1106 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1106 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- Value.cpp - Implement the Value class -----------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Value, ValueHandle, and User classes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "LLVMContextImpl.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/DerivedUser.h"
 | |
| #include "llvm/IR/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| #include "llvm/IR/ValueHandle.h"
 | |
| #include "llvm/IR/ValueSymbolTable.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/ManagedStatic.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<unsigned> NonGlobalValueMaxNameSize(
 | |
|     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
 | |
|     cl::desc("Maximum size for the name of non-global values."));
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                                Value Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| static inline Type *checkType(Type *Ty) {
 | |
|   assert(Ty && "Value defined with a null type: Error!");
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| Value::Value(Type *ty, unsigned scid)
 | |
|     : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0),
 | |
|       SubclassOptionalData(0), SubclassData(0), NumUserOperands(0),
 | |
|       IsUsedByMD(false), HasName(false), HasMetadata(false) {
 | |
|   static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
 | |
|   // FIXME: Why isn't this in the subclass gunk??
 | |
|   // Note, we cannot call isa<CallInst> before the CallInst has been
 | |
|   // constructed.
 | |
|   if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke ||
 | |
|       SubclassID == Instruction::CallBr)
 | |
|     assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
 | |
|            "invalid CallInst type!");
 | |
|   else if (SubclassID != BasicBlockVal &&
 | |
|            (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
 | |
|     assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
 | |
|            "Cannot create non-first-class values except for constants!");
 | |
|   static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
 | |
|                 "Value too big");
 | |
| }
 | |
| 
 | |
| Value::~Value() {
 | |
|   // Notify all ValueHandles (if present) that this value is going away.
 | |
|   if (HasValueHandle)
 | |
|     ValueHandleBase::ValueIsDeleted(this);
 | |
|   if (isUsedByMetadata())
 | |
|     ValueAsMetadata::handleDeletion(this);
 | |
| 
 | |
|   // Remove associated metadata from context.
 | |
|   if (HasMetadata)
 | |
|     clearMetadata();
 | |
| 
 | |
| #ifndef NDEBUG      // Only in -g mode...
 | |
|   // Check to make sure that there are no uses of this value that are still
 | |
|   // around when the value is destroyed.  If there are, then we have a dangling
 | |
|   // reference and something is wrong.  This code is here to print out where
 | |
|   // the value is still being referenced.
 | |
|   //
 | |
|   // Note that use_empty() cannot be called here, as it eventually downcasts
 | |
|   // 'this' to GlobalValue (derived class of Value), but GlobalValue has already
 | |
|   // been destructed, so accessing it is UB.
 | |
|   //
 | |
|   if (!materialized_use_empty()) {
 | |
|     dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
 | |
|     for (auto *U : users())
 | |
|       dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
 | |
|   }
 | |
| #endif
 | |
|   assert(materialized_use_empty() && "Uses remain when a value is destroyed!");
 | |
| 
 | |
|   // If this value is named, destroy the name.  This should not be in a symtab
 | |
|   // at this point.
 | |
|   destroyValueName();
 | |
| }
 | |
| 
 | |
| void Value::deleteValue() {
 | |
|   switch (getValueID()) {
 | |
| #define HANDLE_VALUE(Name)                                                     \
 | |
|   case Value::Name##Val:                                                       \
 | |
|     delete static_cast<Name *>(this);                                          \
 | |
|     break;
 | |
| #define HANDLE_MEMORY_VALUE(Name)                                              \
 | |
|   case Value::Name##Val:                                                       \
 | |
|     static_cast<DerivedUser *>(this)->DeleteValue(                             \
 | |
|         static_cast<DerivedUser *>(this));                                     \
 | |
|     break;
 | |
| #define HANDLE_CONSTANT(Name)                                                  \
 | |
|   case Value::Name##Val:                                                       \
 | |
|     llvm_unreachable("constants should be destroyed with destroyConstant");    \
 | |
|     break;
 | |
| #define HANDLE_INSTRUCTION(Name)  /* nothing */
 | |
| #include "llvm/IR/Value.def"
 | |
| 
 | |
| #define HANDLE_INST(N, OPC, CLASS)                                             \
 | |
|   case Value::InstructionVal + Instruction::OPC:                               \
 | |
|     delete static_cast<CLASS *>(this);                                         \
 | |
|     break;
 | |
| #define HANDLE_USER_INST(N, OPC, CLASS)
 | |
| #include "llvm/IR/Instruction.def"
 | |
| 
 | |
|   default:
 | |
|     llvm_unreachable("attempting to delete unknown value kind");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Value::destroyValueName() {
 | |
|   ValueName *Name = getValueName();
 | |
|   if (Name) {
 | |
|     MallocAllocator Allocator;
 | |
|     Name->Destroy(Allocator);
 | |
|   }
 | |
