4762 lines
		
	
	
		
			201 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4762 lines
		
	
	
		
			201 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| /// This file implements a TargetTransformInfo analysis pass specific to the
 | |
| /// X86 target machine. It uses the target's detailed information to provide
 | |
| /// more precise answers to certain TTI queries, while letting the target
 | |
| /// independent and default TTI implementations handle the rest.
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// About Cost Model numbers used below it's necessary to say the following:
 | |
| /// the numbers correspond to some "generic" X86 CPU instead of usage of
 | |
| /// concrete CPU model. Usually the numbers correspond to CPU where the feature
 | |
| /// apeared at the first time. For example, if we do Subtarget.hasSSE42() in
 | |
| /// the lookups below the cost is based on Nehalem as that was the first CPU
 | |
| /// to support that feature level and thus has most likely the worst case cost.
 | |
| /// Some examples of other technologies/CPUs:
 | |
| ///   SSE 3   - Pentium4 / Athlon64
 | |
| ///   SSE 4.1 - Penryn
 | |
| ///   SSE 4.2 - Nehalem
 | |
| ///   AVX     - Sandy Bridge
 | |
| ///   AVX2    - Haswell
 | |
| ///   AVX-512 - Xeon Phi / Skylake
 | |
| /// And some examples of instruction target dependent costs (latency)
 | |
| ///                   divss     sqrtss          rsqrtss
 | |
| ///   AMD K7            11-16     19              3
 | |
| ///   Piledriver        9-24      13-15           5
 | |
| ///   Jaguar            14        16              2
 | |
| ///   Pentium II,III    18        30              2
 | |
| ///   Nehalem           7-14      7-18            3
 | |
| ///   Haswell           10-13     11              5
 | |
| /// TODO: Develop and implement  the target dependent cost model and
 | |
| /// specialize cost numbers for different Cost Model Targets such as throughput,
 | |
| /// code size, latency and uop count.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86TargetTransformInfo.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/CodeGen/BasicTTIImpl.h"
 | |
| #include "llvm/CodeGen/CostTable.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "x86tti"
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // X86 cost model.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| TargetTransformInfo::PopcntSupportKind
 | |
| X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
 | |
|   assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
 | |
|   // TODO: Currently the __builtin_popcount() implementation using SSE3
 | |
|   //   instructions is inefficient. Once the problem is fixed, we should
 | |
|   //   call ST->hasSSE3() instead of ST->hasPOPCNT().
 | |
|   return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
 | |
| }
 | |
| 
 | |
| llvm::Optional<unsigned> X86TTIImpl::getCacheSize(
 | |
|   TargetTransformInfo::CacheLevel Level) const {
 | |
|   switch (Level) {
 | |
|   case TargetTransformInfo::CacheLevel::L1D:
 | |
|     //   - Penryn
 | |
|     //   - Nehalem
 | |
|     //   - Westmere
 | |
|     //   - Sandy Bridge
 | |
|     //   - Ivy Bridge
 | |
|     //   - Haswell
 | |
|     //   - Broadwell
 | |
|     //   - Skylake
 | |
|     //   - Kabylake
 | |
|     return 32 * 1024;  //  32 KByte
 | |
|   case TargetTransformInfo::CacheLevel::L2D:
 | |
|     //   - Penryn
 | |
|     //   - Nehalem
 | |
|     //   - Westmere
 | |
|     //   - Sandy Bridge
 | |
|     //   - Ivy Bridge
 | |
|     //   - Haswell
 | |
|     //   - Broadwell
 | |
|     //   - Skylake
 | |
|     //   - Kabylake
 | |
|     return 256 * 1024; // 256 KByte
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
 | |
| }
 | |
| 
 | |
| llvm::Optional<unsigned> X86TTIImpl::getCacheAssociativity(
 | |
|   TargetTransformInfo::CacheLevel Level) const {
 | |
|   //   - Penryn
 | |
|   //   - Nehalem
 | |
|   //   - Westmere
 | |
|   //   - Sandy Bridge
 | |
|   //   - Ivy Bridge
 | |
|   //   - Haswell
 | |
|   //   - Broadwell
 | |
|   //   - Skylake
 | |
|   //   - Kabylake
 | |
|   switch (Level) {
 | |
|   case TargetTransformInfo::CacheLevel::L1D:
 | |
|     LLVM_FALLTHROUGH;
 | |
|   case TargetTransformInfo::CacheLevel::L2D:
 | |
|     return 8;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
 | |
| }
 | |
| 
 | |
| unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
 | |
|   bool Vector = (ClassID == 1);
 | |
|   if (Vector && !ST->hasSSE1())
 | |
|     return 0;
 | |
| 
 | |
|   if (ST->is64Bit()) {
 | |
|     if (Vector && ST->hasAVX512())
 | |
|       return 32;
 | |
|     return 16;
 | |
|   }
 | |
|   return 8;
 | |
| }
 | |
| 
 | |
| unsigned X86TTIImpl::getRegisterBitWidth(bool Vector) const {
 | |
|   unsigned PreferVectorWidth = ST->getPreferVectorWidth();
 | |
|   if (Vector) {
 | |
|     if (ST->hasAVX512() && PreferVectorWidth >= 512)
 | |
|       return 512;
 | |
|     if (ST->hasAVX() && PreferVectorWidth >= 256)
 | |
|       return 256;
 | |
|     if (ST->hasSSE1() && PreferVectorWidth >= 128)
 | |
|       return 128;
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (ST->is64Bit())
 | |
|     return 64;
 | |
| 
 | |
|   return 32;
 | |
| }
 | |
| 
 | |
| unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
 | |
|   return getRegisterBitWidth(true);
 | |
| }
 | |
| 
 | |
| unsigned X86TTIImpl::getMaxInterleaveFactor(unsigned VF) {
 | |
|   // If the loop will not be vectorized, don't interleave the loop.
 | |
|   // Let regular unroll to unroll the loop, which saves the overflow
 | |
|   // check and memory check cost.
 | |
|   if (VF == 1)
 | |
|     return 1;
 | |
| 
 | |
|   if (ST->isAtom())
 | |
|     return 1;
 | |
| 
 | |
|   // Sandybridge and Haswell have multiple execution ports and pipelined
 | |
|   // vector units.
 | |
|   if (ST->hasAVX())
 | |
|     return 4;
 | |
| 
 | |
|   return 2;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
 | |
|                                        TTI::TargetCostKind CostKind,
 | |
|                                        TTI::OperandValueKind Op1Info,
 | |
|                                        TTI::OperandValueKind Op2Info,
 | |
|                                        TTI::OperandValueProperties Opd1PropInfo,
 | |
|                                        TTI::OperandValueProperties Opd2PropInfo,
 | |
|                                        ArrayRef<const Value *> Args,
 | |
|                                        const Instruction *CxtI) {
 | |
|   // TODO: Handle more cost kinds.
 | |
|   if (CostKind != TTI::TCK_RecipThroughput)
 | |
|     return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info,
 | |
|                                          Op2Info, Opd1PropInfo,
 | |
|                                          Opd2PropInfo, Args, CxtI);
 | |
|   // Legalize the type.
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   static const CostTblEntry GLMCostTable[] = {
 | |
|     { ISD::FDIV,  MVT::f32,   18 }, // divss
 | |
|     { ISD::FDIV,  MVT::v4f32, 35 }, // divps
 | |
|     { ISD::FDIV,  MVT::f64,   33 }, // divsd
 | |
|     { ISD::FDIV,  MVT::v2f64, 65 }, // divpd
 | |
|   };
 | |
| 
 | |
|   if (ST->useGLMDivSqrtCosts())
 | |
|     if (const auto *Entry = CostTableLookup(GLMCostTable, ISD,
 | |
|                                             LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry SLMCostTable[] = {
 | |
|     { ISD::MUL,   MVT::v4i32, 11 }, // pmulld
 | |
|     { ISD::MUL,   MVT::v8i16, 2  }, // pmullw
 | |
|     { ISD::MUL,   MVT::v16i8, 14 }, // extend/pmullw/trunc sequence.
