						|
  unsigned PaddingSize = 0;
 | 
						|
  unsigned StubBufSize = 0;
 | 
						|
  bool IsRequired = isRequiredForExecution(Section);
 | 
						|
  bool IsVirtual = Section.isVirtual();
 | 
						|
  bool IsZeroInit = isZeroInit(Section);
 | 
						|
  bool IsReadOnly = isReadOnlyData(Section);
 | 
						|
  uint64_t DataSize = Section.getSize();
 | 
						|
 | 
						|
  // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
 | 
						|
  // while being more "polite".  Other formats do not support 0-aligned sections
 | 
						|
  // anyway, so we should guarantee that the alignment is always at least 1.
 | 
						|
  Alignment = std::max(1u, Alignment);
 | 
						|
 | 
						|
  Expected<StringRef> NameOrErr = Section.getName();
 | 
						|
  if (!NameOrErr)
 | 
						|
    return NameOrErr.takeError();
 | 
						|
  StringRef Name = *NameOrErr;
 | 
						|
 | 
						|
  StubBufSize = computeSectionStubBufSize(Obj, Section);
 | 
						|
 | 
						|
  // The .eh_frame section (at least on Linux) needs an extra four bytes padded
 | 
						|
  // with zeroes added at the end.  For MachO objects, this section has a
 | 
						|
  // slightly different name, so this won't have any effect for MachO objects.
 | 
						|
  if (Name == ".eh_frame")
 | 
						|
    PaddingSize = 4;
 | 
						|
 | 
						|
  uintptr_t Allocate;
 | 
						|
  unsigned SectionID = Sections.size();
 | 
						|
  uint8_t *Addr;
 | 
						|
  const char *pData = nullptr;
 | 
						|
 | 
						|
  // If this section contains any bits (i.e. isn't a virtual or bss section),
 | 
						|
  // grab a reference to them.
 | 
						|
  if (!IsVirtual && !IsZeroInit) {
 | 
						|
    // In either case, set the location of the unrelocated section in memory,
 | 
						|
    // since we still process relocations for it even if we're not applying them.
 | 
						|
    if (Expected<StringRef> E = Section.getContents())
 | 
						|
      data = *E;
 | 
						|
    else
 | 
						|
      return E.takeError();
 | 
						|
    pData = data.data();
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any stubs then the section alignment needs to be at least as
 | 
						|
  // high as stub alignment or padding calculations may by incorrect when the
 | 
						|
  // section is remapped.
 | 
						|
  if (StubBufSize != 0) {
 | 
						|
    Alignment = std::max(Alignment, getStubAlignment());
 | 
						|
    PaddingSize += getStubAlignment() - 1;
 | 
						|
  }
 | 
						|
 | 
						|
  // Some sections, such as debug info, don't need to be loaded for execution.
 | 
						|
  // Process those only if explicitly requested.
 | 
						|
  if (IsRequired || ProcessAllSections) {
 | 
						|
    Allocate = DataSize + PaddingSize + StubBufSize;
 | 
						|
    if (!Allocate)
 | 
						|
      Allocate = 1;
 | 
						|
    Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
 | 
						|
                                               Name)
 | 
						|
                  : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
 | 
						|
                                               Name, IsReadOnly);
 | 
						|
    if (!Addr)
 | 
						|
      report_fatal_error("Unable to allocate section memory!");
 | 
						|
 | 
						|
    // Zero-initialize or copy the data from the image
 | 
						|
    if (IsZeroInit || IsVirtual)
 | 
						|
      memset(Addr, 0, DataSize);
 | 
						|
    else
 | 
						|
      memcpy(Addr, pData, DataSize);
 | 
						|
 | 
						|
    // Fill in any extra bytes we allocated for padding
 | 
						|
    if (PaddingSize != 0) {
 | 
						|
      memset(Addr + DataSize, 0, PaddingSize);
 | 
						|
      // Update the DataSize variable to include padding.
 | 
						|
      DataSize += PaddingSize;
 | 
						|
 | 
						|
      // Align DataSize to stub alignment if we have any stubs (PaddingSize will
 | 
						|
      // have been increased above to account for this).
