1607 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1607 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Linker/IRMover.h"
 | |
| #include "LinkDiagnosticInfo.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DiagnosticPrinter.h"
 | |
| #include "llvm/IR/GVMaterializer.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/TypeFinder.h"
 | |
| #include "llvm/Object/ModuleSymbolTable.h"
 | |
| #include "llvm/Support/Error.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include <utility>
 | |
| using namespace llvm;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TypeMap implementation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class TypeMapTy : public ValueMapTypeRemapper {
 | |
|   /// This is a mapping from a source type to a destination type to use.
 | |
|   DenseMap<Type *, Type *> MappedTypes;
 | |
| 
 | |
|   /// When checking to see if two subgraphs are isomorphic, we speculatively
 | |
|   /// add types to MappedTypes, but keep track of them here in case we need to
 | |
|   /// roll back.
 | |
|   SmallVector<Type *, 16> SpeculativeTypes;
 | |
| 
 | |
|   SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
 | |
| 
 | |
|   /// This is a list of non-opaque structs in the source module that are mapped
 | |
|   /// to an opaque struct in the destination module.
 | |
|   SmallVector<StructType *, 16> SrcDefinitionsToResolve;
 | |
| 
 | |
|   /// This is the set of opaque types in the destination modules who are
 | |
|   /// getting a body from the source module.
 | |
|   SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
 | |
| 
 | |
| public:
 | |
|   TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
 | |
|       : DstStructTypesSet(DstStructTypesSet) {}
 | |
| 
 | |
|   IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
 | |
|   /// Indicate that the specified type in the destination module is conceptually
 | |
|   /// equivalent to the specified type in the source module.
 | |
|   void addTypeMapping(Type *DstTy, Type *SrcTy);
 | |
| 
 | |
|   /// Produce a body for an opaque type in the dest module from a type
 | |
|   /// definition in the source module.
 | |
|   void linkDefinedTypeBodies();
 | |
| 
 | |
|   /// Return the mapped type to use for the specified input type from the
 | |
|   /// source module.
 | |
|   Type *get(Type *SrcTy);
 | |
|   Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
 | |
| 
 | |
|   void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
 | |
| 
 | |
|   FunctionType *get(FunctionType *T) {
 | |
|     return cast<FunctionType>(get((Type *)T));
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   Type *remapType(Type *SrcTy) override { return get(SrcTy); }
 | |
| 
 | |
|   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
 | |
| };
 | |
| }
 | |
| 
 | |
| void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
 | |
|   assert(SpeculativeTypes.empty());
 | |
|   assert(SpeculativeDstOpaqueTypes.empty());
 | |
| 
 | |
|   // Check to see if these types are recursively isomorphic and establish a
 | |
|   // mapping between them if so.
 | |
|   if (!areTypesIsomorphic(DstTy, SrcTy)) {
 | |
|     // Oops, they aren't isomorphic.  Just discard this request by rolling out
 | |
|     // any speculative mappings we've established.
 | |
|     for (Type *Ty : SpeculativeTypes)
 | |
|       MappedTypes.erase(Ty);
 | |
| 
 | |
|     SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
 | |
|                                    SpeculativeDstOpaqueTypes.size());
 | |
|     for (StructType *Ty : SpeculativeDstOpaqueTypes)
 | |
|       DstResolvedOpaqueTypes.erase(Ty);
 | |
|   } else {
 | |
|     // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
 | |
|     // and all its descendants to lower amount of renaming in LLVM context
 | |
|     // Renaming occurs because we load all source modules to the same context
 | |
|     // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
 | |
|     // As a result we may get several different types in the destination
 | |
|     // module, which are in fact the same.
 | |
|     for (Type *Ty : SpeculativeTypes)
 | |
|       if (auto *STy = dyn_cast<StructType>(Ty))
 | |
|         if (STy->hasName())
 | |
|           STy->setName("");
 | |
|   }
 | |
|   SpeculativeTypes.clear();
 | |
|   SpeculativeDstOpaqueTypes.clear();
 | |
| }
 | |
| 
 | |
| /// Recursively walk this pair of types, returning true if they are isomorphic,
 | |
| /// false if they are not.
 | |
| bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
 | |
|   // Two types with differing kinds are clearly not isomorphic.
 | |
|   if (DstTy->getTypeID() != SrcTy->getTypeID())
 | |
|     return false;
 | |
| 
 | |
|   // If we have an entry in the MappedTypes table, then we have our answer.
 | |
|   Type *&Entry = MappedTypes[SrcTy];
 | |
|   if (Entry)
 | |
|     return Entry == DstTy;
 | |
| 
 | |
|   // Two identical types are clearly isomorphic.  Remember this
 | |
|   // non-speculatively.
 | |
|   if (DstTy == SrcTy) {
 | |
|     Entry = DstTy;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Okay, we have two types with identical kinds that we haven't seen before.
 | |
| 
 | |
|   // If this is an opaque struct type, special case it.
 | |
|   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
 | |
|     // Mapping an opaque type to any struct, just keep the dest struct.
 | |
|     if (SSTy->isOpaque()) {
 | |
|       Entry = DstTy;
 | |
|       SpeculativeTypes.push_back(SrcTy);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Mapping a non-opaque source type to an opaque dest.  If this is the first
 | |
|     // type that we're mapping onto this destination type then we succeed.  Keep
 | |
|     // the dest, but fill it in later. If this is the second (different) type
 | |
|     // that we're trying to map onto the same opaque type then we fail.
 | |
|     if (cast<StructType>(DstTy)->isOpaque()) {
 | |
|       // We can only map one source type onto the opaque destination type.
 | |
|       if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
 | |
|         return false;
 | |
|       SrcDefinitionsToResolve.push_back(SSTy);
 | |
|       SpeculativeTypes.push_back(SrcTy);
 | |
|       SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
 | |
|       Entry = DstTy;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the number of subtypes disagree between the two types, then we fail.
 | |
|   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
 | |
|     return false;
 | |
| 
 | |
|   // Fail if any of the extra properties (e.g. array size) of the type disagree.
 | |
|   if (isa<IntegerType>(DstTy))
 | |
|     return false; // bitwidth disagrees.
 | |
|   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
 | |
|     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
 | |
|       return false;
 | |
|   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
 | |
|     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
 | |
|       return false;
 | |
|   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
 | |
|     StructType *SSTy = cast<StructType>(SrcTy);
 | |
|     if (DSTy->isLiteral() != SSTy->isLiteral() ||
 | |
|         DSTy->isPacked() != SSTy->isPacked())
 | |
|       return false;
 | |
|   } else if (auto *DArrTy = dyn_cast<ArrayType>(DstTy)) {
 | |
|     if (DArrTy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
 | |
|       return false;
 | |
|   } else if (auto *DVecTy = dyn_cast<VectorType>(DstTy)) {
 | |
|     if (DVecTy->getElementCount() != cast<VectorType>(SrcTy)->getElementCount())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we speculate that these two types will line up and recursively
 | |
|   // check the subelements.
 | |
|   Entry = DstTy;
 | |
|   SpeculativeTypes.push_back(SrcTy);
 | |
| 
 | |
|   for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
 | |
|     if (!areTypesIsomorphic(DstTy->getContainedType(I),
 | |
|                             SrcTy->getContainedType(I)))
 | |
|       return false;
 | |
| 
 | |
|   // If everything seems to have lined up, then everything is great.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void TypeMapTy::linkDefinedTypeBodies() {
 | |
|   SmallVector<Type *, 16> Elements;
 | |
|   for (StructType *SrcSTy : SrcDefinitionsToResolve) {
 | |
|     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
 | |
|     assert(DstSTy->isOpaque());
 | |
| 
 | |
|     // Map the body of the source type over to a new body for the dest type.
 | |
|     Elements.resize(SrcSTy->getNumElements());
 | |
|     for (unsigned I = 0, E = Elements.size(); I != E; ++I)
 | |
|       Elements[I] = get(SrcSTy->getElementType(I));
 | |
| 
 | |
|     DstSTy->setBody(Elements, SrcSTy->isPacked());
 | |
|     DstStructTypesSet.switchToNonOpaque(DstSTy);
 | |
|   }
 | |
|   SrcDefinitionsToResolve.clear();
 | |
|   DstResolvedOpaqueTypes.clear();
 | |
| }
 | |
| 
 | |
| void TypeMapTy::finishType(StructType *DTy, StructType *STy,
 | |
|                            ArrayRef<Type *> ETypes) {
 | |
|   DTy->setBody(ETypes, STy->isPacked());
 | |
| 
 | |
|   // Steal STy's name.
 | |
|   if (STy->hasName()) {
 | |
|     SmallString<16> TmpName = STy->getName();
 | |
|     STy->setName("");
 | |
|     DTy->setName(TmpName);
 | |
|   }
 | |
| 
 | |
|   DstStructTypesSet.addNonOpaque(DTy);
 | |
| }
 | |
| 
 | |
| Type *TypeMapTy::get(Type *Ty) {
 | |
|   SmallPtrSet<StructType *, 8> Visited;
 | |
|   return get(Ty, Visited);
 | |
| }
 | |
| 
 | |
| Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
 | |
|   // If we already have an entry for this type, return it.