 | |
|     { ISD::FMUL,  MVT::f64,   2  }, // mulsd
 | |
|     { ISD::FMUL,  MVT::v2f64, 4  }, // mulpd
 | |
|     { ISD::FMUL,  MVT::v4f32, 2  }, // mulps
 | |
|     { ISD::FDIV,  MVT::f32,   17 }, // divss
 | |
|     { ISD::FDIV,  MVT::v4f32, 39 }, // divps
 | |
|     { ISD::FDIV,  MVT::f64,   32 }, // divsd
 | |
|     { ISD::FDIV,  MVT::v2f64, 69 }, // divpd
 | |
|     { ISD::FADD,  MVT::v2f64, 2  }, // addpd
 | |
|     { ISD::FSUB,  MVT::v2f64, 2  }, // subpd
 | |
|     // v2i64/v4i64 mul is custom lowered as a series of long:
 | |
|     // multiplies(3), shifts(3) and adds(2)
 | |
|     // slm muldq version throughput is 2 and addq throughput 4
 | |
|     // thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
 | |
|     //       3X4 (addq throughput) = 17
 | |
|     { ISD::MUL,   MVT::v2i64, 17 },
 | |
|     // slm addq\subq throughput is 4
 | |
|     { ISD::ADD,   MVT::v2i64, 4  },
 | |
|     { ISD::SUB,   MVT::v2i64, 4  },
 | |
|   };
 | |
| 
 | |
|   if (ST->isSLM()) {
 | |
|     if (Args.size() == 2 && ISD == ISD::MUL && LT.second == MVT::v4i32) {
 | |
|       // Check if the operands can be shrinked into a smaller datatype.
 | |
|       bool Op1Signed = false;
 | |
|       unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
 | |
|       bool Op2Signed = false;
 | |
|       unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
 | |
| 
 | |
|       bool SignedMode = Op1Signed || Op2Signed;
 | |
|       unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
 | |
| 
 | |
|       if (OpMinSize <= 7)
 | |
|         return LT.first * 3; // pmullw/sext
 | |
|       if (!SignedMode && OpMinSize <= 8)
 | |
|         return LT.first * 3; // pmullw/zext
 | |
|       if (OpMinSize <= 15)
 | |
|         return LT.first * 5; // pmullw/pmulhw/pshuf
 | |
|       if (!SignedMode && OpMinSize <= 16)
 | |
|         return LT.first * 5; // pmullw/pmulhw/pshuf
 | |
|     }
 | |
| 
 | |
|     if (const auto *Entry = CostTableLookup(SLMCostTable, ISD,
 | |
|                                             LT.second)) {
 | |
|       return LT.first * Entry->Cost;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if ((ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
 | |
|        ISD == ISD::UREM) &&
 | |
|       (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
 | |
|        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
 | |
|       Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
 | |
|     if (ISD == ISD::SDIV || ISD == ISD::SREM) {
 | |
|       // On X86, vector signed division by constants power-of-two are
 | |
|       // normally expanded to the sequence SRA + SRL + ADD + SRA.
 | |
|       // The OperandValue properties may not be the same as that of the previous
 | |
|       // operation; conservatively assume OP_None.
 | |
|       int Cost =
 | |
|           2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind, Op1Info,
 | |
|                                      Op2Info,
 | |
|                                      TargetTransformInfo::OP_None,
 | |
|                                      TargetTransformInfo::OP_None);
 | |
|       Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind, Op1Info,
 | |
|                                      Op2Info,
 | |
|                                      TargetTransformInfo::OP_None,
 | |
|                                      TargetTransformInfo::OP_None);
 | |
|       Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind, Op1Info,
 | |
|                                      Op2Info,
 | |
|                                      TargetTransformInfo::OP_None,
 | |
|                                      TargetTransformInfo::OP_None);
 | |
| 
 | |
|       if (ISD == ISD::SREM) {
 | |
|         // For SREM: (X % C) is the equivalent of (X - (X/C)*C)
 | |
|         Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info,
 | |
|                                        Op2Info);
 | |
|         Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info,
 | |
|                                        Op2Info);
 | |
|       }
 | |
| 
 | |
|       return Cost;
 | |
|     }
 | |
| 
 | |
|     // Vector unsigned division/remainder will be simplified to shifts/masks.
 | |
|     if (ISD == ISD::UDIV)
 | |
|       return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
 | |
|                                     Op1Info, Op2Info,
 | |
|                                     TargetTransformInfo::OP_None,
 | |
|                                     TargetTransformInfo::OP_None);
 | |
| 
 | |
|     else // UREM
 | |
|       return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
 | |
|                                     Op1Info, Op2Info,
 | |
|                                     TargetTransformInfo::OP_None,
 | |
|                                     TargetTransformInfo::OP_None);
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX512BWUniformConstCostTable[] = {
 | |
|     { ISD::SHL,  MVT::v64i8,   2 }, // psllw + pand.
 | |
|     { ISD::SRL,  MVT::v64i8,   2 }, // psrlw + pand.
 | |
|     { ISD::SRA,  MVT::v64i8,   4 }, // psrlw, pand, pxor, psubb.
 | |
|   };
 | |
| 
 | |
|   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | |
|       ST->hasBWI()) {
 | |
|     if (const auto *Entry = CostTableLookup(AVX512BWUniformConstCostTable, ISD,
 | |
|                                             LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX512UniformConstCostTable[] = {
 | |
|     { ISD::SRA,  MVT::v2i64,   1 },
 | |
|     { ISD::SRA,  MVT::v4i64,   1 },
 | |
|     { ISD::SRA,  MVT::v8i64,   1 },
 | |
| 
 | |
|     { ISD::SHL,  MVT::v64i8,   4 }, // psllw + pand.
 | |
|     { ISD::SRL,  MVT::v64i8,   4 }, // psrlw + pand.
 | |
|     { ISD::SRA,  MVT::v64i8,   8 }, // psrlw, pand, pxor, psubb.
 | |
| 
 | |
|     { ISD::SDIV, MVT::v16i32,  6 }, // pmuludq sequence
 | |
|     { ISD::SREM, MVT::v16i32,  8 }, // pmuludq+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v16i32,  5 }, // pmuludq sequence
 | |
|     { ISD::UREM, MVT::v16i32,  7 }, // pmuludq+mul+sub sequence
 | |
|   };
 | |
| 
 | |
|   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | |
|       ST->hasAVX512()) {
 | |
|     if (const auto *Entry = CostTableLookup(AVX512UniformConstCostTable, ISD,
 | |
|                                             LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX2UniformConstCostTable[] = {
 | |
|     { ISD::SHL,  MVT::v32i8,   2 }, // psllw + pand.
 | |
|     { ISD::SRL,  MVT::v32i8,   2 }, // psrlw + pand.
 | |
|     { ISD::SRA,  MVT::v32i8,   4 }, // psrlw, pand, pxor, psubb.
 | |
| 
 | |
|     { ISD::SRA,  MVT::v4i64,   4 }, // 2 x psrad + shuffle.
 | |
| 
 | |
|     { ISD::SDIV, MVT::v8i32,   6 }, // pmuludq sequence
 | |
|     { ISD::SREM, MVT::v8i32,   8 }, // pmuludq+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v8i32,   5 }, // pmuludq sequence
 | |
|     { ISD::UREM, MVT::v8i32,   7 }, // pmuludq+mul+sub sequence
 | |
|   };
 | |
| 
 | |
|   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | |
|       ST->hasAVX2()) {
 | |
|     if (const auto *Entry = CostTableLookup(AVX2UniformConstCostTable, ISD,
 | |
|                                             LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry SSE2UniformConstCostTable[] = {
 | |
|     { ISD::SHL,  MVT::v16i8,     2 }, // psllw + pand.
 | |
|     { ISD::SRL,  MVT::v16i8,     2 }, // psrlw + pand.
 | |
|     { ISD::SRA,  MVT::v16i8,     4 }, // psrlw, pand, pxor, psubb.
 | |
| 
 | |
|     { ISD::SHL,  MVT::v32i8,   4+2 }, // 2*(psllw + pand) + split.
 | |
|     { ISD::SRL,  MVT::v32i8,   4+2 }, // 2*(psrlw + pand) + split.
 | |
|     { ISD::SRA,  MVT::v32i8,   8+2 }, // 2*(psrlw, pand, pxor, psubb) + split.
 | |
| 
 | |
|     { ISD::SDIV, MVT::v8i32,  12+2 }, // 2*pmuludq sequence + split.
 | |
|     { ISD::SREM, MVT::v8i32,  16+2 }, // 2*pmuludq+mul+sub sequence + split.
 | |
|     { ISD::SDIV, MVT::v4i32,     6 }, // pmuludq sequence
 | |
|     { ISD::SREM, MVT::v4i32,     8 }, // pmuludq+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v8i32,  10+2 }, // 2*pmuludq sequence + split.
 | |
|     { ISD::UREM, MVT::v8i32,  14+2 }, // 2*pmuludq+mul+sub sequence + split.
 | |
|     { ISD::UDIV, MVT::v4i32,     5 }, // pmuludq sequence
 | |
|     { ISD::UREM, MVT::v4i32,     7 }, // pmuludq+mul+sub sequence
 | |
|   };
 | |
| 
 | |
|   // XOP has faster vXi8 shifts.
