585 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			585 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86TargetMachine.cpp - Define TargetMachine for the X86 -----------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the X86 specific subclass of TargetMachine.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86TargetMachine.h"
 | |
| #include "MCTargetDesc/X86MCTargetDesc.h"
 | |
| #include "TargetInfo/X86TargetInfo.h"
 | |
| #include "X86.h"
 | |
| #include "X86CallLowering.h"
 | |
| #include "X86LegalizerInfo.h"
 | |
| #include "X86MacroFusion.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "X86TargetObjectFile.h"
 | |
| #include "X86TargetTransformInfo.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/CodeGen/ExecutionDomainFix.h"
 | |
| #include "llvm/CodeGen/GlobalISel/CallLowering.h"
 | |
| #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
 | |
| #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
 | |
| #include "llvm/CodeGen/GlobalISel/Legalizer.h"
 | |
| #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
 | |
| #include "llvm/CodeGen/MachineScheduler.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/MC/MCAsmInfo.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CodeGen.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/TargetRegistry.h"
 | |
| #include "llvm/Target/TargetLoweringObjectFile.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Transforms/CFGuard.h"
 | |
| #include <memory>
 | |
| #include <string>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> EnableMachineCombinerPass("x86-machine-combiner",
 | |
|                                cl::desc("Enable the machine combiner pass"),
 | |
|                                cl::init(true), cl::Hidden);
 | |
| 
 | |
| extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeX86Target() {
 | |
|   // Register the target.
 | |
|   RegisterTargetMachine<X86TargetMachine> X(getTheX86_32Target());
 | |
|   RegisterTargetMachine<X86TargetMachine> Y(getTheX86_64Target());
 | |
| 
 | |
|   PassRegistry &PR = *PassRegistry::getPassRegistry();
 | |
|   initializeX86LowerAMXTypeLegacyPassPass(PR);
 | |
|   initializeGlobalISel(PR);
 | |
|   initializeWinEHStatePassPass(PR);
 | |
|   initializeFixupBWInstPassPass(PR);
 | |
|   initializeEvexToVexInstPassPass(PR);
 | |
|   initializeFixupLEAPassPass(PR);
 | |
|   initializeFPSPass(PR);
 | |
|   initializeX86FixupSetCCPassPass(PR);
 | |
|   initializeX86CallFrameOptimizationPass(PR);
 | |
|   initializeX86CmovConverterPassPass(PR);
 | |
|   initializeX86TileConfigPass(PR);
 | |
|   initializeX86ExpandPseudoPass(PR);
 | |
|   initializeX86ExecutionDomainFixPass(PR);
 | |
|   initializeX86DomainReassignmentPass(PR);
 | |
|   initializeX86AvoidSFBPassPass(PR);
 | |
|   initializeX86AvoidTrailingCallPassPass(PR);
 | |
|   initializeX86SpeculativeLoadHardeningPassPass(PR);
 | |
|   initializeX86SpeculativeExecutionSideEffectSuppressionPass(PR);
 | |
|   initializeX86FlagsCopyLoweringPassPass(PR);
 | |
|   initializeX86LoadValueInjectionLoadHardeningPassPass(PR);
 | |
|   initializeX86LoadValueInjectionRetHardeningPassPass(PR);
 | |
|   initializeX86OptimizeLEAPassPass(PR);
 | |
|   initializeX86PartialReductionPass(PR);
 | |
|   initializePseudoProbeInserterPass(PR);
 | |
| }
 | |
| 
 | |
| static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
 | |
|   if (TT.isOSBinFormatMachO()) {
 | |
|     if (TT.getArch() == Triple::x86_64)
 | |
|       return std::make_unique<X86_64MachoTargetObjectFile>();
 | |
|     return std::make_unique<TargetLoweringObjectFileMachO>();
 | |
|   }
 | |
| 
 | |
|   if (TT.isOSBinFormatCOFF())
 | |
|     return std::make_unique<TargetLoweringObjectFileCOFF>();
 | |
|   return std::make_unique<X86ELFTargetObjectFile>();
 | |
| }
 | |
| 
 | |
| static std::string computeDataLayout(const Triple &TT) {
 | |
|   // X86 is little endian
 | |
|   std::string Ret = "e";
 | |
| 
 | |
|   Ret += DataLayout::getManglingComponent(TT);
 | |
|   // X86 and x32 have 32 bit pointers.