 | 
						|
      if (StubBufSize > 0)
 | 
						|
        DataSize &= -(uint64_t)getStubAlignment();
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: "
 | 
						|
                      << Name << " obj addr: " << format("%p", pData)
 | 
						|
                      << " new addr: " << format("%p", Addr) << " DataSize: "
 | 
						|
                      << DataSize << " StubBufSize: " << StubBufSize
 | 
						|
                      << " Allocate: " << Allocate << "\n");
 | 
						|
  } else {
 | 
						|
    // Even if we didn't load the section, we need to record an entry for it
 | 
						|
    // to handle later processing (and by 'handle' I mean don't do anything
 | 
						|
    // with these sections).
 | 
						|
    Allocate = 0;
 | 
						|
    Addr = nullptr;
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
 | 
						|
               << " obj addr: " << format("%p", data.data()) << " new addr: 0"
 | 
						|
               << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
 | 
						|
               << " Allocate: " << Allocate << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  Sections.push_back(
 | 
						|
      SectionEntry(Name, Addr, DataSize, Allocate, (uintptr_t)pData));
 | 
						|
 | 
						|
  // Debug info sections are linked as if their load address was zero
 | 
						|
  if (!IsRequired)
 | 
						|
    Sections.back().setLoadAddress(0);
 | 
						|
 | 
						|
  return SectionID;
 | 
						|
}
 | 
						|
 | 
						|
Expected<unsigned>
 | 
						|
RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
 | 
						|
                                   const SectionRef &Section,
 | 
						|
                                   bool IsCode,
 | 
						|
                                   ObjSectionToIDMap &LocalSections) {
 | 
						|
 | 
						|
  unsigned SectionID = 0;
 | 
						|
  ObjSectionToIDMap::iterator i = LocalSections.find(Section);
 | 
						|
  if (i != LocalSections.end())
 | 
						|
    SectionID = i->second;
 | 
						|
  else {
 | 
						|
    if (auto SectionIDOrErr = emitSection(Obj, Section, IsCode))
 | 
						|
      SectionID = *SectionIDOrErr;
 | 
						|
    else
 | 
						|
      return SectionIDOrErr.takeError();
 | 
						|
    LocalSections[Section] = SectionID;
 | 
						|
  }
 | 
						|
  return SectionID;
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
 | 
						|
                                              unsigned SectionID) {
 | 
						|
  Relocations[SectionID].push_back(RE);
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
 | 
						|
                                             StringRef SymbolName) {
 | 
						|
  // Relocation by symbol.  If the symbol is found in the global symbol table,
 | 
						|
  // create an appropriate section relocation.  Otherwise, add it to
 | 
						|
  // ExternalSymbolRelocations.
 | 
						|
  RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
 | 
						|
  if (Loc == GlobalSymbolTable.end()) {
 | 
						|
    ExternalSymbolRelocations[SymbolName].push_back(RE);
 | 
						|
  } else {
 | 
						|
    assert(!SymbolName.empty() &&
 | 
						|
           "Empty symbol should not be in GlobalSymbolTable");
 | 
						|
    // Copy the RE since we want to modify its addend.
 | 
						|
    RelocationEntry RECopy = RE;
 | 
						|
    const auto &SymInfo = Loc->second;
 | 
						|
    RECopy.Addend += SymInfo.getOffset();
 | 
						|
    Relocations[SymInfo.getSectionID()].push_back(RECopy);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
 | 
						|
                                             unsigned AbiVariant) {
 | 
						|
  if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
 | 
						|
      Arch == Triple::aarch64_32) {
 | 
						|
    // This stub has to be able to access the full address space,
 | 
						|
    // since symbol lookup won't necessarily find a handy, in-range,
 | 
						|
    // PLT stub for functions which could be anywhere.
 | 
						|
    // Stub can use ip0 (== x16) to calculate address
 | 
						|
    writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
 | 
						|
    writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
 | 
						|
    writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
 | 
						|
    writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
 | 
						|
    writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
 | 
						|
 | 
						|
    return Addr;
 | 
						|
  } else if (Arch == Triple::arm || Arch == Triple::armeb) {
 | 
						|
    // TODO: There is only ARM far stub now. We should add the Thumb stub,
 | 
						|
    // and stubs for branches Thumb - ARM and ARM - Thumb.
