412 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			412 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- AArch64ExpandImm.h - AArch64 Immediate Expansion -------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the AArch64ExpandImm stuff.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "AArch64.h"
 | 
						|
#include "AArch64ExpandImm.h"
 | 
						|
#include "MCTargetDesc/AArch64AddressingModes.h"
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
namespace AArch64_IMM {
 | 
						|
 | 
						|
/// Helper function which extracts the specified 16-bit chunk from a
 | 
						|
/// 64-bit value.
 | 
						|
static uint64_t getChunk(uint64_t Imm, unsigned ChunkIdx) {
 | 
						|
  assert(ChunkIdx < 4 && "Out of range chunk index specified!");
 | 
						|
 | 
						|
  return (Imm >> (ChunkIdx * 16)) & 0xFFFF;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the given 16-bit chunk replicated to full 64-bit width
 | 
						|
/// can be materialized with an ORR instruction.
 | 
						|
static bool canUseOrr(uint64_t Chunk, uint64_t &Encoding) {
 | 
						|
  Chunk = (Chunk << 48) | (Chunk << 32) | (Chunk << 16) | Chunk;
 | 
						|
 | 
						|
  return AArch64_AM::processLogicalImmediate(Chunk, 64, Encoding);
 | 
						|
}
 | 
						|
 | 
						|
/// Check for identical 16-bit chunks within the constant and if so
 | 
						|
/// materialize them with a single ORR instruction. The remaining one or two
 | 
						|
/// 16-bit chunks will be materialized with MOVK instructions.
 | 
						|
///
 | 
						|
/// This allows us to materialize constants like |A|B|A|A| or |A|B|C|A| (order
 | 
						|
/// of the chunks doesn't matter), assuming |A|A|A|A| can be materialized with
 | 
						|
/// an ORR instruction.
 | 
						|
static bool tryToreplicateChunks(uint64_t UImm,
 | 
						|
				 SmallVectorImpl<ImmInsnModel> &Insn) {
 | 
						|
  using CountMap = DenseMap<uint64_t, unsigned>;
 | 
						|
 | 
						|
  CountMap Counts;
 | 
						|
 | 
						|
  // Scan the constant and count how often every chunk occurs.
 | 
						|
  for (unsigned Idx = 0; Idx < 4; ++Idx)
 | 
						|
    ++Counts[getChunk(UImm, Idx)];
 | 
						|
 | 
						|
  // Traverse the chunks to find one which occurs more than once.
 | 
						|
  for (CountMap::const_iterator Chunk = Counts.begin(), End = Counts.end();
 | 
						|
       Chunk != End; ++Chunk) {
 | 
						|
    const uint64_t ChunkVal = Chunk->first;
 | 
						|
    const unsigned Count = Chunk->second;
 | 
						|
 | 
						|
    uint64_t Encoding = 0;
 | 
						|
 | 
						|
    // We are looking for chunks which have two or three instances and can be
 | 
						|
    // materialized with an ORR instruction.
 | 
						|
    if ((Count != 2 && Count != 3) || !canUseOrr(ChunkVal, Encoding))
 | 
						|
      continue;
 | 
						|
 | 
						|
    const bool CountThree = Count == 3;
 | 
						|
 | 
						|
    Insn.push_back({ AArch64::ORRXri, 0, Encoding });
 | 
						|
 | 
						|
    unsigned ShiftAmt = 0;
 | 
						|
    uint64_t Imm16 = 0;
 | 
						|
    // Find the first chunk not materialized with the ORR instruction.
 | 
						|
    for (; ShiftAmt < 64; ShiftAmt += 16) {
 | 
						|
      Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
 | 
						|
 | 
						|
      if (Imm16 != ChunkVal)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the first MOVK instruction.
 | 
						|
    Insn.push_back({ AArch64::MOVKXi, Imm16,
 | 
						|
		     AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
 | 
						|
 | 
						|
    // In case we have three instances the whole constant is now materialized
 | 
						|
    // and we can exit.
 | 
						|
    if (CountThree)
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Find the remaining chunk which needs to be materialized.