|   setValueName(nullptr);
 | |
| }
 | |
| 
 | |
| bool Value::hasNUses(unsigned N) const {
 | |
|   return hasNItems(use_begin(), use_end(), N);
 | |
| }
 | |
| 
 | |
| bool Value::hasNUsesOrMore(unsigned N) const {
 | |
|   return hasNItemsOrMore(use_begin(), use_end(), N);
 | |
| }
 | |
| 
 | |
| bool Value::hasOneUser() const {
 | |
|   if (use_empty())
 | |
|     return false;
 | |
|   if (hasOneUse())
 | |
|     return true;
 | |
|   return std::equal(++user_begin(), user_end(), user_begin());
 | |
| }
 | |
| 
 | |
| static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); }
 | |
| 
 | |
| Use *Value::getSingleUndroppableUse() {
 | |
|   Use *Result = nullptr;
 | |
|   for (Use &U : uses()) {
 | |
|     if (!U.getUser()->isDroppable()) {
 | |
|       if (Result)
 | |
|         return nullptr;
 | |
|       Result = &U;
 | |
|     }
 | |
|   }
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| bool Value::hasNUndroppableUses(unsigned int N) const {
 | |
|   return hasNItems(user_begin(), user_end(), N, isUnDroppableUser);
 | |
| }
 | |
| 
 | |
| bool Value::hasNUndroppableUsesOrMore(unsigned int N) const {
 | |
|   return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser);
 | |
| }
 | |
| 
 | |
| void Value::dropDroppableUses(
 | |
|     llvm::function_ref<bool(const Use *)> ShouldDrop) {
 | |
|   SmallVector<Use *, 8> ToBeEdited;
 | |
|   for (Use &U : uses())
 | |
|     if (U.getUser()->isDroppable() && ShouldDrop(&U))
 | |
|       ToBeEdited.push_back(&U);
 | |
|   for (Use *U : ToBeEdited)
 | |
|     dropDroppableUse(*U);
 | |
| }
 | |
| 
 | |
| void Value::dropDroppableUsesIn(User &Usr) {
 | |
|   assert(Usr.isDroppable() && "Expected a droppable user!");
 | |
|   for (Use &UsrOp : Usr.operands()) {
 | |
|     if (UsrOp.get() == this)
 | |
|       dropDroppableUse(UsrOp);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Value::dropDroppableUse(Use &U) {
 | |
|   U.removeFromList();
 | |
|   if (auto *Assume = dyn_cast<IntrinsicInst>(U.getUser())) {
 | |
|     assert(Assume->getIntrinsicID() == Intrinsic::assume);
 | |
|     unsigned OpNo = U.getOperandNo();
 | |
|     if (OpNo == 0)
 | |
|       U.set(ConstantInt::getTrue(Assume->getContext()));
 | |
|     else {
 | |
|       U.set(UndefValue::get(U.get()->getType()));
 | |
|       CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo);
 | |
|       BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore");
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("unkown droppable use");
 | |
| }
 | |
| 
 | |
| bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
 | |
|   // This can be computed either by scanning the instructions in BB, or by
 | |
|   // scanning the use list of this Value. Both lists can be very long, but
 | |
|   // usually one is quite short.
 | |
|   //
 | |
|   // Scan both lists simultaneously until one is exhausted. This limits the
 | |
|   // search to the shorter list.
 | |
|   BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
 | |
|   const_user_iterator UI = user_begin(), UE = user_end();
 | |
|   for (; BI != BE && UI != UE; ++BI, ++UI) {
 | |
|     // Scan basic block: Check if this Value is used by the instruction at BI.
 | |
|     if (is_contained(BI->operands(), this))
 | |
|       return true;
 | |
|     // Scan use list: Check if the use at UI is in BB.
 | |
|     const auto *User = dyn_cast<Instruction>(*UI);
 | |
|     if (User && User->getParent() == BB)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| unsigned Value::getNumUses() const {
 | |
|   return (unsigned)std::distance(use_begin(), use_end());
 | |
| }
 | |
| 
 | |
| static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
 | |
|   ST = nullptr;
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     if (BasicBlock *P = I->getParent())
 | |
|       if (Function *PP = P->getParent())
 | |
|         ST = PP->getValueSymbolTable();
 | |
|   } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
 | |
|     if (Function *P = BB->getParent())
 | |
|       ST = P->getValueSymbolTable();
 | |
|   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     if (Module *P = GV->getParent())
 | |
|       ST = &P->getValueSymbolTable();
 | |
|   } else if (Argument *A = dyn_cast<Argument>(V)) {
 | |
|     if (Function *P = A->getParent())
 | |
|       ST = P->getValueSymbolTable();
 | |
|   } else {
 | |
|     assert(isa<Constant>(V) && "Unknown value type!");
 | |
|     return true;  // no name is setable for this.
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| ValueName *Value::getValueName() const {
 | |
|   if (!HasName) return nullptr;
 | |
| 
 | |
|   LLVMContext &Ctx = getContext();
 | |
|   auto I = Ctx.pImpl->ValueNames.find(this);
 | |
|   assert(I != Ctx.pImpl->ValueNames.end() &&
 | |
|          "No name entry found!");
 | |
| 
 | |
|   return I->second;
 | |
| }
 | |
| 
 | |
| void Value::setValueName(ValueName *VN) {
 | |
|   LLVMContext &Ctx = getContext();
 | |
| 
 | |
|   assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
 | |
|          "HasName bit out of sync!");
 | |
| 
 | |
|   if (!VN) {
 | |
|     if (HasName)
 | |
|       Ctx.pImpl->ValueNames.erase(this);
 | |
|     HasName = false;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   HasName = true;
 | |
|   Ctx.pImpl->ValueNames[this] = VN;
 | |
| }
 | |
| 
 | |
| StringRef Value::getName() const {
 | |
|   // Make sure the empty string is still a C string. For historical reasons,
 | |
|   // some clients want to call .data() on the result and expect it to be null
 | |
|   // terminated.