 | |
|   if ((TT.isArch64Bit() &&
 | |
|        (TT.getEnvironment() == Triple::GNUX32 || TT.isOSNaCl())) ||
 | |
|       !TT.isArch64Bit())
 | |
|     Ret += "-p:32:32";
 | |
| 
 | |
|   // Address spaces for 32 bit signed, 32 bit unsigned, and 64 bit pointers.
 | |
|   Ret += "-p270:32:32-p271:32:32-p272:64:64";
 | |
| 
 | |
|   // Some ABIs align 64 bit integers and doubles to 64 bits, others to 32.
 | |
|   if (TT.isArch64Bit() || TT.isOSWindows() || TT.isOSNaCl())
 | |
|     Ret += "-i64:64";
 | |
|   else if (TT.isOSIAMCU())
 | |
|     Ret += "-i64:32-f64:32";
 | |
|   else
 | |
|     Ret += "-f64:32:64";
 | |
| 
 | |
|   // Some ABIs align long double to 128 bits, others to 32.
 | |
|   if (TT.isOSNaCl() || TT.isOSIAMCU())
 | |
|     ; // No f80
 | |
|   else if (TT.isArch64Bit() || TT.isOSDarwin())
 | |
|     Ret += "-f80:128";
 | |
|   else
 | |
|     Ret += "-f80:32";
 | |
| 
 | |
|   if (TT.isOSIAMCU())
 | |
|     Ret += "-f128:32";
 | |
| 
 | |
|   // The registers can hold 8, 16, 32 or, in x86-64, 64 bits.
 | |
|   if (TT.isArch64Bit())
 | |
|     Ret += "-n8:16:32:64";
 | |
|   else
 | |
|     Ret += "-n8:16:32";
 | |
| 
 | |
|   // The stack is aligned to 32 bits on some ABIs and 128 bits on others.
 | |
|   if ((!TT.isArch64Bit() && TT.isOSWindows()) || TT.isOSIAMCU())
 | |
|     Ret += "-a:0:32-S32";
 | |
|   else
 | |
|     Ret += "-S128";
 | |
| 
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| static Reloc::Model getEffectiveRelocModel(const Triple &TT,
 | |
|                                            bool JIT,
 | |
|                                            Optional<Reloc::Model> RM) {
 | |
|   bool is64Bit = TT.getArch() == Triple::x86_64;
 | |
|   if (!RM.hasValue()) {
 | |
|     // JIT codegen should use static relocations by default, since it's
 | |
|     // typically executed in process and not relocatable.
 | |
|     if (JIT)
 | |
|       return Reloc::Static;
 | |
| 
 | |
|     // Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
 | |
|     // Win64 requires rip-rel addressing, thus we force it to PIC. Otherwise we
 | |
|     // use static relocation model by default.
 | |
|     if (TT.isOSDarwin()) {
 | |
|       if (is64Bit)
 | |
|         return Reloc::PIC_;
 | |
|       return Reloc::DynamicNoPIC;
 | |
|     }
 | |
|     if (TT.isOSWindows() && is64Bit)
 | |
|       return Reloc::PIC_;
 | |
|     return Reloc::Static;
 | |
|   }
 | |
| 
 | |
|   // ELF and X86-64 don't have a distinct DynamicNoPIC model.  DynamicNoPIC
 | |
|   // is defined as a model for code which may be used in static or dynamic
 | |
|   // executables but not necessarily a shared library. On X86-32 we just
 | |
|   // compile in -static mode, in x86-64 we use PIC.
 | |
|   if (*RM == Reloc::DynamicNoPIC) {
 | |
|     if (is64Bit)
 | |
|       return Reloc::PIC_;
 | |
|     if (!TT.isOSDarwin())
 | |
|       return Reloc::Static;
 | |
|   }
 | |
| 
 | |
|   // If we are on Darwin, disallow static relocation model in X86-64 mode, since
 | |
|   // the Mach-O file format doesn't support it.
 | |
|   if (*RM == Reloc::Static && TT.isOSDarwin() && is64Bit)
 | |
|     return Reloc::PIC_;
 | |
| 
 | |
|   return *RM;
 | |
| }
 | |
| 
 | |
| static CodeModel::Model getEffectiveX86CodeModel(Optional<CodeModel::Model> CM,
 | |
|                                                  bool JIT, bool Is64Bit) {
 | |
|   if (CM) {
 | |
|     if (*CM == CodeModel::Tiny)
 | |
|       report_fatal_error("Target does not support the tiny CodeModel", false);
 | |
|     return *CM;
 | |
|   }
 | |
|   if (JIT)
 | |
|     return Is64Bit ? CodeModel::Large : CodeModel::Small;
 | |
|   return CodeModel::Small;
 | |
| }
 | |
| 
 | |
| /// Create an X86 target.
