563 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			563 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
//===--------- PPCPreEmitPeephole.cpp - Late peephole optimizations -------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// A pre-emit peephole for catching opportunities introduced by late passes such
 | 
						|
// as MachineBlockPlacement.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "PPC.h"
 | 
						|
#include "PPCInstrInfo.h"
 | 
						|
#include "PPCSubtarget.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/CodeGen/LivePhysRegs.h"
 | 
						|
#include "llvm/CodeGen/MachineBasicBlock.h"
 | 
						|
#include "llvm/CodeGen/MachineFunctionPass.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/MC/MCContext.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "ppc-pre-emit-peephole"
 | 
						|
 | 
						|
STATISTIC(NumRRConvertedInPreEmit,
 | 
						|
          "Number of r+r instructions converted to r+i in pre-emit peephole");
 | 
						|
STATISTIC(NumRemovedInPreEmit,
 | 
						|
          "Number of instructions deleted in pre-emit peephole");
 | 
						|
STATISTIC(NumberOfSelfCopies,
 | 
						|
          "Number of self copy instructions eliminated");
 | 
						|
STATISTIC(NumFrameOffFoldInPreEmit,
 | 
						|
          "Number of folding frame offset by using r+r in pre-emit peephole");
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnablePCRelLinkerOpt("ppc-pcrel-linker-opt", cl::Hidden, cl::init(true),
 | 
						|
                     cl::desc("enable PC Relative linker optimization"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
RunPreEmitPeephole("ppc-late-peephole", cl::Hidden, cl::init(true),
 | 
						|
                   cl::desc("Run pre-emit peephole optimizations."));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
static bool hasPCRelativeForm(MachineInstr &Use) {
 | 
						|
  switch (Use.getOpcode()) {
 | 
						|
  default:
 | 
						|
    return false;
 | 
						|
  case PPC::LBZ:
 | 
						|
  case PPC::LBZ8:
 | 
						|
  case PPC::LHA:
 | 
						|
  case PPC::LHA8:
 | 
						|
  case PPC::LHZ:
 | 
						|
  case PPC::LHZ8:
 | 
						|
  case PPC::LWZ:
 | 
						|
  case PPC::LWZ8:
 | 
						|
  case PPC::STB:
 | 
						|
  case PPC::STB8:
 | 
						|
  case PPC::STH:
 | 
						|
  case PPC::STH8:
 | 
						|
  case PPC::STW:
 | 
						|
  case PPC::STW8:
 | 
						|
  case PPC::LD:
 | 
						|
  case PPC::STD:
 | 
						|
  case PPC::LWA:
 | 
						|
  case PPC::LXSD:
 | 
						|
  case PPC::LXSSP:
 | 
						|
  case PPC::LXV:
 | 
						|
  case PPC::STXSD:
 | 
						|
  case PPC::STXSSP:
 | 
						|
  case PPC::STXV:
 | 
						|
  case PPC::LFD:
 | 
						|
  case PPC::LFS:
 | 
						|
  case PPC::STFD:
 | 
						|
  case PPC::STFS:
 | 
						|
  case PPC::DFLOADf32:
 | 
						|
  case PPC::DFLOADf64:
 | 
						|
  case PPC::DFSTOREf32:
 | 
						|
  case PPC::DFSTOREf64:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
  class PPCPreEmitPeephole : public MachineFunctionPass {
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    PPCPreEmitPeephole() : MachineFunctionPass(ID) {
 | 
						|
      initializePPCPreEmitPeepholePass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
    }
 | 
						|
 | 
						|
    MachineFunctionProperties getRequiredProperties() const override {
 | 
						|
      return MachineFunctionProperties().set(
 | 
						|
          MachineFunctionProperties::Property::NoVRegs);
 | 
						|
    }
 | 
						|
 | 
						|
    // This function removes any redundant load immediates. It has two level
 | 
						|
    // loops - The outer loop finds the load immediates BBI that could be used
 | 
						|
    // to replace following redundancy. The inner loop scans instructions that
 | 
						|
    // after BBI to find redundancy and update kill/dead flags accordingly. If
 | 
						|
    // AfterBBI is the same as BBI, it is redundant, otherwise any instructions
 | 
						|
    // that modify the def register of BBI would break the scanning.