 | |
|   if (!hasName())
 | |
|     return StringRef("", 0);
 | |
|   return getValueName()->getKey();
 | |
| }
 | |
| 
 | |
| void Value::setNameImpl(const Twine &NewName) {
 | |
|   // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
 | |
|   if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
 | |
|     return;
 | |
| 
 | |
|   // Fast path for common IRBuilder case of setName("") when there is no name.
 | |
|   if (NewName.isTriviallyEmpty() && !hasName())
 | |
|     return;
 | |
| 
 | |
|   SmallString<256> NameData;
 | |
|   StringRef NameRef = NewName.toStringRef(NameData);
 | |
|   assert(NameRef.find_first_of(0) == StringRef::npos &&
 | |
|          "Null bytes are not allowed in names");
 | |
| 
 | |
|   // Name isn't changing?
 | |
|   if (getName() == NameRef)
 | |
|     return;
 | |
| 
 | |
|   // Cap the size of non-GlobalValue names.
 | |
|   if (NameRef.size() > NonGlobalValueMaxNameSize && !isa<GlobalValue>(this))
 | |
|     NameRef =
 | |
|         NameRef.substr(0, std::max(1u, (unsigned)NonGlobalValueMaxNameSize));
 | |
| 
 | |
|   assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
 | |
| 
 | |
|   // Get the symbol table to update for this object.
 | |
|   ValueSymbolTable *ST;
 | |
|   if (getSymTab(this, ST))
 | |
|     return;  // Cannot set a name on this value (e.g. constant).
 | |
| 
 | |
|   if (!ST) { // No symbol table to update?  Just do the change.
 | |
|     if (NameRef.empty()) {
 | |
|       // Free the name for this value.
 | |
|       destroyValueName();
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // NOTE: Could optimize for the case the name is shrinking to not deallocate
 | |
|     // then reallocated.
 | |
|     destroyValueName();
 | |
| 
 | |
|     // Create the new name.
 | |
|     MallocAllocator Allocator;
 | |
|     setValueName(ValueName::Create(NameRef, Allocator));
 | |
|     getValueName()->setValue(this);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // NOTE: Could optimize for the case the name is shrinking to not deallocate
 | |
|   // then reallocated.
 | |
|   if (hasName()) {
 | |
|     // Remove old name.
 | |
|     ST->removeValueName(getValueName());
 | |
|     destroyValueName();
 | |
| 
 | |
|     if (NameRef.empty())
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Name is changing to something new.
 | |
|   setValueName(ST->createValueName(NameRef, this));
 | |
| }
 | |
| 
 | |
| void Value::setName(const Twine &NewName) {
 | |
|   setNameImpl(NewName);
 | |
|   if (Function *F = dyn_cast<Function>(this))
 | |
|     F->recalculateIntrinsicID();
 | |
| }
 | |
| 
 | |
| void Value::takeName(Value *V) {
 | |
|   ValueSymbolTable *ST = nullptr;
 | |
|   // If this value has a name, drop it.
 | |
|   if (hasName()) {
 | |
|     // Get the symtab this is in.
 | |
|     if (getSymTab(this, ST)) {
 | |
|       // We can't set a name on this value, but we need to clear V's name if
 | |
|       // it has one.
 | |
|       if (V->hasName()) V->setName("");
 | |
|       return;  // Cannot set a name on this value (e.g. constant).
 | |
|     }
 | |
| 
 | |
|     // Remove old name.
 | |
|     if (ST)
 | |
|       ST->removeValueName(getValueName());
 | |
|     destroyValueName();
 | |
|   }
 | |
| 
 | |
|   // Now we know that this has no name.
 | |
| 
 | |
|   // If V has no name either, we're done.
 | |
|   if (!V->hasName()) return;
 | |
| 
 | |
|   // Get this's symtab if we didn't before.
 | |
|   if (!ST) {
 | |
|     if (getSymTab(this, ST)) {
 | |
|       // Clear V's name.
 | |
|       V->setName("");
 | |
|       return;  // Cannot set a name on this value (e.g. constant).
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Get V's ST, this should always succed, because V has a name.
 | |
|   ValueSymbolTable *VST;
 | |
|   bool Failure = getSymTab(V, VST);
 | |
|   assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
 | |
| 
 | |
|   // If these values are both in the same symtab, we can do this very fast.
 | |
|   // This works even if both values have no symtab yet.
 | |
|   if (ST == VST) {
 | |
|     // Take the name!
 | |
|     setValueName(V->getValueName());
 | |
|     V->setValueName(nullptr);
 | |
|     getValueName()->setValue(this);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, things are slightly more complex.  Remove V's name from VST and
 | |
|   // then reinsert it into ST.