 | |
| ///
 | |
| X86TargetMachine::X86TargetMachine(const Target &T, const Triple &TT,
 | |
|                                    StringRef CPU, StringRef FS,
 | |
|                                    const TargetOptions &Options,
 | |
|                                    Optional<Reloc::Model> RM,
 | |
|                                    Optional<CodeModel::Model> CM,
 | |
|                                    CodeGenOpt::Level OL, bool JIT)
 | |
|     : LLVMTargetMachine(
 | |
|           T, computeDataLayout(TT), TT, CPU, FS, Options,
 | |
|           getEffectiveRelocModel(TT, JIT, RM),
 | |
|           getEffectiveX86CodeModel(CM, JIT, TT.getArch() == Triple::x86_64),
 | |
|           OL),
 | |
|       TLOF(createTLOF(getTargetTriple())), IsJIT(JIT) {
 | |
|   // On PS4, the "return address" of a 'noreturn' call must still be within
 | |
|   // the calling function, and TrapUnreachable is an easy way to get that.
 | |
|   if (TT.isPS4() || TT.isOSBinFormatMachO()) {
 | |
|     this->Options.TrapUnreachable = true;
 | |
|     this->Options.NoTrapAfterNoreturn = TT.isOSBinFormatMachO();
 | |
|   }
 | |
| 
 | |
|   setMachineOutliner(true);
 | |
| 
 | |
|   // x86 supports the debug entry values.
 | |
|   setSupportsDebugEntryValues(true);
 | |
| 
 | |
|   initAsmInfo();
 | |
| }
 | |
| 
 | |
| X86TargetMachine::~X86TargetMachine() = default;
 | |
| 
 | |
| const X86Subtarget *
 | |
| X86TargetMachine::getSubtargetImpl(const Function &F) const {
 | |
|   Attribute CPUAttr = F.getFnAttribute("target-cpu");
 | |
|   Attribute TuneAttr = F.getFnAttribute("tune-cpu");
 | |
|   Attribute FSAttr = F.getFnAttribute("target-features");
 | |
| 
 | |
|   StringRef CPU =
 | |
|       CPUAttr.isValid() ? CPUAttr.getValueAsString() : (StringRef)TargetCPU;
 | |
|   StringRef TuneCPU =
 | |
|       TuneAttr.isValid() ? TuneAttr.getValueAsString() : (StringRef)CPU;
 | |
|   StringRef FS =
 | |
|       FSAttr.isValid() ? FSAttr.getValueAsString() : (StringRef)TargetFS;
 | |
| 
 | |
|   SmallString<512> Key;
 | |
|   // The additions here are ordered so that the definitely short strings are
 | |
|   // added first so we won't exceed the small size. We append the
 | |
|   // much longer FS string at the end so that we only heap allocate at most
 | |
|   // one time.
 | |
| 
 | |
|   // Extract prefer-vector-width attribute.
 | |
|   unsigned PreferVectorWidthOverride = 0;
 | |
|   Attribute PreferVecWidthAttr = F.getFnAttribute("prefer-vector-width");
 | |
|   if (PreferVecWidthAttr.isValid()) {
 | |
|     StringRef Val = PreferVecWidthAttr.getValueAsString();
 | |
|     unsigned Width;
 | |
|     if (!Val.getAsInteger(0, Width)) {
 | |
|       Key += "prefer-vector-width=";
 | |
|       Key += Val;
 | |
|       PreferVectorWidthOverride = Width;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Extract min-legal-vector-width attribute.
 | |
|   unsigned RequiredVectorWidth = UINT32_MAX;
 | |
|   Attribute MinLegalVecWidthAttr = F.getFnAttribute("min-legal-vector-width");
 | |
|   if (MinLegalVecWidthAttr.isValid()) {
 | |
|     StringRef Val = MinLegalVecWidthAttr.getValueAsString();
 | |
|     unsigned Width;
 | |
|     if (!Val.getAsInteger(0, Width)) {
 | |
|       Key += "min-legal-vector-width=";
 | |
|       Key += Val;
 | |
|       RequiredVectorWidth = Width;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Add CPU to the Key.
 | |
|   Key += CPU;
 | |
| 
 | |
|   // Add tune CPU to the Key.
