4507 lines
		
	
	
		
			166 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4507 lines
		
	
	
		
			166 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements all of the non-inline methods for the LLVM instruction
 | |
| // classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "LLVMContextImpl.h"
 | |
| #include "llvm/ADT/None.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/MDBuilder.h"
 | |
| #include "llvm/IR/Metadata.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Support/AtomicOrdering.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/TypeSize.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            AllocaInst Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Optional<TypeSize>
 | |
| AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
 | |
|   TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
 | |
|   if (isArrayAllocation()) {
 | |
|     auto *C = dyn_cast<ConstantInt>(getArraySize());
 | |
|     if (!C)
 | |
|       return None;
 | |
|     assert(!Size.isScalable() && "Array elements cannot have a scalable size");
 | |
|     Size *= C->getZExtValue();
 | |
|   }
 | |
|   return Size;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              SelectInst Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// areInvalidOperands - Return a string if the specified operands are invalid
 | |
| /// for a select operation, otherwise return null.
 | |
| const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
 | |
|   if (Op1->getType() != Op2->getType())
 | |
|     return "both values to select must have same type";
 | |
| 
 | |
|   if (Op1->getType()->isTokenTy())
 | |
|     return "select values cannot have token type";
 | |
| 
 | |
|   if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
 | |
|     // Vector select.
 | |
|     if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
 | |
|       return "vector select condition element type must be i1";
 | |
|     VectorType *ET = dyn_cast<VectorType>(Op1->getType());
 | |
|     if (!ET)
 | |
|       return "selected values for vector select must be vectors";
 | |
|     if (ET->getElementCount() != VT->getElementCount())
 | |
|       return "vector select requires selected vectors to have "
 | |
|                    "the same vector length as select condition";
 | |
|   } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
 | |
|     return "select condition must be i1 or <n x i1>";
 | |
|   }
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               PHINode Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| PHINode::PHINode(const PHINode &PN)
 | |
|     : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
 | |
|       ReservedSpace(PN.getNumOperands()) {
 | |
|   allocHungoffUses(PN.getNumOperands());
 | |
|   std::copy(PN.op_begin(), PN.op_end(), op_begin());
 | |
|   std::copy(PN.block_begin(), PN.block_end(), block_begin());
 | |
|   SubclassOptionalData = PN.SubclassOptionalData;
 | |
| }
 | |
| 
 | |
| // removeIncomingValue - Remove an incoming value.  This is useful if a
 | |
| // predecessor basic block is deleted.
 | |
| Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
 | |
|   Value *Removed = getIncomingValue(Idx);
 | |
| 
 | |
|   // Move everything after this operand down.
 | |
|   //
 | |
|   // FIXME: we could just swap with the end of the list, then erase.  However,
 | |
|   // clients might not expect this to happen.  The code as it is thrashes the
 | |
|   // use/def lists, which is kinda lame.
 | |
|   std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
 | |
|   std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
 | |
| 
 | |
|   // Nuke the last value.
 | |
|   Op<-1>().set(nullptr);
 | |
|   setNumHungOffUseOperands(getNumOperands() - 1);
 | |
| 
 | |
|   // If the PHI node is dead, because it has zero entries, nuke it now.
 | |
|   if (getNumOperands() == 0 && DeletePHIIfEmpty) {
 | |
|     // If anyone is using this PHI, make them use a dummy value instead...
 | |
|     replaceAllUsesWith(UndefValue::get(getType()));
 | |
|     eraseFromParent();
 | |
|   }
 | |
|   return Removed;
 | |
| }
 | |
| 
 | |
| /// growOperands - grow operands - This grows the operand list in response
 | |
| /// to a push_back style of operation.  This grows the number of ops by 1.5
 | |
| /// times.
 | |
| ///
 | |
| void PHINode::growOperands() {
 | |
|   unsigned e = getNumOperands();
 | |
|   unsigned NumOps = e + e / 2;
 | |
|   if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common.
 | |
| 
 | |
|   ReservedSpace = NumOps;
 | |
|   growHungoffUses(ReservedSpace, /* IsPhi */ true);
 | |
| }
 | |
| 
 | |
| /// hasConstantValue - If the specified PHI node always merges together the same
 | |
| /// value, return the value, otherwise return null.
 | |
| Value *PHINode::hasConstantValue() const {
 | |
|   // Exploit the fact that phi nodes always have at least one entry.
 | |
|   Value *ConstantValue = getIncomingValue(0);
 | |
|   for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
 | |
|     if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
 | |
|       if (ConstantValue != this)
 | |
|         return nullptr; // Incoming values not all the same.
 | |
|        // The case where the first value is this PHI.
 | |
|       ConstantValue = getIncomingValue(i);
 | |
|     }
 | |
|   if (ConstantValue == this)
 | |
|     return UndefValue::get(getType());
 | |
|   return ConstantValue;
 | |
| }
 | |
| 
 | |
| /// hasConstantOrUndefValue - Whether the specified PHI node always merges
 | |
| /// together the same value, assuming that undefs result in the same value as
 | |
| /// non-undefs.
 | |
| /// Unlike \ref hasConstantValue, this does not return a value because the
 | |
| /// unique non-undef incoming value need not dominate the PHI node.
 | |
| bool PHINode::hasConstantOrUndefValue() const {
 | |
|   Value *ConstantValue = nullptr;
 | |
|   for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
 | |
|     Value *Incoming = getIncomingValue(i);
 | |
|     if (Incoming != this && !isa<UndefValue>(Incoming)) {
 | |
|       if (ConstantValue && ConstantValue != Incoming)
 | |
|         return false;
 | |
|       ConstantValue = Incoming;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       LandingPadInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
 | |
|                                const Twine &NameStr, Instruction *InsertBefore)
 | |
|     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
 | |
|   init(NumReservedValues, NameStr);
 | |
| }
 | |
| 
 | |
| LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
 | |
|                                const Twine &NameStr, BasicBlock *InsertAtEnd)
 | |
|     : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
 | |
|   init(NumReservedValues, NameStr);
 | |
| }
 | |
| 
 | |
| LandingPadInst::LandingPadInst(const LandingPadInst &LP)
 | |
|     : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
 | |
|                   LP.getNumOperands()),
 | |
|       ReservedSpace(LP.getNumOperands()) {
 | |
|   allocHungoffUses(LP.getNumOperands());
 | |
|   Use *OL = getOperandList();
 | |
|   const Use *InOL = LP.getOperandList();
 | |
|   for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
 | |
|     OL[I] = InOL[I];
 | |
| 
 | |
|   setCleanup(LP.isCleanup());
 | |
| }
 | |
| 
 | |
| LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
 | |
|                                        const Twine &NameStr,
 | |
|                                        Instruction *InsertBefore) {
 | |
|   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
 | |
| }
 | |
| 
 | |
| LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
 | |
|                                        const Twine &NameStr,
 | |
|                                        BasicBlock *InsertAtEnd) {
 | |
|   return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
 | |
|   ReservedSpace = NumReservedValues;
 | |
|   setNumHungOffUseOperands(0);
 | |
|   allocHungoffUses(ReservedSpace);
 | |
|   setName(NameStr);
 | |
|   setCleanup(false);
 | |
| }
 | |
| 
 | |
| /// growOperands - grow operands - This grows the operand list in response to a
 | |
| /// push_back style of operation. This grows the number of ops by 2 times.
 | |
| void LandingPadInst::growOperands(unsigned Size) {
 | |
|   unsigned e = getNumOperands();
 | |
|   if (ReservedSpace >= e + Size) return;
 | |
|   ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
 | |
|   growHungoffUses(ReservedSpace);
 | |
| }
 | |
| 
 | |
| void LandingPadInst::addClause(Constant *Val) {
 | |
|   unsigned OpNo = getNumOperands();
 | |
|   growOperands(1);
 | |
|   assert(OpNo < ReservedSpace && "Growing didn't work!");
 | |
|   setNumHungOffUseOperands(getNumOperands() + 1);
 | |
|   getOperandList()[OpNo] = Val;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        CallBase Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
 | |
|                            Instruction *InsertPt) {
 | |
|   switch (CB->getOpcode()) {
 | |
|   case Instruction::Call:
 | |
|     return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
 | |
|   case Instruction::Invoke:
 | |
|     return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
 | |
|   case Instruction::CallBr:
 | |
|     return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
 | |
|   default:
 | |
|     llvm_unreachable("Unknown CallBase sub-class!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| Function *CallBase::getCaller() { return getParent()->getParent(); }
 | |
| 
 | |
| unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
 | |
|   assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
 | |
|   return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
 | |
| }
 | |
| 
 | |
| bool CallBase::isIndirectCall() const {
 | |
|   const Value *V = getCalledOperand();
 | |
|   if (isa<Function>(V) || isa<Constant>(V))
 | |
|     return false;
 | |
|   return !isInlineAsm();
 | |
| }
 | |
| 
 | |
| /// Tests if this call site must be tail call optimized. Only a CallInst can
 | |
| /// be tail call optimized.
 | |
| bool CallBase::isMustTailCall() const {
 | |
|   if (auto *CI = dyn_cast<CallInst>(this))
 | |
|     return CI->isMustTailCall();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Tests if this call site is marked as a tail call.
 | |
| bool CallBase::isTailCall() const {
 | |
|   if (auto *CI = dyn_cast<CallInst>(this))
 | |
|     return CI->isTailCall();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Intrinsic::ID CallBase::getIntrinsicID() const {
 | |
|   if (auto *F = getCalledFunction())
 | |
|     return F->getIntrinsicID();
 | |
|   return Intrinsic::not_intrinsic;
 | |
| }
 | |
| 
 | |
| bool CallBase::isReturnNonNull() const {
 | |
|   if (hasRetAttr(Attribute::NonNull))
 | |
|     return true;
 | |
| 
 | |
|   if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
 | |
|            !NullPointerIsDefined(getCaller(),
 | |
|                                  getType()->getPointerAddressSpace()))
 | |
|     return true;
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Value *CallBase::getReturnedArgOperand() const {
 | |
|   unsigned Index;
 | |
| 
 | |
|   if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
 | |
|     return getArgOperand(Index - AttributeList::FirstArgIndex);
 | |
|   if (const Function *F = getCalledFunction())
 | |
|     if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
 | |
|         Index)
 | |
|       return getArgOperand(Index - AttributeList::FirstArgIndex);
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| /// Determine whether the argument or parameter has the given attribute.
 | |
| bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
 | |
|   assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
 | |
| 
 | |
|   if (Attrs.hasParamAttribute(ArgNo, Kind))
 | |
|     return true;
 | |
|   if (const Function *F = getCalledFunction())
 | |
|     return F->getAttributes().hasParamAttribute(ArgNo, Kind);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
 | |
|   if (const Function *F = getCalledFunction())
 | |
|     return F->getAttributes().hasFnAttribute(Kind);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
 | |
|   if (const Function *F = getCalledFunction())
 | |
|     return F->getAttributes().hasFnAttribute(Kind);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void CallBase::getOperandBundlesAsDefs(
 | |
|     SmallVectorImpl<OperandBundleDef> &Defs) const {
 | |
|   for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
 | |
|     Defs.emplace_back(getOperandBundleAt(i));
 | |
| }
 | |
| 
 | |
| CallBase::op_iterator
 | |
| CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
 | |
|                                      const unsigned BeginIndex) {
 | |
|   auto It = op_begin() + BeginIndex;
 | |
|   for (auto &B : Bundles)
 | |
|     It = std::copy(B.input_begin(), B.input_end(), It);
 | |
| 
 | |
|   auto *ContextImpl = getContext().pImpl;
 | |
|   auto BI = Bundles.begin();
 | |
|   unsigned CurrentIndex = BeginIndex;
 | |
| 
 | |
|   for (auto &BOI : bundle_op_infos()) {
 | |
|     assert(BI != Bundles.end() && "Incorrect allocation?");
 | |
| 
 | |
|     BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
 | |
|     BOI.Begin = CurrentIndex;
 | |
|     BOI.End = CurrentIndex + BI->input_size();
 | |
|     CurrentIndex = BOI.End;
 | |
|     BI++;
 | |
|   }
 | |
| 
 | |
|   assert(BI == Bundles.end() && "Incorrect allocation?");
 | |
| 
 | |
|   return It;
 | |
| }
 | |
| 
 | |
| CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
 | |
|   /// When there isn't many bundles, we do a simple linear search.
 | |
|   /// Else fallback to a binary-search that use the fact that bundles usually
 | |
|   /// have similar number of argument to get faster convergence.
 | |
|   if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
 | |
|     for (auto &BOI : bundle_op_infos())
 | |
|       if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
 | |
|         return BOI;
 | |
| 
 | |
|     llvm_unreachable("Did not find operand bundle for operand!");
 | |
|   }
 | |
| 
 | |
|   assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
 | |
|   assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
 | |
|          OpIdx < std::prev(bundle_op_info_end())->End &&
 | |
|          "The Idx isn't in the operand bundle");
 | |
| 
 | |
|   /// We need a decimal number below and to prevent using floating point numbers
 | |
|   /// we use an intergal value multiplied by this constant.
 | |
|   constexpr unsigned NumberScaling = 1024;
 | |
| 
 | |
|   bundle_op_iterator Begin = bundle_op_info_begin();
 | |
|   bundle_op_iterator End = bundle_op_info_end();
 | |
|   bundle_op_iterator Current = Begin;
 | |
| 
 | |
|   while (Begin != End) {
 | |
|     unsigned ScaledOperandPerBundle =
 | |
|         NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
 | |
|     Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
 | |
|                        ScaledOperandPerBundle);
 | |
|     if (Current >= End)
 | |
|       Current = std::prev(End);
 | |
|     assert(Current < End && Current >= Begin &&
 | |
|            "the operand bundle doesn't cover every value in the range");
 | |
|     if (OpIdx >= Current->Begin && OpIdx < Current->End)
 | |
|       break;
 | |
|     if (OpIdx >= Current->End)
 | |
|       Begin = Current + 1;
 | |
|     else
 | |
|       End = Current;
 | |
|   }
 | |
| 
 | |
|   assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
 | |
|          "the operand bundle doesn't cover every value in the range");
 | |
|   return *Current;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        CallInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
 | |
|                     ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
 | |
|   this->FTy = FTy;
 | |
|   assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
 | |
|          "NumOperands not set up?");
 | |
|   setCalledOperand(Func);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   assert((Args.size() == FTy->getNumParams() ||
 | |
|           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
 | |
|          "Calling a function with bad signature!");
 | |
| 
 | |
|   for (unsigned i = 0; i != Args.size(); ++i)
 | |
|     assert((i >= FTy->getNumParams() ||
 | |
|             FTy->getParamType(i) == Args[i]->getType()) &&
 | |
|            "Calling a function with a bad signature!");
 | |
| #endif
 | |
| 
 | |
|   llvm::copy(Args, op_begin());
 | |
| 
 | |
|   auto It = populateBundleOperandInfos(Bundles, Args.size());
 | |
|   (void)It;
 | |
|   assert(It + 1 == op_end() && "Should add up!");
 | |
| 
 | |
|   setName(NameStr);
 | |
| }
 | |
| 
 | |
| void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
 | |
|   this->FTy = FTy;
 | |
|   assert(getNumOperands() == 1 && "NumOperands not set up?");
 | |
|   setCalledOperand(Func);
 | |
| 
 | |
|   assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
 | |
| 
 | |
|   setName(NameStr);
 | |
| }
 | |
| 
 | |
| CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
 | |
|                    Instruction *InsertBefore)
 | |
|     : CallBase(Ty->getReturnType(), Instruction::Call,
 | |
|                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
 | |
|   init(Ty, Func, Name);
 | |
| }
 | |
| 
 | |
| CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
 | |
|                    BasicBlock *InsertAtEnd)
 | |
|     : CallBase(Ty->getReturnType(), Instruction::Call,
 | |
|                OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
 | |
|   init(Ty, Func, Name);
 | |
| }
 | |
| 
 | |
| CallInst::CallInst(const CallInst &CI)
 | |
|     : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
 | |
|                OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
 | |
|                CI.getNumOperands()) {
 | |
|   setTailCallKind(CI.getTailCallKind());
 | |
|   setCallingConv(CI.getCallingConv());
 | |
| 
 | |
|   std::copy(CI.op_begin(), CI.op_end(), op_begin());
 | |
|   std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
 | |
|             bundle_op_info_begin());
 | |
|   SubclassOptionalData = CI.SubclassOptionalData;
 | |
| }
 | |
| 
 | |
| CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
 | |
|                            Instruction *InsertPt) {
 | |
|   std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
 | |
| 
 | |
|   auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
 | |
|                                  Args, OpB, CI->getName(), InsertPt);
 | |
|   NewCI->setTailCallKind(CI->getTailCallKind());
 | |
|   NewCI->setCallingConv(CI->getCallingConv());
 | |
|   NewCI->SubclassOptionalData = CI->SubclassOptionalData;
 | |
|   NewCI->setAttributes(CI->getAttributes());
 | |
|   NewCI->setDebugLoc(CI->getDebugLoc());
 | |
|   return NewCI;
 | |
| }
 | |
| 
 | |
| CallInst *CallInst::CreateWithReplacedBundle(CallInst *CI, OperandBundleDef OpB,
 | |
|                                              Instruction *InsertPt) {
 | |
|   SmallVector<OperandBundleDef, 2> OpDefs;
 | |
|   for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
 | |
|     auto ChildOB = CI->getOperandBundleAt(i);
 | |
|     if (ChildOB.getTagName() != OpB.getTag())
 | |
|       OpDefs.emplace_back(ChildOB);
 | |
|   }
 | |
|   OpDefs.emplace_back(OpB);
 | |
|   return CallInst::Create(CI, OpDefs, InsertPt);
 | |
| }
 | |
| 
 | |
| // Update profile weight for call instruction by scaling it using the ratio
 | |
| // of S/T. The meaning of "branch_weights" meta data for call instruction is
 | |
| // transfered to represent call count.
 | |
| void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
 | |
|   auto *ProfileData = getMetadata(LLVMContext::MD_prof);
 | |
|   if (ProfileData == nullptr)
 | |
|     return;
 | |
| 
 | |
|   auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
 | |
|   if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
 | |
|                         !ProfDataName->getString().equals("VP")))
 | |
|     return;
 | |
| 
 | |
|   if (T == 0) {
 | |
|     LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
 | |
|                          "div by 0. Ignoring. Likely the function "
 | |
|                       << getParent()->getParent()->getName()
 | |
|                       << " has 0 entry count, and contains call instructions "
 | |
|                          "with non-zero prof info.");
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   MDBuilder MDB(getContext());
 | |
|   SmallVector<Metadata *, 3> Vals;
 | |
|   Vals.push_back(ProfileData->getOperand(0));
 | |
|   APInt APS(128, S), APT(128, T);
 | |
|   if (ProfDataName->getString().equals("branch_weights") &&
 | |
|       ProfileData->getNumOperands() > 0) {
 | |
|     // Using APInt::div may be expensive, but most cases should fit 64 bits.
 | |
|     APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
 | |
|                        ->getValue()
 | |
|                        .getZExtValue());
 | |
|     Val *= APS;
 | |
|     Vals.push_back(MDB.createConstant(
 | |
|         ConstantInt::get(Type::getInt32Ty(getContext()),
 | |
|                          Val.udiv(APT).getLimitedValue(UINT32_MAX))));
 | |
|   } else if (ProfDataName->getString().equals("VP"))
 | |
|     for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
 | |
|       // The first value is the key of the value profile, which will not change.
 | |
|       Vals.push_back(ProfileData->getOperand(i));
 | |
|       // Using APInt::div may be expensive, but most cases should fit 64 bits.
