488 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			488 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86PartialReduction.cpp -------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This pass looks for add instructions used by a horizontal reduction to see
 | |
| // if we might be able to use pmaddwd or psadbw. Some cases of this require
 | |
| // cross basic block knowledge and can't be done in SelectionDAG.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicsX86.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "X86TargetMachine.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "x86-partial-reduction"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class X86PartialReduction : public FunctionPass {
 | |
|   const DataLayout *DL;
 | |
|   const X86Subtarget *ST;
 | |
| 
 | |
| public:
 | |
|   static char ID; // Pass identification, replacement for typeid.
 | |
| 
 | |
|   X86PartialReduction() : FunctionPass(ID) { }
 | |
| 
 | |
|   bool runOnFunction(Function &Fn) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|   }
 | |
| 
 | |
|   StringRef getPassName() const override {
 | |
|     return "X86 Partial Reduction";
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   bool tryMAddReplacement(Instruction *Op);
 | |
|   bool trySADReplacement(Instruction *Op);
 | |
| };
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createX86PartialReductionPass() {
 | |
|   return new X86PartialReduction();
 | |
| }
 | |
| 
 | |
| char X86PartialReduction::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS(X86PartialReduction, DEBUG_TYPE,
 | |
|                 "X86 Partial Reduction", false, false)
 | |
| 
 | |
| bool X86PartialReduction::tryMAddReplacement(Instruction *Op) {
 | |
|   if (!ST->hasSSE2())
 | |
|     return false;
 | |
| 
 | |
|   // Need at least 8 elements.
 | |
|   if (cast<FixedVectorType>(Op->getType())->getNumElements() < 8)
 | |
|     return false;
 | |
| 
 | |
|   // Element type should be i32.
 | |
|   if (!cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(32))
 | |
|     return false;
 | |
| 
 | |
|   auto *Mul = dyn_cast<BinaryOperator>(Op);
 | |
|   if (!Mul || Mul->getOpcode() != Instruction::Mul)
 | |
|     return false;
 | |
| 
 | |
|   Value *LHS = Mul->getOperand(0);
 | |
|   Value *RHS = Mul->getOperand(1);
 | |
| 
 | |
|   // LHS and RHS should be only used once or if they are the same then only
 | |
|   // used twice. Only check this when SSE4.1 is enabled and we have zext/sext
 | |
|   // instructions, otherwise we use punpck to emulate zero extend in stages. The
 | |
|   // trunc/ we need to do likely won't introduce new instructions in that case.
 | |
|   if (ST->hasSSE41()) {
 | |
|     if (LHS == RHS) {
 | |
|       if (!isa<Constant>(LHS) && !LHS->hasNUses(2))
 | |
|         return false;
 | |
|     } else {
 | |
|       if (!isa<Constant>(LHS) && !LHS->hasOneUse())
 | |
|         return false;
 | |
|       if (!isa<Constant>(RHS) && !RHS->hasOneUse())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   auto CanShrinkOp = [&](Value *Op) {
 | |
|     auto IsFreeTruncation = [&](Value *Op) {
 | |
|       if (auto *Cast = dyn_cast<CastInst>(Op)) {
 | |
|         if (Cast->getParent() == Mul->getParent() &&
 | |
|             (Cast->getOpcode() == Instruction::SExt ||
 | |
|              Cast->getOpcode() == Instruction::ZExt) &&
 | |
|             Cast->getOperand(0)->getType()->getScalarSizeInBits() <= 16)
 | |
|           return true;
 | |
|       }
 | |
| 
 | |
|       return isa<Constant>(Op);
 | |
|     };
 | |
| 
 | |
|     // If the operation can be freely truncated and has enough sign bits we
 | |
|     // can shrink.
 | |
|     if (IsFreeTruncation(Op) &&
 | |
|         ComputeNumSignBits(Op, *DL, 0, nullptr, Mul) > 16)
 | |
|       return true;
 | |
| 
 | |
|     // SelectionDAG has limited support for truncating through an add or sub if
 | |
|     // the inputs are freely truncatable.
 | |
|     if (auto *BO = dyn_cast<BinaryOperator>(Op)) {
 | |
|       if (BO->getParent() == Mul->getParent() &&
 | |
|           IsFreeTruncation(BO->getOperand(0)) &&
 | |
|           IsFreeTruncation(BO->getOperand(1)) &&
 | |
|           ComputeNumSignBits(Op, *DL, 0, nullptr, Mul) > 16)
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
|   };
 | |
| 
 | |
|   // Both Ops need to be shrinkable.