 | 
						|
    // DeadOrKillToUnset is a pointer to the previous operand that had the
 | 
						|
    // kill/dead flag set. It keeps track of the def register of BBI, the use
 | 
						|
    // registers of AfterBBIs and the def registers of AfterBBIs.
 | 
						|
    bool removeRedundantLIs(MachineBasicBlock &MBB,
 | 
						|
                            const TargetRegisterInfo *TRI) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Remove redundant load immediates from MBB:\n";
 | 
						|
                 MBB.dump(); dbgs() << "\n");
 | 
						|
 | 
						|
      DenseSet<MachineInstr *> InstrsToErase;
 | 
						|
      for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
 | 
						|
        // Skip load immediate that is marked to be erased later because it
 | 
						|
        // cannot be used to replace any other instructions.
 | 
						|
        if (InstrsToErase.contains(&*BBI))
 | 
						|
          continue;
 | 
						|
        // Skip non-load immediate.
 | 
						|
        unsigned Opc = BBI->getOpcode();
 | 
						|
        if (Opc != PPC::LI && Opc != PPC::LI8 && Opc != PPC::LIS &&
 | 
						|
            Opc != PPC::LIS8)
 | 
						|
          continue;
 | 
						|
        // Skip load immediate, where the operand is a relocation (e.g., $r3 =
 | 
						|
        // LI target-flags(ppc-lo) %const.0).
 | 
						|
        if (!BBI->getOperand(1).isImm())
 | 
						|
          continue;
 | 
						|
        assert(BBI->getOperand(0).isReg() &&
 | 
						|
               "Expected a register for the first operand");
 | 
						|
 | 
						|
        LLVM_DEBUG(dbgs() << "Scanning after load immediate: "; BBI->dump(););
 | 
						|
 | 
						|
        Register Reg = BBI->getOperand(0).getReg();
 | 
						|
        int64_t Imm = BBI->getOperand(1).getImm();
 | 
						|
        MachineOperand *DeadOrKillToUnset = nullptr;
 | 
						|
        if (BBI->getOperand(0).isDead()) {
 | 
						|
          DeadOrKillToUnset = &BBI->getOperand(0);
 | 
						|
          LLVM_DEBUG(dbgs() << " Kill flag of " << *DeadOrKillToUnset
 | 
						|
                            << " from load immediate " << *BBI
 | 
						|
                            << " is a unsetting candidate\n");
 | 
						|
        }
 | 
						|
        // This loop scans instructions after BBI to see if there is any
 | 
						|
        // redundant load immediate.
 | 
						|
        for (auto AfterBBI = std::next(BBI); AfterBBI != MBB.instr_end();
 | 
						|
             ++AfterBBI) {
 | 
						|
          // Track the operand that kill Reg. We would unset the kill flag of
 | 
						|
          // the operand if there is a following redundant load immediate.
 | 
						|
          int KillIdx = AfterBBI->findRegisterUseOperandIdx(Reg, true, TRI);
 | 
						|
 | 
						|
          // We can't just clear implicit kills, so if we encounter one, stop
 | 
						|
          // looking further.
 | 
						|
          if (KillIdx != -1 && AfterBBI->getOperand(KillIdx).isImplicit()) {
 | 
						|
            LLVM_DEBUG(dbgs()
 | 
						|
                       << "Encountered an implicit kill, cannot proceed: ");
 | 
						|
            LLVM_DEBUG(AfterBBI->dump());
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
          if (KillIdx != -1) {
 | 
						|
            assert(!DeadOrKillToUnset && "Shouldn't kill same register twice");
 | 
						|
            DeadOrKillToUnset = &AfterBBI->getOperand(KillIdx);
 | 
						|
            LLVM_DEBUG(dbgs()
 | 
						|
                       << " Kill flag of " << *DeadOrKillToUnset << " from "
 | 
						|
                       << *AfterBBI << " is a unsetting candidate\n");
 | 
						|
          }
 | 
						|
 | 
						|
          if (!AfterBBI->modifiesRegister(Reg, TRI))
 | 
						|
            continue;
 | 
						|
          // Finish scanning because Reg is overwritten by a non-load
 | 
						|
          // instruction.