 | |
|   if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | |
|       ST->hasSSE2() && !ST->hasXOP()) {
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX512BWConstCostTable[] = {
 | |
|     { ISD::SDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
 | |
|     { ISD::SREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v64i8,  14 }, // 2*ext+2*pmulhw sequence
 | |
|     { ISD::UREM, MVT::v64i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
 | |
|     { ISD::SDIV, MVT::v32i16,  6 }, // vpmulhw sequence
 | |
|     { ISD::SREM, MVT::v32i16,  8 }, // vpmulhw+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v32i16,  6 }, // vpmulhuw sequence
 | |
|     { ISD::UREM, MVT::v32i16,  8 }, // vpmulhuw+mul+sub sequence
 | |
|   };
 | |
| 
 | |
|   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
 | |
|        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
 | |
|       ST->hasBWI()) {
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX512ConstCostTable[] = {
 | |
|     { ISD::SDIV, MVT::v16i32, 15 }, // vpmuldq sequence
 | |
|     { ISD::SREM, MVT::v16i32, 17 }, // vpmuldq+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v16i32, 15 }, // vpmuludq sequence
 | |
|     { ISD::UREM, MVT::v16i32, 17 }, // vpmuludq+mul+sub sequence
 | |
|     { ISD::SDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
 | |
|     { ISD::SREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v64i8,  28 }, // 4*ext+4*pmulhw sequence
 | |
|     { ISD::UREM, MVT::v64i8,  32 }, // 4*ext+4*pmulhw+mul+sub sequence
 | |
|     { ISD::SDIV, MVT::v32i16, 12 }, // 2*vpmulhw sequence
 | |
|     { ISD::SREM, MVT::v32i16, 16 }, // 2*vpmulhw+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v32i16, 12 }, // 2*vpmulhuw sequence
 | |
|     { ISD::UREM, MVT::v32i16, 16 }, // 2*vpmulhuw+mul+sub sequence
 | |
|   };
 | |
| 
 | |
|   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
 | |
|        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
 | |
|       ST->hasAVX512()) {
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX2ConstCostTable[] = {
 | |
|     { ISD::SDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
 | |
|     { ISD::SREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v32i8,  14 }, // 2*ext+2*pmulhw sequence
 | |
|     { ISD::UREM, MVT::v32i8,  16 }, // 2*ext+2*pmulhw+mul+sub sequence
 | |
|     { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
 | |
|     { ISD::SREM, MVT::v16i16,  8 }, // vpmulhw+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
 | |
|     { ISD::UREM, MVT::v16i16,  8 }, // vpmulhuw+mul+sub sequence
 | |
|     { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
 | |
|     { ISD::SREM, MVT::v8i32,  19 }, // vpmuldq+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
 | |
|     { ISD::UREM, MVT::v8i32,  19 }, // vpmuludq+mul+sub sequence
 | |
|   };
 | |
| 
 | |
|   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
 | |
|        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
 | |
|       ST->hasAVX2()) {
 | |
|     if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry SSE2ConstCostTable[] = {
 | |
|     { ISD::SDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
 | |
|     { ISD::SREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
 | |
|     { ISD::SDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
 | |
|     { ISD::SREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v32i8,  28+2 }, // 4*ext+4*pmulhw sequence + split.
 | |
|     { ISD::UREM, MVT::v32i8,  32+2 }, // 4*ext+4*pmulhw+mul+sub sequence + split.
 | |
|     { ISD::UDIV, MVT::v16i8,    14 }, // 2*ext+2*pmulhw sequence
 | |
|     { ISD::UREM, MVT::v16i8,    16 }, // 2*ext+2*pmulhw+mul+sub sequence
 | |
|     { ISD::SDIV, MVT::v16i16, 12+2 }, // 2*pmulhw sequence + split.
 | |
|     { ISD::SREM, MVT::v16i16, 16+2 }, // 2*pmulhw+mul+sub sequence + split.
 | |
|     { ISD::SDIV, MVT::v8i16,     6 }, // pmulhw sequence
 | |
|     { ISD::SREM, MVT::v8i16,     8 }, // pmulhw+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v16i16, 12+2 }, // 2*pmulhuw sequence + split.
 | |
|     { ISD::UREM, MVT::v16i16, 16+2 }, // 2*pmulhuw+mul+sub sequence + split.
 | |
|     { ISD::UDIV, MVT::v8i16,     6 }, // pmulhuw sequence
 | |
|     { ISD::UREM, MVT::v8i16,     8 }, // pmulhuw+mul+sub sequence
 | |
|     { ISD::SDIV, MVT::v8i32,  38+2 }, // 2*pmuludq sequence + split.
 | |
|     { ISD::SREM, MVT::v8i32,  48+2 }, // 2*pmuludq+mul+sub sequence + split.
 | |
|     { ISD::SDIV, MVT::v4i32,    19 }, // pmuludq sequence
 | |
|     { ISD::SREM, MVT::v4i32,    24 }, // pmuludq+mul+sub sequence
 | |
|     { ISD::UDIV, MVT::v8i32,  30+2 }, // 2*pmuludq sequence + split.
 | |
|     { ISD::UREM, MVT::v8i32,  40+2 }, // 2*pmuludq+mul+sub sequence + split.
 | |
|     { ISD::UDIV, MVT::v4i32,    15 }, // pmuludq sequence
 | |
|     { ISD::UREM, MVT::v4i32,    20 }, // pmuludq+mul+sub sequence
 | |
|   };
 | |
| 
 | |
|   if ((Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
 | |
|        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) &&
 | |
|       ST->hasSSE2()) {
 | |
|     // pmuldq sequence.
 | |
|     if (ISD == ISD::SDIV && LT.second == MVT::v8i32 && ST->hasAVX())
 | |
|       return LT.first * 32;
 | |
|     if (ISD == ISD::SREM && LT.second == MVT::v8i32 && ST->hasAVX())
 | |
|       return LT.first * 38;
 | |
|     if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
 | |
|       return LT.first * 15;
 | |
|     if (ISD == ISD::SREM && LT.second == MVT::v4i32 && ST->hasSSE41())
 | |
|       return LT.first * 20;
 | |
| 
 | |
|     if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX512BWShiftCostTable[] = {
 | |
|     { ISD::SHL,   MVT::v8i16,      1 }, // vpsllvw
 | |
|     { ISD::SRL,   MVT::v8i16,      1 }, // vpsrlvw
 | |
|     { ISD::SRA,   MVT::v8i16,      1 }, // vpsravw
 | |
| 
 | |
|     { ISD::SHL,   MVT::v16i16,     1 }, // vpsllvw
 | |
|     { ISD::SRL,   MVT::v16i16,     1 }, // vpsrlvw
 | |
|     { ISD::SRA,   MVT::v16i16,     1 }, // vpsravw
 | |
| 
 | |
|     { ISD::SHL,   MVT::v32i16,     1 }, // vpsllvw
 | |
|     { ISD::SRL,   MVT::v32i16,     1 }, // vpsrlvw
 | |
|     { ISD::SRA,   MVT::v32i16,     1 }, // vpsravw
 | |
|   };
 | |
| 
 | |
|   if (ST->hasBWI())
 | |
|     if (const auto *Entry = CostTableLookup(AVX512BWShiftCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry AVX2UniformCostTable[] = {
 | |
|     // Uniform splats are cheaper for the following instructions.
 | |
|     { ISD::SHL,  MVT::v16i16, 1 }, // psllw.
 | |
|     { ISD::SRL,  MVT::v16i16, 1 }, // psrlw.
 | |
|     { ISD::SRA,  MVT::v16i16, 1 }, // psraw.
 | |
|     { ISD::SHL,  MVT::v32i16, 2 }, // 2*psllw.
 | |
|     { ISD::SRL,  MVT::v32i16, 2 }, // 2*psrlw.
 | |
|     { ISD::SRA,  MVT::v32i16, 2 }, // 2*psraw.
 | |
|   };
 | |
| 
 | |
|   if (ST->hasAVX2() &&
 | |
|       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
 | |
|        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry SSE2UniformCostTable[] = {
 | |
|     // Uniform splats are cheaper for the following instructions.
 | |
|     { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
 | |
|     { ISD::SHL,  MVT::v4i32,  1 }, // pslld
 | |
|     { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
 | |
| 
 | |
|     { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
 | |
|     { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
 | |
|     { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
 | |
| 
 | |
|     { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
 | |
|     { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE2() &&
 | |
|       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
 | |
|        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX512DQCostTable[] = {
 | |
|     { ISD::MUL,  MVT::v2i64, 1 },
 | |
|     { ISD::MUL,  MVT::v4i64, 1 },
 | |
|     { ISD::MUL,  MVT::v8i64, 1 }
 | |
|   };
 | |
| 
 | |
|   // Look for AVX512DQ lowering tricks for custom cases.