 | 
						|
    writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc, [pc, #-4]
 | 
						|
    return Addr + 4;
 | 
						|
  } else if (IsMipsO32ABI || IsMipsN32ABI) {
 | 
						|
    // 0:   3c190000        lui     t9,%hi(addr).
 | 
						|
    // 4:   27390000        addiu   t9,t9,%lo(addr).
 | 
						|
    // 8:   03200008        jr      t9.
 | 
						|
    // c:   00000000        nop.
 | 
						|
    const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
 | 
						|
    const unsigned NopInstr = 0x0;
 | 
						|
    unsigned JrT9Instr = 0x03200008;
 | 
						|
    if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_32R6 ||
 | 
						|
        (AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
 | 
						|
      JrT9Instr = 0x03200009;
 | 
						|
 | 
						|
    writeBytesUnaligned(LuiT9Instr, Addr, 4);
 | 
						|
    writeBytesUnaligned(AdduiT9Instr, Addr + 4, 4);
 | 
						|
    writeBytesUnaligned(JrT9Instr, Addr + 8, 4);
 | 
						|
    writeBytesUnaligned(NopInstr, Addr + 12, 4);
 | 
						|
    return Addr;
 | 
						|
  } else if (IsMipsN64ABI) {
 | 
						|
    // 0:   3c190000        lui     t9,%highest(addr).
 | 
						|
    // 4:   67390000        daddiu  t9,t9,%higher(addr).
 | 
						|
    // 8:   0019CC38        dsll    t9,t9,16.
 | 
						|
    // c:   67390000        daddiu  t9,t9,%hi(addr).
 | 
						|
    // 10:  0019CC38        dsll    t9,t9,16.
 | 
						|
    // 14:  67390000        daddiu  t9,t9,%lo(addr).
 | 
						|
    // 18:  03200008        jr      t9.
 | 
						|
    // 1c:  00000000        nop.
 | 
						|
    const unsigned LuiT9Instr = 0x3c190000, DaddiuT9Instr = 0x67390000,
 | 
						|
                   DsllT9Instr = 0x19CC38;
 | 
						|
    const unsigned NopInstr = 0x0;
 | 
						|
    unsigned JrT9Instr = 0x03200008;
 | 
						|
    if ((AbiVariant & ELF::EF_MIPS_ARCH) == ELF::EF_MIPS_ARCH_64R6)
 | 
						|
      JrT9Instr = 0x03200009;
 | 
						|
 | 
						|
    writeBytesUnaligned(LuiT9Instr, Addr, 4);
 | 
						|
    writeBytesUnaligned(DaddiuT9Instr, Addr + 4, 4);
 | 
						|
    writeBytesUnaligned(DsllT9Instr, Addr + 8, 4);
 | 
						|
    writeBytesUnaligned(DaddiuT9Instr, Addr + 12, 4);
 | 
						|
    writeBytesUnaligned(DsllT9Instr, Addr + 16, 4);
 | 
						|
    writeBytesUnaligned(DaddiuT9Instr, Addr + 20, 4);
 | 
						|
    writeBytesUnaligned(JrT9Instr, Addr + 24, 4);
 | 
						|
    writeBytesUnaligned(NopInstr, Addr + 28, 4);
 | 
						|
    return Addr;
 | 
						|
  } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
 | 
						|
    // Depending on which version of the ELF ABI is in use, we need to
 | 
						|
    // generate one of two variants of the stub.  They both start with
 | 
						|
    // the same sequence to load the target address into r12.
 | 
						|
    writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
 | 
						|
    writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
 | 
						|
    writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
 | 
						|
    writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
 | 
						|
    writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
 | 
						|
    if (AbiVariant == 2) {
 | 
						|
      // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
 | 
						|
      // The address is already in r12 as required by the ABI.  Branch to it.
 | 
						|
      writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
 | 
						|
      writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
 | 
						|
      writeInt32BE(Addr+28, 0x4E800420); // bctr
 | 
						|
    } else {
 | 
						|
      // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
 | 
						|
      // Load the function address on r11 and sets it to control register. Also
 | 
						|
      // loads the function TOC in r2 and environment pointer to r11.