 | |
|   if (!CanShrinkOp(LHS) && !CanShrinkOp(RHS))
 | |
|     return false;
 | |
| 
 | |
|   IRBuilder<> Builder(Mul);
 | |
| 
 | |
|   auto *MulTy = cast<FixedVectorType>(Op->getType());
 | |
|   unsigned NumElts = MulTy->getNumElements();
 | |
| 
 | |
|   // Extract even elements and odd elements and add them together. This will
 | |
|   // be pattern matched by SelectionDAG to pmaddwd. This instruction will be
 | |
|   // half the original width.
 | |
|   SmallVector<int, 16> EvenMask(NumElts / 2);
 | |
|   SmallVector<int, 16> OddMask(NumElts / 2);
 | |
|   for (int i = 0, e = NumElts / 2; i != e; ++i) {
 | |
|     EvenMask[i] = i * 2;
 | |
|     OddMask[i] = i * 2 + 1;
 | |
|   }
 | |
|   // Creating a new mul so the replaceAllUsesWith below doesn't replace the
 | |
|   // uses in the shuffles we're creating.
 | |
|   Value *NewMul = Builder.CreateMul(Mul->getOperand(0), Mul->getOperand(1));
 | |
|   Value *EvenElts = Builder.CreateShuffleVector(NewMul, NewMul, EvenMask);
 | |
|   Value *OddElts = Builder.CreateShuffleVector(NewMul, NewMul, OddMask);
 | |
|   Value *MAdd = Builder.CreateAdd(EvenElts, OddElts);
 | |
| 
 | |
|   // Concatenate zeroes to extend back to the original type.
 | |
|   SmallVector<int, 32> ConcatMask(NumElts);
 | |
|   std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
 | |
|   Value *Zero = Constant::getNullValue(MAdd->getType());
 | |
|   Value *Concat = Builder.CreateShuffleVector(MAdd, Zero, ConcatMask);
 | |
| 
 | |
|   Mul->replaceAllUsesWith(Concat);
 | |
|   Mul->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86PartialReduction::trySADReplacement(Instruction *Op) {
 | |
|   if (!ST->hasSSE2())
 | |
|     return false;
 | |
| 
 | |
|   // TODO: There's nothing special about i32, any integer type above i16 should
 | |
|   // work just as well.
 | |
|   if (!cast<VectorType>(Op->getType())->getElementType()->isIntegerTy(32))
 | |
|     return false;
 | |
| 
 | |
|   // Operand should be a select.
 | |
|   auto *SI = dyn_cast<SelectInst>(Op);
 | |
|   if (!SI)
 | |
|     return false;
 | |
| 
 | |
|   // Select needs to implement absolute value.
 | |
|   Value *LHS, *RHS;
 | |
|   auto SPR = matchSelectPattern(SI, LHS, RHS);
 | |
|   if (SPR.Flavor != SPF_ABS)
 | |
|     return false;
 | |
| 
 | |
|   // Need a subtract of two values.
 | |
|   auto *Sub = dyn_cast<BinaryOperator>(LHS);
 | |
|   if (!Sub || Sub->getOpcode() != Instruction::Sub)
 | |
|     return false;
 | |
| 
 | |
|   // Look for zero extend from i8.
 | |
|   auto getZeroExtendedVal = [](Value *Op) -> Value * {
 | |
|     if (auto *ZExt = dyn_cast<ZExtInst>(Op))
 | |
|       if (cast<VectorType>(ZExt->getOperand(0)->getType())
 | |
|               ->getElementType()
 | |
|               ->isIntegerTy(8))
 | |
|         return ZExt->getOperand(0);
 | |
| 
 | |
|     return nullptr;
 | |
|   };
 | |
| 
 | |
|   // Both operands of the subtract should be extends from vXi8.