 | |
|   if (ST->hasDQI())
 | |
|     if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry AVX512BWCostTable[] = {
 | |
|     { ISD::SHL,   MVT::v64i8,     11 }, // vpblendvb sequence.
 | |
|     { ISD::SRL,   MVT::v64i8,     11 }, // vpblendvb sequence.
 | |
|     { ISD::SRA,   MVT::v64i8,     24 }, // vpblendvb sequence.
 | |
| 
 | |
|     { ISD::MUL,   MVT::v64i8,     11 }, // extend/pmullw/trunc sequence.
 | |
|     { ISD::MUL,   MVT::v32i8,      4 }, // extend/pmullw/trunc sequence.
 | |
|     { ISD::MUL,   MVT::v16i8,      4 }, // extend/pmullw/trunc sequence.
 | |
|   };
 | |
| 
 | |
|   // Look for AVX512BW lowering tricks for custom cases.
 | |
|   if (ST->hasBWI())
 | |
|     if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry AVX512CostTable[] = {
 | |
|     { ISD::SHL,     MVT::v16i32,     1 },
 | |
|     { ISD::SRL,     MVT::v16i32,     1 },
 | |
|     { ISD::SRA,     MVT::v16i32,     1 },
 | |
| 
 | |
|     { ISD::SHL,     MVT::v8i64,      1 },
 | |
|     { ISD::SRL,     MVT::v8i64,      1 },
 | |
| 
 | |
|     { ISD::SRA,     MVT::v2i64,      1 },
 | |
|     { ISD::SRA,     MVT::v4i64,      1 },
 | |
|     { ISD::SRA,     MVT::v8i64,      1 },
 | |
| 
 | |
|     { ISD::MUL,     MVT::v64i8,     26 }, // extend/pmullw/trunc sequence.
 | |
|     { ISD::MUL,     MVT::v32i8,     13 }, // extend/pmullw/trunc sequence.
 | |
|     { ISD::MUL,     MVT::v16i8,      5 }, // extend/pmullw/trunc sequence.
 | |
|     { ISD::MUL,     MVT::v16i32,     1 }, // pmulld (Skylake from agner.org)
 | |
|     { ISD::MUL,     MVT::v8i32,      1 }, // pmulld (Skylake from agner.org)
 | |
|     { ISD::MUL,     MVT::v4i32,      1 }, // pmulld (Skylake from agner.org)
 | |
|     { ISD::MUL,     MVT::v8i64,      8 }, // 3*pmuludq/3*shift/2*add
 | |
| 
 | |
|     { ISD::FADD,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
 | |
|     { ISD::FSUB,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
 | |
|     { ISD::FMUL,    MVT::v8f64,      1 }, // Skylake from http://www.agner.org/
 | |
| 
 | |
|     { ISD::FADD,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
 | |
|     { ISD::FSUB,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
 | |
|     { ISD::FMUL,    MVT::v16f32,     1 }, // Skylake from http://www.agner.org/
 | |
|   };
 | |
| 
 | |
|   if (ST->hasAVX512())
 | |
|     if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry AVX2ShiftCostTable[] = {
 | |
|     // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
 | |
|     // customize them to detect the cases where shift amount is a scalar one.
 | |
|     { ISD::SHL,     MVT::v4i32,    1 },
 | |
|     { ISD::SRL,     MVT::v4i32,    1 },
 | |
|     { ISD::SRA,     MVT::v4i32,    1 },
 | |
|     { ISD::SHL,     MVT::v8i32,    1 },
 | |
|     { ISD::SRL,     MVT::v8i32,    1 },
 | |
|     { ISD::SRA,     MVT::v8i32,    1 },
 | |
|     { ISD::SHL,     MVT::v2i64,    1 },
 | |
|     { ISD::SRL,     MVT::v2i64,    1 },
 | |
|     { ISD::SHL,     MVT::v4i64,    1 },
 | |
|     { ISD::SRL,     MVT::v4i64,    1 },
 | |
|   };
 | |
| 
 | |
|   if (ST->hasAVX512()) {
 | |
|     if (ISD == ISD::SHL && LT.second == MVT::v32i16 &&
 | |
|         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
 | |
|          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
 | |
|       // On AVX512, a packed v32i16 shift left by a constant build_vector
 | |
|       // is lowered into a vector multiply (vpmullw).
 | |
|       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
 | |
|                                     Op1Info, Op2Info,
 | |
|                                     TargetTransformInfo::OP_None,
 | |
|                                     TargetTransformInfo::OP_None);
 | |
|   }
 | |
| 
 | |
|   // Look for AVX2 lowering tricks.
 | |
|   if (ST->hasAVX2()) {
 | |
|     if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
 | |
|         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
 | |
|          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
 | |
|       // On AVX2, a packed v16i16 shift left by a constant build_vector
 | |
|       // is lowered into a vector multiply (vpmullw).
 | |
|       return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
 | |
|                                     Op1Info, Op2Info,
 | |
|                                     TargetTransformInfo::OP_None,
 | |
|                                     TargetTransformInfo::OP_None);
 | |
| 
 | |
|     if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry XOPShiftCostTable[] = {
 | |
|     // 128bit shifts take 1cy, but right shifts require negation beforehand.
 | |
|     { ISD::SHL,     MVT::v16i8,    1 },
 | |
|     { ISD::SRL,     MVT::v16i8,    2 },
 | |
|     { ISD::SRA,     MVT::v16i8,    2 },
 | |
|     { ISD::SHL,     MVT::v8i16,    1 },
 | |
|     { ISD::SRL,     MVT::v8i16,    2 },
 | |
|     { ISD::SRA,     MVT::v8i16,    2 },
 | |
|     { ISD::SHL,     MVT::v4i32,    1 },
 | |
|     { ISD::SRL,     MVT::v4i32,    2 },
 | |
|     { ISD::SRA,     MVT::v4i32,    2 },
 | |
|     { ISD::SHL,     MVT::v2i64,    1 },
 | |
|     { ISD::SRL,     MVT::v2i64,    2 },
 | |
|     { ISD::SRA,     MVT::v2i64,    2 },
 | |
|     // 256bit shifts require splitting if AVX2 didn't catch them above.
 | |
|     { ISD::SHL,     MVT::v32i8,  2+2 },
 | |
|     { ISD::SRL,     MVT::v32i8,  4+2 },
 | |
|     { ISD::SRA,     MVT::v32i8,  4+2 },
 | |
|     { ISD::SHL,     MVT::v16i16, 2+2 },
 | |
|     { ISD::SRL,     MVT::v16i16, 4+2 },
 | |
|     { ISD::SRA,     MVT::v16i16, 4+2 },
 | |
|     { ISD::SHL,     MVT::v8i32,  2+2 },
 | |
|     { ISD::SRL,     MVT::v8i32,  4+2 },
 | |
|     { ISD::SRA,     MVT::v8i32,  4+2 },
 | |
|     { ISD::SHL,     MVT::v4i64,  2+2 },
 | |
|     { ISD::SRL,     MVT::v4i64,  4+2 },
 | |
|     { ISD::SRA,     MVT::v4i64,  4+2 },
 | |
|   };
 | |
| 
 | |
|   // Look for XOP lowering tricks.
 | |
|   if (ST->hasXOP()) {
 | |
|     // If the right shift is constant then we'll fold the negation so
 | |
|     // it's as cheap as a left shift.
 | |
|     int ShiftISD = ISD;
 | |
|     if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) &&
 | |
|         (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
 | |
|          Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
 | |
|       ShiftISD = ISD::SHL;
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry SSE2UniformShiftCostTable[] = {
 | |
|     // Uniform splats are cheaper for the following instructions.
 | |
|     { ISD::SHL,  MVT::v16i16, 2+2 }, // 2*psllw + split.
 | |
|     { ISD::SHL,  MVT::v8i32,  2+2 }, // 2*pslld + split.
 | |
|     { ISD::SHL,  MVT::v4i64,  2+2 }, // 2*psllq + split.
 | |
| 
 | |
|     { ISD::SRL,  MVT::v16i16, 2+2 }, // 2*psrlw + split.
 | |
|     { ISD::SRL,  MVT::v8i32,  2+2 }, // 2*psrld + split.
 | |
|     { ISD::SRL,  MVT::v4i64,  2+2 }, // 2*psrlq + split.
 | |
| 
 | |
|     { ISD::SRA,  MVT::v16i16, 2+2 }, // 2*psraw + split.
 | |
|     { ISD::SRA,  MVT::v8i32,  2+2 }, // 2*psrad + split.
 | |
|     { ISD::SRA,  MVT::v2i64,    4 }, // 2*psrad + shuffle.
 | |
|     { ISD::SRA,  MVT::v4i64,  8+2 }, // 2*(2*psrad + shuffle) + split.