 | |
|   Type **Entry = &MappedTypes[Ty];
 | |
|   if (*Entry)
 | |
|     return *Entry;
 | |
| 
 | |
|   // These are types that LLVM itself will unique.
 | |
|   bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
 | |
| 
 | |
|   if (!IsUniqued) {
 | |
| #ifndef NDEBUG
 | |
|     for (auto &Pair : MappedTypes) {
 | |
|       assert(!(Pair.first != Ty && Pair.second == Ty) &&
 | |
|              "mapping to a source type");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (!Visited.insert(cast<StructType>(Ty)).second) {
 | |
|       StructType *DTy = StructType::create(Ty->getContext());
 | |
|       return *Entry = DTy;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If this is not a recursive type, then just map all of the elements and
 | |
|   // then rebuild the type from inside out.
 | |
|   SmallVector<Type *, 4> ElementTypes;
 | |
| 
 | |
|   // If there are no element types to map, then the type is itself.  This is
 | |
|   // true for the anonymous {} struct, things like 'float', integers, etc.
 | |
|   if (Ty->getNumContainedTypes() == 0 && IsUniqued)
 | |
|     return *Entry = Ty;
 | |
| 
 | |
|   // Remap all of the elements, keeping track of whether any of them change.
 | |
|   bool AnyChange = false;
 | |
|   ElementTypes.resize(Ty->getNumContainedTypes());
 | |
|   for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
 | |
|     ElementTypes[I] = get(Ty->getContainedType(I), Visited);
 | |
|     AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
 | |
|   }
 | |
| 
 | |
|   // If we found our type while recursively processing stuff, just use it.
 | |
|   Entry = &MappedTypes[Ty];
 | |
|   if (*Entry) {
 | |
|     if (auto *DTy = dyn_cast<StructType>(*Entry)) {
 | |
|       if (DTy->isOpaque()) {
 | |
|         auto *STy = cast<StructType>(Ty);
 | |
|         finishType(DTy, STy, ElementTypes);
 | |
|       }
 | |
|     }
 | |
|     return *Entry;
 | |
|   }
 | |
| 
 | |
|   // If all of the element types mapped directly over and the type is not
 | |
|   // a named struct, then the type is usable as-is.
 | |
|   if (!AnyChange && IsUniqued)
 | |
|     return *Entry = Ty;
 | |
| 
 | |
|   // Otherwise, rebuild a modified type.
 | |
|   switch (Ty->getTypeID()) {
 | |
|   default:
 | |
|     llvm_unreachable("unknown derived type to remap");
 | |
|   case Type::ArrayTyID:
 | |
|     return *Entry = ArrayType::get(ElementTypes[0],
 | |
|                                    cast<ArrayType>(Ty)->getNumElements());
 | |
|   case Type::ScalableVectorTyID:
 | |
|     // FIXME: handle scalable vectors
 | |
|   case Type::FixedVectorTyID:
 | |
|     return *Entry = FixedVectorType::get(
 | |
|                ElementTypes[0], cast<FixedVectorType>(Ty)->getNumElements());
 | |
|   case Type::PointerTyID:
 | |
|     return *Entry = PointerType::get(ElementTypes[0],
 | |
|                                      cast<PointerType>(Ty)->getAddressSpace());
 | |
|   case Type::FunctionTyID:
 | |
|     return *Entry = FunctionType::get(ElementTypes[0],
 | |
|                                       makeArrayRef(ElementTypes).slice(1),
 | |
|                                       cast<FunctionType>(Ty)->isVarArg());
 | |
|   case Type::StructTyID: {
 | |
|     auto *STy = cast<StructType>(Ty);
 | |
|     bool IsPacked = STy->isPacked();
 | |
|     if (IsUniqued)
 | |
|       return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
 | |
| 
 | |
|     // If the type is opaque, we can just use it directly.
 | |
|     if (STy->isOpaque()) {
 | |
|       DstStructTypesSet.addOpaque(STy);
 | |
|       return *Entry = Ty;
 | |
|     }
 | |
| 
 | |
|     if (StructType *OldT =
 | |
|             DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
 | |
|       STy->setName("");
 | |
|       return *Entry = OldT;
 | |
|     }
 | |
| 
 | |
|     if (!AnyChange) {
 | |
|       DstStructTypesSet.addNonOpaque(STy);
 | |
|       return *Entry = Ty;
 | |
|     }
 | |
| 
 | |
|     StructType *DTy = StructType::create(Ty->getContext());
 | |
|     finishType(DTy, STy, ElementTypes);
 | |
|     return *Entry = DTy;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
 | |
|                                        const Twine &Msg)
 | |
|     : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
 | |
| void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // IRLinker implementation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class IRLinker;
 | |
| 
 | |
| /// Creates prototypes for functions that are lazily linked on the fly. This
 | |
| /// speeds up linking for modules with many/ lazily linked functions of which
 | |
| /// few get used.
 | |
| class GlobalValueMaterializer final : public ValueMaterializer {
 | |
|   IRLinker &TheIRLinker;
 | |
| 
 | |
| public:
 | |
|   GlobalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
 | |
|   Value *materialize(Value *V) override;
 | |
| };
 | |
| 
 | |
| class LocalValueMaterializer final : public ValueMaterializer {
 | |
|   IRLinker &TheIRLinker;
 | |
| 
 | |
| public:
 | |
|   LocalValueMaterializer(IRLinker &TheIRLinker) : TheIRLinker(TheIRLinker) {}
 | |
|   Value *materialize(Value *V) override;
 | |
| };
 | |
| 
 | |
| /// Type of the Metadata map in \a ValueToValueMapTy.
 | |
| typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT;
 | |
| 
 | |
| /// This is responsible for keeping track of the state used for moving data
 | |
| /// from SrcM to DstM.
 | |
| class IRLinker {
 | |
|   Module &DstM;
 | |
|   std::unique_ptr<Module> SrcM;
 | |
| 
 | |
|   /// See IRMover::move().
 | |
|   std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
 | |
| 
 | |
|   TypeMapTy TypeMap;
 | |
|   GlobalValueMaterializer GValMaterializer;
 | |
|   LocalValueMaterializer LValMaterializer;
 | |
| 
 | |
|   /// A metadata map that's shared between IRLinker instances.
 | |
|   MDMapT &SharedMDs;
 | |
| 
 | |
|   /// Mapping of values from what they used to be in Src, to what they are now
 | |
|   /// in DstM.  ValueToValueMapTy is a ValueMap, which involves some overhead
 | |
|   /// due to the use of Value handles which the Linker doesn't actually need,
 | |
|   /// but this allows us to reuse the ValueMapper code.
 | |
|   ValueToValueMapTy ValueMap;
 | |
|   ValueToValueMapTy IndirectSymbolValueMap;
 | |
| 
 | |
|   DenseSet<GlobalValue *> ValuesToLink;
 | |
|   std::vector<GlobalValue *> Worklist;
 | |
|   std::vector<std::pair<GlobalValue *, Value*>> RAUWWorklist;
 | |
| 
 | |
|   void maybeAdd(GlobalValue *GV) {
 | |
|     if (ValuesToLink.insert(GV).second)
 | |
|       Worklist.push_back(GV);
 | |
|   }
 | |
| 
 | |
|   /// Whether we are importing globals for ThinLTO, as opposed to linking the
 | |
|   /// source module. If this flag is set, it means that we can rely on some
 | |
|   /// other object file to define any non-GlobalValue entities defined by the
 | |
|   /// source module. This currently causes us to not link retained types in
 | |
|   /// debug info metadata and module inline asm.
 | |
|   bool IsPerformingImport;
 | |
| 
 | |
|   /// Set to true when all global value body linking is complete (including
 | |
|   /// lazy linking). Used to prevent metadata linking from creating new
 | |
|   /// references.
 | |
|   bool DoneLinkingBodies = false;
 | |
| 
 | |
|   /// The Error encountered during materialization. We use an Optional here to
 | |
|   /// avoid needing to manage an unconsumed success value.
 | |
|   Optional<Error> FoundError;
 | |
|   void setError(Error E) {
 | |
|     if (E)
 | |
|       FoundError = std::move(E);
 | |
|   }
 | |
| 
 | |
|   /// Most of the errors produced by this module are inconvertible StringErrors.
 | |
|   /// This convenience function lets us return one of those more easily.
 | |
|   Error stringErr(const Twine &T) {
 | |
|     return make_error<StringError>(T, inconvertibleErrorCode());
 | |
|   }
 | |
| 
 | |
|   /// Entry point for mapping values and alternate context for mapping aliases.
 | |
|   ValueMapper Mapper;
 | |
|   unsigned IndirectSymbolMCID;
 | |
| 
 | |
|   /// Handles cloning of a global values from the source module into
 | |
|   /// the destination module, including setting the attributes and visibility.
 | |
|   GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
 | |
| 
 | |
|   void emitWarning(const Twine &Message) {
 | |
|     SrcM->getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
 | |
|   }
 | |
| 
 | |
|   /// Given a global in the source module, return the global in the
 | |
|   /// destination module that is being linked to, if any.