 | |
|   Value *Op0 = getZeroExtendedVal(Sub->getOperand(0));
 | |
|   Value *Op1 = getZeroExtendedVal(Sub->getOperand(1));
 | |
|   if (!Op0 || !Op1)
 | |
|     return false;
 | |
| 
 | |
|   IRBuilder<> Builder(SI);
 | |
| 
 | |
|   auto *OpTy = cast<FixedVectorType>(Op->getType());
 | |
|   unsigned NumElts = OpTy->getNumElements();
 | |
| 
 | |
|   unsigned IntrinsicNumElts;
 | |
|   Intrinsic::ID IID;
 | |
|   if (ST->hasBWI() && NumElts >= 64) {
 | |
|     IID = Intrinsic::x86_avx512_psad_bw_512;
 | |
|     IntrinsicNumElts = 64;
 | |
|   } else if (ST->hasAVX2() && NumElts >= 32) {
 | |
|     IID = Intrinsic::x86_avx2_psad_bw;
 | |
|     IntrinsicNumElts = 32;
 | |
|   } else {
 | |
|     IID = Intrinsic::x86_sse2_psad_bw;
 | |
|     IntrinsicNumElts = 16;
 | |
|   }
 | |
| 
 | |
|   Function *PSADBWFn = Intrinsic::getDeclaration(SI->getModule(), IID);
 | |
| 
 | |
|   if (NumElts < 16) {
 | |
|     // Pad input with zeroes.
 | |
|     SmallVector<int, 32> ConcatMask(16);
 | |
|     for (unsigned i = 0; i != NumElts; ++i)
 | |
|       ConcatMask[i] = i;
 | |
|     for (unsigned i = NumElts; i != 16; ++i)
 | |
|       ConcatMask[i] = (i % NumElts) + NumElts;
 | |
| 
 | |
|     Value *Zero = Constant::getNullValue(Op0->getType());
 | |
|     Op0 = Builder.CreateShuffleVector(Op0, Zero, ConcatMask);
 | |
|     Op1 = Builder.CreateShuffleVector(Op1, Zero, ConcatMask);
 | |
|     NumElts = 16;
 | |
|   }
 | |
| 
 | |
|   // Intrinsics produce vXi64 and need to be casted to vXi32.
 | |
|   auto *I32Ty =
 | |
|       FixedVectorType::get(Builder.getInt32Ty(), IntrinsicNumElts / 4);
 | |
| 
 | |
|   assert(NumElts % IntrinsicNumElts == 0 && "Unexpected number of elements!");
 | |
|   unsigned NumSplits = NumElts / IntrinsicNumElts;
 | |
| 
 | |
|   // First collect the pieces we need.
 | |
|   SmallVector<Value *, 4> Ops(NumSplits);
 | |
|   for (unsigned i = 0; i != NumSplits; ++i) {
 | |
|     SmallVector<int, 64> ExtractMask(IntrinsicNumElts);
 | |
|     std::iota(ExtractMask.begin(), ExtractMask.end(), i * IntrinsicNumElts);
 | |
|     Value *ExtractOp0 = Builder.CreateShuffleVector(Op0, Op0, ExtractMask);
 | |
|     Value *ExtractOp1 = Builder.CreateShuffleVector(Op1, Op0, ExtractMask);
 | |
|     Ops[i] = Builder.CreateCall(PSADBWFn, {ExtractOp0, ExtractOp1});
 | |
|     Ops[i] = Builder.CreateBitCast(Ops[i], I32Ty);
 | |
|   }
 | |
| 
 | |
|   assert(isPowerOf2_32(NumSplits) && "Expected power of 2 splits");
 | |
|   unsigned Stages = Log2_32(NumSplits);
 | |
|   for (unsigned s = Stages; s > 0; --s) {
 | |
|     unsigned NumConcatElts =
 | |
|         cast<FixedVectorType>(Ops[0]->getType())->getNumElements() * 2;
 | |
|     for (unsigned i = 0; i != 1U << (s - 1); ++i) {
 | |
|       SmallVector<int, 64> ConcatMask(NumConcatElts);
 | |
|       std::iota(ConcatMask.begin(), ConcatMask.end(), 0);
 | |
|       Ops[i] = Builder.CreateShuffleVector(Ops[i*2], Ops[i*2+1], ConcatMask);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // At this point the final value should be in Ops[0]. Now we need to adjust
 | |
|   // it to the final original type.
 | |
|   NumElts = cast<FixedVectorType>(OpTy)->getNumElements();
 | |
|   if (NumElts == 2) {
 | |
|     // Extract down to 2 elements.