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE2() &&
 | |
|       ((Op2Info == TargetTransformInfo::OK_UniformConstantValue) ||
 | |
|        (Op2Info == TargetTransformInfo::OK_UniformValue))) {
 | |
| 
 | |
|     // Handle AVX2 uniform v4i64 ISD::SRA, it's not worth a table.
 | |
|     if (ISD == ISD::SRA && LT.second == MVT::v4i64 && ST->hasAVX2())
 | |
|       return LT.first * 4; // 2*psrad + shuffle.
 | |
| 
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(SSE2UniformShiftCostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   if (ISD == ISD::SHL &&
 | |
|       Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
 | |
|     MVT VT = LT.second;
 | |
|     // Vector shift left by non uniform constant can be lowered
 | |
|     // into vector multiply.
 | |
|     if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
 | |
|         ((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
 | |
|       ISD = ISD::MUL;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX2CostTable[] = {
 | |
|     { ISD::SHL,  MVT::v32i8,     11 }, // vpblendvb sequence.
 | |
|     { ISD::SHL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
 | |
|     { ISD::SHL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
 | |
|     { ISD::SHL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
 | |
| 
 | |
|     { ISD::SRL,  MVT::v32i8,     11 }, // vpblendvb sequence.
 | |
|     { ISD::SRL,  MVT::v64i8,     22 }, // 2*vpblendvb sequence.
 | |
|     { ISD::SRL,  MVT::v16i16,    10 }, // extend/vpsrlvd/pack sequence.
 | |
|     { ISD::SRL,  MVT::v32i16,    20 }, // 2*extend/vpsrlvd/pack sequence.
 | |
| 
 | |
|     { ISD::SRA,  MVT::v32i8,     24 }, // vpblendvb sequence.
 | |
|     { ISD::SRA,  MVT::v64i8,     48 }, // 2*vpblendvb sequence.
 | |
|     { ISD::SRA,  MVT::v16i16,    10 }, // extend/vpsravd/pack sequence.
 | |
|     { ISD::SRA,  MVT::v32i16,    20 }, // 2*extend/vpsravd/pack sequence.
 | |
|     { ISD::SRA,  MVT::v2i64,      4 }, // srl/xor/sub sequence.
 | |
|     { ISD::SRA,  MVT::v4i64,      4 }, // srl/xor/sub sequence.
 | |
| 
 | |
|     { ISD::SUB,  MVT::v32i8,      1 }, // psubb
 | |
|     { ISD::ADD,  MVT::v32i8,      1 }, // paddb
 | |
|     { ISD::SUB,  MVT::v16i16,     1 }, // psubw
 | |
|     { ISD::ADD,  MVT::v16i16,     1 }, // paddw
 | |
|     { ISD::SUB,  MVT::v8i32,      1 }, // psubd
 | |
|     { ISD::ADD,  MVT::v8i32,      1 }, // paddd
 | |
|     { ISD::SUB,  MVT::v4i64,      1 }, // psubq
 | |
|     { ISD::ADD,  MVT::v4i64,      1 }, // paddq
 | |
| 
 | |
|     { ISD::MUL,  MVT::v32i8,     17 }, // extend/pmullw/trunc sequence.
 | |
|     { ISD::MUL,  MVT::v16i8,      7 }, // extend/pmullw/trunc sequence.
 | |
|     { ISD::MUL,  MVT::v16i16,     1 }, // pmullw
 | |
|     { ISD::MUL,  MVT::v8i32,      2 }, // pmulld (Haswell from agner.org)
 | |
|     { ISD::MUL,  MVT::v4i64,      8 }, // 3*pmuludq/3*shift/2*add
 | |
| 
 | |
|     { ISD::FADD, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FADD, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FSUB, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FSUB, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FMUL, MVT::v4f64,      1 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FMUL, MVT::v8f32,      1 }, // Haswell from http://www.agner.org/
 | |
| 
 | |
|     { ISD::FDIV, MVT::f32,        7 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FDIV, MVT::v4f32,      7 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FDIV, MVT::v8f32,     14 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FDIV, MVT::f64,       14 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FDIV, MVT::v2f64,     14 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FDIV, MVT::v4f64,     28 }, // Haswell from http://www.agner.org/
 | |
|   };
 | |
| 
 | |
|   // Look for AVX2 lowering tricks for custom cases.
 | |
|   if (ST->hasAVX2())
 | |
|     if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry AVX1CostTable[] = {
 | |
|     // We don't have to scalarize unsupported ops. We can issue two half-sized
 | |
|     // operations and we only need to extract the upper YMM half.
 | |
|     // Two ops + 1 extract + 1 insert = 4.
 | |
|     { ISD::MUL,     MVT::v16i16,     4 },
 | |
|     { ISD::MUL,     MVT::v8i32,      4 },
 | |
|     { ISD::SUB,     MVT::v32i8,      4 },
 | |
|     { ISD::ADD,     MVT::v32i8,      4 },
 | |
|     { ISD::SUB,     MVT::v16i16,     4 },
 | |
|     { ISD::ADD,     MVT::v16i16,     4 },
 | |
|     { ISD::SUB,     MVT::v8i32,      4 },
 | |
|     { ISD::ADD,     MVT::v8i32,      4 },
 | |
|     { ISD::SUB,     MVT::v4i64,      4 },
 | |
|     { ISD::ADD,     MVT::v4i64,      4 },
 | |
| 
 | |
|     // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
 | |
|     // are lowered as a series of long multiplies(3), shifts(3) and adds(2)
 | |
|     // Because we believe v4i64 to be a legal type, we must also include the
 | |
|     // extract+insert in the cost table. Therefore, the cost here is 18
 | |
|     // instead of 8.
 | |
|     { ISD::MUL,     MVT::v4i64,     18 },
 | |
| 
 | |
|     { ISD::MUL,     MVT::v32i8,     26 }, // extend/pmullw/trunc sequence.
 | |
| 
 | |
|     { ISD::FDIV,    MVT::f32,       14 }, // SNB from http://www.agner.org/
 | |
|     { ISD::FDIV,    MVT::v4f32,     14 }, // SNB from http://www.agner.org/
 | |
|     { ISD::FDIV,    MVT::v8f32,     28 }, // SNB from http://www.agner.org/
 | |
|     { ISD::FDIV,    MVT::f64,       22 }, // SNB from http://www.agner.org/
 | |
|     { ISD::FDIV,    MVT::v2f64,     22 }, // SNB from http://www.agner.org/
 | |
|     { ISD::FDIV,    MVT::v4f64,     44 }, // SNB from http://www.agner.org/
 | |
|   };
 | |
| 
 | |
|   if (ST->hasAVX())
 | |
|     if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry SSE42CostTable[] = {
 | |
|     { ISD::FADD, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FADD, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FADD, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FADD, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
 | |
| 
 | |
|     { ISD::FSUB, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FSUB, MVT::f32 ,    1 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FSUB, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FSUB, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
 | |
| 
 | |
|     { ISD::FMUL, MVT::f64,     1 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FMUL, MVT::f32,     1 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FMUL, MVT::v2f64,   1 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FMUL, MVT::v4f32,   1 }, // Nehalem from http://www.agner.org/
 | |
| 
 | |
|     { ISD::FDIV,  MVT::f32,   14 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FDIV,  MVT::v4f32, 14 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FDIV,  MVT::f64,   22 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FDIV,  MVT::v2f64, 22 }, // Nehalem from http://www.agner.org/
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE42())
 | |
|     if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry SSE41CostTable[] = {
 | |
|     { ISD::SHL,  MVT::v16i8,      11 }, // pblendvb sequence.
 | |
|     { ISD::SHL,  MVT::v32i8,  2*11+2 }, // pblendvb sequence + split.
 | |
|     { ISD::SHL,  MVT::v8i16,      14 }, // pblendvb sequence.
 | |
|     { ISD::SHL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
 | |
|     { ISD::SHL,  MVT::v4i32,       4 }, // pslld/paddd/cvttps2dq/pmulld
 | |
|     { ISD::SHL,  MVT::v8i32,   2*4+2 }, // pslld/paddd/cvttps2dq/pmulld + split
 | |
| 
 | |
|     { ISD::SRL,  MVT::v16i8,      12 }, // pblendvb sequence.
 | |
|     { ISD::SRL,  MVT::v32i8,  2*12+2 }, // pblendvb sequence + split.
 | |
|     { ISD::SRL,  MVT::v8i16,      14 }, // pblendvb sequence.