 | 
						|
    for (ShiftAmt += 16; ShiftAmt < 64; ShiftAmt += 16) {
 | 
						|
      Imm16 = (UImm >> ShiftAmt) & 0xFFFF;
 | 
						|
 | 
						|
      if (Imm16 != ChunkVal)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    Insn.push_back({ AArch64::MOVKXi, Imm16,
 | 
						|
                     AArch64_AM::getShifterImm(AArch64_AM::LSL, ShiftAmt) });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether this chunk matches the pattern '1...0...'. This pattern
 | 
						|
/// starts a contiguous sequence of ones if we look at the bits from the LSB
 | 
						|
/// towards the MSB.
 | 
						|
static bool isStartChunk(uint64_t Chunk) {
 | 
						|
  if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return isMask_64(~Chunk);
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether this chunk matches the pattern '0...1...' This pattern
 | 
						|
/// ends a contiguous sequence of ones if we look at the bits from the LSB
 | 
						|
/// towards the MSB.
 | 
						|
static bool isEndChunk(uint64_t Chunk) {
 | 
						|
  if (Chunk == 0 || Chunk == std::numeric_limits<uint64_t>::max())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return isMask_64(Chunk);
 | 
						|
}
 | 
						|
 | 
						|
/// Clear or set all bits in the chunk at the given index.
 | 
						|
static uint64_t updateImm(uint64_t Imm, unsigned Idx, bool Clear) {
 | 
						|
  const uint64_t Mask = 0xFFFF;
 | 
						|
 | 
						|
  if (Clear)
 | 
						|
    // Clear chunk in the immediate.
 | 
						|
    Imm &= ~(Mask << (Idx * 16));
 | 
						|
  else
 | 
						|
    // Set all bits in the immediate for the particular chunk.
 | 
						|
    Imm |= Mask << (Idx * 16);
 | 
						|
 | 
						|
  return Imm;
 | 
						|
}
 | 
						|
 | 
						|
/// Check whether the constant contains a sequence of contiguous ones,
 | 
						|
/// which might be interrupted by one or two chunks. If so, materialize the
 | 
						|
/// sequence of contiguous ones with an ORR instruction.
 | 
						|
/// Materialize the chunks which are either interrupting the sequence or outside
 | 
						|
/// of the sequence with a MOVK instruction.
 | 
						|
///
 | 
						|
/// Assuming S is a chunk which starts the sequence (1...0...), E is a chunk
 | 
						|
/// which ends the sequence (0...1...). Then we are looking for constants which
 | 
						|
/// contain at least one S and E chunk.
 | 
						|
/// E.g. |E|A|B|S|, |A|E|B|S| or |A|B|E|S|.
 | 
						|
///
 | 
						|
/// We are also looking for constants like |S|A|B|E| where the contiguous
 | 
						|
/// sequence of ones wraps around the MSB into the LSB.
 | 
						|
static bool trySequenceOfOnes(uint64_t UImm,
 | 
						|
                              SmallVectorImpl<ImmInsnModel> &Insn) {
 | 
						|
  const int NotSet = -1;
 | 
						|
  const uint64_t Mask = 0xFFFF;
 | 
						|
 | 
						|
  int StartIdx = NotSet;
 | 
						|
  int EndIdx = NotSet;
 | 
						|
  // Try to find the chunks which start/end a contiguous sequence of ones.
 | 
						|
  for (int Idx = 0; Idx < 4; ++Idx) {
 | 
						|
    int64_t Chunk = getChunk(UImm, Idx);
 | 
						|
    // Sign extend the 16-bit chunk to 64-bit.
 | 
						|
    Chunk = (Chunk << 48) >> 48;
 | 
						|
 | 
						|
    if (isStartChunk(Chunk))
 | 
						|
      StartIdx = Idx;
 | 
						|
    else if (isEndChunk(Chunk))
 | 
						|
      EndIdx = Idx;
 | 
						|
  }
 | 
						|
 | 
						|
  // Early exit in case we can't find a start/end chunk.
 | 
						|
  if (StartIdx == NotSet || EndIdx == NotSet)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Outside of the contiguous sequence of ones everything needs to be zero.
 | 
						|
  uint64_t Outside = 0;
 | 
						|
  // Chunks between the start and end chunk need to have all their bits set.