 | |
|     Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{0, 1});
 | |
|   } else if (NumElts >= 8) {
 | |
|     SmallVector<int, 32> ConcatMask(NumElts);
 | |
|     unsigned SubElts =
 | |
|         cast<FixedVectorType>(Ops[0]->getType())->getNumElements();
 | |
|     for (unsigned i = 0; i != SubElts; ++i)
 | |
|       ConcatMask[i] = i;
 | |
|     for (unsigned i = SubElts; i != NumElts; ++i)
 | |
|       ConcatMask[i] = (i % SubElts) + SubElts;
 | |
| 
 | |
|     Value *Zero = Constant::getNullValue(Ops[0]->getType());
 | |
|     Ops[0] = Builder.CreateShuffleVector(Ops[0], Zero, ConcatMask);
 | |
|   }
 | |
| 
 | |
|   SI->replaceAllUsesWith(Ops[0]);
 | |
|   SI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Walk backwards from the ExtractElementInst and determine if it is the end of
 | |
| // a horizontal reduction. Return the input to the reduction if we find one.
 | |
| static Value *matchAddReduction(const ExtractElementInst &EE) {
 | |
|   // Make sure we're extracting index 0.
 | |
|   auto *Index = dyn_cast<ConstantInt>(EE.getIndexOperand());
 | |
|   if (!Index || !Index->isNullValue())
 | |
|     return nullptr;
 | |
| 
 | |
|   const auto *BO = dyn_cast<BinaryOperator>(EE.getVectorOperand());
 | |
|   if (!BO || BO->getOpcode() != Instruction::Add || !BO->hasOneUse())
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned NumElems = cast<FixedVectorType>(BO->getType())->getNumElements();
 | |
|   // Ensure the reduction size is a power of 2.
 | |
|   if (!isPowerOf2_32(NumElems))
 | |
|     return nullptr;
 | |
| 
 | |
|   const Value *Op = BO;
 | |
|   unsigned Stages = Log2_32(NumElems);
 | |
|   for (unsigned i = 0; i != Stages; ++i) {
 | |
|     const auto *BO = dyn_cast<BinaryOperator>(Op);
 | |
|     if (!BO || BO->getOpcode() != Instruction::Add)
 | |
|       return nullptr;
 | |
| 
 | |
|     // If this isn't the first add, then it should only have 2 users, the
 | |
|     // shuffle and another add which we checked in the previous iteration.
 | |
|     if (i != 0 && !BO->hasNUses(2))
 | |
|       return nullptr;
 | |
| 
 | |
|     Value *LHS = BO->getOperand(0);
 | |
|     Value *RHS = BO->getOperand(1);
 | |
| 
 | |
|     auto *Shuffle = dyn_cast<ShuffleVectorInst>(LHS);
 | |
|     if (Shuffle) {
 | |
|       Op = RHS;
 | |
|     } else {
 | |
|       Shuffle = dyn_cast<ShuffleVectorInst>(RHS);
 | |
|       Op = LHS;
 | |
|     }
 | |
| 
 | |
|     // The first operand of the shuffle should be the same as the other operand
 | |
|     // of the bin op.
 | |
|     if (!Shuffle || Shuffle->getOperand(0) != Op)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Verify the shuffle has the expected (at this stage of the pyramid) mask.
 | |
|     unsigned MaskEnd = 1 << i;
 | |
|     for (unsigned Index = 0; Index < MaskEnd; ++Index)
 | |
|       if (Shuffle->getMaskValue(Index) != (int)(MaskEnd + Index))
 | |
|         return nullptr;
 | |
|   }
 | |
| 
 | |
|   return const_cast<Value *>(Op);
 | |
| }
 | |
| 
 | |
| // See if this BO is reachable from this Phi by walking forward through single
 | |
| // use BinaryOperators with the same opcode. If we get back then we know we've
 | |
| // found a loop and it is safe to step through this Add to find more leaves.
 | |
| static bool isReachableFromPHI(PHINode *Phi, BinaryOperator *BO) {
 | |
|   // The PHI itself should only have one use.
 | |
|   if (!Phi->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   Instruction *U = cast<Instruction>(*Phi->user_begin());
 | |
|   if (U == BO)
 | |
|     return true;
 | |
| 
 | |
|   while (U->hasOneUse() && U->getOpcode() == BO->getOpcode())
 | |
|     U = cast<Instruction>(*U->user_begin());
 | |
| 
 | |
|   return U == BO;
 | |
| }
 | |
| 
 | |
| // Collect all the leaves of the tree of adds that feeds into the horizontal
 | |
| // reduction. Root is the Value that is used by the horizontal reduction.