 | 
						|
          if (AfterBBI->getOpcode() != Opc)
 | 
						|
            break;
 | 
						|
          assert(AfterBBI->getOperand(0).isReg() &&
 | 
						|
                 "Expected a register for the first operand");
 | 
						|
          // Finish scanning because Reg is overwritten by a relocation or a
 | 
						|
          // different value.
 | 
						|
          if (!AfterBBI->getOperand(1).isImm() ||
 | 
						|
              AfterBBI->getOperand(1).getImm() != Imm)
 | 
						|
            break;
 | 
						|
 | 
						|
          // It loads same immediate value to the same Reg, which is redundant.
 | 
						|
          // We would unset kill flag in previous Reg usage to extend live range
 | 
						|
          // of Reg first, then remove the redundancy.
 | 
						|
          if (DeadOrKillToUnset) {
 | 
						|
            LLVM_DEBUG(dbgs()
 | 
						|
                       << " Unset dead/kill flag of " << *DeadOrKillToUnset
 | 
						|
                       << " from " << *DeadOrKillToUnset->getParent());
 | 
						|
            if (DeadOrKillToUnset->isDef())
 | 
						|
              DeadOrKillToUnset->setIsDead(false);
 | 
						|
            else
 | 
						|
              DeadOrKillToUnset->setIsKill(false);
 | 
						|
          }
 | 
						|
          DeadOrKillToUnset =
 | 
						|
              AfterBBI->findRegisterDefOperand(Reg, true, true, TRI);
 | 
						|
          if (DeadOrKillToUnset)
 | 
						|
            LLVM_DEBUG(dbgs()
 | 
						|
                       << " Dead flag of " << *DeadOrKillToUnset << " from "
 | 
						|
                       << *AfterBBI << " is a unsetting candidate\n");
 | 
						|
          InstrsToErase.insert(&*AfterBBI);
 | 
						|
          LLVM_DEBUG(dbgs() << " Remove redundant load immediate: ";
 | 
						|
                     AfterBBI->dump());
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      for (MachineInstr *MI : InstrsToErase) {
 | 
						|
        MI->eraseFromParent();
 | 
						|
      }
 | 
						|
      NumRemovedInPreEmit += InstrsToErase.size();
 | 
						|
      return !InstrsToErase.empty();
 | 
						|
    }
 | 
						|
 | 
						|
    // Check if this instruction is a PLDpc that is part of a GOT indirect
 | 
						|
    // access.
 | 
						|
    bool isGOTPLDpc(MachineInstr &Instr) {
 | 
						|
      if (Instr.getOpcode() != PPC::PLDpc)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // The result must be a register.
 | 
						|
      const MachineOperand &LoadedAddressReg = Instr.getOperand(0);
 | 
						|
      if (!LoadedAddressReg.isReg())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Make sure that this is a global symbol.
 | 
						|
      const MachineOperand &SymbolOp = Instr.getOperand(1);
 | 
						|
      if (!SymbolOp.isGlobal())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Finally return true only if the GOT flag is present.
 | 
						|
      return (SymbolOp.getTargetFlags() & PPCII::MO_GOT_FLAG);
 | 
						|
    }
 | 
						|
 | 
						|
    bool addLinkerOpt(MachineBasicBlock &MBB, const TargetRegisterInfo *TRI) {
 | 
						|
      MachineFunction *MF = MBB.getParent();
 | 
						|
      // If the linker opt is disabled then just return.
 | 
						|
      if (!EnablePCRelLinkerOpt)
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Add this linker opt only if we are using PC Relative memops.
 | 
						|
      if (!MF->getSubtarget<PPCSubtarget>().isUsingPCRelativeCalls())
 | 
						|
        return false;
 | 
						|
 | 
						|
      // Struct to keep track of one def/use pair for a GOT indirect access.
 | 
						|
      struct GOTDefUsePair {
 | 
						|
        MachineBasicBlock::iterator DefInst;
 | 
						|
        MachineBasicBlock::iterator UseInst;
 | 
						|
        Register DefReg;
 | 
						|
        Register UseReg;
 | 
						|
        bool StillValid;
 | 
						|
      };
 | 
						|
      // Vector of def/ues pairs in this basic block.