 | |
|       APInt Val(128,
 | |
|                 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
 | |
|                     ->getValue()
 | |
|                     .getZExtValue());
 | |
|       Val *= APS;
 | |
|       Vals.push_back(MDB.createConstant(
 | |
|           ConstantInt::get(Type::getInt64Ty(getContext()),
 | |
|                            Val.udiv(APT).getLimitedValue())));
 | |
|     }
 | |
|   setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
 | |
| }
 | |
| 
 | |
| /// IsConstantOne - Return true only if val is constant int 1
 | |
| static bool IsConstantOne(Value *val) {
 | |
|   assert(val && "IsConstantOne does not work with nullptr val");
 | |
|   const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
 | |
|   return CVal && CVal->isOne();
 | |
| }
 | |
| 
 | |
| static Instruction *createMalloc(Instruction *InsertBefore,
 | |
|                                  BasicBlock *InsertAtEnd, Type *IntPtrTy,
 | |
|                                  Type *AllocTy, Value *AllocSize,
 | |
|                                  Value *ArraySize,
 | |
|                                  ArrayRef<OperandBundleDef> OpB,
 | |
|                                  Function *MallocF, const Twine &Name) {
 | |
|   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
 | |
|          "createMalloc needs either InsertBefore or InsertAtEnd");
 | |
| 
 | |
|   // malloc(type) becomes:
 | |
|   //       bitcast (i8* malloc(typeSize)) to type*
 | |
|   // malloc(type, arraySize) becomes:
 | |
|   //       bitcast (i8* malloc(typeSize*arraySize)) to type*
 | |
|   if (!ArraySize)
 | |
|     ArraySize = ConstantInt::get(IntPtrTy, 1);
 | |
|   else if (ArraySize->getType() != IntPtrTy) {
 | |
|     if (InsertBefore)
 | |
|       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
 | |
|                                               "", InsertBefore);
 | |
|     else
 | |
|       ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
 | |
|                                               "", InsertAtEnd);
 | |
|   }
 | |
| 
 | |
|   if (!IsConstantOne(ArraySize)) {
 | |
|     if (IsConstantOne(AllocSize)) {
 | |
|       AllocSize = ArraySize;         // Operand * 1 = Operand
 | |
|     } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
 | |
|       Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
 | |
|                                                      false /*ZExt*/);
 | |
|       // Malloc arg is constant product of type size and array size
 | |
|       AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
 | |
|     } else {
 | |
|       // Multiply type size by the array size...
 | |
|       if (InsertBefore)
 | |
|         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
 | |
|                                               "mallocsize", InsertBefore);
 | |
|       else
 | |
|         AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
 | |
|                                               "mallocsize", InsertAtEnd);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
 | |
|   // Create the call to Malloc.
 | |
|   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
 | |
|   Module *M = BB->getParent()->getParent();
 | |
|   Type *BPTy = Type::getInt8PtrTy(BB->getContext());
 | |
|   FunctionCallee MallocFunc = MallocF;
 | |
|   if (!MallocFunc)
 | |
|     // prototype malloc as "void *malloc(size_t)"
 | |
|     MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
 | |
|   PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
 | |
|   CallInst *MCall = nullptr;
 | |
|   Instruction *Result = nullptr;
 | |
|   if (InsertBefore) {
 | |
|     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
 | |
|                              InsertBefore);
 | |
|     Result = MCall;
 | |
|     if (Result->getType() != AllocPtrType)
 | |
|       // Create a cast instruction to convert to the right type...
 | |
|       Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
 | |
|   } else {
 | |
|     MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
 | |
|     Result = MCall;
 | |
|     if (Result->getType() != AllocPtrType) {
 | |
|       InsertAtEnd->getInstList().push_back(MCall);
 | |
|       // Create a cast instruction to convert to the right type...
 | |
|       Result = new BitCastInst(MCall, AllocPtrType, Name);
 | |
|     }
 | |
|   }
 | |
|   MCall->setTailCall();
 | |
|   if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
 | |
|     MCall->setCallingConv(F->getCallingConv());
 | |
|     if (!F->returnDoesNotAlias())
 | |
|       F->setReturnDoesNotAlias();
 | |
|   }
 | |
|   assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// CreateMalloc - Generate the IR for a call to malloc:
 | |
| /// 1. Compute the malloc call's argument as the specified type's size,
 | |
| ///    possibly multiplied by the array size if the array size is not
 | |
| ///    constant 1.
 | |
| /// 2. Call malloc with that argument.
 | |
| /// 3. Bitcast the result of the malloc call to the specified type.
 | |
| Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
 | |
|                                     Type *IntPtrTy, Type *AllocTy,
 | |
|                                     Value *AllocSize, Value *ArraySize,
 | |
|                                     Function *MallocF,
 | |
|                                     const Twine &Name) {
 | |
|   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
 | |
|                       ArraySize, None, MallocF, Name);
 | |
| }
 | |
| Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
 | |
|                                     Type *IntPtrTy, Type *AllocTy,
 | |
|                                     Value *AllocSize, Value *ArraySize,
 | |
|                                     ArrayRef<OperandBundleDef> OpB,
 | |
|                                     Function *MallocF,
 | |
|                                     const Twine &Name) {
 | |
|   return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
 | |
|                       ArraySize, OpB, MallocF, Name);
 | |
| }
 | |
| 
 | |
| /// CreateMalloc - Generate the IR for a call to malloc:
 | |
| /// 1. Compute the malloc call's argument as the specified type's size,
 | |
| ///    possibly multiplied by the array size if the array size is not
 | |
| ///    constant 1.
 | |
| /// 2. Call malloc with that argument.
 | |
| /// 3. Bitcast the result of the malloc call to the specified type.
 | |
| /// Note: This function does not add the bitcast to the basic block, that is the
 | |
| /// responsibility of the caller.
 | |
| Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
 | |
|                                     Type *IntPtrTy, Type *AllocTy,
 | |
|                                     Value *AllocSize, Value *ArraySize,
 | |
|                                     Function *MallocF, const Twine &Name) {
 | |
|   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
 | |
|                       ArraySize, None, MallocF, Name);
 | |
| }
 | |
| Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
 | |
|                                     Type *IntPtrTy, Type *AllocTy,
 | |
|                                     Value *AllocSize, Value *ArraySize,
 | |
|                                     ArrayRef<OperandBundleDef> OpB,
 | |
|                                     Function *MallocF, const Twine &Name) {
 | |
|   return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
 | |
|                       ArraySize, OpB, MallocF, Name);
 | |
| }
 | |
| 
 | |
| static Instruction *createFree(Value *Source,
 | |
|                                ArrayRef<OperandBundleDef> Bundles,
 | |
|                                Instruction *InsertBefore,
 | |
|                                BasicBlock *InsertAtEnd) {
 | |
|   assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
 | |
|          "createFree needs either InsertBefore or InsertAtEnd");
 | |
|   assert(Source->getType()->isPointerTy() &&
 | |
|          "Can not free something of nonpointer type!");
 | |
| 
 | |
|   BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
 | |
|   Module *M = BB->getParent()->getParent();
 | |
| 
 | |
|   Type *VoidTy = Type::getVoidTy(M->getContext());
 | |
|   Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
 | |
|   // prototype free as "void free(void*)"
 | |
|   FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
 | |
|   CallInst *Result = nullptr;
 | |
|   Value *PtrCast = Source;
 | |
|   if (InsertBefore) {
 | |
|     if (Source->getType() != IntPtrTy)
 | |
|       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
 | |
|     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
 | |
|   } else {
 | |
|     if (Source->getType() != IntPtrTy)
 | |
|       PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
 | |
|     Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
 | |
|   }
 | |
|   Result->setTailCall();
 | |
|   if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
 | |
|     Result->setCallingConv(F->getCallingConv());
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// CreateFree - Generate the IR for a call to the builtin free function.
 | |
| Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
 | |
|   return createFree(Source, None, InsertBefore, nullptr);
 | |
| }
 | |
| Instruction *CallInst::CreateFree(Value *Source,
 | |
|                                   ArrayRef<OperandBundleDef> Bundles,
 | |
|                                   Instruction *InsertBefore) {
 | |
|   return createFree(Source, Bundles, InsertBefore, nullptr);
 | |
| }
 | |
| 
 | |
| /// CreateFree - Generate the IR for a call to the builtin free function.
 | |
| /// Note: This function does not add the call to the basic block, that is the
 | |
| /// responsibility of the caller.
 | |
| Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
 | |
|   Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
 | |
|   assert(FreeCall && "CreateFree did not create a CallInst");
 | |
|   return FreeCall;
 | |
| }
 | |
| Instruction *CallInst::CreateFree(Value *Source,
 | |
|                                   ArrayRef<OperandBundleDef> Bundles,
 | |
|                                   BasicBlock *InsertAtEnd) {
 | |
|   Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
 | |
|   assert(FreeCall && "CreateFree did not create a CallInst");
 | |
|   return FreeCall;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        InvokeInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
 | |
|                       BasicBlock *IfException, ArrayRef<Value *> Args,
 | |
|                       ArrayRef<OperandBundleDef> Bundles,
 | |
|                       const Twine &NameStr) {
 | |
|   this->FTy = FTy;
 | |
| 
 | |
|   assert((int)getNumOperands() ==
 | |
|              ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
 | |
|          "NumOperands not set up?");
 | |
|   setNormalDest(IfNormal);
 | |
|   setUnwindDest(IfException);
 | |
|   setCalledOperand(Fn);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   assert(((Args.size() == FTy->getNumParams()) ||
 | |
|           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
 | |
|          "Invoking a function with bad signature");
 | |
| 
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; i++)
 | |
|     assert((i >= FTy->getNumParams() ||
 | |
|             FTy->getParamType(i) == Args[i]->getType()) &&
 | |
|            "Invoking a function with a bad signature!");
 | |
| #endif
 | |
| 
 | |
|   llvm::copy(Args, op_begin());
 | |
| 
 | |
|   auto It = populateBundleOperandInfos(Bundles, Args.size());
 | |
|   (void)It;
 | |
|   assert(It + 3 == op_end() && "Should add up!");
 | |
| 
 | |
|   setName(NameStr);
 | |
| }
 | |
| 
 | |
| InvokeInst::InvokeInst(const InvokeInst &II)
 | |
|     : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
 | |
|                OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
 | |
|                II.getNumOperands()) {
 | |
|   setCallingConv(II.getCallingConv());
 | |
|   std::copy(II.op_begin(), II.op_end(), op_begin());
 | |
|   std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
 | |
|             bundle_op_info_begin());
 | |
|   SubclassOptionalData = II.SubclassOptionalData;
 | |
| }
 | |
| 
 | |
| InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
 | |
|                                Instruction *InsertPt) {
 | |
|   std::vector<Value *> Args(II->arg_begin(), II->arg_end());
 | |
| 
 | |
|   auto *NewII = InvokeInst::Create(
 | |
|       II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
 | |
|       II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
 | |
|   NewII->setCallingConv(II->getCallingConv());
 | |
|   NewII->SubclassOptionalData = II->SubclassOptionalData;
 | |
|   NewII->setAttributes(II->getAttributes());
 | |
|   NewII->setDebugLoc(II->getDebugLoc());
 | |
|   return NewII;
 | |
| }
 | |
| 
 | |
| InvokeInst *InvokeInst::CreateWithReplacedBundle(InvokeInst *II,
 | |
|                                                  OperandBundleDef OpB,
 | |
|                                                  Instruction *InsertPt) {
 | |
|   SmallVector<OperandBundleDef, 2> OpDefs;
 | |
|   for (unsigned i = 0, e = II->getNumOperandBundles(); i < e; ++i) {
 | |
|     auto ChildOB = II->getOperandBundleAt(i);
 | |
|     if (ChildOB.getTagName() != OpB.getTag())
 | |
|       OpDefs.emplace_back(ChildOB);
 | |
|   }
 | |
|   OpDefs.emplace_back(OpB);
 | |
|   return InvokeInst::Create(II, OpDefs, InsertPt);
 | |
| }
 | |
| 
 | |
| LandingPadInst *InvokeInst::getLandingPadInst() const {
 | |
|   return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        CallBrInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
 | |
|                       ArrayRef<BasicBlock *> IndirectDests,
 | |
|                       ArrayRef<Value *> Args,
 | |
|                       ArrayRef<OperandBundleDef> Bundles,
 | |
|                       const Twine &NameStr) {
 | |
|   this->FTy = FTy;
 | |
| 
 | |
|   assert((int)getNumOperands() ==
 | |
|              ComputeNumOperands(Args.size(), IndirectDests.size(),
 | |
|                                 CountBundleInputs(Bundles)) &&
 | |
|          "NumOperands not set up?");
 | |
|   NumIndirectDests = IndirectDests.size();
 | |
|   setDefaultDest(Fallthrough);
 | |
|   for (unsigned i = 0; i != NumIndirectDests; ++i)
 | |
|     setIndirectDest(i, IndirectDests[i]);
 | |
|   setCalledOperand(Fn);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   assert(((Args.size() == FTy->getNumParams()) ||
 | |
|           (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
 | |
|          "Calling a function with bad signature");
 | |
| 
 | |
|   for (unsigned i = 0, e = Args.size(); i != e; i++)
 | |
|     assert((i >= FTy->getNumParams() ||
 | |
|             FTy->getParamType(i) == Args[i]->getType()) &&
 | |
|            "Calling a function with a bad signature!");
 | |
| #endif
 | |
| 
 | |
|   std::copy(Args.begin(), Args.end(), op_begin());
 | |
| 
 | |
|   auto It = populateBundleOperandInfos(Bundles, Args.size());
 | |
|   (void)It;
 | |
|   assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
 | |
| 
 | |
|   setName(NameStr);
 | |
| }
 | |
| 
 | |
| void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
 | |
|   assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
 | |
|   if (BasicBlock *OldBB = getIndirectDest(i)) {
 | |
|     BlockAddress *Old = BlockAddress::get(OldBB);
 | |
|     BlockAddress *New = BlockAddress::get(B);
 | |
|     for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
 | |
|       if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
 | |
|         setArgOperand(ArgNo, New);
 | |
|   }
 | |
| }
 | |
| 
 | |
| CallBrInst::CallBrInst(const CallBrInst &CBI)
 | |
|     : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
 | |
|                OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
 | |
|                CBI.getNumOperands()) {
 | |
|   setCallingConv(CBI.getCallingConv());
 | |
|   std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
 | |
|   std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
 | |
|             bundle_op_info_begin());
 | |
|   SubclassOptionalData = CBI.SubclassOptionalData;
 | |
|   NumIndirectDests = CBI.NumIndirectDests;
 | |
| }
 | |
| 
 | |
| CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
 | |
|                                Instruction *InsertPt) {
 | |
|   std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
 | |
| 
 | |
|   auto *NewCBI = CallBrInst::Create(
 | |
|       CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
 | |
|       CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
 | |
|   NewCBI->setCallingConv(CBI->getCallingConv());
 | |
|   NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
 | |
|   NewCBI->setAttributes(CBI->getAttributes());
 | |
|   NewCBI->setDebugLoc(CBI->getDebugLoc());
 | |
|   NewCBI->NumIndirectDests = CBI->NumIndirectDests;
 | |
|   return NewCBI;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        ReturnInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ReturnInst::ReturnInst(const ReturnInst &RI)
 | |
|     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
 | |
|                   OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
 | |
|                   RI.getNumOperands()) {
 | |
|   if (RI.getNumOperands())
 | |
|     Op<0>() = RI.Op<0>();
 | |
|   SubclassOptionalData = RI.SubclassOptionalData;
 | |
| }
 | |
| 
 | |
| ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
 | |
|     : Instruction(Type::getVoidTy(C), Instruction::Ret,
 | |
|                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
 | |
|                   InsertBefore) {
 | |
|   if (retVal)
 | |
|     Op<0>() = retVal;
 | |
| }
 | |
| 
 | |
| ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
 | |
|     : Instruction(Type::getVoidTy(C), Instruction::Ret,
 | |
|                   OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
 | |
|                   InsertAtEnd) {
 | |
|   if (retVal)
 | |
|     Op<0>() = retVal;
 | |
| }
 | |
| 
 | |
| ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
 | |
|     : Instruction(Type::getVoidTy(Context), Instruction::Ret,
 | |
|                   OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        ResumeInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ResumeInst::ResumeInst(const ResumeInst &RI)
 | |
|     : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
 | |
|                   OperandTraits<ResumeInst>::op_begin(this), 1) {
 | |
|   Op<0>() = RI.Op<0>();
 | |
| }
 | |
| 
 | |
| ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
 | |
|     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
 | |
|                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
 | |
|   Op<0>() = Exn;
 | |
| }
 | |
| 
 | |
| ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
 | |
|     : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
 | |
|                   OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
 | |
|   Op<0>() = Exn;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        CleanupReturnInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
 | |
|     : Instruction(CRI.getType(), Instruction::CleanupRet,
 | |
|                   OperandTraits<CleanupReturnInst>::op_end(this) -
 | |
|                       CRI.getNumOperands(),
 | |
|                   CRI.getNumOperands()) {
 | |
|   setSubclassData<Instruction::OpaqueField>(
 | |
|       CRI.getSubclassData<Instruction::OpaqueField>());
 | |
|   Op<0>() = CRI.Op<0>();
 | |
|   if (CRI.hasUnwindDest())
 | |
|     Op<1>() = CRI.Op<1>();
 | |
| }
 | |
| 
 | |
| void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
 | |
|   if (UnwindBB)
 | |
|     setSubclassData<UnwindDestField>(true);
 | |
| 
 | |
|   Op<0>() = CleanupPad;
 | |
|   if (UnwindBB)
 | |
|     Op<1>() = UnwindBB;
 | |
| }
 | |
| 
 | |
| CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
 | |
|                                      unsigned Values, Instruction *InsertBefore)
 | |
|     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
 | |
|                   Instruction::CleanupRet,
 | |
|                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
 | |
|                   Values, InsertBefore) {
 | |
|   init(CleanupPad, UnwindBB);
 | |
| }
 | |
| 
 | |
| CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
 | |
|                                      unsigned Values, BasicBlock *InsertAtEnd)
 | |
|     : Instruction(Type::getVoidTy(CleanupPad->getContext()),
 | |
|                   Instruction::CleanupRet,
 | |
|                   OperandTraits<CleanupReturnInst>::op_end(this) - Values,
 | |
|                   Values, InsertAtEnd) {
 | |
|   init(CleanupPad, UnwindBB);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        CatchReturnInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
 | |
|   Op<0>() = CatchPad;
 | |
|   Op<1>() = BB;
 | |
| }
 | |
| 
 | |
| CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
 | |
|     : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
 | |
|                   OperandTraits<CatchReturnInst>::op_begin(this), 2) {
 | |
|   Op<0>() = CRI.Op<0>();
 | |
|   Op<1>() = CRI.Op<1>();
 | |
| }
 | |
| 
 | |
| CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
 | |
|                                  Instruction *InsertBefore)
 | |
|     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
 | |
|                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
 | |
|                   InsertBefore) {
 | |
|   init(CatchPad, BB);
 | |
| }
 | |
| 
 | |
| CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
 | |
|                                  BasicBlock *InsertAtEnd)
 | |
|     : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
 | |
|                   OperandTraits<CatchReturnInst>::op_begin(this), 2,
 | |
|                   InsertAtEnd) {
 | |
|   init(CatchPad, BB);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       CatchSwitchInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
 | |
|                                  unsigned NumReservedValues,
 | |
|                                  const Twine &NameStr,
 | |
|                                  Instruction *InsertBefore)
 | |
|     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
 | |
|                   InsertBefore) {
 | |
|   if (UnwindDest)
 | |
|     ++NumReservedValues;
 | |
|   init(ParentPad, UnwindDest, NumReservedValues + 1);
 | |
|   setName(NameStr);
 | |
| }
 | |
| 
 | |
| CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
 | |
|                                  unsigned NumReservedValues,
 | |
|                                  const Twine &NameStr, BasicBlock *InsertAtEnd)
 | |
|     : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
 | |
|                   InsertAtEnd) {
 | |
|   if (UnwindDest)
 | |
|     ++NumReservedValues;
 | |
|   init(ParentPad, UnwindDest, NumReservedValues + 1);
 | |
|   setName(NameStr);
 | |
| }
 | |
| 
 | |
| CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
 | |
|     : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
 | |
|                   CSI.getNumOperands()) {
 | |
|   init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
 | |
|   setNumHungOffUseOperands(ReservedSpace);
 | |
|   Use *OL = getOperandList();
 | |
|   const Use *InOL = CSI.getOperandList();
 | |
|   for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
 | |
|     OL[I] = InOL[I];
 | |
| }
 | |
| 
 | |
| void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
 | |
|                            unsigned NumReservedValues) {
 | |
|   assert(ParentPad && NumReservedValues);
 | |
| 
 | |
|   ReservedSpace = NumReservedValues;
 | |
|   setNumHungOffUseOperands(UnwindDest ? 2 : 1);
 | |
|   allocHungoffUses(ReservedSpace);
 | |
| 
 | |
|   Op<0>() = ParentPad;
 | |
|   if (UnwindDest) {
 | |
|     setSubclassData<UnwindDestField>(true);
 | |
|     setUnwindDest(UnwindDest);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// growOperands - grow operands - This grows the operand list in response to a
 | |
| /// push_back style of operation. This grows the number of ops by 2 times.