 | |
|   GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
 | |
|     // If the source has no name it can't link.  If it has local linkage,
 | |
|     // there is no name match-up going on.
 | |
|     if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
 | |
|       return nullptr;
 | |
| 
 | |
|     // Otherwise see if we have a match in the destination module's symtab.
 | |
|     GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
 | |
|     if (!DGV)
 | |
|       return nullptr;
 | |
| 
 | |
|     // If we found a global with the same name in the dest module, but it has
 | |
|     // internal linkage, we are really not doing any linkage here.
 | |
|     if (DGV->hasLocalLinkage())
 | |
|       return nullptr;
 | |
| 
 | |
|     // Otherwise, we do in fact link to the destination global.
 | |
|     return DGV;
 | |
|   }
 | |
| 
 | |
|   void computeTypeMapping();
 | |
| 
 | |
|   Expected<Constant *> linkAppendingVarProto(GlobalVariable *DstGV,
 | |
|                                              const GlobalVariable *SrcGV);
 | |
| 
 | |
|   /// Given the GlobaValue \p SGV in the source module, and the matching
 | |
|   /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
 | |
|   /// into the destination module.
 | |
|   ///
 | |
|   /// Note this code may call the client-provided \p AddLazyFor.
 | |
|   bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
 | |
|   Expected<Constant *> linkGlobalValueProto(GlobalValue *GV,
 | |
|                                             bool ForIndirectSymbol);
 | |
| 
 | |
|   Error linkModuleFlagsMetadata();
 | |
| 
 | |
|   void linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src);
 | |
|   Error linkFunctionBody(Function &Dst, Function &Src);
 | |
|   void linkIndirectSymbolBody(GlobalIndirectSymbol &Dst,
 | |
|                               GlobalIndirectSymbol &Src);
 | |
|   Error linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
 | |
| 
 | |
|   /// Replace all types in the source AttributeList with the
 | |
|   /// corresponding destination type.
 | |
|   AttributeList mapAttributeTypes(LLVMContext &C, AttributeList Attrs);
 | |
| 
 | |
|   /// Functions that take care of cloning a specific global value type
 | |
|   /// into the destination module.
 | |
|   GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
 | |
|   Function *copyFunctionProto(const Function *SF);
 | |
|   GlobalValue *copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS);
 | |
| 
 | |
|   /// Perform "replace all uses with" operations. These work items need to be
 | |
|   /// performed as part of materialization, but we postpone them to happen after
 | |
|   /// materialization is done. The materializer called by ValueMapper is not
 | |
|   /// expected to delete constants, as ValueMapper is holding pointers to some
 | |
|   /// of them, but constant destruction may be indirectly triggered by RAUW.
 | |
|   /// Hence, the need to move this out of the materialization call chain.
 | |
|   void flushRAUWWorklist();
 | |
| 
 | |
|   /// When importing for ThinLTO, prevent importing of types listed on
 | |
|   /// the DICompileUnit that we don't need a copy of in the importing
 | |
|   /// module.
 | |
|   void prepareCompileUnitsForImport();
 | |
|   void linkNamedMDNodes();
 | |
| 
 | |
| public:
 | |
|   IRLinker(Module &DstM, MDMapT &SharedMDs,
 | |
|            IRMover::IdentifiedStructTypeSet &Set, std::unique_ptr<Module> SrcM,
 | |
|            ArrayRef<GlobalValue *> ValuesToLink,
 | |
|            std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
 | |
|            bool IsPerformingImport)
 | |
|       : DstM(DstM), SrcM(std::move(SrcM)), AddLazyFor(std::move(AddLazyFor)),
 | |
|         TypeMap(Set), GValMaterializer(*this), LValMaterializer(*this),
 | |
|         SharedMDs(SharedMDs), IsPerformingImport(IsPerformingImport),
 | |
|         Mapper(ValueMap, RF_MoveDistinctMDs | RF_IgnoreMissingLocals, &TypeMap,
 | |
|                &GValMaterializer),
 | |
|         IndirectSymbolMCID(Mapper.registerAlternateMappingContext(
 | |
|             IndirectSymbolValueMap, &LValMaterializer)) {
 | |
|     ValueMap.getMDMap() = std::move(SharedMDs);
 | |
|     for (GlobalValue *GV : ValuesToLink)
 | |
|       maybeAdd(GV);
 | |
|     if (IsPerformingImport)
 | |
|       prepareCompileUnitsForImport();
 | |
|   }
 | |
|   ~IRLinker() { SharedMDs = std::move(*ValueMap.getMDMap()); }
 | |
| 
 | |
|   Error run();
 | |
|   Value *materialize(Value *V, bool ForIndirectSymbol);
 | |
| };
 | |
| }
 | |
| 
 | |
| /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
 | |
| /// table. This is good for all clients except for us. Go through the trouble
 | |
| /// to force this back.
 | |
| static void forceRenaming(GlobalValue *GV, StringRef Name) {
 | |
|   // If the global doesn't force its name or if it already has the right name,
 | |
|   // there is nothing for us to do.
 | |
|   if (GV->hasLocalLinkage() || GV->getName() == Name)
 | |
|     return;
 | |
| 
 | |
|   Module *M = GV->getParent();
 | |
| 
 | |
|   // If there is a conflict, rename the conflict.
 | |
|   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
 | |
|     GV->takeName(ConflictGV);
 | |
|     ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
 | |
|     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
 | |
|   } else {
 | |
|     GV->setName(Name); // Force the name back
 | |
|   }
 | |
| }
 | |
| 
 | |
| Value *GlobalValueMaterializer::materialize(Value *SGV) {
 | |
|   return TheIRLinker.materialize(SGV, false);
 | |
| }
 | |
| 
 | |
| Value *LocalValueMaterializer::materialize(Value *SGV) {
 | |
|   return TheIRLinker.materialize(SGV, true);
 | |
| }
 | |
| 
 | |
| Value *IRLinker::materialize(Value *V, bool ForIndirectSymbol) {
 | |
|   auto *SGV = dyn_cast<GlobalValue>(V);
 | |
|   if (!SGV)
 | |
|     return nullptr;
 | |
| 
 | |
|   // When linking a global from other modules than source & dest, skip
 | |
|   // materializing it because it would be mapped later when its containing
 | |
|   // module is linked. Linking it now would potentially pull in many types that
 | |
|   // may not be mapped properly.
 | |
|   if (SGV->getParent() != &DstM && SGV->getParent() != SrcM.get())
 | |
|     return nullptr;
 | |
| 
 | |
|   Expected<Constant *> NewProto = linkGlobalValueProto(SGV, ForIndirectSymbol);
 | |
|   if (!NewProto) {
 | |
|     setError(NewProto.takeError());
 | |
|     return nullptr;
 | |
|   }
 | |
|   if (!*NewProto)
 | |
|     return nullptr;
 | |
| 
 | |
|   GlobalValue *New = dyn_cast<GlobalValue>(*NewProto);
 | |
|   if (!New)
 | |
|     return *NewProto;
 | |
| 
 | |
|   // If we already created the body, just return.
 | |
|   if (auto *F = dyn_cast<Function>(New)) {
 | |
|     if (!F->isDeclaration())
 | |
|       return New;
 | |
|   } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
 | |
|     if (V->hasInitializer() || V->hasAppendingLinkage())
 | |
|       return New;
 | |
|   } else {
 | |
|     auto *IS = cast<GlobalIndirectSymbol>(New);
 | |
|     if (IS->getIndirectSymbol())
 | |
|       return New;
 | |
|   }
 | |
| 
 | |
|   // When linking a global for an indirect symbol, it will always be linked.
 | |
|   // However we need to check if it was not already scheduled to satisfy a
 | |
|   // reference from a regular global value initializer. We know if it has been
 | |
|   // schedule if the "New" GlobalValue that is mapped here for the indirect
 | |
|   // symbol is the same as the one already mapped. If there is an entry in the
 | |
|   // ValueMap but the value is different, it means that the value already had a
 | |
|   // definition in the destination module (linkonce for instance), but we need a
 | |
|   // new definition for the indirect symbol ("New" will be different.
 | |
|   if (ForIndirectSymbol && ValueMap.lookup(SGV) == New)
 | |
|     return New;
 | |
| 
 | |
|   if (ForIndirectSymbol || shouldLink(New, *SGV))
 | |
|     setError(linkGlobalValueBody(*New, *SGV));
 | |
| 
 | |
|   return New;
 | |
| }
 | |
| 
 | |
| /// Loop through the global variables in the src module and merge them into the
 | |
| /// dest module.
 | |
| GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
 | |
|   // No linking to be performed or linking from the source: simply create an
 | |
|   // identical version of the symbol over in the dest module... the
 | |
|   // initializer will be filled in later by LinkGlobalInits.