 | 
						|
      SmallVector<GOTDefUsePair, 4> CandPairs;
 | 
						|
      SmallVector<GOTDefUsePair, 4> ValidPairs;
 | 
						|
      bool MadeChange = false;
 | 
						|
 | 
						|
      // Run through all of the instructions in the basic block and try to
 | 
						|
      // collect potential pairs of GOT indirect access instructions.
 | 
						|
      for (auto BBI = MBB.instr_begin(); BBI != MBB.instr_end(); ++BBI) {
 | 
						|
        // Look for the initial GOT indirect load.
 | 
						|
        if (isGOTPLDpc(*BBI)) {
 | 
						|
          GOTDefUsePair CurrentPair{BBI, MachineBasicBlock::iterator(),
 | 
						|
                                    BBI->getOperand(0).getReg(),
 | 
						|
                                    PPC::NoRegister, true};
 | 
						|
          CandPairs.push_back(CurrentPair);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
 | 
						|
        // We haven't encountered any new PLD instructions, nothing to check.
 | 
						|
        if (CandPairs.empty())
 | 
						|
          continue;
 | 
						|
 | 
						|
        // Run through the candidate pairs and see if any of the registers
 | 
						|
        // defined in the PLD instructions are used by this instruction.
 | 
						|
        // Note: the size of CandPairs can change in the loop.
 | 
						|
        for (unsigned Idx = 0; Idx < CandPairs.size(); Idx++) {
 | 
						|
          GOTDefUsePair &Pair = CandPairs[Idx];
 | 
						|
          // The instruction does not use or modify this PLD's def reg,
 | 
						|
          // ignore it.
 | 
						|
          if (!BBI->readsRegister(Pair.DefReg, TRI) &&
 | 
						|
              !BBI->modifiesRegister(Pair.DefReg, TRI))
 | 
						|
            continue;
 | 
						|
 | 
						|
          // The use needs to be used in the address compuation and not
 | 
						|
          // as the register being stored for a store.
 | 
						|
          const MachineOperand *UseOp =
 | 
						|
              hasPCRelativeForm(*BBI) ? &BBI->getOperand(2) : nullptr;
 | 
						|
 | 
						|
          // Check for a valid use.
 | 
						|
          if (UseOp && UseOp->isReg() && UseOp->getReg() == Pair.DefReg &&
 | 
						|
              UseOp->isUse() && UseOp->isKill()) {
 | 
						|
            Pair.UseInst = BBI;
 | 
						|
            Pair.UseReg = BBI->getOperand(0).getReg();
 | 
						|
            ValidPairs.push_back(Pair);
 | 
						|
          }
 | 
						|
          CandPairs.erase(CandPairs.begin() + Idx);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Go through all of the pairs and check for any more valid uses.
 | 
						|
      for (auto Pair = ValidPairs.begin(); Pair != ValidPairs.end(); Pair++) {
 | 
						|
        // We shouldn't be here if we don't have a valid pair.
 | 
						|
        assert(Pair->UseInst.isValid() && Pair->StillValid &&
 | 
						|
               "Kept an invalid def/use pair for GOT PCRel opt");
 | 
						|
        // We have found a potential pair. Search through the instructions
 | 
						|
        // between the def and the use to see if it is valid to mark this as a
 | 
						|
        // linker opt.
 | 
						|
        MachineBasicBlock::iterator BBI = Pair->DefInst;
 | 
						|
        ++BBI;
 | 
						|
        for (; BBI != Pair->UseInst; ++BBI) {
 | 
						|
          if (BBI->readsRegister(Pair->UseReg, TRI) ||
 | 
						|
              BBI->modifiesRegister(Pair->UseReg, TRI)) {
 | 
						|
            Pair->StillValid = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        if (!Pair->StillValid)
 | 
						|
          continue;
 | 
						|
 | 
						|
        // The load/store instruction that uses the address from the PLD will
 | 
						|
        // either use a register (for a store) or define a register (for the
 | 
						|
        // load). That register will be added as an implicit def to the PLD
 | 
						|
        // and as an implicit use on the second memory op. This is a precaution
 | 
						|
        // to prevent future passes from using that register between the two
 | 
						|
        // instructions.
 | 
						|
        MachineOperand ImplDef =
 | 
						|
            MachineOperand::CreateReg(Pair->UseReg, true, true);
 | 
						|
        MachineOperand ImplUse =
 | 
						|
            MachineOperand::CreateReg(Pair->UseReg, false, true);
 | 
						|
        Pair->DefInst->addOperand(ImplDef);
 | 
						|
        Pair->UseInst->addOperand(ImplUse);
 | 
						|
 | 
						|
        // Create the symbol.