 | |
| void CatchSwitchInst::growOperands(unsigned Size) {
 | |
|   unsigned NumOperands = getNumOperands();
 | |
|   assert(NumOperands >= 1);
 | |
|   if (ReservedSpace >= NumOperands + Size)
 | |
|     return;
 | |
|   ReservedSpace = (NumOperands + Size / 2) * 2;
 | |
|   growHungoffUses(ReservedSpace);
 | |
| }
 | |
| 
 | |
| void CatchSwitchInst::addHandler(BasicBlock *Handler) {
 | |
|   unsigned OpNo = getNumOperands();
 | |
|   growOperands(1);
 | |
|   assert(OpNo < ReservedSpace && "Growing didn't work!");
 | |
|   setNumHungOffUseOperands(getNumOperands() + 1);
 | |
|   getOperandList()[OpNo] = Handler;
 | |
| }
 | |
| 
 | |
| void CatchSwitchInst::removeHandler(handler_iterator HI) {
 | |
|   // Move all subsequent handlers up one.
 | |
|   Use *EndDst = op_end() - 1;
 | |
|   for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
 | |
|     *CurDst = *(CurDst + 1);
 | |
|   // Null out the last handler use.
 | |
|   *EndDst = nullptr;
 | |
| 
 | |
|   setNumHungOffUseOperands(getNumOperands() - 1);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        FuncletPadInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
 | |
|                           const Twine &NameStr) {
 | |
|   assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
 | |
|   llvm::copy(Args, op_begin());
 | |
|   setParentPad(ParentPad);
 | |
|   setName(NameStr);
 | |
| }
 | |
| 
 | |
| FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
 | |
|     : Instruction(FPI.getType(), FPI.getOpcode(),
 | |
|                   OperandTraits<FuncletPadInst>::op_end(this) -
 | |
|                       FPI.getNumOperands(),
 | |
|                   FPI.getNumOperands()) {
 | |
|   std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
 | |
|   setParentPad(FPI.getParentPad());
 | |
| }
 | |
| 
 | |
| FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
 | |
|                                ArrayRef<Value *> Args, unsigned Values,
 | |
|                                const Twine &NameStr, Instruction *InsertBefore)
 | |
|     : Instruction(ParentPad->getType(), Op,
 | |
|                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
 | |
|                   InsertBefore) {
 | |
|   init(ParentPad, Args, NameStr);
 | |
| }
 | |
| 
 | |
| FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
 | |
|                                ArrayRef<Value *> Args, unsigned Values,
 | |
|                                const Twine &NameStr, BasicBlock *InsertAtEnd)
 | |
|     : Instruction(ParentPad->getType(), Op,
 | |
|                   OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
 | |
|                   InsertAtEnd) {
 | |
|   init(ParentPad, Args, NameStr);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      UnreachableInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| UnreachableInst::UnreachableInst(LLVMContext &Context,
 | |
|                                  Instruction *InsertBefore)
 | |
|     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
 | |
|                   0, InsertBefore) {}
 | |
| UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
 | |
|     : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
 | |
|                   0, InsertAtEnd) {}
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        BranchInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void BranchInst::AssertOK() {
 | |
|   if (isConditional())
 | |
|     assert(getCondition()->getType()->isIntegerTy(1) &&
 | |
|            "May only branch on boolean predicates!");
 | |
| }
 | |
| 
 | |
| BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
 | |
|     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
 | |
|                   OperandTraits<BranchInst>::op_end(this) - 1, 1,
 | |
|                   InsertBefore) {
 | |
|   assert(IfTrue && "Branch destination may not be null!");
 | |
|   Op<-1>() = IfTrue;
 | |
| }
 | |
| 
 | |
| BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
 | |
|                        Instruction *InsertBefore)
 | |
|     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
 | |
|                   OperandTraits<BranchInst>::op_end(this) - 3, 3,
 | |
|                   InsertBefore) {
 | |
|   Op<-1>() = IfTrue;
 | |
|   Op<-2>() = IfFalse;
 | |
|   Op<-3>() = Cond;
 | |
| #ifndef NDEBUG
 | |
|   AssertOK();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
 | |
|     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
 | |
|                   OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
 | |
|   assert(IfTrue && "Branch destination may not be null!");
 | |
|   Op<-1>() = IfTrue;
 | |
| }
 | |
| 
 | |
| BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
 | |
|                        BasicBlock *InsertAtEnd)
 | |
|     : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
 | |
|                   OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
 | |
|   Op<-1>() = IfTrue;
 | |
|   Op<-2>() = IfFalse;
 | |
|   Op<-3>() = Cond;
 | |
| #ifndef NDEBUG
 | |
|   AssertOK();
 | |
| #endif
 | |
| }
 | |
| 
 | |
| BranchInst::BranchInst(const BranchInst &BI)
 | |
|     : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
 | |
|                   OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
 | |
|                   BI.getNumOperands()) {
 | |
|   Op<-1>() = BI.Op<-1>();
 | |
|   if (BI.getNumOperands() != 1) {
 | |
|     assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
 | |
|     Op<-3>() = BI.Op<-3>();
 | |
|     Op<-2>() = BI.Op<-2>();
 | |
|   }
 | |
|   SubclassOptionalData = BI.SubclassOptionalData;
 | |
| }
 | |
| 
 | |
| void BranchInst::swapSuccessors() {
 | |
|   assert(isConditional() &&
 | |
|          "Cannot swap successors of an unconditional branch");
 | |
|   Op<-1>().swap(Op<-2>());
 | |
| 
 | |
|   // Update profile metadata if present and it matches our structural
 | |
|   // expectations.
 | |
|   swapProfMetadata();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        AllocaInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static Value *getAISize(LLVMContext &Context, Value *Amt) {
 | |
|   if (!Amt)
 | |
|     Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
 | |
|   else {
 | |
|     assert(!isa<BasicBlock>(Amt) &&
 | |
|            "Passed basic block into allocation size parameter! Use other ctor");
 | |
|     assert(Amt->getType()->isIntegerTy() &&
 | |
|            "Allocation array size is not an integer!");
 | |
|   }
 | |
|   return Amt;
 | |
| }
 | |
| 
 | |
| static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
 | |
|   assert(BB && "Insertion BB cannot be null when alignment not provided!");
 | |
|   assert(BB->getParent() &&
 | |
|          "BB must be in a Function when alignment not provided!");
 | |
|   const DataLayout &DL = BB->getModule()->getDataLayout();
 | |
|   return DL.getPrefTypeAlign(Ty);
 | |
| }
 | |
| 
 | |
| static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
 | |
|   assert(I && "Insertion position cannot be null when alignment not provided!");
 | |
|   return computeAllocaDefaultAlign(Ty, I->getParent());
 | |
| }
 | |
| 
 | |
| AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
 | |
|                        Instruction *InsertBefore)
 | |
|   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
 | |
| 
 | |
| AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
 | |
|                        BasicBlock *InsertAtEnd)
 | |
|   : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
 | |
| 
 | |
| AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
 | |
|                        const Twine &Name, Instruction *InsertBefore)
 | |
|     : AllocaInst(Ty, AddrSpace, ArraySize,
 | |
|                  computeAllocaDefaultAlign(Ty, InsertBefore), Name,
 | |
|                  InsertBefore) {}
 | |
| 
 | |
| AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
 | |
|                        const Twine &Name, BasicBlock *InsertAtEnd)
 | |
|     : AllocaInst(Ty, AddrSpace, ArraySize,
 | |
|                  computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
 | |
|                  InsertAtEnd) {}
 | |
| 
 | |
| AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
 | |
|                        Align Align, const Twine &Name,
 | |
|                        Instruction *InsertBefore)
 | |
|     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
 | |
|                        getAISize(Ty->getContext(), ArraySize), InsertBefore),
 | |
|       AllocatedType(Ty) {
 | |
|   setAlignment(Align);
 | |
|   assert(!Ty->isVoidTy() && "Cannot allocate void!");
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
 | |
|                        Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
 | |
|     : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
 | |
|                        getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
 | |
|       AllocatedType(Ty) {
 | |
|   setAlignment(Align);
 | |
|   assert(!Ty->isVoidTy() && "Cannot allocate void!");
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool AllocaInst::isArrayAllocation() const {
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
 | |
|     return !CI->isOne();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// isStaticAlloca - Return true if this alloca is in the entry block of the
 | |
| /// function and is a constant size.  If so, the code generator will fold it
 | |
| /// into the prolog/epilog code, so it is basically free.
 | |
| bool AllocaInst::isStaticAlloca() const {
 | |
|   // Must be constant size.
 | |
|   if (!isa<ConstantInt>(getArraySize())) return false;
 | |
| 
 | |
|   // Must be in the entry block.
 | |
|   const BasicBlock *Parent = getParent();
 | |
|   return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           LoadInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void LoadInst::AssertOK() {
 | |
|   assert(getOperand(0)->getType()->isPointerTy() &&
 | |
|          "Ptr must have pointer type.");
 | |
|   assert(!(isAtomic() && getAlignment() == 0) &&
 | |
|          "Alignment required for atomic load");
 | |
| }
 | |
| 
 | |
| static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
 | |
|   assert(BB && "Insertion BB cannot be null when alignment not provided!");
 | |
|   assert(BB->getParent() &&
 | |
|          "BB must be in a Function when alignment not provided!");
 | |
|   const DataLayout &DL = BB->getModule()->getDataLayout();
 | |
|   return DL.getABITypeAlign(Ty);
 | |
| }
 | |
| 
 | |
| static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
 | |
|   assert(I && "Insertion position cannot be null when alignment not provided!");
 | |
|   return computeLoadStoreDefaultAlign(Ty, I->getParent());
 | |
| }
 | |
| 
 | |
| LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
 | |
|                    Instruction *InsertBef)
 | |
|     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
 | |
| 
 | |
| LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
 | |
|                    BasicBlock *InsertAE)
 | |
|     : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
 | |
| 
 | |
| LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
 | |
|                    Instruction *InsertBef)
 | |
|     : LoadInst(Ty, Ptr, Name, isVolatile,
 | |
|                computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
 | |
| 
 | |
| LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
 | |
|                    BasicBlock *InsertAE)
 | |
|     : LoadInst(Ty, Ptr, Name, isVolatile,
 | |
|                computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
 | |
| 
 | |
| LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
 | |
|                    Align Align, Instruction *InsertBef)
 | |
|     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
 | |
|                SyncScope::System, InsertBef) {}
 | |
| 
 | |
| LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
 | |
|                    Align Align, BasicBlock *InsertAE)
 | |
|     : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
 | |
|                SyncScope::System, InsertAE) {}
 | |
| 
 | |
| LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
 | |
|                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
 | |
|                    Instruction *InsertBef)
 | |
|     : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
 | |
|   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
 | |
|   setVolatile(isVolatile);
 | |
|   setAlignment(Align);
 | |
|   setAtomic(Order, SSID);
 | |
|   AssertOK();
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
 | |
|                    Align Align, AtomicOrdering Order, SyncScope::ID SSID,
 | |
|                    BasicBlock *InsertAE)
 | |
|     : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
 | |
|   assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
 | |
|   setVolatile(isVolatile);
 | |
|   setAlignment(Align);
 | |
|   setAtomic(Order, SSID);
 | |
|   AssertOK();
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           StoreInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void StoreInst::AssertOK() {
 | |
|   assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
 | |
|   assert(getOperand(1)->getType()->isPointerTy() &&
 | |
|          "Ptr must have pointer type!");
 | |
|   assert(getOperand(0)->getType() ==
 | |
|                  cast<PointerType>(getOperand(1)->getType())->getElementType()
 | |
|          && "Ptr must be a pointer to Val type!");
 | |
|   assert(!(isAtomic() && getAlignment() == 0) &&
 | |
|          "Alignment required for atomic store");
 | |
| }
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
 | |
|     : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
 | |
|     : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
 | |
|                      Instruction *InsertBefore)
 | |
|     : StoreInst(val, addr, isVolatile,
 | |
|                 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
 | |
|                 InsertBefore) {}
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
 | |
|                      BasicBlock *InsertAtEnd)
 | |
|     : StoreInst(val, addr, isVolatile,
 | |
|                 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
 | |
|                 InsertAtEnd) {}
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
 | |
|                      Instruction *InsertBefore)
 | |
|     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
 | |
|                 SyncScope::System, InsertBefore) {}
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
 | |
|                      BasicBlock *InsertAtEnd)
 | |
|     : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
 | |
|                 SyncScope::System, InsertAtEnd) {}
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
 | |
|                      AtomicOrdering Order, SyncScope::ID SSID,
 | |
|                      Instruction *InsertBefore)
 | |
|     : Instruction(Type::getVoidTy(val->getContext()), Store,
 | |
|                   OperandTraits<StoreInst>::op_begin(this),
 | |
|                   OperandTraits<StoreInst>::operands(this), InsertBefore) {
 | |
|   Op<0>() = val;
 | |
|   Op<1>() = addr;
 | |
|   setVolatile(isVolatile);
 | |
|   setAlignment(Align);
 | |
|   setAtomic(Order, SSID);
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
 | |
|                      AtomicOrdering Order, SyncScope::ID SSID,
 | |
|                      BasicBlock *InsertAtEnd)
 | |
|     : Instruction(Type::getVoidTy(val->getContext()), Store,
 | |
|                   OperandTraits<StoreInst>::op_begin(this),
 | |
|                   OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
 | |
|   Op<0>() = val;
 | |
|   Op<1>() = addr;
 | |
|   setVolatile(isVolatile);
 | |
|   setAlignment(Align);
 | |
|   setAtomic(Order, SSID);
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       AtomicCmpXchgInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
 | |
|                              Align Alignment, AtomicOrdering SuccessOrdering,
 | |
|                              AtomicOrdering FailureOrdering,
 | |
|                              SyncScope::ID SSID) {
 | |
|   Op<0>() = Ptr;
 | |
|   Op<1>() = Cmp;
 | |
|   Op<2>() = NewVal;
 | |
|   setSuccessOrdering(SuccessOrdering);
 | |
|   setFailureOrdering(FailureOrdering);
 | |
|   setSyncScopeID(SSID);
 | |
|   setAlignment(Alignment);
 | |
| 
 | |
|   assert(getOperand(0) && getOperand(1) && getOperand(2) &&
 | |
|          "All operands must be non-null!");
 | |
|   assert(getOperand(0)->getType()->isPointerTy() &&
 | |
|          "Ptr must have pointer type!");
 | |
|   assert(getOperand(1)->getType() ==
 | |
|                  cast<PointerType>(getOperand(0)->getType())->getElementType()
 | |
|          && "Ptr must be a pointer to Cmp type!");
 | |
|   assert(getOperand(2)->getType() ==
 | |
|                  cast<PointerType>(getOperand(0)->getType())->getElementType()
 | |
|          && "Ptr must be a pointer to NewVal type!");
 | |
|   assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
 | |
|          "AtomicCmpXchg instructions must be atomic!");
 | |
|   assert(FailureOrdering != AtomicOrdering::NotAtomic &&
 | |
|          "AtomicCmpXchg instructions must be atomic!");
 | |
|   assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
 | |
|          "AtomicCmpXchg failure argument shall be no stronger than the success "
 | |
|          "argument");
 | |
|   assert(FailureOrdering != AtomicOrdering::Release &&
 | |
|          FailureOrdering != AtomicOrdering::AcquireRelease &&
 | |
|          "AtomicCmpXchg failure ordering cannot include release semantics");
 | |
| }
 | |
| 
 | |
| AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
 | |
|                                      Align Alignment,
 | |
|                                      AtomicOrdering SuccessOrdering,
 | |
|                                      AtomicOrdering FailureOrdering,
 | |
|                                      SyncScope::ID SSID,
 | |
|                                      Instruction *InsertBefore)
 | |
|     : Instruction(
 | |
|           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
 | |
|           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
 | |
|           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
 | |
|   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
 | |
| }
 | |
| 
 | |
| AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
 | |
|                                      Align Alignment,
 | |
|                                      AtomicOrdering SuccessOrdering,
 | |
|                                      AtomicOrdering FailureOrdering,
 | |
|                                      SyncScope::ID SSID,
 | |
|                                      BasicBlock *InsertAtEnd)
 | |
|     : Instruction(
 | |
|           StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
 | |
|           AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
 | |
|           OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
 | |
|   Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       AtomicRMWInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
 | |
|                          Align Alignment, AtomicOrdering Ordering,
 | |
|                          SyncScope::ID SSID) {
 | |
|   Op<0>() = Ptr;
 | |
|   Op<1>() = Val;
 | |
|   setOperation(Operation);
 | |
|   setOrdering(Ordering);
 | |
|   setSyncScopeID(SSID);
 | |
|   setAlignment(Alignment);
 | |
| 
 | |
|   assert(getOperand(0) && getOperand(1) &&
 | |
|          "All operands must be non-null!");
 | |
|   assert(getOperand(0)->getType()->isPointerTy() &&
 | |
|          "Ptr must have pointer type!");
 | |
|   assert(getOperand(1)->getType() ==
 | |
|          cast<PointerType>(getOperand(0)->getType())->getElementType()
 | |
|          && "Ptr must be a pointer to Val type!");
 | |
|   assert(Ordering != AtomicOrdering::NotAtomic &&
 | |
|          "AtomicRMW instructions must be atomic!");
 | |
| }
 | |
| 
 | |
| AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
 | |
|                              Align Alignment, AtomicOrdering Ordering,
 | |
|                              SyncScope::ID SSID, Instruction *InsertBefore)
 | |
|     : Instruction(Val->getType(), AtomicRMW,
 | |
|                   OperandTraits<AtomicRMWInst>::op_begin(this),
 | |
|                   OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
 | |
|   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
 | |
| }
 | |
| 
 | |
| AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
 | |
|                              Align Alignment, AtomicOrdering Ordering,
 | |
|                              SyncScope::ID SSID, BasicBlock *InsertAtEnd)
 | |
|     : Instruction(Val->getType(), AtomicRMW,
 | |
|                   OperandTraits<AtomicRMWInst>::op_begin(this),
 | |
|                   OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
 | |
|   Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
 | |
| }
 | |
| 
 | |
| StringRef AtomicRMWInst::getOperationName(BinOp Op) {
 | |
|   switch (Op) {
 | |
|   case AtomicRMWInst::Xchg:
 | |
|     return "xchg";
 | |
|   case AtomicRMWInst::Add:
 | |
|     return "add";
 | |
|   case AtomicRMWInst::Sub:
 | |
|     return "sub";
 | |
|   case AtomicRMWInst::And:
 | |
|     return "and";
 | |
|   case AtomicRMWInst::Nand:
 | |
|     return "nand";
 | |
|   case AtomicRMWInst::Or:
 | |
|     return "or";
 | |
|   case AtomicRMWInst::Xor:
 | |
|     return "xor";
 | |
|   case AtomicRMWInst::Max:
 | |
|     return "max";
 | |
|   case AtomicRMWInst::Min:
 | |
|     return "min";
 | |
|   case AtomicRMWInst::UMax:
 | |
|     return "umax";
 | |
|   case AtomicRMWInst::UMin:
 | |
|     return "umin";
 | |
|   case AtomicRMWInst::FAdd:
 | |
|     return "fadd";
 | |
|   case AtomicRMWInst::FSub:
 | |
|     return "fsub";
 | |
|   case AtomicRMWInst::BAD_BINOP:
 | |
|     return "<invalid operation>";
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("invalid atomicrmw operation");
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       FenceInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
 | |
|                      SyncScope::ID SSID,
 | |
|                      Instruction *InsertBefore)
 | |
|   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
 | |
|   setOrdering(Ordering);
 | |
|   setSyncScopeID(SSID);
 | |
| }
 | |
| 
 | |
| FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
 | |
|                      SyncScope::ID SSID,
 | |
|                      BasicBlock *InsertAtEnd)
 | |
|   : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
 | |
|   setOrdering(Ordering);
 | |
|   setSyncScopeID(SSID);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       GetElementPtrInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
 | |
|                              const Twine &Name) {
 | |
|   assert(getNumOperands() == 1 + IdxList.size() &&
 | |
|          "NumOperands not initialized?");
 | |
|   Op<0>() = Ptr;
 | |
|   llvm::copy(IdxList, op_begin() + 1);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
 | |
|     : Instruction(GEPI.getType(), GetElementPtr,
 | |
|                   OperandTraits<GetElementPtrInst>::op_end(this) -
 | |
|                       GEPI.getNumOperands(),
 | |
|                   GEPI.getNumOperands()),
 | |
|       SourceElementType(GEPI.SourceElementType),
 | |
|       ResultElementType(GEPI.ResultElementType) {
 | |
|   std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
 | |
|   SubclassOptionalData = GEPI.SubclassOptionalData;
 | |
| }
 | |
| 
 | |
| Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
 | |
|   if (auto *Struct = dyn_cast<StructType>(Ty)) {
 | |
|     if (!Struct->indexValid(Idx))
 | |
|       return nullptr;
 | |
|     return Struct->getTypeAtIndex(Idx);
 | |
|   }
 | |
|   if (!Idx->getType()->isIntOrIntVectorTy())
 | |
|     return nullptr;
 | |
|   if (auto *Array = dyn_cast<ArrayType>(Ty))
 | |
|     return Array->getElementType();
 | |
|   if (auto *Vector = dyn_cast<VectorType>(Ty))
 | |
|     return Vector->getElementType();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
 | |
|   if (auto *Struct = dyn_cast<StructType>(Ty)) {
 | |
|     if (Idx >= Struct->getNumElements())
 | |
|       return nullptr;
 | |
|     return Struct->getElementType(Idx);
 | |
|   }
 | |
|   if (auto *Array = dyn_cast<ArrayType>(Ty))
 | |
|     return Array->getElementType();
 | |
|   if (auto *Vector = dyn_cast<VectorType>(Ty))
 | |
|     return Vector->getElementType();
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| template <typename IndexTy>
 | |
| static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
 | |
|   if (IdxList.empty())
 | |
|     return Ty;
 | |
|   for (IndexTy V : IdxList.slice(1)) {
 | |
|     Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
 | |
|     if (!Ty)
 | |
|       return Ty;
 | |
|   }
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
 | |
|   return getIndexedTypeInternal(Ty, IdxList);
 | |
| }
 | |
| 
 | |
| Type *GetElementPtrInst::getIndexedType(Type *Ty,
 | |
|                                         ArrayRef<Constant *> IdxList) {
 | |
|   return getIndexedTypeInternal(Ty, IdxList);
 | |
| }
 | |
| 
 | |
| Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
 | |
|   return getIndexedTypeInternal(Ty, IdxList);
 | |
| }
 | |
| 
 | |
| /// hasAllZeroIndices - Return true if all of the indices of this GEP are
 | |
| /// zeros.  If so, the result pointer and the first operand have the same
 | |
| /// value, just potentially different types.