 | |
| 
 | |
|   if (VST)
 | |
|     VST->removeValueName(V->getValueName());
 | |
|   setValueName(V->getValueName());
 | |
|   V->setValueName(nullptr);
 | |
|   getValueName()->setValue(this);
 | |
| 
 | |
|   if (ST)
 | |
|     ST->reinsertValue(this);
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| std::string Value::getNameOrAsOperand() const {
 | |
|   if (!getName().empty())
 | |
|     return std::string(getName());
 | |
| 
 | |
|   std::string BBName;
 | |
|   raw_string_ostream OS(BBName);
 | |
|   printAsOperand(OS, false);
 | |
|   return OS.str();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void Value::assertModuleIsMaterializedImpl() const {
 | |
| #ifndef NDEBUG
 | |
|   const GlobalValue *GV = dyn_cast<GlobalValue>(this);
 | |
|   if (!GV)
 | |
|     return;
 | |
|   const Module *M = GV->getParent();
 | |
|   if (!M)
 | |
|     return;
 | |
|   assert(M->isMaterialized());
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
 | |
|                      Constant *C) {
 | |
|   if (!Cache.insert(Expr).second)
 | |
|     return false;
 | |
| 
 | |
|   for (auto &O : Expr->operands()) {
 | |
|     if (O == C)
 | |
|       return true;
 | |
|     auto *CE = dyn_cast<ConstantExpr>(O);
 | |
|     if (!CE)
 | |
|       continue;
 | |
|     if (contains(Cache, CE, C))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool contains(Value *Expr, Value *V) {
 | |
|   if (Expr == V)
 | |
|     return true;
 | |
| 
 | |
|   auto *C = dyn_cast<Constant>(V);
 | |
|   if (!C)
 | |
|     return false;
 | |
| 
 | |
|   auto *CE = dyn_cast<ConstantExpr>(Expr);
 | |
|   if (!CE)
 | |
|     return false;
 | |
| 
 | |
|   SmallPtrSet<ConstantExpr *, 4> Cache;
 | |
|   return contains(Cache, CE, C);
 | |
| }
 | |
| #endif // NDEBUG
 | |
| 
 | |
| void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
 | |
|   assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
 | |
|   assert(!contains(New, this) &&
 | |
|          "this->replaceAllUsesWith(expr(this)) is NOT valid!");
 | |
|   assert(New->getType() == getType() &&
 | |
|          "replaceAllUses of value with new value of different type!");
 | |
| 
 | |
|   // Notify all ValueHandles (if present) that this value is going away.
 | |
|   if (HasValueHandle)
 | |
|     ValueHandleBase::ValueIsRAUWd(this, New);
 | |
|   if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
 | |
|     ValueAsMetadata::handleRAUW(this, New);
 | |
| 
 | |
|   while (!materialized_use_empty()) {
 | |
|     Use &U = *UseList;
 | |
|     // Must handle Constants specially, we cannot call replaceUsesOfWith on a
 | |
|     // constant because they are uniqued.
 | |
|     if (auto *C = dyn_cast<Constant>(U.getUser())) {
 | |
|       if (!isa<GlobalValue>(C)) {
 | |
|         C->handleOperandChange(this, New);
 | |
|         continue;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     U.set(New);
 | |
|   }
 | |
| 
 | |
|   if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
 | |
|     BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
 | |
| }
 | |
| 
 | |
| void Value::replaceAllUsesWith(Value *New) {
 | |
|   doRAUW(New, ReplaceMetadataUses::Yes);
 | |
| }
 | |
| 
 | |
| void Value::replaceNonMetadataUsesWith(Value *New) {
 | |
|   doRAUW(New, ReplaceMetadataUses::No);
 | |
| }
 | |
| 
 | |
| // Like replaceAllUsesWith except it does not handle constants or basic blocks.
 | |
| // This routine leaves uses within BB.
 | |
| void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
 | |
|   assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
 | |
|   assert(!contains(New, this) &&
 | |
|          "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
 | |
|   assert(New->getType() == getType() &&
 | |
|          "replaceUses of value with new value of different type!");
 | |
|   assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
 | |
| 
 | |
|   replaceUsesWithIf(New, [BB](Use &U) {
 | |
|     auto *I = dyn_cast<Instruction>(U.getUser());
 | |
|     // Don't replace if it's an instruction in the BB basic block.
 | |
|     return !I || I->getParent() != BB;
 | |
|   });
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| // Various metrics for how much to strip off of pointers.
 | |
| enum PointerStripKind {
 | |
|   PSK_ZeroIndices,
 | |
|   PSK_ZeroIndicesAndAliases,
 | |
|   PSK_ZeroIndicesSameRepresentation,
 | |
|   PSK_ZeroIndicesAndInvariantGroups,
 | |
|   PSK_InBoundsConstantIndices,
 | |
|   PSK_InBounds
 | |
| };
 | |
| 
 | |
| template <PointerStripKind StripKind> static void NoopCallback(const Value *) {}
 | |
| 
 | |
| template <PointerStripKind StripKind>
 | |
| static const Value *stripPointerCastsAndOffsets(
 | |
|     const Value *V,
 | |
|     function_ref<void(const Value *)> Func = NoopCallback<StripKind>) {
 | |
|   if (!V->getType()->isPointerTy())
 | |
|     return V;
 | |
| 
 | |
|   // Even though we don't look through PHI nodes, we could be called on an
 | |
|   // instruction in an unreachable block, which may be on a cycle.