 | 
						|
        MCContext &Context = MF->getContext();
 | 
						|
        MCSymbol *Symbol = Context.createNamedTempSymbol("pcrel");
 | 
						|
        MachineOperand PCRelLabel =
 | 
						|
            MachineOperand::CreateMCSymbol(Symbol, PPCII::MO_PCREL_OPT_FLAG);
 | 
						|
        Pair->DefInst->addOperand(*MF, PCRelLabel);
 | 
						|
        Pair->UseInst->addOperand(*MF, PCRelLabel);
 | 
						|
        MadeChange |= true;
 | 
						|
      }
 | 
						|
      return MadeChange;
 | 
						|
    }
 | 
						|
 | 
						|
    // This function removes redundant pairs of accumulator prime/unprime
 | 
						|
    // instructions. In some situations, it's possible the compiler inserts an
 | 
						|
    // accumulator prime instruction followed by an unprime instruction (e.g.
 | 
						|
    // when we store an accumulator after restoring it from a spill). If the
 | 
						|
    // accumulator is not used between the two, they can be removed. This
 | 
						|
    // function removes these redundant pairs from basic blocks.
 | 
						|
    // The algorithm is quite straightforward - every time we encounter a prime
 | 
						|
    // instruction, the primed register is added to a candidate set. Any use
 | 
						|
    // other than a prime removes the candidate from the set and any de-prime
 | 
						|
    // of a current candidate marks both the prime and de-prime for removal.
 | 
						|
    // This way we ensure we only remove prime/de-prime *pairs* with no
 | 
						|
    // intervening uses.
 | 
						|
    bool removeAccPrimeUnprime(MachineBasicBlock &MBB) {
 | 
						|
      DenseSet<MachineInstr *> InstrsToErase;
 | 
						|
      // Initially, none of the acc registers are candidates.
 | 
						|
      SmallVector<MachineInstr *, 8> Candidates(
 | 
						|
          PPC::UACCRCRegClass.getNumRegs(), nullptr);
 | 
						|
 | 
						|
      for (MachineInstr &BBI : MBB.instrs()) {
 | 
						|
        unsigned Opc = BBI.getOpcode();
 | 
						|
        // If we are visiting a xxmtacc instruction, we add it and its operand
 | 
						|
        // register to the candidate set.
 | 
						|
        if (Opc == PPC::XXMTACC) {
 | 
						|
          Register Acc = BBI.getOperand(0).getReg();
 | 
						|
          assert(PPC::ACCRCRegClass.contains(Acc) &&
 | 
						|
                 "Unexpected register for XXMTACC");
 | 
						|
          Candidates[Acc - PPC::ACC0] = &BBI;
 | 
						|
        }
 | 
						|
        // If we are visiting a xxmfacc instruction and its operand register is
 | 
						|
        // in the candidate set, we mark the two instructions for removal.
 | 
						|
        else if (Opc == PPC::XXMFACC) {
 | 
						|
          Register Acc = BBI.getOperand(0).getReg();
 | 
						|
          assert(PPC::ACCRCRegClass.contains(Acc) &&
 | 
						|
                 "Unexpected register for XXMFACC");
 | 
						|
          if (!Candidates[Acc - PPC::ACC0])
 | 
						|
            continue;
 | 
						|
          InstrsToErase.insert(&BBI);
 | 
						|
          InstrsToErase.insert(Candidates[Acc - PPC::ACC0]);
 | 
						|
        }
 | 
						|
        // If we are visiting an instruction using an accumulator register
 | 
						|
        // as operand, we remove it from the candidate set.
 | 
						|
        else {
 | 
						|
          for (MachineOperand &Operand : BBI.operands()) {
 | 
						|
            if (!Operand.isReg())
 | 
						|
              continue;
 | 
						|
            Register Reg = Operand.getReg();
 | 
						|
            if (PPC::ACCRCRegClass.contains(Reg))
 | 
						|
              Candidates[Reg - PPC::ACC0] = nullptr;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      for (MachineInstr *MI : InstrsToErase)
 | 
						|
        MI->eraseFromParent();
 | 
						|
      NumRemovedInPreEmit += InstrsToErase.size();
 | 
						|
      return !InstrsToErase.empty();
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnMachineFunction(MachineFunction &MF) override {
 | 
						|
      if (skipFunction(MF.getFunction()) || !RunPreEmitPeephole) {
 | 
						|
        // Remove UNENCODED_NOP even when this pass is disabled.