 | |
|   GlobalVariable *NewDGV =
 | |
|       new GlobalVariable(DstM, TypeMap.get(SGVar->getValueType()),
 | |
|                          SGVar->isConstant(), GlobalValue::ExternalLinkage,
 | |
|                          /*init*/ nullptr, SGVar->getName(),
 | |
|                          /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
 | |
|                          SGVar->getAddressSpace());
 | |
|   NewDGV->setAlignment(MaybeAlign(SGVar->getAlignment()));
 | |
|   NewDGV->copyAttributesFrom(SGVar);
 | |
|   return NewDGV;
 | |
| }
 | |
| 
 | |
| AttributeList IRLinker::mapAttributeTypes(LLVMContext &C, AttributeList Attrs) {
 | |
|   for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) {
 | |
|     for (Attribute::AttrKind TypedAttr :
 | |
|          {Attribute::ByVal, Attribute::StructRet, Attribute::ByRef}) {
 | |
|       if (Attrs.hasAttribute(i, TypedAttr)) {
 | |
|         if (Type *Ty = Attrs.getAttribute(i, TypedAttr).getValueAsType()) {
 | |
|           Attrs = Attrs.replaceAttributeType(C, i, TypedAttr, TypeMap.get(Ty));
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Attrs;
 | |
| }
 | |
| 
 | |
| /// Link the function in the source module into the destination module if
 | |
| /// needed, setting up mapping information.
 | |
| Function *IRLinker::copyFunctionProto(const Function *SF) {
 | |
|   // If there is no linkage to be performed or we are linking from the source,
 | |
|   // bring SF over.
 | |
|   auto *F = Function::Create(TypeMap.get(SF->getFunctionType()),
 | |
|                              GlobalValue::ExternalLinkage,
 | |
|                              SF->getAddressSpace(), SF->getName(), &DstM);
 | |
|   F->copyAttributesFrom(SF);
 | |
|   F->setAttributes(mapAttributeTypes(F->getContext(), F->getAttributes()));
 | |
|   return F;
 | |
| }
 | |
| 
 | |
| /// Set up prototypes for any indirect symbols that come over from the source
 | |
| /// module.
 | |
| GlobalValue *
 | |
| IRLinker::copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol *SGIS) {
 | |
|   // If there is no linkage to be performed or we're linking from the source,
 | |
|   // bring over SGA.
 | |
|   auto *Ty = TypeMap.get(SGIS->getValueType());
 | |
|   GlobalIndirectSymbol *GIS;
 | |
|   if (isa<GlobalAlias>(SGIS))
 | |
|     GIS = GlobalAlias::create(Ty, SGIS->getAddressSpace(),
 | |
|                               GlobalValue::ExternalLinkage, SGIS->getName(),
 | |
|                               &DstM);
 | |
|   else
 | |
|     GIS = GlobalIFunc::create(Ty, SGIS->getAddressSpace(),
 | |
|                               GlobalValue::ExternalLinkage, SGIS->getName(),
 | |
|                               nullptr, &DstM);
 | |
|   GIS->copyAttributesFrom(SGIS);
 | |
|   return GIS;
 | |
| }
 | |
| 
 | |
| GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
 | |
|                                             bool ForDefinition) {
 | |
|   GlobalValue *NewGV;
 | |
|   if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
 | |
|     NewGV = copyGlobalVariableProto(SGVar);
 | |
|   } else if (auto *SF = dyn_cast<Function>(SGV)) {
 | |
|     NewGV = copyFunctionProto(SF);
 | |
|   } else {
 | |
|     if (ForDefinition)
 | |
|       NewGV = copyGlobalIndirectSymbolProto(cast<GlobalIndirectSymbol>(SGV));
 | |
|     else if (SGV->getValueType()->isFunctionTy())
 | |
|       NewGV =
 | |
|           Function::Create(cast<FunctionType>(TypeMap.get(SGV->getValueType())),
 | |
|                            GlobalValue::ExternalLinkage, SGV->getAddressSpace(),
 | |
|                            SGV->getName(), &DstM);
 | |
|     else
 | |
|       NewGV =
 | |
|           new GlobalVariable(DstM, TypeMap.get(SGV->getValueType()),
 | |
|                              /*isConstant*/ false, GlobalValue::ExternalLinkage,
 | |
|                              /*init*/ nullptr, SGV->getName(),
 | |
|                              /*insertbefore*/ nullptr,
 | |
|                              SGV->getThreadLocalMode(), SGV->getAddressSpace());
 | |
|   }
 | |
| 
 | |
|   if (ForDefinition)
 | |
|     NewGV->setLinkage(SGV->getLinkage());
 | |
|   else if (SGV->hasExternalWeakLinkage())
 | |
|     NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
 | |
| 
 | |
|   if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
 | |
|     // Metadata for global variables and function declarations is copied eagerly.
 | |
|     if (isa<GlobalVariable>(SGV) || SGV->isDeclaration())
 | |
|       NewGO->copyMetadata(cast<GlobalObject>(SGV), 0);
 | |
|   }
 | |
| 
 | |
|   // Remove these copied constants in case this stays a declaration, since
 | |
|   // they point to the source module. If the def is linked the values will
 | |
|   // be mapped in during linkFunctionBody.
 | |
|   if (auto *NewF = dyn_cast<Function>(NewGV)) {
 | |
|     NewF->setPersonalityFn(nullptr);
 | |
|     NewF->setPrefixData(nullptr);
 | |
|     NewF->setPrologueData(nullptr);
 | |
|   }
 | |
| 
 | |
|   return NewGV;
 | |
| }
 | |
| 
 | |
| static StringRef getTypeNamePrefix(StringRef Name) {
 | |
|   size_t DotPos = Name.rfind('.');
 | |
|   return (DotPos == 0 || DotPos == StringRef::npos || Name.back() == '.' ||
 | |
|           !isdigit(static_cast<unsigned char>(Name[DotPos + 1])))
 | |
|              ? Name
 | |
|              : Name.substr(0, DotPos);
 | |
| }
 | |
| 
 | |
| /// Loop over all of the linked values to compute type mappings.  For example,
 | |
| /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
 | |
| /// types 'Foo' but one got renamed when the module was loaded into the same
 | |
| /// LLVMContext.
 | |
| void IRLinker::computeTypeMapping() {
 | |
|   for (GlobalValue &SGV : SrcM->globals()) {
 | |
|     GlobalValue *DGV = getLinkedToGlobal(&SGV);
 | |
|     if (!DGV)
 | |
|       continue;
 | |
| 
 | |
|     if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
 | |
|       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Unify the element type of appending arrays.
 | |
|     ArrayType *DAT = cast<ArrayType>(DGV->getValueType());
 | |
|     ArrayType *SAT = cast<ArrayType>(SGV.getValueType());
 | |
|     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
 | |
|   }
 | |
| 
 | |
|   for (GlobalValue &SGV : *SrcM)
 | |
|     if (GlobalValue *DGV = getLinkedToGlobal(&SGV)) {
 | |
|       if (DGV->getType() == SGV.getType()) {
 | |
|         // If the types of DGV and SGV are the same, it means that DGV is from
 | |
|         // the source module and got added to DstM from a shared metadata.  We
 | |
|         // shouldn't map this type to itself in case the type's components get
 | |
|         // remapped to a new type from DstM (for instance, during the loop over
 | |
|         // SrcM->getIdentifiedStructTypes() below).
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
 | |
|     }
 | |
| 
 | |
|   for (GlobalValue &SGV : SrcM->aliases())
 | |
|     if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
 | |
|       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
 | |
| 
 | |
|   // Incorporate types by name, scanning all the types in the source module.
 | |
|   // At this point, the destination module may have a type "%foo = { i32 }" for
 | |
|   // example.  When the source module got loaded into the same LLVMContext, if
 | |
|   // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
 | |
|   std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
 | |
|   for (StructType *ST : Types) {
 | |
|     if (!ST->hasName())
 | |
|       continue;
 | |
| 
 | |
|     if (TypeMap.DstStructTypesSet.hasType(ST)) {
 | |
|       // This is actually a type from the destination module.
 | |
|       // getIdentifiedStructTypes() can have found it by walking debug info
 | |
|       // metadata nodes, some of which get linked by name when ODR Type Uniquing
 | |
|       // is enabled on the Context, from the source to the destination module.