 | 
						|
  uint64_t Inside = Mask;
 | 
						|
 | 
						|
  // If our contiguous sequence of ones wraps around from the MSB into the LSB,
 | 
						|
  // just swap indices and pretend we are materializing a contiguous sequence
 | 
						|
  // of zeros surrounded by a contiguous sequence of ones.
 | 
						|
  if (StartIdx > EndIdx) {
 | 
						|
    std::swap(StartIdx, EndIdx);
 | 
						|
    std::swap(Outside, Inside);
 | 
						|
  }
 | 
						|
 | 
						|
  uint64_t OrrImm = UImm;
 | 
						|
  int FirstMovkIdx = NotSet;
 | 
						|
  int SecondMovkIdx = NotSet;
 | 
						|
 | 
						|
  // Find out which chunks we need to patch up to obtain a contiguous sequence
 | 
						|
  // of ones.
 | 
						|
  for (int Idx = 0; Idx < 4; ++Idx) {
 | 
						|
    const uint64_t Chunk = getChunk(UImm, Idx);
 | 
						|
 | 
						|
    // Check whether we are looking at a chunk which is not part of the
 | 
						|
    // contiguous sequence of ones.
 | 
						|
    if ((Idx < StartIdx || EndIdx < Idx) && Chunk != Outside) {
 | 
						|
      OrrImm = updateImm(OrrImm, Idx, Outside == 0);
 | 
						|
 | 
						|
      // Remember the index we need to patch.
 | 
						|
      if (FirstMovkIdx == NotSet)
 | 
						|
        FirstMovkIdx = Idx;
 | 
						|
      else
 | 
						|
        SecondMovkIdx = Idx;
 | 
						|
 | 
						|
      // Check whether we are looking a chunk which is part of the contiguous
 | 
						|
      // sequence of ones.
 | 
						|
    } else if (Idx > StartIdx && Idx < EndIdx && Chunk != Inside) {
 | 
						|
      OrrImm = updateImm(OrrImm, Idx, Inside != Mask);
 | 
						|
 | 
						|
      // Remember the index we need to patch.
 | 
						|
      if (FirstMovkIdx == NotSet)
 | 
						|
        FirstMovkIdx = Idx;
 | 
						|
      else
 | 
						|
        SecondMovkIdx = Idx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  assert(FirstMovkIdx != NotSet && "Constant materializable with single ORR!");
 | 
						|
 | 
						|
  // Create the ORR-immediate instruction.
 | 
						|
  uint64_t Encoding = 0;
 | 
						|
  AArch64_AM::processLogicalImmediate(OrrImm, 64, Encoding);
 | 
						|
  Insn.push_back({ AArch64::ORRXri, 0, Encoding });
 | 
						|
 | 
						|
  const bool SingleMovk = SecondMovkIdx == NotSet;
 | 
						|
  Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, FirstMovkIdx),
 | 
						|
                   AArch64_AM::getShifterImm(AArch64_AM::LSL,
 | 
						|
                                             FirstMovkIdx * 16) });
 | 
						|
 | 
						|
  // Early exit in case we only need to emit a single MOVK instruction.
 | 
						|
  if (SingleMovk)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Create the second MOVK instruction.
 | 
						|
  Insn.push_back({ AArch64::MOVKXi, getChunk(UImm, SecondMovkIdx),
 | 
						|
	           AArch64_AM::getShifterImm(AArch64_AM::LSL,
 | 
						|
                                             SecondMovkIdx * 16) });
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Expand a MOVi32imm or MOVi64imm pseudo instruction to a
 | 
						|
/// MOVZ or MOVN of width BitSize followed by up to 3 MOVK instructions.
 | 
						|
static inline void expandMOVImmSimple(uint64_t Imm, unsigned BitSize,
 | 
						|
				      unsigned OneChunks, unsigned ZeroChunks,
 | 
						|
				      SmallVectorImpl<ImmInsnModel> &Insn) {
 | 
						|
  const unsigned Mask = 0xFFFF;
 | 
						|
 | 
						|
  // Use a MOVZ or MOVN instruction to set the high bits, followed by one or
 | 
						|
  // more MOVK instructions to insert additional 16-bit portions into the
 | 
						|
  // lower bits.