 | |
|   SmallPtrSet<const Value *, 4> Visited;
 | |
| 
 | |
|   Visited.insert(V);
 | |
|   do {
 | |
|     Func(V);
 | |
|     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|       switch (StripKind) {
 | |
|       case PSK_ZeroIndices:
 | |
|       case PSK_ZeroIndicesAndAliases:
 | |
|       case PSK_ZeroIndicesSameRepresentation:
 | |
|       case PSK_ZeroIndicesAndInvariantGroups:
 | |
|         if (!GEP->hasAllZeroIndices())
 | |
|           return V;
 | |
|         break;
 | |
|       case PSK_InBoundsConstantIndices:
 | |
|         if (!GEP->hasAllConstantIndices())
 | |
|           return V;
 | |
|         LLVM_FALLTHROUGH;
 | |
|       case PSK_InBounds:
 | |
|         if (!GEP->isInBounds())
 | |
|           return V;
 | |
|         break;
 | |
|       }
 | |
|       V = GEP->getPointerOperand();
 | |
|     } else if (Operator::getOpcode(V) == Instruction::BitCast) {
 | |
|       V = cast<Operator>(V)->getOperand(0);
 | |
|       if (!V->getType()->isPointerTy())
 | |
|         return V;
 | |
|     } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
 | |
|                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
 | |
|       // TODO: If we know an address space cast will not change the
 | |
|       //       representation we could look through it here as well.
 | |
|       V = cast<Operator>(V)->getOperand(0);
 | |
|     } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
 | |
|       V = cast<GlobalAlias>(V)->getAliasee();
 | |
|     } else {
 | |
|       if (const auto *Call = dyn_cast<CallBase>(V)) {
 | |
|         if (const Value *RV = Call->getReturnedArgOperand()) {
 | |
|           V = RV;
 | |
|           continue;
 | |
|         }
 | |
|         // The result of launder.invariant.group must alias it's argument,
 | |
|         // but it can't be marked with returned attribute, that's why it needs
 | |
|         // special case.
 | |
|         if (StripKind == PSK_ZeroIndicesAndInvariantGroups &&
 | |
|             (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
 | |
|              Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
 | |
|           V = Call->getArgOperand(0);
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       return V;
 | |
|     }
 | |
|     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
 | |
|   } while (Visited.insert(V).second);
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| } // end anonymous namespace
 | |
| 
 | |
| const Value *Value::stripPointerCasts() const {
 | |
|   return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
 | |
| }
 | |
| 
 | |
| const Value *Value::stripPointerCastsAndAliases() const {
 | |
|   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
 | |
| }
 | |
| 
 | |
| const Value *Value::stripPointerCastsSameRepresentation() const {
 | |
|   return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
 | |
| }
 | |
| 
 | |
| const Value *Value::stripInBoundsConstantOffsets() const {
 | |
|   return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
 | |
| }
 | |
| 
 | |
| const Value *Value::stripPointerCastsAndInvariantGroups() const {
 | |
|   return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndInvariantGroups>(this);
 | |
| }
 | |
| 
 | |
| const Value *Value::stripAndAccumulateConstantOffsets(
 | |
|     const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
 | |
|     function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
 | |
|   if (!getType()->isPtrOrPtrVectorTy())
 | |
|     return this;
 | |
| 
 | |
|   unsigned BitWidth = Offset.getBitWidth();
 | |
|   assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
 | |
|          "The offset bit width does not match the DL specification.");
 | |
| 
 | |
|   // Even though we don't look through PHI nodes, we could be called on an
 | |
|   // instruction in an unreachable block, which may be on a cycle.
 | |
|   SmallPtrSet<const Value *, 4> Visited;
 | |
|   Visited.insert(this);
 | |
|   const Value *V = this;
 | |
|   do {
 | |
|     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|       // If in-bounds was requested, we do not strip non-in-bounds GEPs.
 | |
|       if (!AllowNonInbounds && !GEP->isInBounds())
 | |
|         return V;
 | |
| 
 | |
|       // If one of the values we have visited is an addrspacecast, then
 | |
|       // the pointer type of this GEP may be different from the type
 | |
|       // of the Ptr parameter which was passed to this function.  This
 | |
|       // means when we construct GEPOffset, we need to use the size
 | |
|       // of GEP's pointer type rather than the size of the original
 | |
|       // pointer type.
 | |
|       APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
 | |
|       if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis))
 | |
|         return V;
 | |
| 
 | |
|       // Stop traversal if the pointer offset wouldn't fit in the bit-width
 | |
|       // provided by the Offset argument. This can happen due to AddrSpaceCast
 | |
|       // stripping.
 | |
|       if (GEPOffset.getMinSignedBits() > BitWidth)
 | |
|         return V;
 | |
| 
 | |
|       // External Analysis can return a result higher/lower than the value
 | |
|       // represents. We need to detect overflow/underflow.