 | |
| bool GetElementPtrInst::hasAllZeroIndices() const {
 | |
|   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
 | |
|       if (!CI->isZero()) return false;
 | |
|     } else {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// hasAllConstantIndices - Return true if all of the indices of this GEP are
 | |
| /// constant integers.  If so, the result pointer and the first operand have
 | |
| /// a constant offset between them.
 | |
| bool GetElementPtrInst::hasAllConstantIndices() const {
 | |
|   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
 | |
|     if (!isa<ConstantInt>(getOperand(i)))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void GetElementPtrInst::setIsInBounds(bool B) {
 | |
|   cast<GEPOperator>(this)->setIsInBounds(B);
 | |
| }
 | |
| 
 | |
| bool GetElementPtrInst::isInBounds() const {
 | |
|   return cast<GEPOperator>(this)->isInBounds();
 | |
| }
 | |
| 
 | |
| bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
 | |
|                                                  APInt &Offset) const {
 | |
|   // Delegate to the generic GEPOperator implementation.
 | |
|   return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           ExtractElementInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
 | |
|                                        const Twine &Name,
 | |
|                                        Instruction *InsertBef)
 | |
|   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
 | |
|                 ExtractElement,
 | |
|                 OperandTraits<ExtractElementInst>::op_begin(this),
 | |
|                 2, InsertBef) {
 | |
|   assert(isValidOperands(Val, Index) &&
 | |
|          "Invalid extractelement instruction operands!");
 | |
|   Op<0>() = Val;
 | |
|   Op<1>() = Index;
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
 | |
|                                        const Twine &Name,
 | |
|                                        BasicBlock *InsertAE)
 | |
|   : Instruction(cast<VectorType>(Val->getType())->getElementType(),
 | |
|                 ExtractElement,
 | |
|                 OperandTraits<ExtractElementInst>::op_begin(this),
 | |
|                 2, InsertAE) {
 | |
|   assert(isValidOperands(Val, Index) &&
 | |
|          "Invalid extractelement instruction operands!");
 | |
| 
 | |
|   Op<0>() = Val;
 | |
|   Op<1>() = Index;
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
 | |
|   if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           InsertElementInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
 | |
|                                      const Twine &Name,
 | |
|                                      Instruction *InsertBef)
 | |
|   : Instruction(Vec->getType(), InsertElement,
 | |
|                 OperandTraits<InsertElementInst>::op_begin(this),
 | |
|                 3, InsertBef) {
 | |
|   assert(isValidOperands(Vec, Elt, Index) &&
 | |
|          "Invalid insertelement instruction operands!");
 | |
|   Op<0>() = Vec;
 | |
|   Op<1>() = Elt;
 | |
|   Op<2>() = Index;
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
 | |
|                                      const Twine &Name,
 | |
|                                      BasicBlock *InsertAE)
 | |
|   : Instruction(Vec->getType(), InsertElement,
 | |
|                 OperandTraits<InsertElementInst>::op_begin(this),
 | |
|                 3, InsertAE) {
 | |
|   assert(isValidOperands(Vec, Elt, Index) &&
 | |
|          "Invalid insertelement instruction operands!");
 | |
| 
 | |
|   Op<0>() = Vec;
 | |
|   Op<1>() = Elt;
 | |
|   Op<2>() = Index;
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
 | |
|                                         const Value *Index) {
 | |
|   if (!Vec->getType()->isVectorTy())
 | |
|     return false;   // First operand of insertelement must be vector type.
 | |
| 
 | |
|   if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
 | |
|     return false;// Second operand of insertelement must be vector element type.
 | |
| 
 | |
|   if (!Index->getType()->isIntegerTy())
 | |
|     return false;  // Third operand of insertelement must be i32.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                      ShuffleVectorInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
 | |
|                                      const Twine &Name,
 | |
|                                      Instruction *InsertBefore)
 | |
|     : Instruction(
 | |
|           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
 | |
|                           cast<VectorType>(Mask->getType())->getElementCount()),
 | |
|           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
 | |
|           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
 | |
|   assert(isValidOperands(V1, V2, Mask) &&
 | |
|          "Invalid shuffle vector instruction operands!");
 | |
| 
 | |
|   Op<0>() = V1;
 | |
|   Op<1>() = V2;
 | |
|   SmallVector<int, 16> MaskArr;
 | |
|   getShuffleMask(cast<Constant>(Mask), MaskArr);
 | |
|   setShuffleMask(MaskArr);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
 | |
|                                      const Twine &Name, BasicBlock *InsertAtEnd)
 | |
|     : Instruction(
 | |
|           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
 | |
|                           cast<VectorType>(Mask->getType())->getElementCount()),
 | |
|           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
 | |
|           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
 | |
|   assert(isValidOperands(V1, V2, Mask) &&
 | |
|          "Invalid shuffle vector instruction operands!");
 | |
| 
 | |
|   Op<0>() = V1;
 | |
|   Op<1>() = V2;
 | |
|   SmallVector<int, 16> MaskArr;
 | |
|   getShuffleMask(cast<Constant>(Mask), MaskArr);
 | |
|   setShuffleMask(MaskArr);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
 | |
|                                      const Twine &Name,
 | |
|                                      Instruction *InsertBefore)
 | |
|     : Instruction(
 | |
|           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
 | |
|                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
 | |
|           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
 | |
|           OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
 | |
|   assert(isValidOperands(V1, V2, Mask) &&
 | |
|          "Invalid shuffle vector instruction operands!");
 | |
|   Op<0>() = V1;
 | |
|   Op<1>() = V2;
 | |
|   setShuffleMask(Mask);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
 | |
|                                      const Twine &Name, BasicBlock *InsertAtEnd)
 | |
|     : Instruction(
 | |
|           VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
 | |
|                           Mask.size(), isa<ScalableVectorType>(V1->getType())),
 | |
|           ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
 | |
|           OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
 | |
|   assert(isValidOperands(V1, V2, Mask) &&
 | |
|          "Invalid shuffle vector instruction operands!");
 | |
| 
 | |
|   Op<0>() = V1;
 | |
|   Op<1>() = V2;
 | |
|   setShuffleMask(Mask);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| void ShuffleVectorInst::commute() {
 | |
|   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
 | |
|   int NumMaskElts = ShuffleMask.size();
 | |
|   SmallVector<int, 16> NewMask(NumMaskElts);
 | |
|   for (int i = 0; i != NumMaskElts; ++i) {
 | |
|     int MaskElt = getMaskValue(i);
 | |
|     if (MaskElt == UndefMaskElem) {
 | |
|       NewMask[i] = UndefMaskElem;
 | |
|       continue;
 | |
|     }
 | |
|     assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
 | |
|     MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
 | |
|     NewMask[i] = MaskElt;
 | |
|   }
 | |
|   setShuffleMask(NewMask);
 | |
|   Op<0>().swap(Op<1>());
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
 | |
|                                         ArrayRef<int> Mask) {
 | |
|   // V1 and V2 must be vectors of the same type.
 | |
|   if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
 | |
|     return false;
 | |
| 
 | |
|   // Make sure the mask elements make sense.
 | |
|   int V1Size =
 | |
|       cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
 | |
|   for (int Elem : Mask)
 | |
|     if (Elem != UndefMaskElem && Elem >= V1Size * 2)
 | |
|       return false;
 | |
| 
 | |
|   if (isa<ScalableVectorType>(V1->getType()))
 | |
|     if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
 | |
|                                         const Value *Mask) {
 | |
|   // V1 and V2 must be vectors of the same type.
 | |
|   if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
 | |
|     return false;
 | |
| 
 | |
|   // Mask must be vector of i32, and must be the same kind of vector as the
 | |
|   // input vectors
 | |
|   auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
 | |
|   if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
 | |
|       isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
 | |
|     return false;
 | |
| 
 | |
|   // Check to see if Mask is valid.
 | |
|   if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
 | |
|     return true;
 | |
| 
 | |
|   if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
 | |
|     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
 | |
|     for (Value *Op : MV->operands()) {
 | |
|       if (auto *CI = dyn_cast<ConstantInt>(Op)) {
 | |
|         if (CI->uge(V1Size*2))
 | |
|           return false;
 | |
|       } else if (!isa<UndefValue>(Op)) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
 | |
|     unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
 | |
|     for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
 | |
|          i != e; ++i)
 | |
|       if (CDS->getElementAsInteger(i) >= V1Size*2)
 | |
|         return false;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
 | |
|                                        SmallVectorImpl<int> &Result) {
 | |
|   ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
 | |
| 
 | |
|   if (isa<ConstantAggregateZero>(Mask)) {
 | |
|     Result.resize(EC.getKnownMinValue(), 0);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   Result.reserve(EC.getKnownMinValue());
 | |
| 
 | |
|   if (EC.isScalable()) {
 | |
|     assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
 | |
|            "Scalable vector shuffle mask must be undef or zeroinitializer");
 | |
|     int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
 | |
|     for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
 | |
|       Result.emplace_back(MaskVal);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned NumElts = EC.getKnownMinValue();
 | |
| 
 | |
|   if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       Result.push_back(CDS->getElementAsInteger(i));
 | |
|     return;
 | |
|   }
 | |
|   for (unsigned i = 0; i != NumElts; ++i) {
 | |
|     Constant *C = Mask->getAggregateElement(i);
 | |
|     Result.push_back(isa<UndefValue>(C) ? -1 :
 | |
|                      cast<ConstantInt>(C)->getZExtValue());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
 | |
|   ShuffleMask.assign(Mask.begin(), Mask.end());
 | |
|   ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
 | |
| }
 | |
| Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
 | |
|                                                           Type *ResultTy) {
 | |
|   Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
 | |
|   if (isa<ScalableVectorType>(ResultTy)) {
 | |
|     assert(is_splat(Mask) && "Unexpected shuffle");
 | |
|     Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
 | |
|     if (Mask[0] == 0)
 | |
|       return Constant::getNullValue(VecTy);
 | |
|     return UndefValue::get(VecTy);
 | |
|   }
 | |
|   SmallVector<Constant *, 16> MaskConst;
 | |
|   for (int Elem : Mask) {
 | |
|     if (Elem == UndefMaskElem)
 | |
|       MaskConst.push_back(UndefValue::get(Int32Ty));
 | |
|     else
 | |
|       MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
 | |
|   }
 | |
|   return ConstantVector::get(MaskConst);
 | |
| }
 | |
| 
 | |
| static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
 | |
|   assert(!Mask.empty() && "Shuffle mask must contain elements");
 | |
|   bool UsesLHS = false;
 | |
|   bool UsesRHS = false;
 | |
|   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
 | |
|     if (Mask[i] == -1)
 | |
|       continue;
 | |
|     assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
 | |
|            "Out-of-bounds shuffle mask element");
 | |
|     UsesLHS |= (Mask[i] < NumOpElts);
 | |
|     UsesRHS |= (Mask[i] >= NumOpElts);
 | |
|     if (UsesLHS && UsesRHS)
 | |
|       return false;
 | |
|   }
 | |
|   // Allow for degenerate case: completely undef mask means neither source is used.
 | |
|   return UsesLHS || UsesRHS;
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
 | |
|   // We don't have vector operand size information, so assume operands are the
 | |
|   // same size as the mask.
 | |
|   return isSingleSourceMaskImpl(Mask, Mask.size());
 | |
| }
 | |
| 
 | |
| static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
 | |
|   if (!isSingleSourceMaskImpl(Mask, NumOpElts))
 | |
|     return false;
 | |
|   for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
 | |
|     if (Mask[i] == -1)
 | |
|       continue;
 | |
|     if (Mask[i] != i && Mask[i] != (NumOpElts + i))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
 | |
|   // We don't have vector operand size information, so assume operands are the
 | |
|   // same size as the mask.
 | |
|   return isIdentityMaskImpl(Mask, Mask.size());
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
 | |
|   if (!isSingleSourceMask(Mask))
 | |
|     return false;
 | |
|   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
 | |
|     if (Mask[i] == -1)
 | |
|       continue;
 | |
|     if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
 | |
|   if (!isSingleSourceMask(Mask))
 | |
|     return false;
 | |
|   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
 | |
|     if (Mask[i] == -1)
 | |
|       continue;
 | |
|     if (Mask[i] != 0 && Mask[i] != NumElts)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
 | |
|   // Select is differentiated from identity. It requires using both sources.
 | |
|   if (isSingleSourceMask(Mask))
 | |
|     return false;
 | |
|   for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
 | |
|     if (Mask[i] == -1)
 | |
|       continue;
 | |
|     if (Mask[i] != i && Mask[i] != (NumElts + i))
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
 | |
|   // Example masks that will return true:
 | |
|   // v1 = <a, b, c, d>
 | |
|   // v2 = <e, f, g, h>
 | |
|   // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
 | |
|   // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
 | |
| 
 | |
|   // 1. The number of elements in the mask must be a power-of-2 and at least 2.
 | |
|   int NumElts = Mask.size();
 | |
|   if (NumElts < 2 || !isPowerOf2_32(NumElts))
 | |
|     return false;
 | |
| 
 | |
|   // 2. The first element of the mask must be either a 0 or a 1.
 | |
|   if (Mask[0] != 0 && Mask[0] != 1)
 | |
|     return false;
 | |
| 
 | |
|   // 3. The difference between the first 2 elements must be equal to the
 | |
|   // number of elements in the mask.
 | |
|   if ((Mask[1] - Mask[0]) != NumElts)
 | |
|     return false;
 | |
| 
 | |
|   // 4. The difference between consecutive even-numbered and odd-numbered
 | |
|   // elements must be equal to 2.
 | |
|   for (int i = 2; i < NumElts; ++i) {
 | |
|     int MaskEltVal = Mask[i];
 | |
|     if (MaskEltVal == -1)
 | |
|       return false;
 | |
|     int MaskEltPrevVal = Mask[i - 2];
 | |
|     if (MaskEltVal - MaskEltPrevVal != 2)
 | |
|       return false;
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
 | |
|                                                int NumSrcElts, int &Index) {
 | |
|   // Must extract from a single source.
 | |
|   if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
 | |
|     return false;
 | |
| 
 | |
|   // Must be smaller (else this is an Identity shuffle).
 | |
|   if (NumSrcElts <= (int)Mask.size())
 | |
|     return false;
 | |
| 
 | |
|   // Find start of extraction, accounting that we may start with an UNDEF.
 | |
|   int SubIndex = -1;
 | |
|   for (int i = 0, e = Mask.size(); i != e; ++i) {
 | |
|     int M = Mask[i];
 | |
|     if (M < 0)
 | |
|       continue;
 | |
|     int Offset = (M % NumSrcElts) - i;
 | |
|     if (0 <= SubIndex && SubIndex != Offset)
 | |
|       return false;
 | |
|     SubIndex = Offset;
 | |
|   }
 | |
| 
 | |
|   if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
 | |
|     Index = SubIndex;
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isIdentityWithPadding() const {
 | |
|   if (isa<UndefValue>(Op<2>()))
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: Not currently possible to express a shuffle mask for a scalable
 | |
|   // vector for this case.