 | |
|   Key += "tune=";
 | |
|   Key += TuneCPU;
 | |
| 
 | |
|   // Keep track of the start of the feature portion of the string.
 | |
|   unsigned FSStart = Key.size();
 | |
| 
 | |
|   // FIXME: This is related to the code below to reset the target options,
 | |
|   // we need to know whether or not the soft float flag is set on the
 | |
|   // function before we can generate a subtarget. We also need to use
 | |
|   // it as a key for the subtarget since that can be the only difference
 | |
|   // between two functions.
 | |
|   bool SoftFloat =
 | |
|       F.getFnAttribute("use-soft-float").getValueAsString() == "true";
 | |
|   // If the soft float attribute is set on the function turn on the soft float
 | |
|   // subtarget feature.
 | |
|   if (SoftFloat)
 | |
|     Key += FS.empty() ? "+soft-float" : "+soft-float,";
 | |
| 
 | |
|   Key += FS;
 | |
| 
 | |
|   // We may have added +soft-float to the features so move the StringRef to
 | |
|   // point to the full string in the Key.
 | |
|   FS = Key.substr(FSStart);
 | |
| 
 | |
|   auto &I = SubtargetMap[Key];
 | |
|   if (!I) {
 | |
|     // This needs to be done before we create a new subtarget since any
 | |
|     // creation will depend on the TM and the code generation flags on the
 | |
|     // function that reside in TargetOptions.
 | |
|     resetTargetOptions(F);
 | |
|     I = std::make_unique<X86Subtarget>(
 | |
|         TargetTriple, CPU, TuneCPU, FS, *this,
 | |
|         MaybeAlign(Options.StackAlignmentOverride), PreferVectorWidthOverride,
 | |
|         RequiredVectorWidth);
 | |
|   }
 | |
|   return I.get();
 | |
| }
 | |
| 
 | |
| bool X86TargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
 | |
|                                            unsigned DestAS) const {
 | |
|   assert(SrcAS != DestAS && "Expected different address spaces!");
 | |
|   if (getPointerSize(SrcAS) != getPointerSize(DestAS))
 | |
|     return false;
 | |
|   return SrcAS < 256 && DestAS < 256;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // X86 TTI query.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| TargetTransformInfo
 | |
| X86TargetMachine::getTargetTransformInfo(const Function &F) {
 | |
|   return TargetTransformInfo(X86TTIImpl(this, F));
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Pass Pipeline Configuration
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// X86 Code Generator Pass Configuration Options.
 | |
| class X86PassConfig : public TargetPassConfig {
 | |
| public:
 | |
|   X86PassConfig(X86TargetMachine &TM, PassManagerBase &PM)
 | |
|     : TargetPassConfig(TM, PM) {}
 | |
| 
 | |
|   X86TargetMachine &getX86TargetMachine() const {
 | |
|     return getTM<X86TargetMachine>();
 | |
|   }
 | |
| 
 | |
|   ScheduleDAGInstrs *
 | |
|   createMachineScheduler(MachineSchedContext *C) const override {
 | |
|     ScheduleDAGMILive *DAG = createGenericSchedLive(C);
 | |
|     DAG->addMutation(createX86MacroFusionDAGMutation());
 | |
|     return DAG;
 | |
|   }
 | |
| 
 | |
|   ScheduleDAGInstrs *
 | |
|   createPostMachineScheduler(MachineSchedContext *C) const override {
 | |
|     ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
 | |
|     DAG->addMutation(createX86MacroFusionDAGMutation());
 | |
|     return DAG;
 | |
|   }
 | |
| 
 | |
|   void addIRPasses() override;
 | |
|   bool addInstSelector() override;
 | |
|   bool addIRTranslator() override;
 | |
|   bool addLegalizeMachineIR() override;
 | |
|   bool addRegBankSelect() override;
 | |
|   bool addGlobalInstructionSelect() override;
 | |
|   bool addILPOpts() override;
 | |
|   bool addPreISel() override;
 | |
|   void addMachineSSAOptimization() override;
 | |
|   void addPreRegAlloc() override;
 | |
|   void addPostRegAlloc() override;
 | |
|   void addPreEmitPass() override;
 | |
|   void addPreEmitPass2() override;
 | |
|   void addPreSched2() override;
 | |
|   bool addPreRewrite() override;
 | |
| 
 | |
|   std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
 | |
| };
 | |
| 
 | |
| class X86ExecutionDomainFix : public ExecutionDomainFix {
 | |
| public:
 | |
|   static char ID;
 | |
|   X86ExecutionDomainFix() : ExecutionDomainFix(ID, X86::VR128XRegClass) {}
 | |
|   StringRef getPassName() const override {
 | |