 | |
|       APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth);
 | |
|       if (!ExternalAnalysis) {
 | |
|         Offset += GEPOffsetST;
 | |
|       } else {
 | |
|         bool Overflow = false;
 | |
|         APInt OldOffset = Offset;
 | |
|         Offset = Offset.sadd_ov(GEPOffsetST, Overflow);
 | |
|         if (Overflow) {
 | |
|           Offset = OldOffset;
 | |
|           return V;
 | |
|         }
 | |
|       }
 | |
|       V = GEP->getPointerOperand();
 | |
|     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
 | |
|                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
 | |
|       V = cast<Operator>(V)->getOperand(0);
 | |
|     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
 | |
|       if (!GA->isInterposable())
 | |
|         V = GA->getAliasee();
 | |
|     } else if (const auto *Call = dyn_cast<CallBase>(V)) {
 | |
|         if (const Value *RV = Call->getReturnedArgOperand())
 | |
|           V = RV;
 | |
|     }
 | |
|     assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
 | |
|   } while (Visited.insert(V).second);
 | |
| 
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| const Value *
 | |
| Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const {
 | |
|   return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func);
 | |
| }
 | |
| 
 | |
| uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
 | |
|                                                bool &CanBeNull) const {
 | |
|   assert(getType()->isPointerTy() && "must be pointer");
 | |
| 
 | |
|   uint64_t DerefBytes = 0;
 | |
|   CanBeNull = false;
 | |
|   if (const Argument *A = dyn_cast<Argument>(this)) {
 | |
|     DerefBytes = A->getDereferenceableBytes();
 | |
|     if (DerefBytes == 0) {
 | |
|       // Handle byval/byref/inalloca/preallocated arguments
 | |
|       if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) {
 | |
|         if (ArgMemTy->isSized()) {
 | |
|           // FIXME: Why isn't this the type alloc size?
 | |
|           DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize();
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (DerefBytes == 0) {
 | |
|       DerefBytes = A->getDereferenceableOrNullBytes();
 | |
|       CanBeNull = true;
 | |
|     }
 | |
|   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
 | |
|     DerefBytes = Call->getDereferenceableBytes(AttributeList::ReturnIndex);
 | |
|     if (DerefBytes == 0) {
 | |
|       DerefBytes =
 | |
|           Call->getDereferenceableOrNullBytes(AttributeList::ReturnIndex);
 | |
|       CanBeNull = true;
 | |
|     }
 | |
|   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
 | |
|     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
 | |
|       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
 | |
|       DerefBytes = CI->getLimitedValue();
 | |
|     }
 | |
|     if (DerefBytes == 0) {
 | |
|       if (MDNode *MD =
 | |
|               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
 | |
|         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
 | |
|         DerefBytes = CI->getLimitedValue();
 | |
|       }
 | |
|       CanBeNull = true;
 | |
|     }
 | |
|   } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
 | |
|     if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
 | |
|       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
 | |
|       DerefBytes = CI->getLimitedValue();
 | |
|     }
 | |
|     if (DerefBytes == 0) {
 | |
|       if (MDNode *MD =
 | |
|               IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
 | |
|         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
 | |
|         DerefBytes = CI->getLimitedValue();
 | |
|       }
 | |
|       CanBeNull = true;
 | |
|     }
 | |
|   } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
 | |
|     if (!AI->isArrayAllocation()) {
 | |
|       DerefBytes =
 | |
|           DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize();
 | |
|       CanBeNull = false;
 | |
|     }
 | |
|   } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
 | |
|     if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
 | |
|       // TODO: Don't outright reject hasExternalWeakLinkage but set the
 | |
|       // CanBeNull flag.
 | |
|       DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize();
 | |
|       CanBeNull = false;
 | |
|     }
 | |
|   }
 | |
|   return DerefBytes;
 | |
| }
 | |
| 
 | |
| Align Value::getPointerAlignment(const DataLayout &DL) const {
 | |
|   assert(getType()->isPointerTy() && "must be pointer");
 | |
|   if (auto *GO = dyn_cast<GlobalObject>(this)) {
 | |
|     if (isa<Function>(GO)) {
 | |
|       Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne();
 | |
|       switch (DL.getFunctionPtrAlignType()) {
 | |
|       case DataLayout::FunctionPtrAlignType::Independent:
 | |
|         return FunctionPtrAlign;
 | |
|       case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
 | |
|         return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne());
 | |
|       }
 | |
|       llvm_unreachable("Unhandled FunctionPtrAlignType");
 | |
|     }
 | |
|     const MaybeAlign Alignment(GO->getAlignment());
 | |
|     if (!Alignment) {
 | |
|       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
 | |
|         Type *ObjectType = GVar->getValueType();
 | |
|         if (ObjectType->isSized()) {
 | |
|           // If the object is defined in the current Module, we'll be giving
 | |
|           // it the preferred alignment. Otherwise, we have to assume that it
 | |
|           // may only have the minimum ABI alignment.
 | |
|           if (GVar->isStrongDefinitionForLinker())
 | |
|             return DL.getPreferredAlign(GVar);
 | |
|           else
 | |
|             return DL.getABITypeAlign(ObjectType);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return Alignment.valueOrOne();
 | |
|   } else if (const Argument *A = dyn_cast<Argument>(this)) {
 | |
|     const MaybeAlign Alignment = A->getParamAlign();
 | |
|     if (!Alignment && A->hasStructRetAttr()) {
 | |
|       // An sret parameter has at least the ABI alignment of the return type.