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto STTypePrefix = getTypeNamePrefix(ST->getName());
 | |
|     if (STTypePrefix.size() == ST->getName().size())
 | |
|       continue;
 | |
| 
 | |
|     // Check to see if the destination module has a struct with the prefix name.
 | |
|     StructType *DST = StructType::getTypeByName(ST->getContext(), STTypePrefix);
 | |
|     if (!DST)
 | |
|       continue;
 | |
| 
 | |
|     // Don't use it if this actually came from the source module. They're in
 | |
|     // the same LLVMContext after all. Also don't use it unless the type is
 | |
|     // actually used in the destination module. This can happen in situations
 | |
|     // like this:
 | |
|     //
 | |
|     //      Module A                         Module B
 | |
|     //      --------                         --------
 | |
|     //   %Z = type { %A }                %B = type { %C.1 }
 | |
|     //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
 | |
|     //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
 | |
|     //   %C = type { i8* }               %B.3 = type { %C.1 }
 | |
|     //
 | |
|     // When we link Module B with Module A, the '%B' in Module B is
 | |
|     // used. However, that would then use '%C.1'. But when we process '%C.1',
 | |
|     // we prefer to take the '%C' version. So we are then left with both
 | |
|     // '%C.1' and '%C' being used for the same types. This leads to some
 | |
|     // variables using one type and some using the other.
 | |
|     if (TypeMap.DstStructTypesSet.hasType(DST))
 | |
|       TypeMap.addTypeMapping(DST, ST);
 | |
|   }
 | |
| 
 | |
|   // Now that we have discovered all of the type equivalences, get a body for
 | |
|   // any 'opaque' types in the dest module that are now resolved.
 | |
|   TypeMap.linkDefinedTypeBodies();
 | |
| }
 | |
| 
 | |
| static void getArrayElements(const Constant *C,
 | |
|                              SmallVectorImpl<Constant *> &Dest) {
 | |
|   unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
 | |
| 
 | |
|   for (unsigned i = 0; i != NumElements; ++i)
 | |
|     Dest.push_back(C->getAggregateElement(i));
 | |
| }
 | |
| 
 | |
| /// If there were any appending global variables, link them together now.
 | |
| Expected<Constant *>
 | |
| IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
 | |
|                                 const GlobalVariable *SrcGV) {
 | |
|   // Check that both variables have compatible properties.
 | |
|   if (DstGV && !DstGV->isDeclaration() && !SrcGV->isDeclaration()) {
 | |
|     if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
 | |
|       return stringErr(
 | |
|           "Linking globals named '" + SrcGV->getName() +
 | |
|           "': can only link appending global with another appending "
 | |
|           "global!");
 | |
| 
 | |
|     if (DstGV->isConstant() != SrcGV->isConstant())
 | |
|       return stringErr("Appending variables linked with different const'ness!");
 | |
| 
 | |
|     if (DstGV->getAlignment() != SrcGV->getAlignment())
 | |
|       return stringErr(
 | |
|           "Appending variables with different alignment need to be linked!");
 | |
| 
 | |
|     if (DstGV->getVisibility() != SrcGV->getVisibility())
 | |
|       return stringErr(
 | |
|           "Appending variables with different visibility need to be linked!");
 | |
| 
 | |
|     if (DstGV->hasGlobalUnnamedAddr() != SrcGV->hasGlobalUnnamedAddr())
 | |
|       return stringErr(
 | |
|           "Appending variables with different unnamed_addr need to be linked!");
 | |
| 
 | |
|     if (DstGV->getSection() != SrcGV->getSection())
 | |
|       return stringErr(
 | |
|           "Appending variables with different section name need to be linked!");
 | |
|   }
 | |
| 
 | |
|   // Do not need to do anything if source is a declaration.
 | |
|   if (SrcGV->isDeclaration())
 | |
|     return DstGV;
 | |
| 
 | |
|   Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getValueType()))
 | |
|                     ->getElementType();
 | |
| 
 | |
|   // FIXME: This upgrade is done during linking to support the C API.  Once the
 | |
|   // old form is deprecated, we should move this upgrade to
 | |
|   // llvm::UpgradeGlobalVariable() and simplify the logic here and in
 | |
|   // Mapper::mapAppendingVariable() in ValueMapper.cpp.
 | |
|   StringRef Name = SrcGV->getName();
 | |
|   bool IsNewStructor = false;
 | |
|   bool IsOldStructor = false;
 | |
|   if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
 | |
|     if (cast<StructType>(EltTy)->getNumElements() == 3)
 | |
|       IsNewStructor = true;
 | |
|     else
 | |
|       IsOldStructor = true;
 | |
|   }
 | |
| 
 | |
|   PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
 | |
|   if (IsOldStructor) {
 | |
|     auto &ST = *cast<StructType>(EltTy);
 | |
|     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
 | |
|     EltTy = StructType::get(SrcGV->getContext(), Tys, false);
 | |
|   }
 | |
| 
 | |
|   uint64_t DstNumElements = 0;
 | |
|   if (DstGV && !DstGV->isDeclaration()) {
 | |
|     ArrayType *DstTy = cast<ArrayType>(DstGV->getValueType());
 | |
|     DstNumElements = DstTy->getNumElements();
 | |
| 
 | |
|     // Check to see that they two arrays agree on type.
 | |
|     if (EltTy != DstTy->getElementType())
 | |
|       return stringErr("Appending variables with different element types!");
 | |
|   }
 | |
| 
 | |
|   SmallVector<Constant *, 16> SrcElements;
 | |
|   getArrayElements(SrcGV->getInitializer(), SrcElements);
 | |
| 
 | |
|   if (IsNewStructor) {
 | |
|     erase_if(SrcElements, [this](Constant *E) {
 | |
|       auto *Key =
 | |
|           dyn_cast<GlobalValue>(E->getAggregateElement(2)->stripPointerCasts());
 | |
|       if (!Key)
 | |
|         return false;
 | |
|       GlobalValue *DGV = getLinkedToGlobal(Key);
 | |
|       return !shouldLink(DGV, *Key);
 | |
|     });
 | |
|   }
 | |
|   uint64_t NewSize = DstNumElements + SrcElements.size();
 | |
|   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
 | |
| 
 | |
|   // Create the new global variable.
 | |
|   GlobalVariable *NG = new GlobalVariable(
 | |
|       DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
 | |
|       /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
 | |
|       SrcGV->getAddressSpace());
 | |
| 
 | |
|   NG->copyAttributesFrom(SrcGV);
 | |
|   forceRenaming(NG, SrcGV->getName());
 | |
| 
 | |
|   Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
 | |
| 
 | |
|   Mapper.scheduleMapAppendingVariable(
 | |
|       *NG,
 | |
|       (DstGV && !DstGV->isDeclaration()) ? DstGV->getInitializer() : nullptr,
 | |
|       IsOldStructor, SrcElements);
 | |
| 
 | |
|   // Replace any uses of the two global variables with uses of the new
 | |
|   // global.
 | |
|   if (DstGV) {
 | |
|     RAUWWorklist.push_back(
 | |
|         std::make_pair(DstGV, ConstantExpr::getBitCast(NG, DstGV->getType())));
 | |
|   }
 | |
| 
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
 | |
|   if (ValuesToLink.count(&SGV) || SGV.hasLocalLinkage())
 | |
|     return true;
 | |
| 
 | |
|   if (DGV && !DGV->isDeclarationForLinker())
 | |
|     return false;
 | |
| 
 | |
|   if (SGV.isDeclaration() || DoneLinkingBodies)
 | |
|     return false;
 | |
| 
 | |
|   // Callback to the client to give a chance to lazily add the Global to the
 | |
|   // list of value to link.
 | |
|   bool LazilyAdded = false;
 | |
|   AddLazyFor(SGV, [this, &LazilyAdded](GlobalValue &GV) {
 | |
|     maybeAdd(&GV);
 | |
|     LazilyAdded = true;
 | |
|   });
 | |
|   return LazilyAdded;
 | |
| }
 | |
| 
 | |
| Expected<Constant *> IRLinker::linkGlobalValueProto(GlobalValue *SGV,
 | |
|                                                     bool ForIndirectSymbol) {
 | |
|   GlobalValue *DGV = getLinkedToGlobal(SGV);
 | |
| 
 | |
|   bool ShouldLink = shouldLink(DGV, *SGV);
 | |
| 
 | |
|   // just missing from map
 | |
|   if (ShouldLink) {
 | |
|     auto I = ValueMap.find(SGV);
 | |
|     if (I != ValueMap.end())
 | |
|       return cast<Constant>(I->second);
 | |
| 
 | |
|     I = IndirectSymbolValueMap.find(SGV);
 | |
|     if (I != IndirectSymbolValueMap.end())
 | |
|       return cast<Constant>(I->second);
 | |
|   }
 | |
| 
 | |
|   if (!ShouldLink && ForIndirectSymbol)
 | |
|     DGV = nullptr;
 | |
| 
 | |
|   // Handle the ultra special appending linkage case first.
 | |
|   if (SGV->hasAppendingLinkage() || (DGV && DGV->hasAppendingLinkage()))
 | |
|     return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
 | |
|                                  cast<GlobalVariable>(SGV));
 | |
| 
 | |
|   GlobalValue *NewGV;
 | |
|   if (DGV && !ShouldLink) {
 | |
|     NewGV = DGV;
 | |
|   } else {
 | |
|     // If we are done linking global value bodies (i.e. we are performing
 | |
|     // metadata linking), don't link in the global value due to this
 | |
|     // reference, simply map it to null.
 | |
|     if (DoneLinkingBodies)
 | |
|       return nullptr;
 | |
| 
 | |
|     NewGV = copyGlobalValueProto(SGV, ShouldLink || ForIndirectSymbol);
 | |
|     if (ShouldLink || !ForIndirectSymbol)
 | |
|       forceRenaming(NewGV, SGV->getName());
 | |
|   }
 | |
| 
 | |
|   // Overloaded intrinsics have overloaded types names as part of their
 | |
|   // names. If we renamed overloaded types we should rename the intrinsic
 | |
|   // as well.