|     return "X86 Execution Dependency Fix";
 | |
|   }
 | |
| };
 | |
| char X86ExecutionDomainFix::ID;
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(X86ExecutionDomainFix, "x86-execution-domain-fix",
 | |
|   "X86 Execution Domain Fix", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(ReachingDefAnalysis)
 | |
| INITIALIZE_PASS_END(X86ExecutionDomainFix, "x86-execution-domain-fix",
 | |
|   "X86 Execution Domain Fix", false, false)
 | |
| 
 | |
| TargetPassConfig *X86TargetMachine::createPassConfig(PassManagerBase &PM) {
 | |
|   return new X86PassConfig(*this, PM);
 | |
| }
 | |
| 
 | |
| void X86PassConfig::addIRPasses() {
 | |
|   addPass(createAtomicExpandPass());
 | |
|   addPass(createX86LowerAMXTypePass());
 | |
| 
 | |
|   TargetPassConfig::addIRPasses();
 | |
| 
 | |
|   if (TM->getOptLevel() != CodeGenOpt::None) {
 | |
|     addPass(createInterleavedAccessPass());
 | |
|     addPass(createX86PartialReductionPass());
 | |
|   }
 | |
| 
 | |
|   // Add passes that handle indirect branch removal and insertion of a retpoline
 | |
|   // thunk. These will be a no-op unless a function subtarget has the retpoline
 | |
|   // feature enabled.
 | |
|   addPass(createIndirectBrExpandPass());
 | |
| 
 | |
|   // Add Control Flow Guard checks.
 | |
|   const Triple &TT = TM->getTargetTriple();
 | |
|   if (TT.isOSWindows()) {
 | |
|     if (TT.getArch() == Triple::x86_64) {
 | |
|       addPass(createCFGuardDispatchPass());
 | |
|     } else {
 | |
|       addPass(createCFGuardCheckPass());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addInstSelector() {
 | |
|   // Install an instruction selector.
 | |
|   addPass(createX86ISelDag(getX86TargetMachine(), getOptLevel()));
 | |
| 
 | |
|   // For ELF, cleanup any local-dynamic TLS accesses.
 | |
|   if (TM->getTargetTriple().isOSBinFormatELF() &&
 | |
|       getOptLevel() != CodeGenOpt::None)
 | |
|     addPass(createCleanupLocalDynamicTLSPass());
 | |
| 
 | |
|   addPass(createX86GlobalBaseRegPass());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addIRTranslator() {
 | |
|   addPass(new IRTranslator(getOptLevel()));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addLegalizeMachineIR() {
 | |
|   addPass(new Legalizer());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addRegBankSelect() {
 | |
|   addPass(new RegBankSelect());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addGlobalInstructionSelect() {
 | |
|   addPass(new InstructionSelect());
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addILPOpts() {
 | |
|   addPass(&EarlyIfConverterID);
 | |
|   if (EnableMachineCombinerPass)
 | |
|     addPass(&MachineCombinerID);
 | |
|   addPass(createX86CmovConverterPass());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addPreISel() {
 | |
|   // Only add this pass for 32-bit x86 Windows.
 | |
|   const Triple &TT = TM->getTargetTriple();
 | |
|   if (TT.isOSWindows() && TT.getArch() == Triple::x86)
 | |
|     addPass(createX86WinEHStatePass());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void X86PassConfig::addPreRegAlloc() {
 | |
|   if (getOptLevel() != CodeGenOpt::None) {
 | |
|     addPass(&LiveRangeShrinkID);
 | |
|     addPass(createX86FixupSetCC());
 | |
|     addPass(createX86OptimizeLEAs());
 | |
|     addPass(createX86CallFrameOptimization());
 | |
|     addPass(createX86AvoidStoreForwardingBlocks());
 | |
|   }
 | |
| 
 | |
|   addPass(createX86SpeculativeLoadHardeningPass());
 | |
|   addPass(createX86FlagsCopyLoweringPass());
 | |
|   addPass(createX86WinAllocaExpander());
 | |
| 
 | |
|   if (getOptLevel() != CodeGenOpt::None) {
 | |
|     addPass(createX86PreTileConfigPass());
 | |
|   }
 | |
| }
 | |
| 
 | |
| void X86PassConfig::addMachineSSAOptimization() {
 | |
|   addPass(createX86DomainReassignmentPass());
 | |
|   TargetPassConfig::addMachineSSAOptimization();
 | |
| }
 | |
| 
 | |
| void X86PassConfig::addPostRegAlloc() {
 | |
|   addPass(createX86FloatingPointStackifierPass());
 | |
|   // When -O0 is enabled, the Load Value Injection Hardening pass will fall back
 | |
|   // to using the Speculative Execution Side Effect Suppression pass for
 | |
|   // mitigation. This is to prevent slow downs due to
 | |
|   // analyses needed by the LVIHardening pass when compiling at -O0.