 | |
|     { ISD::SRL,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
 | |
|     { ISD::SRL,  MVT::v4i32,      11 }, // Shift each lane + blend.
 | |
|     { ISD::SRL,  MVT::v8i32,  2*11+2 }, // Shift each lane + blend + split.
 | |
| 
 | |
|     { ISD::SRA,  MVT::v16i8,      24 }, // pblendvb sequence.
 | |
|     { ISD::SRA,  MVT::v32i8,  2*24+2 }, // pblendvb sequence + split.
 | |
|     { ISD::SRA,  MVT::v8i16,      14 }, // pblendvb sequence.
 | |
|     { ISD::SRA,  MVT::v16i16, 2*14+2 }, // pblendvb sequence + split.
 | |
|     { ISD::SRA,  MVT::v4i32,      12 }, // Shift each lane + blend.
 | |
|     { ISD::SRA,  MVT::v8i32,  2*12+2 }, // Shift each lane + blend + split.
 | |
| 
 | |
|     { ISD::MUL,  MVT::v4i32,       2 }  // pmulld (Nehalem from agner.org)
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE41())
 | |
|     if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry SSE2CostTable[] = {
 | |
|     // We don't correctly identify costs of casts because they are marked as
 | |
|     // custom.
 | |
|     { ISD::SHL,  MVT::v16i8,      26 }, // cmpgtb sequence.
 | |
|     { ISD::SHL,  MVT::v8i16,      32 }, // cmpgtb sequence.
 | |
|     { ISD::SHL,  MVT::v4i32,     2*5 }, // We optimized this using mul.
 | |
|     { ISD::SHL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
 | |
|     { ISD::SHL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
 | |
| 
 | |
|     { ISD::SRL,  MVT::v16i8,      26 }, // cmpgtb sequence.
 | |
|     { ISD::SRL,  MVT::v8i16,      32 }, // cmpgtb sequence.
 | |
|     { ISD::SRL,  MVT::v4i32,      16 }, // Shift each lane + blend.
 | |
|     { ISD::SRL,  MVT::v2i64,       4 }, // splat+shuffle sequence.
 | |
|     { ISD::SRL,  MVT::v4i64,   2*4+2 }, // splat+shuffle sequence + split.
 | |
| 
 | |
|     { ISD::SRA,  MVT::v16i8,      54 }, // unpacked cmpgtb sequence.
 | |
|     { ISD::SRA,  MVT::v8i16,      32 }, // cmpgtb sequence.
 | |
|     { ISD::SRA,  MVT::v4i32,      16 }, // Shift each lane + blend.
 | |
|     { ISD::SRA,  MVT::v2i64,      12 }, // srl/xor/sub sequence.
 | |
|     { ISD::SRA,  MVT::v4i64,  2*12+2 }, // srl/xor/sub sequence+split.
 | |
| 
 | |
|     { ISD::MUL,  MVT::v16i8,      12 }, // extend/pmullw/trunc sequence.
 | |
|     { ISD::MUL,  MVT::v8i16,       1 }, // pmullw
 | |
|     { ISD::MUL,  MVT::v4i32,       6 }, // 3*pmuludq/4*shuffle
 | |
|     { ISD::MUL,  MVT::v2i64,       8 }, // 3*pmuludq/3*shift/2*add
 | |
| 
 | |
|     { ISD::FDIV, MVT::f32,        23 }, // Pentium IV from http://www.agner.org/
 | |
|     { ISD::FDIV, MVT::v4f32,      39 }, // Pentium IV from http://www.agner.org/
 | |
|     { ISD::FDIV, MVT::f64,        38 }, // Pentium IV from http://www.agner.org/
 | |
|     { ISD::FDIV, MVT::v2f64,      69 }, // Pentium IV from http://www.agner.org/
 | |
| 
 | |
|     { ISD::FADD, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
 | |
|     { ISD::FADD, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
 | |
| 
 | |
|     { ISD::FSUB, MVT::f32,         2 }, // Pentium IV from http://www.agner.org/
 | |
|     { ISD::FSUB, MVT::f64,         2 }, // Pentium IV from http://www.agner.org/
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE2())
 | |
|     if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry SSE1CostTable[] = {
 | |
|     { ISD::FDIV, MVT::f32,   17 }, // Pentium III from http://www.agner.org/
 | |
|     { ISD::FDIV, MVT::v4f32, 34 }, // Pentium III from http://www.agner.org/
 | |
| 
 | |
|     { ISD::FADD, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
 | |
|     { ISD::FADD, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
 | |
| 
 | |
|     { ISD::FSUB, MVT::f32,    1 }, // Pentium III from http://www.agner.org/
 | |
|     { ISD::FSUB, MVT::v4f32,  2 }, // Pentium III from http://www.agner.org/
 | |
| 
 | |
|     { ISD::ADD, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
 | |
|     { ISD::ADD, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
 | |
|     { ISD::ADD, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
 | |
| 
 | |
|     { ISD::SUB, MVT::i8,      1 }, // Pentium III from http://www.agner.org/
 | |
|     { ISD::SUB, MVT::i16,     1 }, // Pentium III from http://www.agner.org/
 | |
|     { ISD::SUB, MVT::i32,     1 }, // Pentium III from http://www.agner.org/
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE1())
 | |
|     if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   // It is not a good idea to vectorize division. We have to scalarize it and
 | |
|   // in the process we will often end up having to spilling regular
 | |
|   // registers. The overhead of division is going to dominate most kernels
 | |
|   // anyways so try hard to prevent vectorization of division - it is
 | |
|   // generally a bad idea. Assume somewhat arbitrarily that we have to be able
 | |
|   // to hide "20 cycles" for each lane.
 | |
|   if (LT.second.isVector() && (ISD == ISD::SDIV || ISD == ISD::SREM ||
 | |
|                                ISD == ISD::UDIV || ISD == ISD::UREM)) {
 | |
|     int ScalarCost = getArithmeticInstrCost(
 | |
|         Opcode, Ty->getScalarType(), CostKind, Op1Info, Op2Info,
 | |
|         TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
 | |
|     return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
 | |
|   }
 | |
| 
 | |
|   // Fallback to the default implementation.
 | |
|   return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *BaseTp,
 | |
|                                int Index, VectorType *SubTp) {
 | |
|   // 64-bit packed float vectors (v2f32) are widened to type v4f32.
 | |
|   // 64-bit packed integer vectors (v2i32) are widened to type v4i32.
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, BaseTp);
 | |
| 
 | |
|   // Treat Transpose as 2-op shuffles - there's no difference in lowering.
 | |
|   if (Kind == TTI::SK_Transpose)
 | |
|     Kind = TTI::SK_PermuteTwoSrc;
 | |
| 
 | |
|   // For Broadcasts we are splatting the first element from the first input
 | |
|   // register, so only need to reference that input and all the output
 | |
|   // registers are the same.
 | |
|   if (Kind == TTI::SK_Broadcast)
 | |
|     LT.first = 1;
 | |
| 
 | |
|   // Subvector extractions are free if they start at the beginning of a
 | |
|   // vector and cheap if the subvectors are aligned.
 | |
|   if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
 | |
|     int NumElts = LT.second.getVectorNumElements();
 | |
|     if ((Index % NumElts) == 0)
 | |
|       return 0;
 | |
|     std::pair<int, MVT> SubLT = TLI->getTypeLegalizationCost(DL, SubTp);
 | |
|     if (SubLT.second.isVector()) {
 | |
|       int NumSubElts = SubLT.second.getVectorNumElements();
 | |
|       if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
 | |
|         return SubLT.first;
 | |
|       // Handle some cases for widening legalization. For now we only handle
 | |
|       // cases where the original subvector was naturally aligned and evenly
 | |
|       // fit in its legalized subvector type.
 | |
|       // FIXME: Remove some of the alignment restrictions.
 | |
|       // FIXME: We can use permq for 64-bit or larger extracts from 256-bit
 | |
|       // vectors.
 | |
|       int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
 | |
|       if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
 | |
|           (NumSubElts % OrigSubElts) == 0 &&
 | |
|           LT.second.getVectorElementType() ==
 | |
|               SubLT.second.getVectorElementType() &&
 | |
|           LT.second.getVectorElementType().getSizeInBits() ==
 | |
|               BaseTp->getElementType()->getPrimitiveSizeInBits()) {
 | |
|         assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
 | |
|                "Unexpected number of elements!");
 | |
|         auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
 | |
|                                            LT.second.getVectorNumElements());
 | |
|         auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
 | |
|                                            SubLT.second.getVectorNumElements());
 | |
|         int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
 | |
|         int ExtractCost = getShuffleCost(TTI::SK_ExtractSubvector, VecTy,
 | |
|                                          ExtractIndex, SubTy);
 | |
| 
 | |
|         // If the original size is 32-bits or more, we can use pshufd. Otherwise
 | |
|         // if we have SSSE3 we can use pshufb.