 | |
|   if (isa<ScalableVectorType>(getType()))
 | |
|     return false;
 | |
| 
 | |
|   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
 | |
|   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
 | |
|   if (NumMaskElts <= NumOpElts)
 | |
|     return false;
 | |
| 
 | |
|   // The first part of the mask must choose elements from exactly 1 source op.
 | |
|   ArrayRef<int> Mask = getShuffleMask();
 | |
|   if (!isIdentityMaskImpl(Mask, NumOpElts))
 | |
|     return false;
 | |
| 
 | |
|   // All extending must be with undef elements.
 | |
|   for (int i = NumOpElts; i < NumMaskElts; ++i)
 | |
|     if (Mask[i] != -1)
 | |
|       return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isIdentityWithExtract() const {
 | |
|   if (isa<UndefValue>(Op<2>()))
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: Not currently possible to express a shuffle mask for a scalable
 | |
|   // vector for this case.
 | |
|   if (isa<ScalableVectorType>(getType()))
 | |
|     return false;
 | |
| 
 | |
|   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
 | |
|   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
 | |
|   if (NumMaskElts >= NumOpElts)
 | |
|     return false;
 | |
| 
 | |
|   return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
 | |
| }
 | |
| 
 | |
| bool ShuffleVectorInst::isConcat() const {
 | |
|   // Vector concatenation is differentiated from identity with padding.
 | |
|   if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
 | |
|       isa<UndefValue>(Op<2>()))
 | |
|     return false;
 | |
| 
 | |
|   // FIXME: Not currently possible to express a shuffle mask for a scalable
 | |
|   // vector for this case.
 | |
|   if (isa<ScalableVectorType>(getType()))
 | |
|     return false;
 | |
| 
 | |
|   int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
 | |
|   int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
 | |
|   if (NumMaskElts != NumOpElts * 2)
 | |
|     return false;
 | |
| 
 | |
|   // Use the mask length rather than the operands' vector lengths here. We
 | |
|   // already know that the shuffle returns a vector twice as long as the inputs,
 | |
|   // and neither of the inputs are undef vectors. If the mask picks consecutive
 | |
|   // elements from both inputs, then this is a concatenation of the inputs.
 | |
|   return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             InsertValueInst Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
 | |
|                            const Twine &Name) {
 | |
|   assert(getNumOperands() == 2 && "NumOperands not initialized?");
 | |
| 
 | |
|   // There's no fundamental reason why we require at least one index
 | |
|   // (other than weirdness with &*IdxBegin being invalid; see
 | |
|   // getelementptr's init routine for example). But there's no
 | |
|   // present need to support it.
 | |
|   assert(!Idxs.empty() && "InsertValueInst must have at least one index");
 | |
| 
 | |
|   assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
 | |
|          Val->getType() && "Inserted value must match indexed type!");
 | |
|   Op<0>() = Agg;
 | |
|   Op<1>() = Val;
 | |
| 
 | |
|   Indices.append(Idxs.begin(), Idxs.end());
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
 | |
|   : Instruction(IVI.getType(), InsertValue,
 | |
|                 OperandTraits<InsertValueInst>::op_begin(this), 2),
 | |
|     Indices(IVI.Indices) {
 | |
|   Op<0>() = IVI.getOperand(0);
 | |
|   Op<1>() = IVI.getOperand(1);
 | |
|   SubclassOptionalData = IVI.SubclassOptionalData;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             ExtractValueInst Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
 | |
|   assert(getNumOperands() == 1 && "NumOperands not initialized?");
 | |
| 
 | |
|   // There's no fundamental reason why we require at least one index.
 | |
|   // But there's no present need to support it.
 | |
|   assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
 | |
| 
 | |
|   Indices.append(Idxs.begin(), Idxs.end());
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
 | |
|   : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
 | |
|     Indices(EVI.Indices) {
 | |
|   SubclassOptionalData = EVI.SubclassOptionalData;
 | |
| }
 | |
| 
 | |
| // getIndexedType - Returns the type of the element that would be extracted
 | |
| // with an extractvalue instruction with the specified parameters.
 | |
| //
 | |
| // A null type is returned if the indices are invalid for the specified
 | |
| // pointer type.
 | |
| //
 | |
| Type *ExtractValueInst::getIndexedType(Type *Agg,
 | |
|                                        ArrayRef<unsigned> Idxs) {
 | |
|   for (unsigned Index : Idxs) {
 | |
|     // We can't use CompositeType::indexValid(Index) here.
 | |
|     // indexValid() always returns true for arrays because getelementptr allows
 | |
|     // out-of-bounds indices. Since we don't allow those for extractvalue and
 | |
|     // insertvalue we need to check array indexing manually.
 | |
|     // Since the only other types we can index into are struct types it's just
 | |
|     // as easy to check those manually as well.
 | |
|     if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
 | |
|       if (Index >= AT->getNumElements())
 | |
|         return nullptr;
 | |
|       Agg = AT->getElementType();
 | |
|     } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
 | |
|       if (Index >= ST->getNumElements())
 | |
|         return nullptr;
 | |
|       Agg = ST->getElementType(Index);
 | |
|     } else {
 | |
|       // Not a valid type to index into.
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
|   return const_cast<Type*>(Agg);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             UnaryOperator Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
 | |
|                              Type *Ty, const Twine &Name,
 | |
|                              Instruction *InsertBefore)
 | |
|   : UnaryInstruction(Ty, iType, S, InsertBefore) {
 | |
|   Op<0>() = S;
 | |
|   setName(Name);
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
 | |
|                              Type *Ty, const Twine &Name,
 | |
|                              BasicBlock *InsertAtEnd)
 | |
|   : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
 | |
|   Op<0>() = S;
 | |
|   setName(Name);
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
 | |
|                                      const Twine &Name,
 | |
|                                      Instruction *InsertBefore) {
 | |
|   return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
 | |
|                                      const Twine &Name,
 | |
|                                      BasicBlock *InsertAtEnd) {
 | |
|   UnaryOperator *Res = Create(Op, S, Name);
 | |
|   InsertAtEnd->getInstList().push_back(Res);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| void UnaryOperator::AssertOK() {
 | |
|   Value *LHS = getOperand(0);
 | |
|   (void)LHS; // Silence warnings.
 | |
| #ifndef NDEBUG
 | |
|   switch (getOpcode()) {
 | |
|   case FNeg:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Unary operation should return same type as operand!");
 | |
|     assert(getType()->isFPOrFPVectorTy() &&
 | |
|            "Tried to create a floating-point operation on a "
 | |
|            "non-floating-point type!");
 | |
|     break;
 | |
|   default: llvm_unreachable("Invalid opcode provided");
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             BinaryOperator Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
 | |
|                                Type *Ty, const Twine &Name,
 | |
|                                Instruction *InsertBefore)
 | |
|   : Instruction(Ty, iType,
 | |
|                 OperandTraits<BinaryOperator>::op_begin(this),
 | |
|                 OperandTraits<BinaryOperator>::operands(this),
 | |
|                 InsertBefore) {
 | |
|   Op<0>() = S1;
 | |
|   Op<1>() = S2;
 | |
|   setName(Name);
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
 | |
|                                Type *Ty, const Twine &Name,
 | |
|                                BasicBlock *InsertAtEnd)
 | |
|   : Instruction(Ty, iType,
 | |
|                 OperandTraits<BinaryOperator>::op_begin(this),
 | |
|                 OperandTraits<BinaryOperator>::operands(this),
 | |
|                 InsertAtEnd) {
 | |
|   Op<0>() = S1;
 | |
|   Op<1>() = S2;
 | |
|   setName(Name);
 | |
|   AssertOK();
 | |
| }
 | |
| 
 | |
| void BinaryOperator::AssertOK() {
 | |
|   Value *LHS = getOperand(0), *RHS = getOperand(1);
 | |
|   (void)LHS; (void)RHS; // Silence warnings.
 | |
|   assert(LHS->getType() == RHS->getType() &&
 | |
|          "Binary operator operand types must match!");
 | |
| #ifndef NDEBUG
 | |
|   switch (getOpcode()) {
 | |
|   case Add: case Sub:
 | |
|   case Mul:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Arithmetic operation should return same type as operands!");
 | |
|     assert(getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create an integer operation on a non-integer type!");
 | |
|     break;
 | |
|   case FAdd: case FSub:
 | |
|   case FMul:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Arithmetic operation should return same type as operands!");
 | |
|     assert(getType()->isFPOrFPVectorTy() &&
 | |
|            "Tried to create a floating-point operation on a "
 | |
|            "non-floating-point type!");
 | |
|     break;
 | |
|   case UDiv:
 | |
|   case SDiv:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Arithmetic operation should return same type as operands!");
 | |
|     assert(getType()->isIntOrIntVectorTy() &&
 | |
|            "Incorrect operand type (not integer) for S/UDIV");
 | |
|     break;
 | |
|   case FDiv:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Arithmetic operation should return same type as operands!");
 | |
|     assert(getType()->isFPOrFPVectorTy() &&
 | |
|            "Incorrect operand type (not floating point) for FDIV");
 | |
|     break;
 | |
|   case URem:
 | |
|   case SRem:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Arithmetic operation should return same type as operands!");
 | |
|     assert(getType()->isIntOrIntVectorTy() &&
 | |
|            "Incorrect operand type (not integer) for S/UREM");
 | |
|     break;
 | |
|   case FRem:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Arithmetic operation should return same type as operands!");
 | |
|     assert(getType()->isFPOrFPVectorTy() &&
 | |
|            "Incorrect operand type (not floating point) for FREM");
 | |
|     break;
 | |
|   case Shl:
 | |
|   case LShr:
 | |
|   case AShr:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Shift operation should return same type as operands!");
 | |
|     assert(getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create a shift operation on a non-integral type!");
 | |
|     break;
 | |
|   case And: case Or:
 | |
|   case Xor:
 | |
|     assert(getType() == LHS->getType() &&
 | |
|            "Logical operation should return same type as operands!");
 | |
|     assert(getType()->isIntOrIntVectorTy() &&
 | |
|            "Tried to create a logical operation on a non-integral type!");
 | |
|     break;
 | |
|   default: llvm_unreachable("Invalid opcode provided");
 | |
|   }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
 | |
|                                        const Twine &Name,
 | |
|                                        Instruction *InsertBefore) {
 | |
|   assert(S1->getType() == S2->getType() &&
 | |
|          "Cannot create binary operator with two operands of differing type!");
 | |
|   return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
 | |
|                                        const Twine &Name,
 | |
|                                        BasicBlock *InsertAtEnd) {
 | |
|   BinaryOperator *Res = Create(Op, S1, S2, Name);
 | |
|   InsertAtEnd->getInstList().push_back(Res);
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
 | |
|                                           Instruction *InsertBefore) {
 | |
|   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | |
|   return new BinaryOperator(Instruction::Sub,
 | |
|                             zero, Op,
 | |
|                             Op->getType(), Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
 | |
|                                           BasicBlock *InsertAtEnd) {
 | |
|   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | |
|   return new BinaryOperator(Instruction::Sub,
 | |
|                             zero, Op,
 | |
|                             Op->getType(), Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
 | |
|                                              Instruction *InsertBefore) {
 | |
|   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | |
|   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
 | |
|                                              BasicBlock *InsertAtEnd) {
 | |
|   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | |
|   return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
 | |
|                                              Instruction *InsertBefore) {
 | |
|   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | |
|   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
 | |
|                                              BasicBlock *InsertAtEnd) {
 | |
|   Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
 | |
|   return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
 | |
|                                           Instruction *InsertBefore) {
 | |
|   Constant *C = Constant::getAllOnesValue(Op->getType());
 | |
|   return new BinaryOperator(Instruction::Xor, Op, C,
 | |
|                             Op->getType(), Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
 | |
|                                           BasicBlock *InsertAtEnd) {
 | |
|   Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
 | |
|   return new BinaryOperator(Instruction::Xor, Op, AllOnes,
 | |
|                             Op->getType(), Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| // Exchange the two operands to this instruction. This instruction is safe to
 | |
| // use on any binary instruction and does not modify the semantics of the
 | |
| // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
 | |
| // is changed.
 | |
| bool BinaryOperator::swapOperands() {
 | |
|   if (!isCommutative())
 | |
|     return true; // Can't commute operands
 | |
|   Op<0>().swap(Op<1>());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             FPMathOperator Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| float FPMathOperator::getFPAccuracy() const {
 | |
|   const MDNode *MD =
 | |
|       cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
 | |
|   if (!MD)
 | |
|     return 0.0;
 | |
|   ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
 | |
|   return Accuracy->getValueAPF().convertToFloat();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                CastInst Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Just determine if this cast only deals with integral->integral conversion.
 | |
| bool CastInst::isIntegerCast() const {
 | |
|   switch (getOpcode()) {
 | |
|     default: return false;
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::Trunc:
 | |
|       return true;
 | |
|     case Instruction::BitCast:
 | |
|       return getOperand(0)->getType()->isIntegerTy() &&
 | |
|         getType()->isIntegerTy();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CastInst::isLosslessCast() const {
 | |
|   // Only BitCast can be lossless, exit fast if we're not BitCast
 | |
|   if (getOpcode() != Instruction::BitCast)
 | |
|     return false;
 | |
| 
 | |
|   // Identity cast is always lossless
 | |
|   Type *SrcTy = getOperand(0)->getType();
 | |
|   Type *DstTy = getType();
 | |
|   if (SrcTy == DstTy)
 | |
|     return true;
 | |
| 
 | |
|   // Pointer to pointer is always lossless.
 | |
|   if (SrcTy->isPointerTy())
 | |
|     return DstTy->isPointerTy();
 | |
|   return false;  // Other types have no identity values
 | |
| }
 | |
| 
 | |
| /// This function determines if the CastInst does not require any bits to be
 | |
| /// changed in order to effect the cast. Essentially, it identifies cases where
 | |
| /// no code gen is necessary for the cast, hence the name no-op cast.  For
 | |
| /// example, the following are all no-op casts:
 | |
| /// # bitcast i32* %x to i8*
 | |
| /// # bitcast <2 x i32> %x to <4 x i16>
 | |
| /// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only
 | |
| /// Determine if the described cast is a no-op.
 | |
| bool CastInst::isNoopCast(Instruction::CastOps Opcode,
 | |
|                           Type *SrcTy,
 | |
|                           Type *DestTy,
 | |
|                           const DataLayout &DL) {
 | |
|   assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
 | |
|   switch (Opcode) {
 | |
|     default: llvm_unreachable("Invalid CastOp");
 | |
|     case Instruction::Trunc:
 | |
|     case Instruction::ZExt:
 | |
|     case Instruction::SExt:
 | |
|     case Instruction::FPTrunc:
 | |
|     case Instruction::FPExt:
 | |
|     case Instruction::UIToFP:
 | |
|     case Instruction::SIToFP:
 | |
|     case Instruction::FPToUI:
 | |
|     case Instruction::FPToSI:
 | |
|     case Instruction::AddrSpaceCast:
 | |
|       // TODO: Target informations may give a more accurate answer here.
 | |
|       return false;
 | |
|     case Instruction::BitCast:
 | |
|       return true;  // BitCast never modifies bits.
 | |
|     case Instruction::PtrToInt:
 | |
|       return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
 | |
|              DestTy->getScalarSizeInBits();
 | |
|     case Instruction::IntToPtr:
 | |
|       return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
 | |
|              SrcTy->getScalarSizeInBits();
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CastInst::isNoopCast(const DataLayout &DL) const {
 | |
|   return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
 | |
| }
 | |
| 
 | |
| /// This function determines if a pair of casts can be eliminated and what
 | |
| /// opcode should be used in the elimination. This assumes that there are two
 | |
| /// instructions like this:
 | |
| /// *  %F = firstOpcode SrcTy %x to MidTy
 | |
| /// *  %S = secondOpcode MidTy %F to DstTy
 | |
| /// The function returns a resultOpcode so these two casts can be replaced with:
 | |
| /// *  %Replacement = resultOpcode %SrcTy %x to DstTy
 | |
| /// If no such cast is permitted, the function returns 0.
 | |
| unsigned CastInst::isEliminableCastPair(
 | |
|   Instruction::CastOps firstOp, Instruction::CastOps secondOp,
 | |
|   Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
 | |
|   Type *DstIntPtrTy) {
 | |
|   // Define the 144 possibilities for these two cast instructions. The values
 | |
|   // in this matrix determine what to do in a given situation and select the
 | |
|   // case in the switch below.  The rows correspond to firstOp, the columns
 | |
|   // correspond to secondOp.  In looking at the table below, keep in mind
 | |
|   // the following cast properties:
 | |
|   //
 | |
|   //          Size Compare       Source               Destination
 | |
|   // Operator  Src ? Size   Type       Sign         Type       Sign
 | |
|   // -------- ------------ -------------------   ---------------------
 | |
|   // TRUNC         >       Integer      Any        Integral     Any
 | |
|   // ZEXT          <       Integral   Unsigned     Integer      Any
 | |
|   // SEXT          <       Integral    Signed      Integer      Any
 | |
|   // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned
 | |
|   // FPTOSI       n/a      FloatPt      n/a        Integral    Signed
 | |
|   // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a
 | |
|   // SITOFP       n/a      Integral    Signed      FloatPt      n/a
 | |
|   // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a
 | |
|   // FPEXT         <       FloatPt      n/a        FloatPt      n/a
 | |
|   // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned
 | |
|   // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a
 | |
|   // BITCAST       =       FirstClass   n/a       FirstClass    n/a
 | |
|   // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a
 | |
|   //
 | |
|   // NOTE: some transforms are safe, but we consider them to be non-profitable.
 | |
|   // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
 | |
|   // into "fptoui double to i64", but this loses information about the range
 | |
|   // of the produced value (we no longer know the top-part is all zeros).
 | |
|   // Further this conversion is often much more expensive for typical hardware,
 | |
|   // and causes issues when building libgcc.  We disallow fptosi+sext for the
 | |
|   // same reason.
 | |
|   const unsigned numCastOps =
 | |
|     Instruction::CastOpsEnd - Instruction::CastOpsBegin;
 | |
|   static const uint8_t CastResults[numCastOps][numCastOps] = {
 | |
|     // T        F  F  U  S  F  F  P  I  B  A  -+
 | |
|     // R  Z  S  P  P  I  I  T  P  2  N  T  S   |
 | |
|     // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp
 | |
|     // N  X  X  U  S  F  F  N  X  N  2  V  V   |
 | |
|     // C  T  T  I  I  P  P  C  T  T  P  T  T  -+
 | |
|     {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+
 | |
|     {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           |
 | |
|     {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           |
 | |
|     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         |
 | |
|     {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         |
 | |
|     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp
 | |
|     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         |
 | |
|     { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        |
 | |
|     { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          |
 | |
|     {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       |
 | |
|     { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       |
 | |
|     {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        |
 | |
|     {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
 | |
|   };
 | |
| 
 | |
|   // TODO: This logic could be encoded into the table above and handled in the
 | |
|   // switch below.
 | |
|   // If either of the casts are a bitcast from scalar to vector, disallow the
 | |
|   // merging. However, any pair of bitcasts are allowed.
 | |
|   bool IsFirstBitcast  = (firstOp == Instruction::BitCast);
 | |
|   bool IsSecondBitcast = (secondOp == Instruction::BitCast);
 | |
|   bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
 | |
| 
 | |
|   // Check if any of the casts convert scalars <-> vectors.
 | |
|   if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
 | |
|       (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
 | |
|     if (!AreBothBitcasts)
 | |
|       return 0;
 | |
| 
 | |
|   int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
 | |
|                             [secondOp-Instruction::CastOpsBegin];
 | |
|   switch (ElimCase) {
 | |
|     case 0:
 | |
|       // Categorically disallowed.