 | |
|   if (getOptLevel() != CodeGenOpt::None)
 | |
|     addPass(createX86LoadValueInjectionLoadHardeningPass());
 | |
| }
 | |
| 
 | |
| void X86PassConfig::addPreSched2() { addPass(createX86ExpandPseudoPass()); }
 | |
| 
 | |
| void X86PassConfig::addPreEmitPass() {
 | |
|   if (getOptLevel() != CodeGenOpt::None) {
 | |
|     addPass(new X86ExecutionDomainFix());
 | |
|     addPass(createBreakFalseDeps());
 | |
|   }
 | |
| 
 | |
|   addPass(createX86IndirectBranchTrackingPass());
 | |
| 
 | |
|   addPass(createX86IssueVZeroUpperPass());
 | |
| 
 | |
|   if (getOptLevel() != CodeGenOpt::None) {
 | |
|     addPass(createX86FixupBWInsts());
 | |
|     addPass(createX86PadShortFunctions());
 | |
|     addPass(createX86FixupLEAs());
 | |
|   }
 | |
|   addPass(createX86EvexToVexInsts());
 | |
|   addPass(createX86DiscriminateMemOpsPass());
 | |
|   addPass(createX86InsertPrefetchPass());
 | |
|   addPass(createX86InsertX87waitPass());
 | |
| }
 | |
| 
 | |
| void X86PassConfig::addPreEmitPass2() {
 | |
|   const Triple &TT = TM->getTargetTriple();
 | |
|   const MCAsmInfo *MAI = TM->getMCAsmInfo();
 | |
| 
 | |
|   // The X86 Speculative Execution Pass must run after all control
 | |
|   // flow graph modifying passes. As a result it was listed to run right before
 | |
|   // the X86 Retpoline Thunks pass. The reason it must run after control flow
 | |
|   // graph modifications is that the model of LFENCE in LLVM has to be updated
 | |
|   // (FIXME: https://bugs.llvm.org/show_bug.cgi?id=45167). Currently the
 | |
|   // placement of this pass was hand checked to ensure that the subsequent
 | |
|   // passes don't move the code around the LFENCEs in a way that will hurt the
 | |
|   // correctness of this pass. This placement has been shown to work based on
 | |
|   // hand inspection of the codegen output.
 | |
|   addPass(createX86SpeculativeExecutionSideEffectSuppression());
 | |
|   addPass(createX86IndirectThunksPass());
 | |
| 
 | |
|   // Insert extra int3 instructions after trailing call instructions to avoid
 | |
|   // issues in the unwinder.
 | |
|   if (TT.isOSWindows() && TT.getArch() == Triple::x86_64)
 | |
|     addPass(createX86AvoidTrailingCallPass());
 | |
| 
 | |
|   // Verify basic block incoming and outgoing cfa offset and register values and
 | |
|   // correct CFA calculation rule where needed by inserting appropriate CFI
 | |
|   // instructions.
 | |
|   if (!TT.isOSDarwin() &&
 | |
|       (!TT.isOSWindows() ||
 | |
|        MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI))
 | |
|     addPass(createCFIInstrInserter());
 | |
|   // Identify valid longjmp targets for Windows Control Flow Guard.
 | |
|   if (TT.isOSWindows())
 | |
|     addPass(createCFGuardLongjmpPass());
 | |
|   addPass(createX86LoadValueInjectionRetHardeningPass());
 | |
| }
 | |
| 
 | |
| bool X86PassConfig::addPreRewrite() {
 | |
|   addPass(createX86TileConfigPass());
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| std::unique_ptr<CSEConfigBase> X86PassConfig::getCSEConfig() const {
 | |
|   return getStandardCSEConfigForOpt(TM->getOptLevel());
 | |
| }
 |