 | |
|       Type *EltTy = A->getParamStructRetType();
 | |
|       if (EltTy->isSized())
 | |
|         return DL.getABITypeAlign(EltTy);
 | |
|     }
 | |
|     return Alignment.valueOrOne();
 | |
|   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
 | |
|     return AI->getAlign();
 | |
|   } else if (const auto *Call = dyn_cast<CallBase>(this)) {
 | |
|     MaybeAlign Alignment = Call->getRetAlign();
 | |
|     if (!Alignment && Call->getCalledFunction())
 | |
|       Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment();
 | |
|     return Alignment.valueOrOne();
 | |
|   } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
 | |
|     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
 | |
|       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
 | |
|       return Align(CI->getLimitedValue());
 | |
|     }
 | |
|   } else if (auto *CstPtr = dyn_cast<Constant>(this)) {
 | |
|     if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt(
 | |
|             const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()),
 | |
|             /*OnlyIfReduced=*/true))) {
 | |
|       size_t TrailingZeros = CstInt->getValue().countTrailingZeros();
 | |
|       // While the actual alignment may be large, elsewhere we have
 | |
|       // an arbitrary upper alignmet limit, so let's clamp to it.
 | |
|       return Align(TrailingZeros < Value::MaxAlignmentExponent
 | |
|                        ? uint64_t(1) << TrailingZeros
 | |
|                        : Value::MaximumAlignment);
 | |
|     }
 | |
|   }
 | |
|   return Align(1);
 | |
| }
 | |
| 
 | |
| const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
 | |
|                                      const BasicBlock *PredBB) const {
 | |
|   auto *PN = dyn_cast<PHINode>(this);
 | |
|   if (PN && PN->getParent() == CurBB)
 | |
|     return PN->getIncomingValueForBlock(PredBB);
 | |
|   return this;
 | |
| }
 | |
| 
 | |
| LLVMContext &Value::getContext() const { return VTy->getContext(); }
 | |
| 
 | |
| void Value::reverseUseList() {
 | |
|   if (!UseList || !UseList->Next)
 | |
|     // No need to reverse 0 or 1 uses.
 | |
|     return;
 | |
| 
 | |
|   Use *Head = UseList;
 | |
|   Use *Current = UseList->Next;
 | |
|   Head->Next = nullptr;
 | |
|   while (Current) {
 | |
|     Use *Next = Current->Next;
 | |
|     Current->Next = Head;
 | |
|     Head->Prev = &Current->Next;
 | |
|     Head = Current;
 | |
|     Current = Next;
 | |
|   }
 | |
|   UseList = Head;
 | |
|   Head->Prev = &UseList;
 | |
| }
 | |
| 
 | |
| bool Value::isSwiftError() const {
 | |
|   auto *Arg = dyn_cast<Argument>(this);
 | |
|   if (Arg)
 | |
|     return Arg->hasSwiftErrorAttr();
 | |
|   auto *Alloca = dyn_cast<AllocaInst>(this);
 | |
|   if (!Alloca)
 | |
|     return false;
 | |
|   return Alloca->isSwiftError();
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             ValueHandleBase Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
 | |
|   assert(List && "Handle list is null?");
 | |
| 
 | |
|   // Splice ourselves into the list.
 | |
|   Next = *List;
 | |
|   *List = this;
 | |
|   setPrevPtr(List);
 | |
|   if (Next) {
 | |
|     Next->setPrevPtr(&Next);
 | |
|     assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
 | |
|   assert(List && "Must insert after existing node");
 | |
| 
 | |
|   Next = List->Next;
 | |
|   setPrevPtr(&List->Next);
 | |
|   List->Next = this;
 | |
|   if (Next)
 | |
|     Next->setPrevPtr(&Next);
 | |
| }
 | |
| 
 | |
| void ValueHandleBase::AddToUseList() {
 | |
|   assert(getValPtr() && "Null pointer doesn't have a use list!");
 | |
| 
 | |
|   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
 | |
| 
 | |
|   if (getValPtr()->HasValueHandle) {
 | |
|     // If this value already has a ValueHandle, then it must be in the
 | |
|     // ValueHandles map already.
 | |
|     ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
 | |
|     assert(Entry && "Value doesn't have any handles?");
 | |
|     AddToExistingUseList(&Entry);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Ok, it doesn't have any handles yet, so we must insert it into the
 | |
|   // DenseMap.  However, doing this insertion could cause the DenseMap to
 | |
|   // reallocate itself, which would invalidate all of the PrevP pointers that
 | |
|   // point into the old table.  Handle this by checking for reallocation and
 | |
|   // updating the stale pointers only if needed.
 | |
|   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
 | |
|   const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
 | |
| 
 | |
|   ValueHandleBase *&Entry = Handles[getValPtr()];
 | |
|   assert(!Entry && "Value really did already have handles?");
 | |
|   AddToExistingUseList(&Entry);
 | |
|   getValPtr()->HasValueHandle = true;
 | |
| 
 | |
|   // If reallocation didn't happen or if this was the first insertion, don't
 | |
|   // walk the table.
 | |
|   if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
 | |
|       Handles.size() == 1) {
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // Okay, reallocation did happen.  Fix the Prev Pointers.
 | |
|   for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
 | |
|        E = Handles.end(); I != E; ++I) {
 | |
|     assert(I->second && I->first == I->second->getValPtr() &&
 | |
|            "List invariant broken!");
 | |
|     I->second->setPrevPtr(&I->second);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ValueHandleBase::RemoveFromUseList() {
 | |
|   assert(getValPtr() && getValPtr()->HasValueHandle &&
 | |
|          "Pointer doesn't have a use list!");
 | |
| 
 | |
|   // Unlink this from its use list.