 | 
						|
  bool isNeg = false;
 | 
						|
 | 
						|
  // Use MOVN to materialize the high bits if we have more all one chunks
 | 
						|
  // than all zero chunks.
 | 
						|
  if (OneChunks > ZeroChunks) {
 | 
						|
    isNeg = true;
 | 
						|
    Imm = ~Imm;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned FirstOpc;
 | 
						|
  if (BitSize == 32) {
 | 
						|
    Imm &= (1LL << 32) - 1;
 | 
						|
    FirstOpc = (isNeg ? AArch64::MOVNWi : AArch64::MOVZWi);
 | 
						|
  } else {
 | 
						|
    FirstOpc = (isNeg ? AArch64::MOVNXi : AArch64::MOVZXi);
 | 
						|
  }
 | 
						|
  unsigned Shift = 0;     // LSL amount for high bits with MOVZ/MOVN
 | 
						|
  unsigned LastShift = 0; // LSL amount for last MOVK
 | 
						|
  if (Imm != 0) {
 | 
						|
    unsigned LZ = countLeadingZeros(Imm);
 | 
						|
    unsigned TZ = countTrailingZeros(Imm);
 | 
						|
    Shift = (TZ / 16) * 16;
 | 
						|
    LastShift = ((63 - LZ) / 16) * 16;
 | 
						|
  }
 | 
						|
  unsigned Imm16 = (Imm >> Shift) & Mask;
 | 
						|
 | 
						|
  Insn.push_back({ FirstOpc, Imm16,
 | 
						|
                   AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
 | 
						|
 | 
						|
  if (Shift == LastShift)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If a MOVN was used for the high bits of a negative value, flip the rest
 | 
						|
  // of the bits back for use with MOVK.
 | 
						|
  if (isNeg)
 | 
						|
    Imm = ~Imm;
 | 
						|
 | 
						|
  unsigned Opc = (BitSize == 32 ? AArch64::MOVKWi : AArch64::MOVKXi);
 | 
						|
  while (Shift < LastShift) {
 | 
						|
    Shift += 16;
 | 
						|
    Imm16 = (Imm >> Shift) & Mask;
 | 
						|
    if (Imm16 == (isNeg ? Mask : 0))
 | 
						|
      continue; // This 16-bit portion is already set correctly.
 | 
						|
 | 
						|
    Insn.push_back({ Opc, Imm16,
 | 
						|
                     AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Expand a MOVi32imm or MOVi64imm pseudo instruction to one or more
 | 
						|
/// real move-immediate instructions to synthesize the immediate.
 | 
						|
void expandMOVImm(uint64_t Imm, unsigned BitSize,
 | 
						|
		  SmallVectorImpl<ImmInsnModel> &Insn) {
 | 
						|
  const unsigned Mask = 0xFFFF;
 | 
						|
 | 
						|
  // Scan the immediate and count the number of 16-bit chunks which are either
 | 
						|
  // all ones or all zeros.
 | 
						|
  unsigned OneChunks = 0;
 | 
						|
  unsigned ZeroChunks = 0;
 | 
						|
  for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
 | 
						|
    const unsigned Chunk = (Imm >> Shift) & Mask;
 | 
						|
    if (Chunk == Mask)
 | 
						|
      OneChunks++;
 | 
						|
    else if (Chunk == 0)
 | 
						|
      ZeroChunks++;
 | 
						|
  }
 | 
						|
 | 
						|
  // Prefer MOVZ/MOVN over ORR because of the rules for the "mov" alias.
 | 
						|
  if ((BitSize / 16) - OneChunks <= 1 || (BitSize / 16) - ZeroChunks <= 1) {
 | 
						|
    expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try a single ORR.
 | 
						|
  uint64_t UImm = Imm << (64 - BitSize) >> (64 - BitSize);
 | 
						|
  uint64_t Encoding;
 | 
						|
  if (AArch64_AM::processLogicalImmediate(UImm, BitSize, Encoding)) {
 | 
						|
    unsigned Opc = (BitSize == 32 ? AArch64::ORRWri : AArch64::ORRXri);
 | 
						|
    Insn.push_back({ Opc, 0, Encoding });
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // One to up three instruction sequences.