 | |
|       return 0;
 | |
|     case 1:
 | |
|       // Allowed, use first cast's opcode.
 | |
|       return firstOp;
 | |
|     case 2:
 | |
|       // Allowed, use second cast's opcode.
 | |
|       return secondOp;
 | |
|     case 3:
 | |
|       // No-op cast in second op implies firstOp as long as the DestTy
 | |
|       // is integer and we are not converting between a vector and a
 | |
|       // non-vector type.
 | |
|       if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
 | |
|         return firstOp;
 | |
|       return 0;
 | |
|     case 4:
 | |
|       // No-op cast in second op implies firstOp as long as the DestTy
 | |
|       // is floating point.
 | |
|       if (DstTy->isFloatingPointTy())
 | |
|         return firstOp;
 | |
|       return 0;
 | |
|     case 5:
 | |
|       // No-op cast in first op implies secondOp as long as the SrcTy
 | |
|       // is an integer.
 | |
|       if (SrcTy->isIntegerTy())
 | |
|         return secondOp;
 | |
|       return 0;
 | |
|     case 6:
 | |
|       // No-op cast in first op implies secondOp as long as the SrcTy
 | |
|       // is a floating point.
 | |
|       if (SrcTy->isFloatingPointTy())
 | |
|         return secondOp;
 | |
|       return 0;
 | |
|     case 7: {
 | |
|       // Cannot simplify if address spaces are different!
 | |
|       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
 | |
|         return 0;
 | |
| 
 | |
|       unsigned MidSize = MidTy->getScalarSizeInBits();
 | |
|       // We can still fold this without knowing the actual sizes as long we
 | |
|       // know that the intermediate pointer is the largest possible
 | |
|       // pointer size.
 | |
|       // FIXME: Is this always true?
 | |
|       if (MidSize == 64)
 | |
|         return Instruction::BitCast;
 | |
| 
 | |
|       // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
 | |
|       if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
 | |
|         return 0;
 | |
|       unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
 | |
|       if (MidSize >= PtrSize)
 | |
|         return Instruction::BitCast;
 | |
|       return 0;
 | |
|     }
 | |
|     case 8: {
 | |
|       // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size
 | |
|       // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy)
 | |
|       // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy)
 | |
|       unsigned SrcSize = SrcTy->getScalarSizeInBits();
 | |
|       unsigned DstSize = DstTy->getScalarSizeInBits();
 | |
|       if (SrcSize == DstSize)
 | |
|         return Instruction::BitCast;
 | |
|       else if (SrcSize < DstSize)
 | |
|         return firstOp;
 | |
|       return secondOp;
 | |
|     }
 | |
|     case 9:
 | |
|       // zext, sext -> zext, because sext can't sign extend after zext
 | |
|       return Instruction::ZExt;
 | |
|     case 11: {
 | |
|       // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
 | |
|       if (!MidIntPtrTy)
 | |
|         return 0;
 | |
|       unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
 | |
|       unsigned SrcSize = SrcTy->getScalarSizeInBits();
 | |
|       unsigned DstSize = DstTy->getScalarSizeInBits();
 | |
|       if (SrcSize <= PtrSize && SrcSize == DstSize)
 | |
|         return Instruction::BitCast;
 | |
|       return 0;
 | |
|     }
 | |
|     case 12:
 | |
|       // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS
 | |
|       // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
 | |
|       if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
 | |
|         return Instruction::AddrSpaceCast;
 | |
|       return Instruction::BitCast;
 | |
|     case 13:
 | |
|       // FIXME: this state can be merged with (1), but the following assert
 | |
|       // is useful to check the correcteness of the sequence due to semantic
 | |
|       // change of bitcast.
 | |
|       assert(
 | |
|         SrcTy->isPtrOrPtrVectorTy() &&
 | |
|         MidTy->isPtrOrPtrVectorTy() &&
 | |
|         DstTy->isPtrOrPtrVectorTy() &&
 | |
|         SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
 | |
|         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
 | |
|         "Illegal addrspacecast, bitcast sequence!");
 | |
|       // Allowed, use first cast's opcode
 | |
|       return firstOp;
 | |
|     case 14:
 | |
|       // bitcast, addrspacecast -> addrspacecast if the element type of
 | |
|       // bitcast's source is the same as that of addrspacecast's destination.
 | |
|       if (SrcTy->getScalarType()->getPointerElementType() ==
 | |
|           DstTy->getScalarType()->getPointerElementType())
 | |
|         return Instruction::AddrSpaceCast;
 | |
|       return 0;
 | |
|     case 15:
 | |
|       // FIXME: this state can be merged with (1), but the following assert
 | |
|       // is useful to check the correcteness of the sequence due to semantic
 | |
|       // change of bitcast.
 | |
|       assert(
 | |
|         SrcTy->isIntOrIntVectorTy() &&
 | |
|         MidTy->isPtrOrPtrVectorTy() &&
 | |
|         DstTy->isPtrOrPtrVectorTy() &&
 | |
|         MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
 | |
|         "Illegal inttoptr, bitcast sequence!");
 | |
|       // Allowed, use first cast's opcode
 | |
|       return firstOp;
 | |
|     case 16:
 | |
|       // FIXME: this state can be merged with (2), but the following assert
 | |
|       // is useful to check the correcteness of the sequence due to semantic
 | |
|       // change of bitcast.
 | |
|       assert(
 | |
|         SrcTy->isPtrOrPtrVectorTy() &&
 | |
|         MidTy->isPtrOrPtrVectorTy() &&
 | |
|         DstTy->isIntOrIntVectorTy() &&
 | |
|         SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
 | |
|         "Illegal bitcast, ptrtoint sequence!");
 | |
|       // Allowed, use second cast's opcode
 | |
|       return secondOp;
 | |
|     case 17:
 | |
|       // (sitofp (zext x)) -> (uitofp x)
 | |
|       return Instruction::UIToFP;
 | |
|     case 99:
 | |
|       // Cast combination can't happen (error in input). This is for all cases
 | |
|       // where the MidTy is not the same for the two cast instructions.
 | |
|       llvm_unreachable("Invalid Cast Combination");
 | |
|     default:
 | |
|       llvm_unreachable("Error in CastResults table!!!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
 | |
|   const Twine &Name, Instruction *InsertBefore) {
 | |
|   assert(castIsValid(op, S, Ty) && "Invalid cast!");
 | |
|   // Construct and return the appropriate CastInst subclass
 | |
|   switch (op) {
 | |
|   case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore);
 | |
|   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore);
 | |
|   case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore);
 | |
|   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore);
 | |
|   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore);
 | |
|   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore);
 | |
|   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore);
 | |
|   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore);
 | |
|   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore);
 | |
|   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore);
 | |
|   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore);
 | |
|   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore);
 | |
|   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
 | |
|   default: llvm_unreachable("Invalid opcode provided");
 | |
|   }
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
 | |
|   const Twine &Name, BasicBlock *InsertAtEnd) {
 | |
|   assert(castIsValid(op, S, Ty) && "Invalid cast!");
 | |
|   // Construct and return the appropriate CastInst subclass
 | |
|   switch (op) {
 | |
|   case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd);
 | |
|   case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd);
 | |
|   case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd);
 | |
|   case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd);
 | |
|   case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd);
 | |
|   case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd);
 | |
|   case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd);
 | |
|   case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd);
 | |
|   case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd);
 | |
|   case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd);
 | |
|   case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd);
 | |
|   case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd);
 | |
|   case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
 | |
|   default: llvm_unreachable("Invalid opcode provided");
 | |
|   }
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
 | |
|                                         const Twine &Name,
 | |
|                                         Instruction *InsertBefore) {
 | |
|   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | |
|     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | |
|   return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
 | |
|                                         const Twine &Name,
 | |
|                                         BasicBlock *InsertAtEnd) {
 | |
|   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | |
|     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
 | |
|   return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
 | |
|                                         const Twine &Name,
 | |
|                                         Instruction *InsertBefore) {
 | |
|   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | |
|     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | |
|   return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
 | |
|                                         const Twine &Name,
 | |
|                                         BasicBlock *InsertAtEnd) {
 | |
|   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | |
|     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
 | |
|   return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
 | |
|                                          const Twine &Name,
 | |
|                                          Instruction *InsertBefore) {
 | |
|   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | |
|     return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | |
|   return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
 | |
|                                          const Twine &Name,
 | |
|                                          BasicBlock *InsertAtEnd) {
 | |
|   if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
 | |
|     return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
 | |
|   return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
 | |
|                                       const Twine &Name,
 | |
|                                       BasicBlock *InsertAtEnd) {
 | |
|   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
 | |
|   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
 | |
|          "Invalid cast");
 | |
|   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
 | |
|   assert((!Ty->isVectorTy() ||
 | |
|           cast<VectorType>(Ty)->getElementCount() ==
 | |
|               cast<VectorType>(S->getType())->getElementCount()) &&
 | |
|          "Invalid cast");
 | |
| 
 | |
|   if (Ty->isIntOrIntVectorTy())
 | |
|     return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
 | |
| 
 | |
|   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| /// Create a BitCast or a PtrToInt cast instruction
 | |
| CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
 | |
|                                       const Twine &Name,
 | |
|                                       Instruction *InsertBefore) {
 | |
|   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
 | |
|   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
 | |
|          "Invalid cast");
 | |
|   assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
 | |
|   assert((!Ty->isVectorTy() ||
 | |
|           cast<VectorType>(Ty)->getElementCount() ==
 | |
|               cast<VectorType>(S->getType())->getElementCount()) &&
 | |
|          "Invalid cast");
 | |
| 
 | |
|   if (Ty->isIntOrIntVectorTy())
 | |
|     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
 | |
| 
 | |
|   return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
 | |
|   Value *S, Type *Ty,
 | |
|   const Twine &Name,
 | |
|   BasicBlock *InsertAtEnd) {
 | |
|   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
 | |
|   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
 | |
| 
 | |
|   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
 | |
|     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
 | |
| 
 | |
|   return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
 | |
|   Value *S, Type *Ty,
 | |
|   const Twine &Name,
 | |
|   Instruction *InsertBefore) {
 | |
|   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
 | |
|   assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
 | |
| 
 | |
|   if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
 | |
|     return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
 | |
| 
 | |
|   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
 | |
|                                            const Twine &Name,
 | |
|                                            Instruction *InsertBefore) {
 | |
|   if (S->getType()->isPointerTy() && Ty->isIntegerTy())
 | |
|     return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
 | |
|   if (S->getType()->isIntegerTy() && Ty->isPointerTy())
 | |
|     return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
 | |
| 
 | |
|   return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
 | |
|                                       bool isSigned, const Twine &Name,
 | |
|                                       Instruction *InsertBefore) {
 | |
|   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
 | |
|          "Invalid integer cast");
 | |
|   unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | |
|   unsigned DstBits = Ty->getScalarSizeInBits();
 | |
|   Instruction::CastOps opcode =
 | |
|     (SrcBits == DstBits ? Instruction::BitCast :
 | |
|      (SrcBits > DstBits ? Instruction::Trunc :
 | |
|       (isSigned ? Instruction::SExt : Instruction::ZExt)));
 | |
|   return Create(opcode, C, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
 | |
|                                       bool isSigned, const Twine &Name,
 | |
|                                       BasicBlock *InsertAtEnd) {
 | |
|   assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
 | |
|          "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | |
|   unsigned DstBits = Ty->getScalarSizeInBits();
 | |
|   Instruction::CastOps opcode =
 | |
|     (SrcBits == DstBits ? Instruction::BitCast :
 | |
|      (SrcBits > DstBits ? Instruction::Trunc :
 | |
|       (isSigned ? Instruction::SExt : Instruction::ZExt)));
 | |
|   return Create(opcode, C, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
 | |
|                                  const Twine &Name,
 | |
|                                  Instruction *InsertBefore) {
 | |
|   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
 | |
|          "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | |
|   unsigned DstBits = Ty->getScalarSizeInBits();
 | |
|   Instruction::CastOps opcode =
 | |
|     (SrcBits == DstBits ? Instruction::BitCast :
 | |
|      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
 | |
|   return Create(opcode, C, Ty, Name, InsertBefore);
 | |
| }
 | |
| 
 | |
| CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
 | |
|                                  const Twine &Name,
 | |
|                                  BasicBlock *InsertAtEnd) {
 | |
|   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
 | |
|          "Invalid cast");
 | |
|   unsigned SrcBits = C->getType()->getScalarSizeInBits();
 | |
|   unsigned DstBits = Ty->getScalarSizeInBits();
 | |
|   Instruction::CastOps opcode =
 | |
|     (SrcBits == DstBits ? Instruction::BitCast :
 | |
|      (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
 | |
|   return Create(opcode, C, Ty, Name, InsertAtEnd);
 | |
| }
 | |
| 
 | |
| bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
 | |
|   if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
 | |
|     return false;
 | |
| 
 | |
|   if (SrcTy == DestTy)
 | |
|     return true;
 | |
| 
 | |
|   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
 | |
|     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
 | |
|       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
 | |
|         // An element by element cast. Valid if casting the elements is valid.
 | |
|         SrcTy = SrcVecTy->getElementType();
 | |
|         DestTy = DestVecTy->getElementType();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
 | |
|     if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
 | |
|       return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
 | |
|   TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
 | |
| 
 | |
|   // Could still have vectors of pointers if the number of elements doesn't
 | |
|   // match
 | |
|   if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
 | |
|     return false;
 | |
| 
 | |
|   if (SrcBits != DestBits)
 | |
|     return false;
 | |
| 
 | |
|   if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
 | |
|     return false;
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
 | |
|                                           const DataLayout &DL) {
 | |
|   // ptrtoint and inttoptr are not allowed on non-integral pointers
 | |
|   if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
 | |
|     if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
 | |
|       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
 | |
|               !DL.isNonIntegralPointerType(PtrTy));
 | |
|   if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
 | |
|     if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
 | |
|       return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
 | |
|               !DL.isNonIntegralPointerType(PtrTy));
 | |
| 
 | |
|   return isBitCastable(SrcTy, DestTy);
 | |
| }
 | |
| 
 | |
| // Provide a way to get a "cast" where the cast opcode is inferred from the
 | |
| // types and size of the operand. This, basically, is a parallel of the
 | |
| // logic in the castIsValid function below.  This axiom should hold:
 | |
| //   castIsValid( getCastOpcode(Val, Ty), Val, Ty)
 | |
| // should not assert in castIsValid. In other words, this produces a "correct"
 | |
| // casting opcode for the arguments passed to it.
 | |
| Instruction::CastOps
 | |
| CastInst::getCastOpcode(
 | |
|   const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
 | |
|   Type *SrcTy = Src->getType();
 | |
| 
 | |
|   assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
 | |
|          "Only first class types are castable!");
 | |
| 
 | |
|   if (SrcTy == DestTy)
 | |
|     return BitCast;
 | |
| 
 | |
|   // FIXME: Check address space sizes here
 | |
|   if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
 | |
|     if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
 | |
|       if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
 | |
|         // An element by element cast.  Find the appropriate opcode based on the
 | |
|         // element types.
 | |
|         SrcTy = SrcVecTy->getElementType();
 | |
|         DestTy = DestVecTy->getElementType();
 | |
|       }
 | |
| 
 | |
|   // Get the bit sizes, we'll need these
 | |
|   unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr
 | |
|   unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
 | |
| 
 | |
|   // Run through the possibilities ...
 | |
|   if (DestTy->isIntegerTy()) {                      // Casting to integral
 | |
|     if (SrcTy->isIntegerTy()) {                     // Casting from integral
 | |
|       if (DestBits < SrcBits)
 | |
|         return Trunc;                               // int -> smaller int
 | |
|       else if (DestBits > SrcBits) {                // its an extension
 | |
|         if (SrcIsSigned)
 | |
|           return SExt;                              // signed -> SEXT
 | |
|         else
 | |
|           return ZExt;                              // unsigned -> ZEXT
 | |
|       } else {
 | |
|         return BitCast;                             // Same size, No-op cast
 | |
|       }
 | |
|     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
 | |
|       if (DestIsSigned)
 | |
|         return FPToSI;                              // FP -> sint
 | |
|       else
 | |
|         return FPToUI;                              // FP -> uint
 | |
|     } else if (SrcTy->isVectorTy()) {
 | |
|       assert(DestBits == SrcBits &&
 | |
|              "Casting vector to integer of different width");
 | |
|       return BitCast;                             // Same size, no-op cast
 | |
|     } else {
 | |
|       assert(SrcTy->isPointerTy() &&
 | |
|              "Casting from a value that is not first-class type");
 | |
|       return PtrToInt;                              // ptr -> int
 | |
|     }
 | |
|   } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt
 | |
|     if (SrcTy->isIntegerTy()) {                     // Casting from integral
 | |
|       if (SrcIsSigned)
 | |
|         return SIToFP;                              // sint -> FP
 | |
|       else
 | |
|         return UIToFP;                              // uint -> FP
 | |
|     } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt
 | |
|       if (DestBits < SrcBits) {
 | |
|         return FPTrunc;                             // FP -> smaller FP
 | |
|       } else if (DestBits > SrcBits) {
 | |
|         return FPExt;                               // FP -> larger FP
 | |
|       } else  {
 | |
|         return BitCast;                             // same size, no-op cast
 | |
|       }
 | |
|     } else if (SrcTy->isVectorTy()) {
 | |
|       assert(DestBits == SrcBits &&
 | |
|              "Casting vector to floating point of different width");
 | |
|       return BitCast;                             // same size, no-op cast
 | |
|     }
 | |
|     llvm_unreachable("Casting pointer or non-first class to float");
 | |
|   } else if (DestTy->isVectorTy()) {
 | |
|     assert(DestBits == SrcBits &&
 | |
|            "Illegal cast to vector (wrong type or size)");
 | |
|     return BitCast;
 | |
|   } else if (DestTy->isPointerTy()) {
 | |
|     if (SrcTy->isPointerTy()) {
 | |
|       if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
 | |
|         return AddrSpaceCast;
 | |
|       return BitCast;                               // ptr -> ptr
 | |
|     } else if (SrcTy->isIntegerTy()) {
 | |
|       return IntToPtr;                              // int -> ptr
 | |
|     }
 | |
|     llvm_unreachable("Casting pointer to other than pointer or int");
 | |
|   } else if (DestTy->isX86_MMXTy()) {
 | |
|     if (SrcTy->isVectorTy()) {
 | |
|       assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
 | |
|       return BitCast;                               // 64-bit vector to MMX
 | |
|     }
 | |
|     llvm_unreachable("Illegal cast to X86_MMX");
 | |
|   }
 | |
|   llvm_unreachable("Casting to type that is not first-class");
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                    CastInst SubClass Constructors
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Check that the construction parameters for a CastInst are correct. This
 | |
| /// could be broken out into the separate constructors but it is useful to have
 | |
| /// it in one place and to eliminate the redundant code for getting the sizes
 | |
| /// of the types involved.
 | |
| bool
 | |
| CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
 | |
|   if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
 | |
|       SrcTy->isAggregateType() || DstTy->isAggregateType())
 | |
|     return false;
 | |
| 
 | |
|   // Get the size of the types in bits, and whether we are dealing
 | |
|   // with vector types, we'll need this later.
 | |
|   bool SrcIsVec = isa<VectorType>(SrcTy);
 | |
|   bool DstIsVec = isa<VectorType>(DstTy);
 | |
|   unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
 | |
|   unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
 | |
| 
 | |
|   // If these are vector types, get the lengths of the vectors (using zero for
 | |
|   // scalar types means that checking that vector lengths match also checks that
 | |
|   // scalars are not being converted to vectors or vectors to scalars).