 | |
|   if (Function *F = dyn_cast<Function>(NewGV))
 | |
|     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F))
 | |
|       NewGV = Remangled.getValue();
 | |
| 
 | |
|   if (ShouldLink || ForIndirectSymbol) {
 | |
|     if (const Comdat *SC = SGV->getComdat()) {
 | |
|       if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
 | |
|         Comdat *DC = DstM.getOrInsertComdat(SC->getName());
 | |
|         DC->setSelectionKind(SC->getSelectionKind());
 | |
|         GO->setComdat(DC);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!ShouldLink && ForIndirectSymbol)
 | |
|     NewGV->setLinkage(GlobalValue::InternalLinkage);
 | |
| 
 | |
|   Constant *C = NewGV;
 | |
|   // Only create a bitcast if necessary. In particular, with
 | |
|   // DebugTypeODRUniquing we may reach metadata in the destination module
 | |
|   // containing a GV from the source module, in which case SGV will be
 | |
|   // the same as DGV and NewGV, and TypeMap.get() will assert since it
 | |
|   // assumes it is being invoked on a type in the source module.
 | |
|   if (DGV && NewGV != SGV) {
 | |
|     C = ConstantExpr::getPointerBitCastOrAddrSpaceCast(
 | |
|       NewGV, TypeMap.get(SGV->getType()));
 | |
|   }
 | |
| 
 | |
|   if (DGV && NewGV != DGV) {
 | |
|     // Schedule "replace all uses with" to happen after materializing is
 | |
|     // done. It is not safe to do it now, since ValueMapper may be holding
 | |
|     // pointers to constants that will get deleted if RAUW runs.
 | |
|     RAUWWorklist.push_back(std::make_pair(
 | |
|         DGV,
 | |
|         ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV, DGV->getType())));
 | |
|   }
 | |
| 
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| /// Update the initializers in the Dest module now that all globals that may be
 | |
| /// referenced are in Dest.
 | |
| void IRLinker::linkGlobalVariable(GlobalVariable &Dst, GlobalVariable &Src) {
 | |
|   // Figure out what the initializer looks like in the dest module.
 | |
|   Mapper.scheduleMapGlobalInitializer(Dst, *Src.getInitializer());
 | |
| }
 | |
| 
 | |
| /// Copy the source function over into the dest function and fix up references
 | |
| /// to values. At this point we know that Dest is an external function, and
 | |
| /// that Src is not.
 | |
| Error IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
 | |
|   assert(Dst.isDeclaration() && !Src.isDeclaration());
 | |
| 
 | |
|   // Materialize if needed.
 | |
|   if (Error Err = Src.materialize())
 | |
|     return Err;
 | |
| 
 | |
|   // Link in the operands without remapping.
 | |
|   if (Src.hasPrefixData())
 | |
|     Dst.setPrefixData(Src.getPrefixData());
 | |
|   if (Src.hasPrologueData())
 | |
|     Dst.setPrologueData(Src.getPrologueData());
 | |
|   if (Src.hasPersonalityFn())
 | |
|     Dst.setPersonalityFn(Src.getPersonalityFn());
 | |
| 
 | |
|   // Copy over the metadata attachments without remapping.
 | |
|   Dst.copyMetadata(&Src, 0);
 | |
| 
 | |
|   // Steal arguments and splice the body of Src into Dst.
 | |
|   Dst.stealArgumentListFrom(Src);
 | |
|   Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
 | |
| 
 | |
|   // Everything has been moved over.  Remap it.
 | |
|   Mapper.scheduleRemapFunction(Dst);
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| void IRLinker::linkIndirectSymbolBody(GlobalIndirectSymbol &Dst,
 | |
|                                       GlobalIndirectSymbol &Src) {
 | |
|   Mapper.scheduleMapGlobalIndirectSymbol(Dst, *Src.getIndirectSymbol(),
 | |
|                                          IndirectSymbolMCID);
 | |
| }
 | |
| 
 | |
| Error IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
 | |
|   if (auto *F = dyn_cast<Function>(&Src))
 | |
|     return linkFunctionBody(cast<Function>(Dst), *F);
 | |
|   if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
 | |
|     linkGlobalVariable(cast<GlobalVariable>(Dst), *GVar);
 | |
|     return Error::success();
 | |
|   }
 | |
|   linkIndirectSymbolBody(cast<GlobalIndirectSymbol>(Dst), cast<GlobalIndirectSymbol>(Src));
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| void IRLinker::flushRAUWWorklist() {
 | |
|   for (const auto &Elem : RAUWWorklist) {
 | |
|     GlobalValue *Old;
 | |
|     Value *New;
 | |
|     std::tie(Old, New) = Elem;
 | |
| 
 | |
|     Old->replaceAllUsesWith(New);
 | |
|     Old->eraseFromParent();
 | |
|   }
 | |
|   RAUWWorklist.clear();
 | |
| }
 | |
| 
 | |
| void IRLinker::prepareCompileUnitsForImport() {
 | |
|   NamedMDNode *SrcCompileUnits = SrcM->getNamedMetadata("llvm.dbg.cu");
 | |
|   if (!SrcCompileUnits)
 | |
|     return;
 | |
|   // When importing for ThinLTO, prevent importing of types listed on
 | |
|   // the DICompileUnit that we don't need a copy of in the importing
 | |
|   // module. They will be emitted by the originating module.
 | |
|   for (unsigned I = 0, E = SrcCompileUnits->getNumOperands(); I != E; ++I) {
 | |
|     auto *CU = cast<DICompileUnit>(SrcCompileUnits->getOperand(I));
 | |
|     assert(CU && "Expected valid compile unit");
 | |
|     // Enums, macros, and retained types don't need to be listed on the
 | |
|     // imported DICompileUnit. This means they will only be imported
 | |
|     // if reached from the mapped IR.
 | |
|     CU->replaceEnumTypes(nullptr);
 | |
|     CU->replaceMacros(nullptr);
 | |
|     CU->replaceRetainedTypes(nullptr);
 | |
| 
 | |
|     // The original definition (or at least its debug info - if the variable is
 | |
|     // internalized and optimized away) will remain in the source module, so
 | |
|     // there's no need to import them.
 | |
|     // If LLVM ever does more advanced optimizations on global variables
 | |
|     // (removing/localizing write operations, for instance) that can track
 | |
|     // through debug info, this decision may need to be revisited - but do so
 | |
|     // with care when it comes to debug info size. Emitting small CUs containing
 | |
|     // only a few imported entities into every destination module may be very
 | |
|     // size inefficient.
 | |
|     CU->replaceGlobalVariables(nullptr);
 | |
| 
 | |
|     // Imported entities only need to be mapped in if they have local
 | |
|     // scope, as those might correspond to an imported entity inside a
 | |
|     // function being imported (any locally scoped imported entities that
 | |
|     // don't end up referenced by an imported function will not be emitted
 | |
|     // into the object). Imported entities not in a local scope
 | |
|     // (e.g. on the namespace) only need to be emitted by the originating
 | |
|     // module. Create a list of the locally scoped imported entities, and
 | |
|     // replace the source CUs imported entity list with the new list, so
 | |
|     // only those are mapped in.
 | |
|     // FIXME: Locally-scoped imported entities could be moved to the
 | |
|     // functions they are local to instead of listing them on the CU, and
 | |
|     // we would naturally only link in those needed by function importing.
 | |
|     SmallVector<TrackingMDNodeRef, 4> AllImportedModules;
 | |
|     bool ReplaceImportedEntities = false;
 | |
|     for (auto *IE : CU->getImportedEntities()) {
 | |
|       DIScope *Scope = IE->getScope();
 | |
|       assert(Scope && "Invalid Scope encoding!");
 | |
|       if (isa<DILocalScope>(Scope))
 | |
|         AllImportedModules.emplace_back(IE);
 | |
|       else
 | |
|         ReplaceImportedEntities = true;
 | |
|     }
 | |
|     if (ReplaceImportedEntities) {
 | |
|       if (!AllImportedModules.empty())
 | |
|         CU->replaceImportedEntities(MDTuple::get(
 | |
|             CU->getContext(),
 | |
|             SmallVector<Metadata *, 16>(AllImportedModules.begin(),
 | |
|                                         AllImportedModules.end())));
 | |
|       else
 | |
|         // If there were no local scope imported entities, we can map
 | |
|         // the whole list to nullptr.
 | |
|         CU->replaceImportedEntities(nullptr);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Insert all of the named MDNodes in Src into the Dest module.
 | |
| void IRLinker::linkNamedMDNodes() {
 | |
|   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
 | |
|   for (const NamedMDNode &NMD : SrcM->named_metadata()) {
 | |
|     // Don't link module flags here. Do them separately.
 | |
|     if (&NMD == SrcModFlags)
 | |
|       continue;
 | |
|     NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
 | |
|     // Add Src elements into Dest node.
 | |
|     for (const MDNode *Op : NMD.operands())
 | |
|       DestNMD->addOperand(Mapper.mapMDNode(*Op));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Merge the linker flags in Src into the Dest module.