 | |
|   ValueHandleBase **PrevPtr = getPrevPtr();
 | |
|   assert(*PrevPtr == this && "List invariant broken");
 | |
| 
 | |
|   *PrevPtr = Next;
 | |
|   if (Next) {
 | |
|     assert(Next->getPrevPtr() == &Next && "List invariant broken");
 | |
|     Next->setPrevPtr(PrevPtr);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If the Next pointer was null, then it is possible that this was the last
 | |
|   // ValueHandle watching VP.  If so, delete its entry from the ValueHandles
 | |
|   // map.
 | |
|   LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
 | |
|   DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
 | |
|   if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
 | |
|     Handles.erase(getValPtr());
 | |
|     getValPtr()->HasValueHandle = false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ValueHandleBase::ValueIsDeleted(Value *V) {
 | |
|   assert(V->HasValueHandle && "Should only be called if ValueHandles present");
 | |
| 
 | |
|   // Get the linked list base, which is guaranteed to exist since the
 | |
|   // HasValueHandle flag is set.
 | |
|   LLVMContextImpl *pImpl = V->getContext().pImpl;
 | |
|   ValueHandleBase *Entry = pImpl->ValueHandles[V];
 | |
|   assert(Entry && "Value bit set but no entries exist");
 | |
| 
 | |
|   // We use a local ValueHandleBase as an iterator so that ValueHandles can add
 | |
|   // and remove themselves from the list without breaking our iteration.  This
 | |
|   // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
 | |
|   // Note that we deliberately do not the support the case when dropping a value
 | |
|   // handle results in a new value handle being permanently added to the list
 | |
|   // (as might occur in theory for CallbackVH's): the new value handle will not
 | |
|   // be processed and the checking code will mete out righteous punishment if
 | |
|   // the handle is still present once we have finished processing all the other
 | |
|   // value handles (it is fine to momentarily add then remove a value handle).
 | |
|   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
 | |
|     Iterator.RemoveFromUseList();
 | |
|     Iterator.AddToExistingUseListAfter(Entry);
 | |
|     assert(Entry->Next == &Iterator && "Loop invariant broken.");
 | |
| 
 | |
|     switch (Entry->getKind()) {
 | |
|     case Assert:
 | |
|       break;
 | |
|     case Weak:
 | |
|     case WeakTracking:
 | |
|       // WeakTracking and Weak just go to null, which unlinks them
 | |
|       // from the list.
 | |
|       Entry->operator=(nullptr);
 | |
|       break;
 | |
|     case Callback:
 | |
|       // Forward to the subclass's implementation.
 | |
|       static_cast<CallbackVH*>(Entry)->deleted();
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // All callbacks, weak references, and assertingVHs should be dropped by now.
 | |
|   if (V->HasValueHandle) {
 | |
| #ifndef NDEBUG      // Only in +Asserts mode...
 | |
|     dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
 | |
|            << "\n";
 | |
|     if (pImpl->ValueHandles[V]->getKind() == Assert)
 | |
|       llvm_unreachable("An asserting value handle still pointed to this"
 | |
|                        " value!");
 | |
| 
 | |
| #endif
 | |
|     llvm_unreachable("All references to V were not removed?");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
 | |
|   assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
 | |
|   assert(Old != New && "Changing value into itself!");
 | |
|   assert(Old->getType() == New->getType() &&
 | |
|          "replaceAllUses of value with new value of different type!");
 | |
| 
 | |
|   // Get the linked list base, which is guaranteed to exist since the
 | |
|   // HasValueHandle flag is set.
 | |
|   LLVMContextImpl *pImpl = Old->getContext().pImpl;
 | |
|   ValueHandleBase *Entry = pImpl->ValueHandles[Old];
 | |
| 
 | |
|   assert(Entry && "Value bit set but no entries exist");
 | |
| 
 | |
|   // We use a local ValueHandleBase as an iterator so that
 | |
|   // ValueHandles can add and remove themselves from the list without
 | |
|   // breaking our iteration.  This is not really an AssertingVH; we
 | |
|   // just have to give ValueHandleBase some kind.
 | |
|   for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
 | |
|     Iterator.RemoveFromUseList();
 | |
|     Iterator.AddToExistingUseListAfter(Entry);
 | |
|     assert(Entry->Next == &Iterator && "Loop invariant broken.");
 | |
| 
 | |
|     switch (Entry->getKind()) {
 | |
|     case Assert:
 | |
|     case Weak:
 | |
|       // Asserting and Weak handles do not follow RAUW implicitly.
 | |
|       break;
 | |
|     case WeakTracking:
 | |
|       // Weak goes to the new value, which will unlink it from Old's list.
 | |
|       Entry->operator=(New);
 | |
|       break;
 | |
|     case Callback:
 | |
|       // Forward to the subclass's implementation.
 | |
|       static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   // If any new weak value handles were added while processing the
 | |
|   // list, then complain about it now.
 | |
|   if (Old->HasValueHandle)
 | |
|     for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
 | |
|       switch (Entry->getKind()) {
 | |
|       case WeakTracking:
 | |
|         dbgs() << "After RAUW from " << *Old->getType() << " %"
 | |
|                << Old->getName() << " to " << *New->getType() << " %"
 | |
|                << New->getName() << "\n";
 | |
|         llvm_unreachable(
 | |
|             "A weak tracking value handle still pointed to the old value!\n");
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| // Pin the vtable to this file.
 | |
| void CallbackVH::anchor() {}
 |