 | |
|   ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
 | |
|                                 : ElementCount::getFixed(0);
 | |
|   ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
 | |
|                                 : ElementCount::getFixed(0);
 | |
| 
 | |
|   // Switch on the opcode provided
 | |
|   switch (op) {
 | |
|   default: return false; // This is an input error
 | |
|   case Instruction::Trunc:
 | |
|     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
 | |
|            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
 | |
|   case Instruction::ZExt:
 | |
|     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
 | |
|            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
 | |
|   case Instruction::SExt:
 | |
|     return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
 | |
|            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
 | |
|   case Instruction::FPTrunc:
 | |
|     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
 | |
|            SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
 | |
|   case Instruction::FPExt:
 | |
|     return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
 | |
|            SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
 | |
|   case Instruction::UIToFP:
 | |
|   case Instruction::SIToFP:
 | |
|     return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
 | |
|            SrcEC == DstEC;
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|     return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
 | |
|            SrcEC == DstEC;
 | |
|   case Instruction::PtrToInt:
 | |
|     if (SrcEC != DstEC)
 | |
|       return false;
 | |
|     return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
 | |
|   case Instruction::IntToPtr:
 | |
|     if (SrcEC != DstEC)
 | |
|       return false;
 | |
|     return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
 | |
|   case Instruction::BitCast: {
 | |
|     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
 | |
|     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
 | |
| 
 | |
|     // BitCast implies a no-op cast of type only. No bits change.
 | |
|     // However, you can't cast pointers to anything but pointers.
 | |
|     if (!SrcPtrTy != !DstPtrTy)
 | |
|       return false;
 | |
| 
 | |
|     // For non-pointer cases, the cast is okay if the source and destination bit
 | |
|     // widths are identical.
 | |
|     if (!SrcPtrTy)
 | |
|       return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
 | |
| 
 | |
|     // If both are pointers then the address spaces must match.
 | |
|     if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
 | |
|       return false;
 | |
| 
 | |
|     // A vector of pointers must have the same number of elements.
 | |
|     if (SrcIsVec && DstIsVec)
 | |
|       return SrcEC == DstEC;
 | |
|     if (SrcIsVec)
 | |
|       return SrcEC == ElementCount::getFixed(1);
 | |
|     if (DstIsVec)
 | |
|       return DstEC == ElementCount::getFixed(1);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
|   case Instruction::AddrSpaceCast: {
 | |
|     PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
 | |
|     if (!SrcPtrTy)
 | |
|       return false;
 | |
| 
 | |
|     PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
 | |
|     if (!DstPtrTy)
 | |
|       return false;
 | |
| 
 | |
|     if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
 | |
|       return false;
 | |
| 
 | |
|     return SrcEC == DstEC;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| TruncInst::TruncInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
 | |
| }
 | |
| 
 | |
| TruncInst::TruncInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
 | |
| }
 | |
| 
 | |
| ZExtInst::ZExtInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| )  : CastInst(Ty, ZExt, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
 | |
| }
 | |
| 
 | |
| ZExtInst::ZExtInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| )  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
 | |
| }
 | |
| SExtInst::SExtInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
 | |
| }
 | |
| 
 | |
| SExtInst::SExtInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| )  : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
 | |
| }
 | |
| 
 | |
| FPTruncInst::FPTruncInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
 | |
| }
 | |
| 
 | |
| FPTruncInst::FPTruncInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
 | |
| }
 | |
| 
 | |
| FPExtInst::FPExtInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
 | |
| }
 | |
| 
 | |
| FPExtInst::FPExtInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
 | |
| }
 | |
| 
 | |
| UIToFPInst::UIToFPInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
 | |
| }
 | |
| 
 | |
| UIToFPInst::UIToFPInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
 | |
| }
 | |
| 
 | |
| SIToFPInst::SIToFPInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
 | |
| }
 | |
| 
 | |
| SIToFPInst::SIToFPInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
 | |
| }
 | |
| 
 | |
| FPToUIInst::FPToUIInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
 | |
| }
 | |
| 
 | |
| FPToUIInst::FPToUIInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
 | |
| }
 | |
| 
 | |
| FPToSIInst::FPToSIInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
 | |
| }
 | |
| 
 | |
| FPToSIInst::FPToSIInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
 | |
| }
 | |
| 
 | |
| PtrToIntInst::PtrToIntInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
 | |
| }
 | |
| 
 | |
| PtrToIntInst::PtrToIntInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
 | |
| }
 | |
| 
 | |
| IntToPtrInst::IntToPtrInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
 | |
| }
 | |
| 
 | |
| IntToPtrInst::IntToPtrInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
 | |
| }
 | |
| 
 | |
| BitCastInst::BitCastInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
 | |
| }
 | |
| 
 | |
| BitCastInst::BitCastInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
 | |
| }
 | |
| 
 | |
| AddrSpaceCastInst::AddrSpaceCastInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
 | |
| ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
 | |
| }
 | |
| 
 | |
| AddrSpaceCastInst::AddrSpaceCastInst(
 | |
|   Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
 | |
| ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
 | |
|   assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                               CmpInst Classes
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
 | |
|                  Value *RHS, const Twine &Name, Instruction *InsertBefore,
 | |
|                  Instruction *FlagsSource)
 | |
|   : Instruction(ty, op,
 | |
|                 OperandTraits<CmpInst>::op_begin(this),
 | |
|                 OperandTraits<CmpInst>::operands(this),
 | |
|                 InsertBefore) {
 | |
|   Op<0>() = LHS;
 | |
|   Op<1>() = RHS;
 | |
|   setPredicate((Predicate)predicate);
 | |
|   setName(Name);
 | |
|   if (FlagsSource)
 | |
|     copyIRFlags(FlagsSource);
 | |
| }
 | |
| 
 | |
| CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
 | |
|                  Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
 | |
|   : Instruction(ty, op,
 | |
|                 OperandTraits<CmpInst>::op_begin(this),
 | |
|                 OperandTraits<CmpInst>::operands(this),
 | |
|                 InsertAtEnd) {
 | |
|   Op<0>() = LHS;
 | |
|   Op<1>() = RHS;
 | |
|   setPredicate((Predicate)predicate);
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| CmpInst *
 | |
| CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
 | |
|                 const Twine &Name, Instruction *InsertBefore) {
 | |
|   if (Op == Instruction::ICmp) {
 | |
|     if (InsertBefore)
 | |
|       return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
 | |
|                           S1, S2, Name);
 | |
|     else
 | |
|       return new ICmpInst(CmpInst::Predicate(predicate),
 | |
|                           S1, S2, Name);
 | |
|   }
 | |
| 
 | |
|   if (InsertBefore)
 | |
|     return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
 | |
|                         S1, S2, Name);
 | |
|   else
 | |
|     return new FCmpInst(CmpInst::Predicate(predicate),
 | |
|                         S1, S2, Name);
 | |
| }
 | |
| 
 | |
| CmpInst *
 | |
| CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
 | |
|                 const Twine &Name, BasicBlock *InsertAtEnd) {
 | |
|   if (Op == Instruction::ICmp) {
 | |
|     return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
 | |
|                         S1, S2, Name);
 | |
|   }
 | |
|   return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
 | |
|                       S1, S2, Name);
 | |
| }
 | |
| 
 | |
| void CmpInst::swapOperands() {
 | |
|   if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
 | |
|     IC->swapOperands();
 | |
|   else
 | |
|     cast<FCmpInst>(this)->swapOperands();
 | |
| }
 | |
| 
 | |
| bool CmpInst::isCommutative() const {
 | |
|   if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
 | |
|     return IC->isCommutative();
 | |
|   return cast<FCmpInst>(this)->isCommutative();
 | |
| }
 | |
| 
 | |
| bool CmpInst::isEquality(Predicate P) {
 | |
|   if (ICmpInst::isIntPredicate(P))
 | |
|     return ICmpInst::isEquality(P);
 | |
|   if (FCmpInst::isFPPredicate(P))
 | |
|     return FCmpInst::isEquality(P);
 | |
|   llvm_unreachable("Unsupported predicate kind");
 | |
| }
 | |
| 
 | |
| CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|     default: llvm_unreachable("Unknown cmp predicate!");
 | |
|     case ICMP_EQ: return ICMP_NE;
 | |
|     case ICMP_NE: return ICMP_EQ;
 | |
|     case ICMP_UGT: return ICMP_ULE;
 | |
|     case ICMP_ULT: return ICMP_UGE;
 | |
|     case ICMP_UGE: return ICMP_ULT;
 | |
|     case ICMP_ULE: return ICMP_UGT;
 | |
|     case ICMP_SGT: return ICMP_SLE;
 | |
|     case ICMP_SLT: return ICMP_SGE;
 | |
|     case ICMP_SGE: return ICMP_SLT;
 | |
|     case ICMP_SLE: return ICMP_SGT;
 | |
| 
 | |
|     case FCMP_OEQ: return FCMP_UNE;
 | |
|     case FCMP_ONE: return FCMP_UEQ;
 | |
|     case FCMP_OGT: return FCMP_ULE;
 | |
|     case FCMP_OLT: return FCMP_UGE;
 | |
|     case FCMP_OGE: return FCMP_ULT;
 | |
|     case FCMP_OLE: return FCMP_UGT;
 | |
|     case FCMP_UEQ: return FCMP_ONE;
 | |
|     case FCMP_UNE: return FCMP_OEQ;
 | |
|     case FCMP_UGT: return FCMP_OLE;
 | |
|     case FCMP_ULT: return FCMP_OGE;
 | |
|     case FCMP_UGE: return FCMP_OLT;
 | |
|     case FCMP_ULE: return FCMP_OGT;
 | |
|     case FCMP_ORD: return FCMP_UNO;
 | |
|     case FCMP_UNO: return FCMP_ORD;
 | |
|     case FCMP_TRUE: return FCMP_FALSE;
 | |
|     case FCMP_FALSE: return FCMP_TRUE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| StringRef CmpInst::getPredicateName(Predicate Pred) {
 | |
|   switch (Pred) {
 | |
|   default:                   return "unknown";
 | |
|   case FCmpInst::FCMP_FALSE: return "false";
 | |
|   case FCmpInst::FCMP_OEQ:   return "oeq";
 | |
|   case FCmpInst::FCMP_OGT:   return "ogt";
 | |
|   case FCmpInst::FCMP_OGE:   return "oge";
 | |
|   case FCmpInst::FCMP_OLT:   return "olt";
 | |
|   case FCmpInst::FCMP_OLE:   return "ole";
 | |
|   case FCmpInst::FCMP_ONE:   return "one";
 | |
|   case FCmpInst::FCMP_ORD:   return "ord";
 | |
|   case FCmpInst::FCMP_UNO:   return "uno";
 | |
|   case FCmpInst::FCMP_UEQ:   return "ueq";
 | |
|   case FCmpInst::FCMP_UGT:   return "ugt";
 | |
|   case FCmpInst::FCMP_UGE:   return "uge";
 | |
|   case FCmpInst::FCMP_ULT:   return "ult";
 | |
|   case FCmpInst::FCMP_ULE:   return "ule";
 | |
|   case FCmpInst::FCMP_UNE:   return "une";
 | |
|   case FCmpInst::FCMP_TRUE:  return "true";
 | |
|   case ICmpInst::ICMP_EQ:    return "eq";
 | |
|   case ICmpInst::ICMP_NE:    return "ne";
 | |
|   case ICmpInst::ICMP_SGT:   return "sgt";
 | |
|   case ICmpInst::ICMP_SGE:   return "sge";
 | |
|   case ICmpInst::ICMP_SLT:   return "slt";
 | |
|   case ICmpInst::ICMP_SLE:   return "sle";
 | |
|   case ICmpInst::ICMP_UGT:   return "ugt";
 | |
|   case ICmpInst::ICMP_UGE:   return "uge";
 | |
|   case ICmpInst::ICMP_ULT:   return "ult";
 | |
|   case ICmpInst::ICMP_ULE:   return "ule";
 | |
|   }
 | |
| }
 | |
| 
 | |
| ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|     default: llvm_unreachable("Unknown icmp predicate!");
 | |
|     case ICMP_EQ: case ICMP_NE:
 | |
|     case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
 | |
|        return pred;
 | |
|     case ICMP_UGT: return ICMP_SGT;
 | |
|     case ICMP_ULT: return ICMP_SLT;
 | |
|     case ICMP_UGE: return ICMP_SGE;
 | |
|     case ICMP_ULE: return ICMP_SLE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|     default: llvm_unreachable("Unknown icmp predicate!");
 | |
|     case ICMP_EQ: case ICMP_NE:
 | |
|     case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
 | |
|        return pred;
 | |
|     case ICMP_SGT: return ICMP_UGT;
 | |
|     case ICMP_SLT: return ICMP_ULT;
 | |
|     case ICMP_SGE: return ICMP_UGE;
 | |
|     case ICMP_SLE: return ICMP_ULE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|     default: llvm_unreachable("Unknown cmp predicate!");
 | |
|     case ICMP_EQ: case ICMP_NE:
 | |
|       return pred;
 | |
|     case ICMP_SGT: return ICMP_SLT;
 | |
|     case ICMP_SLT: return ICMP_SGT;
 | |
|     case ICMP_SGE: return ICMP_SLE;
 | |
|     case ICMP_SLE: return ICMP_SGE;
 | |
|     case ICMP_UGT: return ICMP_ULT;
 | |
|     case ICMP_ULT: return ICMP_UGT;
 | |
|     case ICMP_UGE: return ICMP_ULE;
 | |
|     case ICMP_ULE: return ICMP_UGE;
 | |
| 
 | |
|     case FCMP_FALSE: case FCMP_TRUE:
 | |
|     case FCMP_OEQ: case FCMP_ONE:
 | |
|     case FCMP_UEQ: case FCMP_UNE:
 | |
|     case FCMP_ORD: case FCMP_UNO:
 | |
|       return pred;
 | |
|     case FCMP_OGT: return FCMP_OLT;
 | |
|     case FCMP_OLT: return FCMP_OGT;
 | |
|     case FCMP_OGE: return FCMP_OLE;
 | |
|     case FCMP_OLE: return FCMP_OGE;
 | |
|     case FCMP_UGT: return FCMP_ULT;
 | |
|     case FCMP_ULT: return FCMP_UGT;
 | |
|     case FCMP_UGE: return FCMP_ULE;
 | |
|     case FCMP_ULE: return FCMP_UGE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CmpInst::isNonStrictPredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|   case ICMP_SGE:
 | |
|   case ICMP_SLE:
 | |
|   case ICMP_UGE:
 | |
|   case ICMP_ULE:
 | |
|   case FCMP_OGE:
 | |
|   case FCMP_OLE:
 | |
|   case FCMP_UGE:
 | |
|   case FCMP_ULE:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CmpInst::isStrictPredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|   case ICMP_SGT:
 | |
|   case ICMP_SLT:
 | |
|   case ICMP_UGT:
 | |
|   case ICMP_ULT:
 | |
|   case FCMP_OGT:
 | |
|   case FCMP_OLT:
 | |
|   case FCMP_UGT:
 | |
|   case FCMP_ULT:
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|   case ICMP_SGE:
 | |
|     return ICMP_SGT;
 | |
|   case ICMP_SLE:
 | |
|     return ICMP_SLT;
 | |
|   case ICMP_UGE:
 | |
|     return ICMP_UGT;
 | |
|   case ICMP_ULE:
 | |
|     return ICMP_ULT;
 | |
|   case FCMP_OGE:
 | |
|     return FCMP_OGT;
 | |
|   case FCMP_OLE:
 | |
|     return FCMP_OLT;
 | |
|   case FCMP_UGE:
 | |
|     return FCMP_UGT;
 | |
|   case FCMP_ULE:
 | |
|     return FCMP_ULT;
 | |
|   default:
 | |
|     return pred;
 | |
|   }
 | |
| }
 | |
| 
 | |
| CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
 | |
|   switch (pred) {
 | |
|   case ICMP_SGT:
 | |
|     return ICMP_SGE;
 | |
|   case ICMP_SLT:
 | |
|     return ICMP_SLE;
 | |
|   case ICMP_UGT:
 | |
|     return ICMP_UGE;
 | |
|   case ICMP_ULT:
 | |
|     return ICMP_ULE;
 | |
|   case FCMP_OGT:
 | |
|     return FCMP_OGE;
 | |
|   case FCMP_OLT:
 | |
|     return FCMP_OLE;
 | |
|   case FCMP_UGT:
 | |
|     return FCMP_UGE;
 | |
|   case FCMP_ULT:
 | |
|     return FCMP_ULE;
 | |
|   default:
 | |
|     return pred;
 | |
|   }
 | |
| }
 | |
| 
 | |
| CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
 | |
|   assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
 | |
| 
 | |
|   if (isStrictPredicate(pred))
 | |
|     return getNonStrictPredicate(pred);
 | |
|   if (isNonStrictPredicate(pred))
 | |
|     return getStrictPredicate(pred);
 | |
| 
 | |
|   llvm_unreachable("Unknown predicate!");
 | |
| }
 | |
| 
 | |
| CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
 | |
|   assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
 | |
| 
 | |
|   switch (pred) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown predicate!");
 | |
|   case CmpInst::ICMP_ULT:
 | |
|     return CmpInst::ICMP_SLT;
 | |
|   case CmpInst::ICMP_ULE:
 | |
|     return CmpInst::ICMP_SLE;
 | |
|   case CmpInst::ICMP_UGT:
 | |
|     return CmpInst::ICMP_SGT;
 | |
|   case CmpInst::ICMP_UGE:
 | |
|     return CmpInst::ICMP_SGE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
 | |
|   assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
 | |
| 
 | |
|   switch (pred) {
 | |
|   default:
 | |
|     llvm_unreachable("Unknown predicate!");
 | |
|   case CmpInst::ICMP_SLT:
 | |
|     return CmpInst::ICMP_ULT;
 | |
|   case CmpInst::ICMP_SLE:
 | |
|     return CmpInst::ICMP_ULE;
 | |
|   case CmpInst::ICMP_SGT:
 | |
|     return CmpInst::ICMP_UGT;
 | |
|   case CmpInst::ICMP_SGE:
 | |
|     return CmpInst::ICMP_UGE;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CmpInst::isUnsigned(Predicate predicate) {
 | |
|   switch (predicate) {
 | |
|     default: return false;
 | |
|     case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
 | |
|     case ICmpInst::ICMP_UGE: return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CmpInst::isSigned(Predicate predicate) {
 | |
|   switch (predicate) {
 | |
|     default: return false;
 | |
|     case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
 | |
|     case ICmpInst::ICMP_SGE: return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
 | |
|   assert(CmpInst::isRelational(pred) &&
 | |
|          "Call only with non-equality predicates!");
 | |
| 
 | |
|   if (isSigned(pred))
 | |
|     return getUnsignedPredicate(pred);
 | |
|   if (isUnsigned(pred))
 | |
|     return getSignedPredicate(pred);
 | |
| 
 | |
|   llvm_unreachable("Unknown predicate!");
 | |
| }
 | |
| 
 | |
| bool CmpInst::isOrdered(Predicate predicate) {
 | |
|   switch (predicate) {
 | |
|     default: return false;
 | |
|     case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
 | |
|     case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
 | |
|     case FCmpInst::FCMP_ORD: return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CmpInst::isUnordered(Predicate predicate) {
 | |
|   switch (predicate) {
 | |
|     default: return false;
 | |
|     case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
 | |
|     case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
 | |
|     case FCmpInst::FCMP_UNO: return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CmpInst::isTrueWhenEqual(Predicate predicate) {
 | |
|   switch(predicate) {
 | |
|     default: return false;
 | |
|     case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
 | |
|     case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CmpInst::isFalseWhenEqual(Predicate predicate) {
 | |
|   switch(predicate) {
 | |
|   case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
 | |
|   case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
 | |
|   default: return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
 | |
|   // If the predicates match, then we know the first condition implies the
 | |
|   // second is true.