 | |
| Error IRLinker::linkModuleFlagsMetadata() {
 | |
|   // If the source module has no module flags, we are done.
 | |
|   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
 | |
|   if (!SrcModFlags)
 | |
|     return Error::success();
 | |
| 
 | |
|   // If the destination module doesn't have module flags yet, then just copy
 | |
|   // over the source module's flags.
 | |
|   NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
 | |
|   if (DstModFlags->getNumOperands() == 0) {
 | |
|     for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
 | |
|       DstModFlags->addOperand(SrcModFlags->getOperand(I));
 | |
| 
 | |
|     return Error::success();
 | |
|   }
 | |
| 
 | |
|   // First build a map of the existing module flags and requirements.
 | |
|   DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
 | |
|   SmallSetVector<MDNode *, 16> Requirements;
 | |
|   for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
 | |
|     MDNode *Op = DstModFlags->getOperand(I);
 | |
|     ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
 | |
|     MDString *ID = cast<MDString>(Op->getOperand(1));
 | |
| 
 | |
|     if (Behavior->getZExtValue() == Module::Require) {
 | |
|       Requirements.insert(cast<MDNode>(Op->getOperand(2)));
 | |
|     } else {
 | |
|       Flags[ID] = std::make_pair(Op, I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Merge in the flags from the source module, and also collect its set of
 | |
|   // requirements.
 | |
|   for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
 | |
|     MDNode *SrcOp = SrcModFlags->getOperand(I);
 | |
|     ConstantInt *SrcBehavior =
 | |
|         mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
 | |
|     MDString *ID = cast<MDString>(SrcOp->getOperand(1));
 | |
|     MDNode *DstOp;
 | |
|     unsigned DstIndex;
 | |
|     std::tie(DstOp, DstIndex) = Flags.lookup(ID);
 | |
|     unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
 | |
| 
 | |
|     // If this is a requirement, add it and continue.
 | |
|     if (SrcBehaviorValue == Module::Require) {
 | |
|       // If the destination module does not already have this requirement, add
 | |
|       // it.
 | |
|       if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
 | |
|         DstModFlags->addOperand(SrcOp);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If there is no existing flag with this ID, just add it.
 | |
|     if (!DstOp) {
 | |
|       Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
 | |
|       DstModFlags->addOperand(SrcOp);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, perform a merge.
 | |
|     ConstantInt *DstBehavior =
 | |
|         mdconst::extract<ConstantInt>(DstOp->getOperand(0));
 | |
|     unsigned DstBehaviorValue = DstBehavior->getZExtValue();
 | |
| 
 | |
|     auto overrideDstValue = [&]() {
 | |
|       DstModFlags->setOperand(DstIndex, SrcOp);
 | |
|       Flags[ID].first = SrcOp;
 | |
|     };
 | |
| 
 | |
|     // If either flag has override behavior, handle it first.
 | |
|     if (DstBehaviorValue == Module::Override) {
 | |
|       // Diagnose inconsistent flags which both have override behavior.
 | |
|       if (SrcBehaviorValue == Module::Override &&
 | |
|           SrcOp->getOperand(2) != DstOp->getOperand(2))
 | |
|         return stringErr("linking module flags '" + ID->getString() +
 | |
|                          "': IDs have conflicting override values in '" +
 | |
|                          SrcM->getModuleIdentifier() + "' and '" +
 | |
|                          DstM.getModuleIdentifier() + "'");
 | |
|       continue;
 | |
|     } else if (SrcBehaviorValue == Module::Override) {
 | |
|       // Update the destination flag to that of the source.
 | |
|       overrideDstValue();
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Diagnose inconsistent merge behavior types.
 | |
|     if (SrcBehaviorValue != DstBehaviorValue) {
 | |
|       bool MaxAndWarn = (SrcBehaviorValue == Module::Max &&
 | |
|                          DstBehaviorValue == Module::Warning) ||
 | |
|                         (DstBehaviorValue == Module::Max &&
 | |
|                          SrcBehaviorValue == Module::Warning);
 | |
|       if (!MaxAndWarn)
 | |
|         return stringErr("linking module flags '" + ID->getString() +
 | |
|                          "': IDs have conflicting behaviors in '" +
 | |
|                          SrcM->getModuleIdentifier() + "' and '" +
 | |
|                          DstM.getModuleIdentifier() + "'");
 | |
|     }
 | |
| 
 | |
|     auto replaceDstValue = [&](MDNode *New) {
 | |
|       Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
 | |
|       MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
 | |
|       DstModFlags->setOperand(DstIndex, Flag);
 | |
|       Flags[ID].first = Flag;
 | |
|     };
 | |
| 
 | |
|     // Emit a warning if the values differ and either source or destination
 | |
|     // request Warning behavior.
 | |
|     if ((DstBehaviorValue == Module::Warning ||
 | |
|          SrcBehaviorValue == Module::Warning) &&
 | |
|         SrcOp->getOperand(2) != DstOp->getOperand(2)) {
 | |
|       std::string Str;
 | |
|       raw_string_ostream(Str)
 | |
|           << "linking module flags '" << ID->getString()
 | |
|           << "': IDs have conflicting values ('" << *SrcOp->getOperand(2)
 | |
|           << "' from " << SrcM->getModuleIdentifier() << " with '"
 | |
|           << *DstOp->getOperand(2) << "' from " << DstM.getModuleIdentifier()
 | |
|           << ')';
 | |
|       emitWarning(Str);
 | |
|     }
 | |
| 
 | |
|     // Choose the maximum if either source or destination request Max behavior.
 | |
|     if (DstBehaviorValue == Module::Max || SrcBehaviorValue == Module::Max) {
 | |
|       ConstantInt *DstValue =
 | |
|           mdconst::extract<ConstantInt>(DstOp->getOperand(2));
 | |
|       ConstantInt *SrcValue =
 | |
|           mdconst::extract<ConstantInt>(SrcOp->getOperand(2));
 | |
| 
 | |
|       // The resulting flag should have a Max behavior, and contain the maximum
 | |
|       // value from between the source and destination values.
 | |
|       Metadata *FlagOps[] = {
 | |
|           (DstBehaviorValue != Module::Max ? SrcOp : DstOp)->getOperand(0), ID,
 | |
|           (SrcValue->getZExtValue() > DstValue->getZExtValue() ? SrcOp : DstOp)
 | |
|               ->getOperand(2)};
 | |
|       MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
 | |
|       DstModFlags->setOperand(DstIndex, Flag);
 | |
|       Flags[ID].first = Flag;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Perform the merge for standard behavior types.
 | |
|     switch (SrcBehaviorValue) {
 | |
|     case Module::Require:
 | |
|     case Module::Override:
 | |
|       llvm_unreachable("not possible");
 | |
|     case Module::Error: {
 | |
|       // Emit an error if the values differ.
 | |
|       if (SrcOp->getOperand(2) != DstOp->getOperand(2))
 | |
|         return stringErr("linking module flags '" + ID->getString() +
 | |
|                          "': IDs have conflicting values in '" +
 | |
|                          SrcM->getModuleIdentifier() + "' and '" +
 | |
|                          DstM.getModuleIdentifier() + "'");
 | |
|       continue;
 | |
|     }
 | |
|     case Module::Warning: {
 | |
|       break;
 | |
|     }
 | |
|     case Module::Max: {
 | |
|       break;
 | |
|     }
 | |
|     case Module::Append: {
 | |
|       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
 | |
|       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
 | |
|       SmallVector<Metadata *, 8> MDs;
 | |
|       MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
 | |
|       MDs.append(DstValue->op_begin(), DstValue->op_end());
 | |
|       MDs.append(SrcValue->op_begin(), SrcValue->op_end());
 | |
| 
 | |
|       replaceDstValue(MDNode::get(DstM.getContext(), MDs));
 | |
|       break;
 | |
|     }
 | |
|     case Module::AppendUnique: {
 | |
|       SmallSetVector<Metadata *, 16> Elts;
 | |
|       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
 | |
|       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
 | |
|       Elts.insert(DstValue->op_begin(), DstValue->op_end());
 | |
|       Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
 | |
| 
 | |
|       replaceDstValue(MDNode::get(DstM.getContext(),
 | |
|                                   makeArrayRef(Elts.begin(), Elts.end())));
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
| 
 | |
|   }
 | |
| 
 | |
|   // Check all of the requirements.
 | |
|   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
 | |
|     MDNode *Requirement = Requirements[I];
 | |
|     MDString *Flag = cast<MDString>(Requirement->getOperand(0));
 | |
|     Metadata *ReqValue = Requirement->getOperand(1);
 | |
| 
 | |
|     MDNode *Op = Flags[Flag].first;
 | |
|     if (!Op || Op->getOperand(2) != ReqValue)
 | |
|       return stringErr("linking module flags '" + Flag->getString() +
 | |
|                        "': does not have the required value");
 | |
|   }
 | |
|   return Error::success();
 | |
| }
 | |
| 
 | |
| /// Return InlineAsm adjusted with target-specific directives if required.
 | |
| /// For ARM and Thumb, we have to add directives to select the appropriate ISA
 | |
| /// to support mixing module-level inline assembly from ARM and Thumb modules.