 | |
| // We look through single use phis, single use adds, or adds that are used by
 | |
| // a phi that forms a loop with the add.
 | |
| static void collectLeaves(Value *Root, SmallVectorImpl<Instruction *> &Leaves) {
 | |
|   SmallPtrSet<Value *, 8> Visited;
 | |
|   SmallVector<Value *, 8> Worklist;
 | |
|   Worklist.push_back(Root);
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     Value *V = Worklist.pop_back_val();
 | |
|      if (!Visited.insert(V).second)
 | |
|        continue;
 | |
| 
 | |
|     if (auto *PN = dyn_cast<PHINode>(V)) {
 | |
|       // PHI node should have single use unless it is the root node, then it
 | |
|       // has 2 uses.
 | |
|       if (!PN->hasNUses(PN == Root ? 2 : 1))
 | |
|         break;
 | |
| 
 | |
|       // Push incoming values to the worklist.
 | |
|       append_range(Worklist, PN->incoming_values());
 | |
| 
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (auto *BO = dyn_cast<BinaryOperator>(V)) {
 | |
|       if (BO->getOpcode() == Instruction::Add) {
 | |
|         // Simple case. Single use, just push its operands to the worklist.
 | |
|         if (BO->hasNUses(BO == Root ? 2 : 1)) {
 | |
|           append_range(Worklist, BO->operands());
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // If there is additional use, make sure it is an unvisited phi that
 | |
|         // gets us back to this node.
 | |
|         if (BO->hasNUses(BO == Root ? 3 : 2)) {
 | |
|           PHINode *PN = nullptr;
 | |
|           for (auto *U : Root->users())
 | |
|             if (auto *P = dyn_cast<PHINode>(U))
 | |
|               if (!Visited.count(P))
 | |
|                 PN = P;
 | |
| 
 | |
|           // If we didn't find a 2-input PHI then this isn't a case we can
 | |
|           // handle.
 | |
|           if (!PN || PN->getNumIncomingValues() != 2)
 | |
|             continue;
 | |
| 
 | |
|           // Walk forward from this phi to see if it reaches back to this add.
 | |
|           if (!isReachableFromPHI(PN, BO))
 | |
|             continue;
 | |
| 
 | |
|           // The phi forms a loop with this Add, push its operands.
 | |
|           append_range(Worklist, BO->operands());
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Not an add or phi, make it a leaf.
 | |
|     if (auto *I = dyn_cast<Instruction>(V)) {
 | |
|       if (!V->hasNUses(I == Root ? 2 : 1))
 | |
|         continue;
 | |
| 
 | |
|       // Add this as a leaf.
 | |
|       Leaves.push_back(I);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86PartialReduction::runOnFunction(Function &F) {
 | |
|   if (skipFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
 | |
|   if (!TPC)
 | |
|     return false;
 | |
| 
 | |
|   auto &TM = TPC->getTM<X86TargetMachine>();
 | |
|   ST = TM.getSubtargetImpl(F);
 | |
| 
 | |
|   DL = &F.getParent()->getDataLayout();
 | |
| 
 | |
|   bool MadeChange = false;
 | |
|   for (auto &BB : F) {
 | |
|     for (auto &I : BB) {
 | |
|       auto *EE = dyn_cast<ExtractElementInst>(&I);
 | |
|       if (!EE)
 | |
|         continue;
 | |
| 
 | |
|       // First find a reduction tree.
 | |
|       // FIXME: Do we need to handle other opcodes than Add?
 | |
|       Value *Root = matchAddReduction(*EE);
 | |
|       if (!Root)
 | |
|         continue;
 | |
| 
 | |
|       SmallVector<Instruction *, 8> Leaves;
 | |
|       collectLeaves(Root, Leaves);
 | |
| 
 | |
|       for (Instruction *I : Leaves) {
 | |
|         if (tryMAddReplacement(I)) {
 | |
|           MadeChange = true;
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Don't do SAD matching on the root node. SelectionDAG already
 | |
|         // has support for that and currently generates better code.
 | |
|         if (I != Root && trySADReplacement(I))
 | |
|           MadeChange = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 |