 | 
						|
      writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
 | 
						|
      writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
 | 
						|
      writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
 | 
						|
      writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
 | 
						|
      writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
 | 
						|
      writeInt32BE(Addr+40, 0x4E800420); // bctr
 | 
						|
    }
 | 
						|
    return Addr;
 | 
						|
  } else if (Arch == Triple::systemz) {
 | 
						|
    writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
 | 
						|
    writeInt16BE(Addr+2,  0x0000);
 | 
						|
    writeInt16BE(Addr+4,  0x0004);
 | 
						|
    writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
 | 
						|
    // 8-byte address stored at Addr + 8
 | 
						|
    return Addr;
 | 
						|
  } else if (Arch == Triple::x86_64) {
 | 
						|
    *Addr      = 0xFF; // jmp
 | 
						|
    *(Addr+1)  = 0x25; // rip
 | 
						|
    // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
 | 
						|
  } else if (Arch == Triple::x86) {
 | 
						|
    *Addr      = 0xE9; // 32-bit pc-relative jump.
 | 
						|
  }
 | 
						|
  return Addr;
 | 
						|
}
 | 
						|
 | 
						|
// Assign an address to a symbol name and resolve all the relocations
 | 
						|
// associated with it.
 | 
						|
void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
 | 
						|
                                             uint64_t Addr) {
 | 
						|
  // The address to use for relocation resolution is not
 | 
						|
  // the address of the local section buffer. We must be doing
 | 
						|
  // a remote execution environment of some sort. Relocations can't
 | 
						|
  // be applied until all the sections have been moved.  The client must
 | 
						|
  // trigger this with a call to MCJIT::finalize() or
 | 
						|
  // RuntimeDyld::resolveRelocations().
 | 
						|
  //
 | 
						|
  // Addr is a uint64_t because we can't assume the pointer width
 | 
						|
  // of the target is the same as that of the host. Just use a generic
 | 
						|
  // "big enough" type.
 | 
						|
  LLVM_DEBUG(
 | 
						|
      dbgs() << "Reassigning address for section " << SectionID << " ("
 | 
						|
             << Sections[SectionID].getName() << "): "
 | 
						|
             << format("0x%016" PRIx64, Sections[SectionID].getLoadAddress())
 | 
						|
             << " -> " << format("0x%016" PRIx64, Addr) << "\n");
 | 
						|
  Sections[SectionID].setLoadAddress(Addr);
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
 | 
						|
                                            uint64_t Value) {
 | 
						|
  for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
 | 
						|
    const RelocationEntry &RE = Relocs[i];
 | 
						|
    // Ignore relocations for sections that were not loaded
 | 
						|
    if (Sections[RE.SectionID].getAddress() == nullptr)
 | 
						|
      continue;
 | 
						|
    resolveRelocation(RE, Value);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::applyExternalSymbolRelocations(
 | 
						|
    const StringMap<JITEvaluatedSymbol> ExternalSymbolMap) {
 | 
						|
  while (!ExternalSymbolRelocations.empty()) {
 | 
						|
 | 
						|
    StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
 | 
						|
 | 
						|
    StringRef Name = i->first();
 | 
						|
    if (Name.size() == 0) {
 | 
						|
      // This is an absolute symbol, use an address of zero.
 | 
						|
      LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
 | 
						|
                        << "\n");
 | 
						|
      RelocationList &Relocs = i->second;
 | 
						|
      resolveRelocationList(Relocs, 0);
 | 
						|
    } else {
 | 
						|
      uint64_t Addr = 0;
 | 
						|
      JITSymbolFlags Flags;
 | 
						|
      RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
 | 
						|
      if (Loc == GlobalSymbolTable.end()) {
 | 
						|
        auto RRI = ExternalSymbolMap.find(Name);
 | 
						|
        assert(RRI != ExternalSymbolMap.end() && "No result for symbol");
 | 
						|
        Addr = RRI->second.getAddress();
 | 
						|
        Flags = RRI->second.getFlags();
 | 
						|
        // The call to getSymbolAddress may have caused additional modules to
 | 
						|
        // be loaded, which may have added new entries to the
 | 
						|
        // ExternalSymbolRelocations map.  Consquently, we need to update our
 | 
						|
        // iterator.  This is also why retrieval of the relocation list
 | 
						|
        // associated with this symbol is deferred until below this point.
 | 
						|
        // New entries may have been added to the relocation list.