 | 
						|
        // This needs to be done unconditionally so we don't emit zeros
 | 
						|
        // in the instruction stream.
 | 
						|
        SmallVector<MachineInstr *, 4> InstrsToErase;
 | 
						|
        for (MachineBasicBlock &MBB : MF)
 | 
						|
          for (MachineInstr &MI : MBB)
 | 
						|
            if (MI.getOpcode() == PPC::UNENCODED_NOP)
 | 
						|
              InstrsToErase.push_back(&MI);
 | 
						|
        for (MachineInstr *MI : InstrsToErase)
 | 
						|
          MI->eraseFromParent();
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      bool Changed = false;
 | 
						|
      const PPCInstrInfo *TII = MF.getSubtarget<PPCSubtarget>().getInstrInfo();
 | 
						|
      const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
 | 
						|
      SmallVector<MachineInstr *, 4> InstrsToErase;
 | 
						|
      for (MachineBasicBlock &MBB : MF) {
 | 
						|
        Changed |= removeRedundantLIs(MBB, TRI);
 | 
						|
        Changed |= addLinkerOpt(MBB, TRI);
 | 
						|
        Changed |= removeAccPrimeUnprime(MBB);
 | 
						|
        for (MachineInstr &MI : MBB) {
 | 
						|
          unsigned Opc = MI.getOpcode();
 | 
						|
          if (Opc == PPC::UNENCODED_NOP) {
 | 
						|
            InstrsToErase.push_back(&MI);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
          // Detect self copies - these can result from running AADB.
 | 
						|
          if (PPCInstrInfo::isSameClassPhysRegCopy(Opc)) {
 | 
						|
            const MCInstrDesc &MCID = TII->get(Opc);
 | 
						|
            if (MCID.getNumOperands() == 3 &&
 | 
						|
                MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
 | 
						|
                MI.getOperand(0).getReg() == MI.getOperand(2).getReg()) {
 | 
						|
              NumberOfSelfCopies++;
 | 
						|
              LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
 | 
						|
              LLVM_DEBUG(MI.dump());
 | 
						|
              InstrsToErase.push_back(&MI);
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
            else if (MCID.getNumOperands() == 2 &&
 | 
						|
                     MI.getOperand(0).getReg() == MI.getOperand(1).getReg()) {
 | 
						|
              NumberOfSelfCopies++;
 | 
						|
              LLVM_DEBUG(dbgs() << "Deleting self-copy instruction: ");
 | 
						|
              LLVM_DEBUG(MI.dump());
 | 
						|
              InstrsToErase.push_back(&MI);
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          MachineInstr *DefMIToErase = nullptr;
 | 
						|
          if (TII->convertToImmediateForm(MI, &DefMIToErase)) {
 | 
						|
            Changed = true;
 | 
						|
            NumRRConvertedInPreEmit++;
 | 
						|
            LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
 | 
						|
            LLVM_DEBUG(MI.dump());
 | 
						|
            if (DefMIToErase) {
 | 
						|
              InstrsToErase.push_back(DefMIToErase);
 | 
						|
            }
 | 
						|
          }
 | 
						|
          if (TII->foldFrameOffset(MI)) {
 | 
						|
            Changed = true;
 | 
						|
            NumFrameOffFoldInPreEmit++;
 | 
						|
            LLVM_DEBUG(dbgs() << "Frame offset folding by using index form: ");
 | 
						|
            LLVM_DEBUG(MI.dump());
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // Eliminate conditional branch based on a constant CR bit by
 | 
						|
        // CRSET or CRUNSET. We eliminate the conditional branch or
 | 
						|
        // convert it into an unconditional branch. Also, if the CR bit
 | 
						|
        // is not used by other instructions, we eliminate CRSET as well.