 | |
|   if (Pred1 == Pred2)
 | |
|     return true;
 | |
| 
 | |
|   switch (Pred1) {
 | |
|   default:
 | |
|     break;
 | |
|   case ICMP_EQ:
 | |
|     // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
 | |
|     return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
 | |
|            Pred2 == ICMP_SLE;
 | |
|   case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
 | |
|     return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
 | |
|   case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
 | |
|     return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
 | |
|   case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
 | |
|     return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
 | |
|   case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
 | |
|     return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
 | |
|   return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        SwitchInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
 | |
|   assert(Value && Default && NumReserved);
 | |
|   ReservedSpace = NumReserved;
 | |
|   setNumHungOffUseOperands(2);
 | |
|   allocHungoffUses(ReservedSpace);
 | |
| 
 | |
|   Op<0>() = Value;
 | |
|   Op<1>() = Default;
 | |
| }
 | |
| 
 | |
| /// SwitchInst ctor - Create a new switch instruction, specifying a value to
 | |
| /// switch on and a default destination.  The number of additional cases can
 | |
| /// be specified here to make memory allocation more efficient.  This
 | |
| /// constructor can also autoinsert before another instruction.
 | |
| SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
 | |
|                        Instruction *InsertBefore)
 | |
|     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
 | |
|                   nullptr, 0, InsertBefore) {
 | |
|   init(Value, Default, 2+NumCases*2);
 | |
| }
 | |
| 
 | |
| /// SwitchInst ctor - Create a new switch instruction, specifying a value to
 | |
| /// switch on and a default destination.  The number of additional cases can
 | |
| /// be specified here to make memory allocation more efficient.  This
 | |
| /// constructor also autoinserts at the end of the specified BasicBlock.
 | |
| SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
 | |
|                        BasicBlock *InsertAtEnd)
 | |
|     : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
 | |
|                   nullptr, 0, InsertAtEnd) {
 | |
|   init(Value, Default, 2+NumCases*2);
 | |
| }
 | |
| 
 | |
| SwitchInst::SwitchInst(const SwitchInst &SI)
 | |
|     : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
 | |
|   init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
 | |
|   setNumHungOffUseOperands(SI.getNumOperands());
 | |
|   Use *OL = getOperandList();
 | |
|   const Use *InOL = SI.getOperandList();
 | |
|   for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
 | |
|     OL[i] = InOL[i];
 | |
|     OL[i+1] = InOL[i+1];
 | |
|   }
 | |
|   SubclassOptionalData = SI.SubclassOptionalData;
 | |
| }
 | |
| 
 | |
| /// addCase - Add an entry to the switch instruction...
 | |
| ///
 | |
| void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
 | |
|   unsigned NewCaseIdx = getNumCases();
 | |
|   unsigned OpNo = getNumOperands();
 | |
|   if (OpNo+2 > ReservedSpace)
 | |
|     growOperands();  // Get more space!
 | |
|   // Initialize some new operands.
 | |
|   assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
 | |
|   setNumHungOffUseOperands(OpNo+2);
 | |
|   CaseHandle Case(this, NewCaseIdx);
 | |
|   Case.setValue(OnVal);
 | |
|   Case.setSuccessor(Dest);
 | |
| }
 | |
| 
 | |
| /// removeCase - This method removes the specified case and its successor
 | |
| /// from the switch instruction.
 | |
| SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
 | |
|   unsigned idx = I->getCaseIndex();
 | |
| 
 | |
|   assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
 | |
| 
 | |
|   unsigned NumOps = getNumOperands();
 | |
|   Use *OL = getOperandList();
 | |
| 
 | |
|   // Overwrite this case with the end of the list.
 | |
|   if (2 + (idx + 1) * 2 != NumOps) {
 | |
|     OL[2 + idx * 2] = OL[NumOps - 2];
 | |
|     OL[2 + idx * 2 + 1] = OL[NumOps - 1];
 | |
|   }
 | |
| 
 | |
|   // Nuke the last value.
 | |
|   OL[NumOps-2].set(nullptr);
 | |
|   OL[NumOps-2+1].set(nullptr);
 | |
|   setNumHungOffUseOperands(NumOps-2);
 | |
| 
 | |
|   return CaseIt(this, idx);
 | |
| }
 | |
| 
 | |
| /// growOperands - grow operands - This grows the operand list in response
 | |
| /// to a push_back style of operation.  This grows the number of ops by 3 times.
 | |
| ///
 | |
| void SwitchInst::growOperands() {
 | |
|   unsigned e = getNumOperands();
 | |
|   unsigned NumOps = e*3;
 | |
| 
 | |
|   ReservedSpace = NumOps;
 | |
|   growHungoffUses(ReservedSpace);
 | |
| }
 | |
| 
 | |
| MDNode *
 | |
| SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
 | |
|   if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
 | |
|     if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
 | |
|       if (MDName->getString() == "branch_weights")
 | |
|         return ProfileData;
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
 | |
|   assert(Changed && "called only if metadata has changed");
 | |
| 
 | |
|   if (!Weights)
 | |
|     return nullptr;
 | |
| 
 | |
|   assert(SI.getNumSuccessors() == Weights->size() &&
 | |
|          "num of prof branch_weights must accord with num of successors");
 | |
| 
 | |
|   bool AllZeroes =
 | |
|       all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
 | |
| 
 | |
|   if (AllZeroes || Weights.getValue().size() < 2)
 | |
|     return nullptr;
 | |
| 
 | |
|   return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
 | |
| }
 | |
| 
 | |
| void SwitchInstProfUpdateWrapper::init() {
 | |
|   MDNode *ProfileData = getProfBranchWeightsMD(SI);
 | |
|   if (!ProfileData)
 | |
|     return;
 | |
| 
 | |
|   if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
 | |
|     llvm_unreachable("number of prof branch_weights metadata operands does "
 | |
|                      "not correspond to number of succesors");
 | |
|   }
 | |
| 
 | |
|   SmallVector<uint32_t, 8> Weights;
 | |
|   for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
 | |
|     ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
 | |
|     uint32_t CW = C->getValue().getZExtValue();
 | |
|     Weights.push_back(CW);
 | |
|   }
 | |
|   this->Weights = std::move(Weights);
 | |
| }
 | |
| 
 | |
| SwitchInst::CaseIt
 | |
| SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
 | |
|   if (Weights) {
 | |
|     assert(SI.getNumSuccessors() == Weights->size() &&
 | |
|            "num of prof branch_weights must accord with num of successors");
 | |
|     Changed = true;
 | |
|     // Copy the last case to the place of the removed one and shrink.
 | |
|     // This is tightly coupled with the way SwitchInst::removeCase() removes
 | |
|     // the cases in SwitchInst::removeCase(CaseIt).
 | |
|     Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
 | |
|     Weights.getValue().pop_back();
 | |
|   }
 | |
|   return SI.removeCase(I);
 | |
| }
 | |
| 
 | |
| void SwitchInstProfUpdateWrapper::addCase(
 | |
|     ConstantInt *OnVal, BasicBlock *Dest,
 | |
|     SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
 | |
|   SI.addCase(OnVal, Dest);
 | |
| 
 | |
|   if (!Weights && W && *W) {
 | |
|     Changed = true;
 | |
|     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
 | |
|     Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
 | |
|   } else if (Weights) {
 | |
|     Changed = true;
 | |
|     Weights.getValue().push_back(W ? *W : 0);
 | |
|   }
 | |
|   if (Weights)
 | |
|     assert(SI.getNumSuccessors() == Weights->size() &&
 | |
|            "num of prof branch_weights must accord with num of successors");
 | |
| }
 | |
| 
 | |
| SymbolTableList<Instruction>::iterator
 | |
| SwitchInstProfUpdateWrapper::eraseFromParent() {
 | |
|   // Instruction is erased. Mark as unchanged to not touch it in the destructor.
 | |
|   Changed = false;
 | |
|   if (Weights)
 | |
|     Weights->resize(0);
 | |
|   return SI.eraseFromParent();
 | |
| }
 | |
| 
 | |
| SwitchInstProfUpdateWrapper::CaseWeightOpt
 | |
| SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
 | |
|   if (!Weights)
 | |
|     return None;
 | |
|   return Weights.getValue()[idx];
 | |
| }
 | |
| 
 | |
| void SwitchInstProfUpdateWrapper::setSuccessorWeight(
 | |
|     unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
 | |
|   if (!W)
 | |
|     return;
 | |
| 
 | |
|   if (!Weights && *W)
 | |
|     Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
 | |
| 
 | |
|   if (Weights) {
 | |
|     auto &OldW = Weights.getValue()[idx];
 | |
|     if (*W != OldW) {
 | |
|       Changed = true;
 | |
|       OldW = *W;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| SwitchInstProfUpdateWrapper::CaseWeightOpt
 | |
| SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
 | |
|                                                 unsigned idx) {
 | |
|   if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
 | |
|     if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
 | |
|       return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
 | |
|           ->getValue()
 | |
|           .getZExtValue();
 | |
| 
 | |
|   return None;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        IndirectBrInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void IndirectBrInst::init(Value *Address, unsigned NumDests) {
 | |
|   assert(Address && Address->getType()->isPointerTy() &&
 | |
|          "Address of indirectbr must be a pointer");
 | |
|   ReservedSpace = 1+NumDests;
 | |
|   setNumHungOffUseOperands(1);
 | |
|   allocHungoffUses(ReservedSpace);
 | |
| 
 | |
|   Op<0>() = Address;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// growOperands - grow operands - This grows the operand list in response
 | |
| /// to a push_back style of operation.  This grows the number of ops by 2 times.
 | |
| ///
 | |
| void IndirectBrInst::growOperands() {
 | |
|   unsigned e = getNumOperands();
 | |
|   unsigned NumOps = e*2;
 | |
| 
 | |
|   ReservedSpace = NumOps;
 | |
|   growHungoffUses(ReservedSpace);
 | |
| }
 | |
| 
 | |
| IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
 | |
|                                Instruction *InsertBefore)
 | |
|     : Instruction(Type::getVoidTy(Address->getContext()),
 | |
|                   Instruction::IndirectBr, nullptr, 0, InsertBefore) {
 | |
|   init(Address, NumCases);
 | |
| }
 | |
| 
 | |
| IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
 | |
|                                BasicBlock *InsertAtEnd)
 | |
|     : Instruction(Type::getVoidTy(Address->getContext()),
 | |
|                   Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
 | |
|   init(Address, NumCases);
 | |
| }
 | |
| 
 | |
| IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
 | |
|     : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
 | |
|                   nullptr, IBI.getNumOperands()) {
 | |
|   allocHungoffUses(IBI.getNumOperands());
 | |
|   Use *OL = getOperandList();
 | |
|   const Use *InOL = IBI.getOperandList();
 | |
|   for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
 | |
|     OL[i] = InOL[i];
 | |
|   SubclassOptionalData = IBI.SubclassOptionalData;
 | |
| }
 | |
| 
 | |
| /// addDestination - Add a destination.
 | |
| ///
 | |
| void IndirectBrInst::addDestination(BasicBlock *DestBB) {
 | |
|   unsigned OpNo = getNumOperands();
 | |
|   if (OpNo+1 > ReservedSpace)
 | |
|     growOperands();  // Get more space!
 | |
|   // Initialize some new operands.
 | |
|   assert(OpNo < ReservedSpace && "Growing didn't work!");
 | |
|   setNumHungOffUseOperands(OpNo+1);
 | |
|   getOperandList()[OpNo] = DestBB;
 | |
| }
 | |
| 
 | |
| /// removeDestination - This method removes the specified successor from the
 | |
| /// indirectbr instruction.
 | |
| void IndirectBrInst::removeDestination(unsigned idx) {
 | |
|   assert(idx < getNumOperands()-1 && "Successor index out of range!");
 | |
| 
 | |
|   unsigned NumOps = getNumOperands();
 | |
|   Use *OL = getOperandList();
 | |
| 
 | |
|   // Replace this value with the last one.
 | |
|   OL[idx+1] = OL[NumOps-1];
 | |
| 
 | |
|   // Nuke the last value.
 | |
|   OL[NumOps-1].set(nullptr);
 | |
|   setNumHungOffUseOperands(NumOps-1);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            FreezeInst Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| FreezeInst::FreezeInst(Value *S,
 | |
|                        const Twine &Name, Instruction *InsertBefore)
 | |
|     : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| FreezeInst::FreezeInst(Value *S,
 | |
|                        const Twine &Name, BasicBlock *InsertAtEnd)
 | |
|     : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
 | |
|   setName(Name);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           cloneImpl() implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Define these methods here so vtables don't get emitted into every translation
 | |
| // unit that uses these classes.
 | |
| 
 | |
| GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
 | |
|   return new (getNumOperands()) GetElementPtrInst(*this);
 | |
| }
 | |
| 
 | |
| UnaryOperator *UnaryOperator::cloneImpl() const {
 | |
|   return Create(getOpcode(), Op<0>());
 | |
| }
 | |
| 
 | |
| BinaryOperator *BinaryOperator::cloneImpl() const {
 | |
|   return Create(getOpcode(), Op<0>(), Op<1>());
 | |
| }
 | |
| 
 | |
| FCmpInst *FCmpInst::cloneImpl() const {
 | |
|   return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
 | |
| }
 | |
| 
 | |
| ICmpInst *ICmpInst::cloneImpl() const {
 | |
|   return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
 | |
| }
 | |
| 
 | |
| ExtractValueInst *ExtractValueInst::cloneImpl() const {
 | |
|   return new ExtractValueInst(*this);
 | |
| }
 | |
| 
 | |
| InsertValueInst *InsertValueInst::cloneImpl() const {
 | |
|   return new InsertValueInst(*this);
 | |
| }
 | |
| 
 | |
| AllocaInst *AllocaInst::cloneImpl() const {
 | |
|   AllocaInst *Result =
 | |
|       new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
 | |
|                      getOperand(0), getAlign());
 | |
|   Result->setUsedWithInAlloca(isUsedWithInAlloca());
 | |
|   Result->setSwiftError(isSwiftError());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| LoadInst *LoadInst::cloneImpl() const {
 | |
|   return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
 | |
|                       getAlign(), getOrdering(), getSyncScopeID());
 | |
| }
 | |
| 
 | |
| StoreInst *StoreInst::cloneImpl() const {
 | |
|   return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
 | |
|                        getOrdering(), getSyncScopeID());
 | |
| }
 | |
| 
 | |
| AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
 | |
|   AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
 | |
|       getOperand(0), getOperand(1), getOperand(2), getAlign(),
 | |
|       getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
 | |
|   Result->setVolatile(isVolatile());
 | |
|   Result->setWeak(isWeak());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
 | |
|   AtomicRMWInst *Result =
 | |
|       new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
 | |
|                         getAlign(), getOrdering(), getSyncScopeID());
 | |
|   Result->setVolatile(isVolatile());
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| FenceInst *FenceInst::cloneImpl() const {
 | |
|   return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
 | |
| }
 | |
| 
 | |
| TruncInst *TruncInst::cloneImpl() const {
 | |
|   return new TruncInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| ZExtInst *ZExtInst::cloneImpl() const {
 | |
|   return new ZExtInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| SExtInst *SExtInst::cloneImpl() const {
 | |
|   return new SExtInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| FPTruncInst *FPTruncInst::cloneImpl() const {
 | |
|   return new FPTruncInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| FPExtInst *FPExtInst::cloneImpl() const {
 | |
|   return new FPExtInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| UIToFPInst *UIToFPInst::cloneImpl() const {
 | |
|   return new UIToFPInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| SIToFPInst *SIToFPInst::cloneImpl() const {
 | |
|   return new SIToFPInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| FPToUIInst *FPToUIInst::cloneImpl() const {
 | |
|   return new FPToUIInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| FPToSIInst *FPToSIInst::cloneImpl() const {
 | |
|   return new FPToSIInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| PtrToIntInst *PtrToIntInst::cloneImpl() const {
 | |
|   return new PtrToIntInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| IntToPtrInst *IntToPtrInst::cloneImpl() const {
 | |
|   return new IntToPtrInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| BitCastInst *BitCastInst::cloneImpl() const {
 | |
|   return new BitCastInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
 | |
|   return new AddrSpaceCastInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| CallInst *CallInst::cloneImpl() const {
 | |
|   if (hasOperandBundles()) {
 | |
|     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
 | |
|     return new(getNumOperands(), DescriptorBytes) CallInst(*this);
 | |
|   }
 | |
|   return  new(getNumOperands()) CallInst(*this);
 | |
| }
 | |
| 
 | |
| SelectInst *SelectInst::cloneImpl() const {
 | |
|   return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
 | |
| }
 | |
| 
 | |
| VAArgInst *VAArgInst::cloneImpl() const {
 | |
|   return new VAArgInst(getOperand(0), getType());
 | |
| }
 | |
| 
 | |
| ExtractElementInst *ExtractElementInst::cloneImpl() const {
 | |
|   return ExtractElementInst::Create(getOperand(0), getOperand(1));
 | |
| }
 | |
| 
 | |
| InsertElementInst *InsertElementInst::cloneImpl() const {
 | |
|   return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
 | |
| }
 | |
| 
 | |
| ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
 | |
|   return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
 | |
| }
 | |
| 
 | |
| PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
 | |
| 
 | |
| LandingPadInst *LandingPadInst::cloneImpl() const {
 | |
|   return new LandingPadInst(*this);
 | |
| }
 | |
| 
 | |
| ReturnInst *ReturnInst::cloneImpl() const {
 | |
|   return new(getNumOperands()) ReturnInst(*this);
 | |
| }
 | |
| 
 | |
| BranchInst *BranchInst::cloneImpl() const {
 | |
|   return new(getNumOperands()) BranchInst(*this);
 | |
| }
 | |
| 
 | |
| SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
 | |
| 
 | |
| IndirectBrInst *IndirectBrInst::cloneImpl() const {
 | |
|   return new IndirectBrInst(*this);
 | |
| }
 | |
| 
 | |
| InvokeInst *InvokeInst::cloneImpl() const {
 | |
|   if (hasOperandBundles()) {
 | |
|     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
 | |
|     return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
 | |
|   }
 | |
|   return new(getNumOperands()) InvokeInst(*this);
 | |
| }
 | |
| 
 | |
| CallBrInst *CallBrInst::cloneImpl() const {
 | |
|   if (hasOperandBundles()) {
 | |
|     unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
 | |
|     return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
 | |
|   }
 | |
|   return new (getNumOperands()) CallBrInst(*this);
 | |
| }
 | |
| 
 | |
| ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
 | |
| 
 | |
| CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
 | |
|   return new (getNumOperands()) CleanupReturnInst(*this);
 | |
| }
 | |
| 
 | |
| CatchReturnInst *CatchReturnInst::cloneImpl() const {
 | |
|   return new (getNumOperands()) CatchReturnInst(*this);
 | |
| }
 | |
| 
 | |
| CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
 | |
|   return new CatchSwitchInst(*this);
 | |
| }
 | |
| 
 | |
| FuncletPadInst *FuncletPadInst::cloneImpl() const {
 | |
|   return new (getNumOperands()) FuncletPadInst(*this);
 | |
| }
 | |
| 
 | |
| UnreachableInst *UnreachableInst::cloneImpl() const {
 | |
|   LLVMContext &Context = getContext();
 | |
|   return new UnreachableInst(Context);
 | |
| }
 | |
| 
 | |
| FreezeInst *FreezeInst::cloneImpl() const {
 | |
|   return new FreezeInst(getOperand(0));
 | |
| }
 |