 | 
						|
        i = ExternalSymbolRelocations.find(Name);
 | 
						|
      } else {
 | 
						|
        // We found the symbol in our global table.  It was probably in a
 | 
						|
        // Module that we loaded previously.
 | 
						|
        const auto &SymInfo = Loc->second;
 | 
						|
        Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
 | 
						|
               SymInfo.getOffset();
 | 
						|
        Flags = SymInfo.getFlags();
 | 
						|
      }
 | 
						|
 | 
						|
      // FIXME: Implement error handling that doesn't kill the host program!
 | 
						|
      if (!Addr)
 | 
						|
        report_fatal_error("Program used external function '" + Name +
 | 
						|
                           "' which could not be resolved!");
 | 
						|
 | 
						|
      // If Resolver returned UINT64_MAX, the client wants to handle this symbol
 | 
						|
      // manually and we shouldn't resolve its relocations.
 | 
						|
      if (Addr != UINT64_MAX) {
 | 
						|
 | 
						|
        // Tweak the address based on the symbol flags if necessary.
 | 
						|
        // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
 | 
						|
        // if the target symbol is Thumb.
 | 
						|
        Addr = modifyAddressBasedOnFlags(Addr, Flags);
 | 
						|
 | 
						|
        LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
 | 
						|
                          << format("0x%lx", Addr) << "\n");
 | 
						|
        // This list may have been updated when we called getSymbolAddress, so
 | 
						|
        // don't change this code to get the list earlier.
 | 
						|
        RelocationList &Relocs = i->second;
 | 
						|
        resolveRelocationList(Relocs, Addr);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ExternalSymbolRelocations.erase(i);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Error RuntimeDyldImpl::resolveExternalSymbols() {
 | 
						|
  StringMap<JITEvaluatedSymbol> ExternalSymbolMap;
 | 
						|
 | 
						|
  // Resolution can trigger emission of more symbols, so iterate until
 | 
						|
  // we've resolved *everything*.
 | 
						|
  {
 | 
						|
    JITSymbolResolver::LookupSet ResolvedSymbols;
 | 
						|
 | 
						|
    while (true) {
 | 
						|
      JITSymbolResolver::LookupSet NewSymbols;
 | 
						|
 | 
						|
      for (auto &RelocKV : ExternalSymbolRelocations) {
 | 
						|
        StringRef Name = RelocKV.first();
 | 
						|
        if (!Name.empty() && !GlobalSymbolTable.count(Name) &&
 | 
						|
            !ResolvedSymbols.count(Name))
 | 
						|
          NewSymbols.insert(Name);
 | 
						|
      }
 | 
						|
 | 
						|
      if (NewSymbols.empty())
 | 
						|
        break;
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
      using ExpectedLookupResult =
 | 
						|
          MSVCPExpected<JITSymbolResolver::LookupResult>;
 | 
						|
#else
 | 
						|
      using ExpectedLookupResult = Expected<JITSymbolResolver::LookupResult>;
 | 
						|
#endif
 | 
						|
 | 
						|
      auto NewSymbolsP = std::make_shared<std::promise<ExpectedLookupResult>>();
 | 
						|
      auto NewSymbolsF = NewSymbolsP->get_future();
 | 
						|
      Resolver.lookup(NewSymbols,
 | 
						|
                      [=](Expected<JITSymbolResolver::LookupResult> Result) {
 | 
						|
                        NewSymbolsP->set_value(std::move(Result));
 | 
						|
                      });
 | 
						|
 | 
						|
      auto NewResolverResults = NewSymbolsF.get();
 | 
						|
 | 
						|
      if (!NewResolverResults)
 | 
						|
        return NewResolverResults.takeError();
 | 
						|
 | 
						|
      assert(NewResolverResults->size() == NewSymbols.size() &&
 | 
						|
             "Should have errored on unresolved symbols");
 | 
						|
 | 
						|
      for (auto &RRKV : *NewResolverResults) {
 | 
						|
        assert(!ResolvedSymbols.count(RRKV.first) && "Redundant resolution?");
 | 
						|
        ExternalSymbolMap.insert(RRKV);
 | 
						|
        ResolvedSymbols.insert(RRKV.first);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  applyExternalSymbolRelocations(ExternalSymbolMap);
 | 
						|
 | 
						|
  return Error::success();
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyldImpl::finalizeAsync(
 | 
						|
    std::unique_ptr<RuntimeDyldImpl> This,
 | 
						|
    unique_function<void(object::OwningBinary<object::ObjectFile>,
 | 
						|
                         std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
 | 
						|
        OnEmitted,
 | 
						|
    object::OwningBinary<object::ObjectFile> O,
 | 
						|
    std::unique_ptr<RuntimeDyld::LoadedObjectInfo> Info) {
 | 
						|
 | 
						|
  auto SharedThis = std::shared_ptr<RuntimeDyldImpl>(std::move(This));
 | 
						|
  auto PostResolveContinuation =
 | 
						|
      [SharedThis, OnEmitted = std::move(OnEmitted), O = std::move(O),
 | 
						|
       Info = std::move(Info)](
 | 
						|
          Expected<JITSymbolResolver::LookupResult> Result) mutable {
 | 
						|
        if (!Result) {
 | 
						|
          OnEmitted(std::move(O), std::move(Info), Result.takeError());
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        /// Copy the result into a StringMap, where the keys are held by value.