 | 
						|
        auto I = MBB.getFirstInstrTerminator();
 | 
						|
        if (I == MBB.instr_end())
 | 
						|
          continue;
 | 
						|
        MachineInstr *Br = &*I;
 | 
						|
        if (Br->getOpcode() != PPC::BC && Br->getOpcode() != PPC::BCn)
 | 
						|
          continue;
 | 
						|
        MachineInstr *CRSetMI = nullptr;
 | 
						|
        Register CRBit = Br->getOperand(0).getReg();
 | 
						|
        unsigned CRReg = getCRFromCRBit(CRBit);
 | 
						|
        bool SeenUse = false;
 | 
						|
        MachineBasicBlock::reverse_iterator It = Br, Er = MBB.rend();
 | 
						|
        for (It++; It != Er; It++) {
 | 
						|
          if (It->modifiesRegister(CRBit, TRI)) {
 | 
						|
            if ((It->getOpcode() == PPC::CRUNSET ||
 | 
						|
                 It->getOpcode() == PPC::CRSET) &&
 | 
						|
                It->getOperand(0).getReg() == CRBit)
 | 
						|
              CRSetMI = &*It;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          if (It->readsRegister(CRBit, TRI))
 | 
						|
            SeenUse = true;
 | 
						|
        }
 | 
						|
        if (!CRSetMI) continue;
 | 
						|
 | 
						|
        unsigned CRSetOp = CRSetMI->getOpcode();
 | 
						|
        if ((Br->getOpcode() == PPC::BCn && CRSetOp == PPC::CRSET) ||
 | 
						|
            (Br->getOpcode() == PPC::BC  && CRSetOp == PPC::CRUNSET)) {
 | 
						|
          // Remove this branch since it cannot be taken.
 | 
						|
          InstrsToErase.push_back(Br);
 | 
						|
          MBB.removeSuccessor(Br->getOperand(1).getMBB());
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          // This conditional branch is always taken. So, remove all branches
 | 
						|
          // and insert an unconditional branch to the destination of this.
 | 
						|
          MachineBasicBlock::iterator It = Br, Er = MBB.end();
 | 
						|
          for (; It != Er; It++) {
 | 
						|
            if (It->isDebugInstr()) continue;
 | 
						|
            assert(It->isTerminator() && "Non-terminator after a terminator");
 | 
						|
            InstrsToErase.push_back(&*It);
 | 
						|
          }
 | 
						|
          if (!MBB.isLayoutSuccessor(Br->getOperand(1).getMBB())) {
 | 
						|
            ArrayRef<MachineOperand> NoCond;
 | 
						|
            TII->insertBranch(MBB, Br->getOperand(1).getMBB(), nullptr,
 | 
						|
                              NoCond, Br->getDebugLoc());
 | 
						|
          }
 | 
						|
          for (auto &Succ : MBB.successors())
 | 
						|
            if (Succ != Br->getOperand(1).getMBB()) {
 | 
						|
              MBB.removeSuccessor(Succ);
 | 
						|
              break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        // If the CRBit is not used by another instruction, we can eliminate
 | 
						|
        // CRSET/CRUNSET instruction.
 | 
						|
        if (!SeenUse) {
 | 
						|
          // We need to check use of the CRBit in successors.
 | 
						|
          for (auto &SuccMBB : MBB.successors())
 | 
						|
            if (SuccMBB->isLiveIn(CRBit) || SuccMBB->isLiveIn(CRReg)) {
 | 
						|
              SeenUse = true;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          if (!SeenUse)
 | 
						|
            InstrsToErase.push_back(CRSetMI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      for (MachineInstr *MI : InstrsToErase) {
 | 
						|
        LLVM_DEBUG(dbgs() << "PPC pre-emit peephole: erasing instruction: ");
 | 
						|
        LLVM_DEBUG(MI->dump());
 | 
						|
        MI->eraseFromParent();
 | 
						|
        NumRemovedInPreEmit++;
 | 
						|
      }
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
INITIALIZE_PASS(PPCPreEmitPeephole, DEBUG_TYPE, "PowerPC Pre-Emit Peephole",
 | 
						|
                false, false)
 | 
						|
char PPCPreEmitPeephole::ID = 0;
 | 
						|
 | 
						|
FunctionPass *llvm::createPPCPreEmitPeepholePass() {
 | 
						|
  return new PPCPreEmitPeephole();
 | 
						|
}
 |