 | |
|         if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
 | |
|           return ExtractCost + 1; // pshufd or pshufb
 | |
| 
 | |
|         assert(SubTp->getPrimitiveSizeInBits() == 16 &&
 | |
|                "Unexpected vector size");
 | |
| 
 | |
|         return ExtractCost + 2; // worst case pshufhw + pshufd
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle some common (illegal) sub-vector types as they are often very cheap
 | |
|   // to shuffle even on targets without PSHUFB.
 | |
|   EVT VT = TLI->getValueType(DL, BaseTp);
 | |
|   if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
 | |
|       !ST->hasSSSE3()) {
 | |
|      static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
 | |
|       {TTI::SK_Broadcast,        MVT::v4i16, 1}, // pshuflw
 | |
|       {TTI::SK_Broadcast,        MVT::v2i16, 1}, // pshuflw
 | |
|       {TTI::SK_Broadcast,        MVT::v8i8,  2}, // punpck/pshuflw
 | |
|       {TTI::SK_Broadcast,        MVT::v4i8,  2}, // punpck/pshuflw
 | |
|       {TTI::SK_Broadcast,        MVT::v2i8,  1}, // punpck
 | |
| 
 | |
|       {TTI::SK_Reverse,          MVT::v4i16, 1}, // pshuflw
 | |
|       {TTI::SK_Reverse,          MVT::v2i16, 1}, // pshuflw
 | |
|       {TTI::SK_Reverse,          MVT::v4i8,  3}, // punpck/pshuflw/packus
 | |
|       {TTI::SK_Reverse,          MVT::v2i8,  1}, // punpck
 | |
| 
 | |
|       {TTI::SK_PermuteTwoSrc,    MVT::v4i16, 2}, // punpck/pshuflw
 | |
|       {TTI::SK_PermuteTwoSrc,    MVT::v2i16, 2}, // punpck/pshuflw
 | |
|       {TTI::SK_PermuteTwoSrc,    MVT::v8i8,  7}, // punpck/pshuflw
 | |
|       {TTI::SK_PermuteTwoSrc,    MVT::v4i8,  4}, // punpck/pshuflw
 | |
|       {TTI::SK_PermuteTwoSrc,    MVT::v2i8,  2}, // punpck
 | |
| 
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8i8,  5}, // punpck/pshuflw
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4i8,  3}, // punpck/pshuflw
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v2i8,  1}, // punpck
 | |
|     };
 | |
| 
 | |
|     if (ST->hasSSE2())
 | |
|       if (const auto *Entry =
 | |
|               CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
 | |
|         return Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   // We are going to permute multiple sources and the result will be in multiple
 | |
|   // destinations. Providing an accurate cost only for splits where the element
 | |
|   // type remains the same.
 | |
|   if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
 | |
|     MVT LegalVT = LT.second;
 | |
|     if (LegalVT.isVector() &&
 | |
|         LegalVT.getVectorElementType().getSizeInBits() ==
 | |
|             BaseTp->getElementType()->getPrimitiveSizeInBits() &&
 | |
|         LegalVT.getVectorNumElements() <
 | |
|             cast<FixedVectorType>(BaseTp)->getNumElements()) {
 | |
| 
 | |
|       unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
 | |
|       unsigned LegalVTSize = LegalVT.getStoreSize();
 | |
|       // Number of source vectors after legalization:
 | |
|       unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
 | |
|       // Number of destination vectors after legalization:
 | |
|       unsigned NumOfDests = LT.first;
 | |
| 
 | |
|       auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
 | |
|                                               LegalVT.getVectorNumElements());
 | |
| 
 | |
|       unsigned NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
 | |
|       return NumOfShuffles *
 | |
|              getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, 0, nullptr);
 | |
|     }
 | |
| 
 | |
|     return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
 | |
|   }
 | |
| 
 | |
|   // For 2-input shuffles, we must account for splitting the 2 inputs into many.
 | |
|   if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
 | |
|     // We assume that source and destination have the same vector type.
 | |
|     int NumOfDests = LT.first;
 | |
|     int NumOfShufflesPerDest = LT.first * 2 - 1;
 | |
|     LT.first = NumOfDests * NumOfShufflesPerDest;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry AVX512VBMIShuffleTbl[] = {
 | |
|       {TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
 | |
|       {TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
 | |
| 
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
 | |
| 
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 2}  // vpermt2b
 | |
|   };
 | |
| 
 | |
|   if (ST->hasVBMI())
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry AVX512BWShuffleTbl[] = {
 | |
|       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
 | |
|       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
 | |
| 
 | |
|       {TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
 | |
|       {TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
 | |
|       {TTI::SK_Reverse, MVT::v64i8, 2},  // pshufb + vshufi64x2
 | |
| 
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v64i8, 8},  // extend to v32i16
 | |
| 
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 2},  // vpermt2w
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
 | |
| 
 | |
|       {TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
 | |
|       {TTI::SK_Select, MVT::v64i8,  1}, // vblendmb
 | |
|   };
 | |
| 
 | |
|   if (ST->hasBWI())
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry AVX512ShuffleTbl[] = {
 | |
|       {TTI::SK_Broadcast, MVT::v8f64, 1},  // vbroadcastpd
 | |
|       {TTI::SK_Broadcast, MVT::v16f32, 1}, // vbroadcastps
 | |
|       {TTI::SK_Broadcast, MVT::v8i64, 1},  // vpbroadcastq
 | |
|       {TTI::SK_Broadcast, MVT::v16i32, 1}, // vpbroadcastd
 | |
|       {TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
 | |
|       {TTI::SK_Broadcast, MVT::v64i8, 1},  // vpbroadcastb
 | |
| 
 | |
|       {TTI::SK_Reverse, MVT::v8f64, 1},  // vpermpd
 | |
|       {TTI::SK_Reverse, MVT::v16f32, 1}, // vpermps
 | |
|       {TTI::SK_Reverse, MVT::v8i64, 1},  // vpermq
 | |
|       {TTI::SK_Reverse, MVT::v16i32, 1}, // vpermd
 | |
| 
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8f64, 1},  // vpermpd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1},  // vpermpd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v16f32, 1}, // vpermps
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4f32, 1},  // vpermps
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8i64, 1},  // vpermq
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1},  // vpermq
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v16i32, 1}, // vpermd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1},  // vpermd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1},  // pshufb
 | |
| 
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v8f64, 1},  // vpermt2pd
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v16f32, 1}, // vpermt2ps
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v8i64, 1},  // vpermt2q
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v16i32, 1}, // vpermt2d
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 1},  // vpermt2pd
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 1},  // vpermt2ps
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 1},  // vpermt2q
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 1},  // vpermt2d
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v2f64, 1},  // vpermt2pd
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v4f32, 1},  // vpermt2ps
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v2i64, 1},  // vpermt2q
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v4i32, 1},  // vpermt2d
 | |
| 
 | |
|       // FIXME: This just applies the type legalization cost rules above
 | |
|       // assuming these completely split.