 | 
						|
        StringMap<JITEvaluatedSymbol> Resolved;
 | 
						|
        for (auto &KV : *Result)
 | 
						|
          Resolved[KV.first] = KV.second;
 | 
						|
 | 
						|
        SharedThis->applyExternalSymbolRelocations(Resolved);
 | 
						|
        SharedThis->resolveLocalRelocations();
 | 
						|
        SharedThis->registerEHFrames();
 | 
						|
        std::string ErrMsg;
 | 
						|
        if (SharedThis->MemMgr.finalizeMemory(&ErrMsg))
 | 
						|
          OnEmitted(std::move(O), std::move(Info),
 | 
						|
                    make_error<StringError>(std::move(ErrMsg),
 | 
						|
                                            inconvertibleErrorCode()));
 | 
						|
        else
 | 
						|
          OnEmitted(std::move(O), std::move(Info), Error::success());
 | 
						|
      };
 | 
						|
 | 
						|
  JITSymbolResolver::LookupSet Symbols;
 | 
						|
 | 
						|
  for (auto &RelocKV : SharedThis->ExternalSymbolRelocations) {
 | 
						|
    StringRef Name = RelocKV.first();
 | 
						|
    if (Name.empty()) // Skip absolute symbol relocations.
 | 
						|
      continue;
 | 
						|
    assert(!SharedThis->GlobalSymbolTable.count(Name) &&
 | 
						|
           "Name already processed. RuntimeDyld instances can not be re-used "
 | 
						|
           "when finalizing with finalizeAsync.");
 | 
						|
    Symbols.insert(Name);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Symbols.empty()) {
 | 
						|
    SharedThis->Resolver.lookup(Symbols, std::move(PostResolveContinuation));
 | 
						|
  } else
 | 
						|
    PostResolveContinuation(std::map<StringRef, JITEvaluatedSymbol>());
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// RuntimeDyld class implementation
 | 
						|
 | 
						|
uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
 | 
						|
                                          const object::SectionRef &Sec) const {
 | 
						|
 | 
						|
  auto I = ObjSecToIDMap.find(Sec);
 | 
						|
  if (I != ObjSecToIDMap.end())
 | 
						|
    return RTDyld.Sections[I->second].getLoadAddress();
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyld::MemoryManager::anchor() {}
 | 
						|
void JITSymbolResolver::anchor() {}
 | 
						|
void LegacyJITSymbolResolver::anchor() {}
 | 
						|
 | 
						|
RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
 | 
						|
                         JITSymbolResolver &Resolver)
 | 
						|
    : MemMgr(MemMgr), Resolver(Resolver) {
 | 
						|
  // FIXME: There's a potential issue lurking here if a single instance of
 | 
						|
  // RuntimeDyld is used to load multiple objects.  The current implementation
 | 
						|
  // associates a single memory manager with a RuntimeDyld instance.  Even
 | 
						|
  // though the public class spawns a new 'impl' instance for each load,
 | 
						|
  // they share a single memory manager.  This can become a problem when page
 | 
						|
  // permissions are applied.