 | |
| static std::string adjustInlineAsm(const std::string &InlineAsm,
 | |
|                                    const Triple &Triple) {
 | |
|   if (Triple.getArch() == Triple::thumb || Triple.getArch() == Triple::thumbeb)
 | |
|     return ".text\n.balign 2\n.thumb\n" + InlineAsm;
 | |
|   if (Triple.getArch() == Triple::arm || Triple.getArch() == Triple::armeb)
 | |
|     return ".text\n.balign 4\n.arm\n" + InlineAsm;
 | |
|   return InlineAsm;
 | |
| }
 | |
| 
 | |
| Error IRLinker::run() {
 | |
|   // Ensure metadata materialized before value mapping.
 | |
|   if (SrcM->getMaterializer())
 | |
|     if (Error Err = SrcM->getMaterializer()->materializeMetadata())
 | |
|       return Err;
 | |
| 
 | |
|   // Inherit the target data from the source module if the destination module
 | |
|   // doesn't have one already.
 | |
|   if (DstM.getDataLayout().isDefault())
 | |
|     DstM.setDataLayout(SrcM->getDataLayout());
 | |
| 
 | |
|   if (SrcM->getDataLayout() != DstM.getDataLayout()) {
 | |
|     emitWarning("Linking two modules of different data layouts: '" +
 | |
|                 SrcM->getModuleIdentifier() + "' is '" +
 | |
|                 SrcM->getDataLayoutStr() + "' whereas '" +
 | |
|                 DstM.getModuleIdentifier() + "' is '" +
 | |
|                 DstM.getDataLayoutStr() + "'\n");
 | |
|   }
 | |
| 
 | |
|   // Copy the target triple from the source to dest if the dest's is empty.
 | |
|   if (DstM.getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
 | |
|     DstM.setTargetTriple(SrcM->getTargetTriple());
 | |
| 
 | |
|   Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM.getTargetTriple());
 | |
| 
 | |
|   if (!SrcM->getTargetTriple().empty()&&
 | |
|       !SrcTriple.isCompatibleWith(DstTriple))
 | |
|     emitWarning("Linking two modules of different target triples: '" +
 | |
|                 SrcM->getModuleIdentifier() + "' is '" +
 | |
|                 SrcM->getTargetTriple() + "' whereas '" +
 | |
|                 DstM.getModuleIdentifier() + "' is '" + DstM.getTargetTriple() +
 | |
|                 "'\n");
 | |
| 
 | |
|   DstM.setTargetTriple(SrcTriple.merge(DstTriple));
 | |
| 
 | |
|   // Loop over all of the linked values to compute type mappings.
 | |
|   computeTypeMapping();
 | |
| 
 | |
|   std::reverse(Worklist.begin(), Worklist.end());
 | |
|   while (!Worklist.empty()) {
 | |
|     GlobalValue *GV = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     // Already mapped.
 | |
|     if (ValueMap.find(GV) != ValueMap.end() ||
 | |
|         IndirectSymbolValueMap.find(GV) != IndirectSymbolValueMap.end())
 | |
|       continue;
 | |
| 
 | |
|     assert(!GV->isDeclaration());
 | |
|     Mapper.mapValue(*GV);
 | |
|     if (FoundError)
 | |
|       return std::move(*FoundError);
 | |
|     flushRAUWWorklist();
 | |
|   }
 | |
| 
 | |
|   // Note that we are done linking global value bodies. This prevents
 | |
|   // metadata linking from creating new references.
 | |
|   DoneLinkingBodies = true;
 | |
|   Mapper.addFlags(RF_NullMapMissingGlobalValues);
 | |
| 
 | |
|   // Remap all of the named MDNodes in Src into the DstM module. We do this
 | |
|   // after linking GlobalValues so that MDNodes that reference GlobalValues
 | |
|   // are properly remapped.
 | |
|   linkNamedMDNodes();
 | |
| 
 | |
|   if (!IsPerformingImport && !SrcM->getModuleInlineAsm().empty()) {
 | |
|     // Append the module inline asm string.
 | |
|     DstM.appendModuleInlineAsm(adjustInlineAsm(SrcM->getModuleInlineAsm(),
 | |
|                                                SrcTriple));
 | |
|   } else if (IsPerformingImport) {
 | |
|     // Import any symver directives for symbols in DstM.
 | |
|     ModuleSymbolTable::CollectAsmSymvers(*SrcM,
 | |
|                                          [&](StringRef Name, StringRef Alias) {
 | |
|       if (DstM.getNamedValue(Name)) {
 | |
|         SmallString<256> S(".symver ");
 | |
|         S += Name;
 | |
|         S += ", ";
 | |
|         S += Alias;
 | |
|         DstM.appendModuleInlineAsm(S);
 | |
|       }
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   // Merge the module flags into the DstM module.
 | |
|   return linkModuleFlagsMetadata();
 | |
| }
 | |
| 
 | |
| IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
 | |
|     : ETypes(E), IsPacked(P) {}
 | |
| 
 | |
| IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
 | |
|     : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
 | |
| 
 | |
| bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
 | |
|   return IsPacked == That.IsPacked && ETypes == That.ETypes;
 | |
| }
 | |
| 
 | |
| bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
 | |
|   return !this->operator==(That);
 | |
| }
 | |
| 
 | |
| StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
 | |
|   return DenseMapInfo<StructType *>::getEmptyKey();
 | |
| }
 | |
| 
 | |
| StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
 | |
|   return DenseMapInfo<StructType *>::getTombstoneKey();
 | |
| }
 | |
| 
 | |
| unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
 | |
|   return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
 | |
|                       Key.IsPacked);
 | |
| }
 | |
| 
 | |
| unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
 | |
|   return getHashValue(KeyTy(ST));
 | |
| }
 | |
| 
 | |
| bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
 | |
|                                          const StructType *RHS) {
 | |
|   if (RHS == getEmptyKey() || RHS == getTombstoneKey())
 | |
|     return false;
 | |
|   return LHS == KeyTy(RHS);
 | |
| }
 | |
| 
 | |
| bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
 | |
|                                          const StructType *RHS) {
 | |
|   if (RHS == getEmptyKey() || RHS == getTombstoneKey())
 | |
|     return LHS == RHS;
 | |
|   return KeyTy(LHS) == KeyTy(RHS);
 | |
| }
 | |
| 
 | |
| void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
 | |
|   assert(!Ty->isOpaque());
 | |
|   NonOpaqueStructTypes.insert(Ty);
 | |
| }
 | |
| 
 | |
| void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
 | |
|   assert(!Ty->isOpaque());
 | |
|   NonOpaqueStructTypes.insert(Ty);
 | |
|   bool Removed = OpaqueStructTypes.erase(Ty);
 | |
|   (void)Removed;
 | |
|   assert(Removed);
 | |
| }
 | |
| 
 | |
| void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
 | |
|   assert(Ty->isOpaque());
 | |
|   OpaqueStructTypes.insert(Ty);
 | |
| }
 | |
| 
 | |
| StructType *
 | |
| IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
 | |
|                                                 bool IsPacked) {
 | |
|   IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
 | |
|   auto I = NonOpaqueStructTypes.find_as(Key);
 | |
|   return I == NonOpaqueStructTypes.end() ? nullptr : *I;
 | |
| }
 | |
| 
 | |
| bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
 | |
|   if (Ty->isOpaque())
 | |
|     return OpaqueStructTypes.count(Ty);
 | |
|   auto I = NonOpaqueStructTypes.find(Ty);
 | |
|   return I == NonOpaqueStructTypes.end() ? false : *I == Ty;
 | |
| }
 | |
| 
 | |
| IRMover::IRMover(Module &M) : Composite(M) {
 | |
|   TypeFinder StructTypes;
 | |
|   StructTypes.run(M, /* OnlyNamed */ false);
 | |
|   for (StructType *Ty : StructTypes) {
 | |
|     if (Ty->isOpaque())
 | |
|       IdentifiedStructTypes.addOpaque(Ty);
 | |
|     else
 | |
|       IdentifiedStructTypes.addNonOpaque(Ty);
 | |
|   }
 | |
|   // Self-map metadatas in the destination module. This is needed when
 | |
|   // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
 | |
|   // destination module may be reached from the source module.
 | |
|   for (auto *MD : StructTypes.getVisitedMetadata()) {
 | |
|     SharedMDs[MD].reset(const_cast<MDNode *>(MD));
 | |
|   }
 | |
| }
 | |
| 
 | |
| Error IRMover::move(
 | |
|     std::unique_ptr<Module> Src, ArrayRef<GlobalValue *> ValuesToLink,
 | |
|     std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
 | |
|     bool IsPerformingImport) {
 | |
|   IRLinker TheIRLinker(Composite, SharedMDs, IdentifiedStructTypes,
 | |
|                        std::move(Src), ValuesToLink, std::move(AddLazyFor),
 | |
|                        IsPerformingImport);
 | |
|   Error E = TheIRLinker.run();
 | |
|   Composite.dropTriviallyDeadConstantArrays();
 | |
|   return E;
 | |
| }
 |