 | 
						|
  //
 | 
						|
  // Prefer MOVZ/MOVN followed by MOVK; it's more readable, and possibly the
 | 
						|
  // fastest sequence with fast literal generation.
 | 
						|
  if (OneChunks >= (BitSize / 16) - 2 || ZeroChunks >= (BitSize / 16) - 2) {
 | 
						|
    expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(BitSize == 64 && "All 32-bit immediates can be expanded with a"
 | 
						|
                          "MOVZ/MOVK pair");
 | 
						|
 | 
						|
  // Try other two-instruction sequences.
 | 
						|
 | 
						|
  // 64-bit ORR followed by MOVK.
 | 
						|
  // We try to construct the ORR immediate in three different ways: either we
 | 
						|
  // zero out the chunk which will be replaced, we fill the chunk which will
 | 
						|
  // be replaced with ones, or we take the bit pattern from the other half of
 | 
						|
  // the 64-bit immediate. This is comprehensive because of the way ORR
 | 
						|
  // immediates are constructed.
 | 
						|
  for (unsigned Shift = 0; Shift < BitSize; Shift += 16) {
 | 
						|
    uint64_t ShiftedMask = (0xFFFFULL << Shift);
 | 
						|
    uint64_t ZeroChunk = UImm & ~ShiftedMask;
 | 
						|
    uint64_t OneChunk = UImm | ShiftedMask;
 | 
						|
    uint64_t RotatedImm = (UImm << 32) | (UImm >> 32);
 | 
						|
    uint64_t ReplicateChunk = ZeroChunk | (RotatedImm & ShiftedMask);
 | 
						|
    if (AArch64_AM::processLogicalImmediate(ZeroChunk, BitSize, Encoding) ||
 | 
						|
        AArch64_AM::processLogicalImmediate(OneChunk, BitSize, Encoding) ||
 | 
						|
        AArch64_AM::processLogicalImmediate(ReplicateChunk, BitSize,
 | 
						|
                                            Encoding)) {
 | 
						|
      // Create the ORR-immediate instruction.
 | 
						|
      Insn.push_back({ AArch64::ORRXri, 0, Encoding });
 | 
						|
 | 
						|
      // Create the MOVK instruction.
 | 
						|
      const unsigned Imm16 = getChunk(UImm, Shift / 16);
 | 
						|
      Insn.push_back({ AArch64::MOVKXi, Imm16,
 | 
						|
		       AArch64_AM::getShifterImm(AArch64_AM::LSL, Shift) });
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Add more two-instruction sequences.
 | 
						|
 | 
						|
  // Three instruction sequences.
 | 
						|
  //
 | 
						|
  // Prefer MOVZ/MOVN followed by two MOVK; it's more readable, and possibly
 | 
						|
  // the fastest sequence with fast literal generation. (If neither MOVK is
 | 
						|
  // part of a fast literal generation pair, it could be slower than the
 | 
						|
  // four-instruction sequence, but we won't worry about that for now.)
 | 
						|
  if (OneChunks || ZeroChunks) {
 | 
						|
    expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for identical 16-bit chunks within the constant and if so materialize
 | 
						|
  // them with a single ORR instruction. The remaining one or two 16-bit chunks
 | 
						|
  // will be materialized with MOVK instructions.
 | 
						|
  if (BitSize == 64 && tryToreplicateChunks(UImm, Insn))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check whether the constant contains a sequence of contiguous ones, which
 | 
						|
  // might be interrupted by one or two chunks. If so, materialize the sequence
 | 
						|
  // of contiguous ones with an ORR instruction. Materialize the chunks which
 | 
						|
  // are either interrupting the sequence or outside of the sequence with a
 | 
						|
  // MOVK instruction.
 | 
						|
  if (BitSize == 64 && trySequenceOfOnes(UImm, Insn))
 | 
						|
    return;
 | 
						|
 | 
						|
  // We found no possible two or three instruction sequence; use the general
 | 
						|
  // four-instruction sequence.
 | 
						|
  expandMOVImmSimple(Imm, BitSize, OneChunks, ZeroChunks, Insn);
 | 
						|
}
 | 
						|
 | 
						|
} // end namespace AArch64_AM
 | 
						|
 | 
						|
} // end namespace llvm
 |