 | 
						|
  Dyld = nullptr;
 | 
						|
  ProcessAllSections = false;
 | 
						|
}
 | 
						|
 | 
						|
RuntimeDyld::~RuntimeDyld() {}
 | 
						|
 | 
						|
static std::unique_ptr<RuntimeDyldCOFF>
 | 
						|
createRuntimeDyldCOFF(
 | 
						|
                     Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
 | 
						|
                     JITSymbolResolver &Resolver, bool ProcessAllSections,
 | 
						|
                     RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
 | 
						|
  std::unique_ptr<RuntimeDyldCOFF> Dyld =
 | 
						|
    RuntimeDyldCOFF::create(Arch, MM, Resolver);
 | 
						|
  Dyld->setProcessAllSections(ProcessAllSections);
 | 
						|
  Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
 | 
						|
  return Dyld;
 | 
						|
}
 | 
						|
 | 
						|
static std::unique_ptr<RuntimeDyldELF>
 | 
						|
createRuntimeDyldELF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
 | 
						|
                     JITSymbolResolver &Resolver, bool ProcessAllSections,
 | 
						|
                     RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
 | 
						|
  std::unique_ptr<RuntimeDyldELF> Dyld =
 | 
						|
      RuntimeDyldELF::create(Arch, MM, Resolver);
 | 
						|
  Dyld->setProcessAllSections(ProcessAllSections);
 | 
						|
  Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
 | 
						|
  return Dyld;
 | 
						|
}
 | 
						|
 | 
						|
static std::unique_ptr<RuntimeDyldMachO>
 | 
						|
createRuntimeDyldMachO(
 | 
						|
                     Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
 | 
						|
                     JITSymbolResolver &Resolver,
 | 
						|
                     bool ProcessAllSections,
 | 
						|
                     RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted) {
 | 
						|
  std::unique_ptr<RuntimeDyldMachO> Dyld =
 | 
						|
    RuntimeDyldMachO::create(Arch, MM, Resolver);
 | 
						|
  Dyld->setProcessAllSections(ProcessAllSections);
 | 
						|
  Dyld->setNotifyStubEmitted(std::move(NotifyStubEmitted));
 | 
						|
  return Dyld;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
 | 
						|
RuntimeDyld::loadObject(const ObjectFile &Obj) {
 | 
						|
  if (!Dyld) {
 | 
						|
    if (Obj.isELF())
 | 
						|
      Dyld =
 | 
						|
          createRuntimeDyldELF(static_cast<Triple::ArchType>(Obj.getArch()),
 | 
						|
                               MemMgr, Resolver, ProcessAllSections,
 | 
						|
                               std::move(NotifyStubEmitted));
 | 
						|
    else if (Obj.isMachO())
 | 
						|
      Dyld = createRuntimeDyldMachO(
 | 
						|
               static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
 | 
						|
               ProcessAllSections, std::move(NotifyStubEmitted));
 | 
						|
    else if (Obj.isCOFF())
 | 
						|
      Dyld = createRuntimeDyldCOFF(
 | 
						|
               static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
 | 
						|
               ProcessAllSections, std::move(NotifyStubEmitted));
 | 
						|
    else
 | 
						|
      report_fatal_error("Incompatible object format!");
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Dyld->isCompatibleFile(Obj))
 | 
						|
    report_fatal_error("Incompatible object format!");
 | 
						|
 | 
						|
  auto LoadedObjInfo = Dyld->loadObject(Obj);
 | 
						|
  MemMgr.notifyObjectLoaded(*this, Obj);
 | 
						|
  return LoadedObjInfo;
 | 
						|
}
 | 
						|
 | 
						|
void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
 | 
						|
  if (!Dyld)
 | 
						|
    return nullptr;
 | 
						|
  return Dyld->getSymbolLocalAddress(Name);
 | 
						|
}
 | 
						|
 | 
						|
unsigned RuntimeDyld::getSymbolSectionID(StringRef Name) const {
 | 
						|
  assert(Dyld && "No RuntimeDyld instance attached");
 | 
						|
  return Dyld->getSymbolSectionID(Name);
 | 
						|
}
 | 
						|
 | 
						|
JITEvaluatedSymbol RuntimeDyld::getSymbol(StringRef Name) const {
 | 
						|
  if (!Dyld)
 | 
						|
    return nullptr;
 | 
						|
  return Dyld->getSymbol(Name);
 | 
						|
}
 | 
						|
 | 
						|
std::map<StringRef, JITEvaluatedSymbol> RuntimeDyld::getSymbolTable() const {
 | 
						|
  if (!Dyld)
 | 
						|
    return std::map<StringRef, JITEvaluatedSymbol>();
 | 
						|
  return Dyld->getSymbolTable();
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
 | 
						|
 | 
						|
void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
 | 
						|
  Dyld->reassignSectionAddress(SectionID, Addr);
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
 | 
						|
                                    uint64_t TargetAddress) {
 | 
						|
  Dyld->mapSectionAddress(LocalAddress, TargetAddress);
 | 
						|
}
 | 
						|
 | 
						|
bool RuntimeDyld::hasError() { return Dyld->hasError(); }
 | 
						|
 | 
						|
StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
 | 
						|
 | 
						|
void RuntimeDyld::finalizeWithMemoryManagerLocking() {
 | 
						|
  bool MemoryFinalizationLocked = MemMgr.FinalizationLocked;
 | 
						|
  MemMgr.FinalizationLocked = true;
 | 
						|
  resolveRelocations();
 | 
						|
  registerEHFrames();
 | 
						|
  if (!MemoryFinalizationLocked) {
 | 
						|
    MemMgr.finalizeMemory();
 | 
						|
    MemMgr.FinalizationLocked = false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
StringRef RuntimeDyld::getSectionContent(unsigned SectionID) const {
 | 
						|
  assert(Dyld && "No Dyld instance attached");
 | 
						|
  return Dyld->getSectionContent(SectionID);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID) const {
 | 
						|
  assert(Dyld && "No Dyld instance attached");
 | 
						|
  return Dyld->getSectionLoadAddress(SectionID);
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyld::registerEHFrames() {
 | 
						|
  if (Dyld)
 | 
						|
    Dyld->registerEHFrames();
 | 
						|
}
 | 
						|
 | 
						|
void RuntimeDyld::deregisterEHFrames() {
 | 
						|
  if (Dyld)
 | 
						|
    Dyld->deregisterEHFrames();
 | 
						|
}
 | 
						|
// FIXME: Kill this with fire once we have a new JIT linker: this is only here
 | 
						|
// so that we can re-use RuntimeDyld's implementation without twisting the
 | 
						|
// interface any further for ORC's purposes.
 | 
						|
void jitLinkForORC(
 | 
						|
    object::OwningBinary<object::ObjectFile> O,
 | 
						|
    RuntimeDyld::MemoryManager &MemMgr, JITSymbolResolver &Resolver,
 | 
						|
    bool ProcessAllSections,
 | 
						|
    unique_function<Error(const object::ObjectFile &Obj,
 | 
						|
                          RuntimeDyld::LoadedObjectInfo &LoadedObj,
 | 
						|
                          std::map<StringRef, JITEvaluatedSymbol>)>
 | 
						|
        OnLoaded,
 | 
						|
    unique_function<void(object::OwningBinary<object::ObjectFile>,
 | 
						|
                         std::unique_ptr<RuntimeDyld::LoadedObjectInfo>, Error)>
 | 
						|
        OnEmitted) {
 | 
						|
 | 
						|
  RuntimeDyld RTDyld(MemMgr, Resolver);
 | 
						|
  RTDyld.setProcessAllSections(ProcessAllSections);
 | 
						|
 | 
						|
  auto Info = RTDyld.loadObject(*O.getBinary());
 | 
						|
 | 
						|
  if (RTDyld.hasError()) {
 | 
						|
    OnEmitted(std::move(O), std::move(Info),
 | 
						|
              make_error<StringError>(RTDyld.getErrorString(),
 | 
						|
                                      inconvertibleErrorCode()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto Err = OnLoaded(*O.getBinary(), *Info, RTDyld.getSymbolTable()))
 | 
						|
    OnEmitted(std::move(O), std::move(Info), std::move(Err));
 | 
						|
 | 
						|
  RuntimeDyldImpl::finalizeAsync(std::move(RTDyld.Dyld), std::move(OnEmitted),
 | 
						|
                                 std::move(O), std::move(Info));
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace llvm
 |