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v32i16, 14},
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v64i8,  14},
 | |
|       {TTI::SK_PermuteTwoSrc,    MVT::v32i16, 42},
 | |
|       {TTI::SK_PermuteTwoSrc,    MVT::v64i8,  42},
 | |
| 
 | |
|       {TTI::SK_Select, MVT::v32i16, 1}, // vpternlogq
 | |
|       {TTI::SK_Select, MVT::v64i8,  1}, // vpternlogq
 | |
|       {TTI::SK_Select, MVT::v8f64,  1}, // vblendmpd
 | |
|       {TTI::SK_Select, MVT::v16f32, 1}, // vblendmps
 | |
|       {TTI::SK_Select, MVT::v8i64,  1}, // vblendmq
 | |
|       {TTI::SK_Select, MVT::v16i32, 1}, // vblendmd
 | |
|   };
 | |
| 
 | |
|   if (ST->hasAVX512())
 | |
|     if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry AVX2ShuffleTbl[] = {
 | |
|       {TTI::SK_Broadcast, MVT::v4f64, 1},  // vbroadcastpd
 | |
|       {TTI::SK_Broadcast, MVT::v8f32, 1},  // vbroadcastps
 | |
|       {TTI::SK_Broadcast, MVT::v4i64, 1},  // vpbroadcastq
 | |
|       {TTI::SK_Broadcast, MVT::v8i32, 1},  // vpbroadcastd
 | |
|       {TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
 | |
|       {TTI::SK_Broadcast, MVT::v32i8, 1},  // vpbroadcastb
 | |
| 
 | |
|       {TTI::SK_Reverse, MVT::v4f64, 1},  // vpermpd
 | |
|       {TTI::SK_Reverse, MVT::v8f32, 1},  // vpermps
 | |
|       {TTI::SK_Reverse, MVT::v4i64, 1},  // vpermq
 | |
|       {TTI::SK_Reverse, MVT::v8i32, 1},  // vpermd
 | |
|       {TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
 | |
|       {TTI::SK_Reverse, MVT::v32i8, 2},  // vperm2i128 + pshufb
 | |
| 
 | |
|       {TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
 | |
|       {TTI::SK_Select, MVT::v32i8, 1},  // vpblendvb
 | |
| 
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 1},  // vpermpd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 1},  // vpermps
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 1},  // vpermq
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 1},  // vpermd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
 | |
|                                                   // + vpblendvb
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vperm2i128 + 2*vpshufb
 | |
|                                                   // + vpblendvb
 | |
| 
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},  // 2*vpermpd + vblendpd
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 3},  // 2*vpermps + vblendps
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},  // 2*vpermq + vpblendd
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 3},  // 2*vpermd + vpblendd
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
 | |
|                                                // + vpblendvb
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 7},  // 2*vperm2i128 + 4*vpshufb
 | |
|                                                // + vpblendvb
 | |
|   };
 | |
| 
 | |
|   if (ST->hasAVX2())
 | |
|     if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry XOPShuffleTbl[] = {
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vpermil2pd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 2},  // vperm2f128 + vpermil2ps
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vpermil2pd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 2},  // vperm2f128 + vpermil2ps
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
 | |
|                                                   // + vinsertf128
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 4},  // vextractf128 + 2*vpperm
 | |
|                                                   // + vinsertf128
 | |
| 
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
 | |
|                                                // + vinsertf128
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 1},  // vpperm
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 9},  // 2*vextractf128 + 6*vpperm
 | |
|                                                // + vinsertf128
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 1},  // vpperm
 | |
|   };
 | |
| 
 | |
|   if (ST->hasXOP())
 | |
|     if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry AVX1ShuffleTbl[] = {
 | |
|       {TTI::SK_Broadcast, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
 | |
|       {TTI::SK_Broadcast, MVT::v8f32, 2},  // vperm2f128 + vpermilps
 | |
|       {TTI::SK_Broadcast, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
 | |
|       {TTI::SK_Broadcast, MVT::v8i32, 2},  // vperm2f128 + vpermilps
 | |
|       {TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
 | |
|       {TTI::SK_Broadcast, MVT::v32i8, 2},  // vpshufb + vinsertf128
 | |
| 
 | |
|       {TTI::SK_Reverse, MVT::v4f64, 2},  // vperm2f128 + vpermilpd
 | |
|       {TTI::SK_Reverse, MVT::v8f32, 2},  // vperm2f128 + vpermilps
 | |
|       {TTI::SK_Reverse, MVT::v4i64, 2},  // vperm2f128 + vpermilpd
 | |
|       {TTI::SK_Reverse, MVT::v8i32, 2},  // vperm2f128 + vpermilps
 | |
|       {TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
 | |
|                                          // + vinsertf128
 | |
|       {TTI::SK_Reverse, MVT::v32i8, 4},  // vextractf128 + 2*pshufb
 | |
|                                          // + vinsertf128
 | |
| 
 | |
|       {TTI::SK_Select, MVT::v4i64, 1},  // vblendpd
 | |
|       {TTI::SK_Select, MVT::v4f64, 1},  // vblendpd
 | |
|       {TTI::SK_Select, MVT::v8i32, 1},  // vblendps
 | |
|       {TTI::SK_Select, MVT::v8f32, 1},  // vblendps
 | |
|       {TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
 | |
|       {TTI::SK_Select, MVT::v32i8, 3},  // vpand + vpandn + vpor
 | |
| 
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4f64, 2},  // vperm2f128 + vshufpd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4i64, 2},  // vperm2f128 + vshufpd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8f32, 4},  // 2*vperm2f128 + 2*vshufps
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8i32, 4},  // 2*vperm2f128 + 2*vshufps
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
 | |
|                                                   // + 2*por + vinsertf128
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v32i8, 8},  // vextractf128 + 4*pshufb
 | |
|                                                   // + 2*por + vinsertf128
 | |
| 
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v4f64, 3},   // 2*vperm2f128 + vshufpd
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v4i64, 3},   // 2*vperm2f128 + vshufpd
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v8f32, 4},   // 2*vperm2f128 + 2*vshufps
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v8i32, 4},   // 2*vperm2f128 + 2*vshufps
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
 | |
|                                                 // + 4*por + vinsertf128
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v32i8, 15},  // 2*vextractf128 + 8*pshufb
 | |
|                                                 // + 4*por + vinsertf128
 | |
|   };
 | |
| 
 | |
|   if (ST->hasAVX())
 | |
|     if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry SSE41ShuffleTbl[] = {
 | |
|       {TTI::SK_Select, MVT::v2i64, 1}, // pblendw
 | |
|       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
 | |
|       {TTI::SK_Select, MVT::v4i32, 1}, // pblendw
 | |
|       {TTI::SK_Select, MVT::v4f32, 1}, // blendps
 | |
|       {TTI::SK_Select, MVT::v8i16, 1}, // pblendw
 | |
|       {TTI::SK_Select, MVT::v16i8, 1}  // pblendvb
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE41())
 | |
|     if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry SSSE3ShuffleTbl[] = {
 | |
|       {TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
 | |
|       {TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
 | |
| 
 | |
|       {TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
 | |
|       {TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
 | |
| 
 | |
|       {TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
 | |
|       {TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
 | |
| 
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
 | |
| 
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
 | |
|       {TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSSE3())
 | |
|     if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry SSE2ShuffleTbl[] = {
 | |
|       {TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
 | |
|       {TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
 | |
|       {TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
 | |
|       {TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
 | |
|       {TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
 | |
| 
 | |
|       {TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
 | |
|       {TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
 | |
|       {TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
 | |
|       {TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
 | |
|       {TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
 | |
|                                         // + 2*pshufd + 2*unpck + packus
 | |
| 
 | |
|       {TTI::SK_Select, MVT::v2i64, 1}, // movsd
 | |
|       {TTI::SK_Select, MVT::v2f64, 1}, // movsd
 | |
|       {TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
 | |
|       {TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
 | |
|       {TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
 | |
| 
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
 | |
|       {TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
 | |
|                                                   // + pshufd/unpck
 | |
|     { TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
 | |
|                                                   // + 2*pshufd + 2*unpck + 2*packus
 | |
| 
 | |
|     { TTI::SK_PermuteTwoSrc,    MVT::v2f64,  1 }, // shufpd
 | |
|     { TTI::SK_PermuteTwoSrc,    MVT::v2i64,  1 }, // shufpd
 | |
|     { TTI::SK_PermuteTwoSrc,    MVT::v4i32,  2 }, // 2*{unpck,movsd,pshufd}
 | |
|     { TTI::SK_PermuteTwoSrc,    MVT::v8i16,  8 }, // blend+permute
 | |
|     { TTI::SK_PermuteTwoSrc,    MVT::v16i8, 13 }, // blend+permute
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE2())
 | |
|     if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   static const CostTblEntry SSE1ShuffleTbl[] = {
 | |
|     { TTI::SK_Broadcast,        MVT::v4f32, 1 }, // shufps
 | |
|     { TTI::SK_Reverse,          MVT::v4f32, 1 }, // shufps
 | |
|     { TTI::SK_Select,           MVT::v4f32, 2 }, // 2*shufps
 | |
|     { TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
 | |
|     { TTI::SK_PermuteTwoSrc,    MVT::v4f32, 2 }, // 2*shufps
 | |
|   };
 | |
| 
 | |
|   if (ST->hasSSE1())
 | |
|     if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   return BaseT::getShuffleCost(Kind, BaseTp, Index, SubTp);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
 | |
|                                  TTI::CastContextHint CCH,
 | |
|                                  TTI::TargetCostKind CostKind,
 | |
|                                  const Instruction *I) {
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   // TODO: Allow non-throughput costs that aren't binary.
 | |
|   auto AdjustCost = [&CostKind](int Cost) {
 | |
|     if (CostKind != TTI::TCK_RecipThroughput)
 | |
|       return Cost == 0 ? 0 : 1;
 | |
|     return Cost;
 | |
|   };
 | |
| 
 | |
|   // FIXME: Need a better design of the cost table to handle non-simple types of
 | |
|   // potential massive combinations (elem_num x src_type x dst_type).
 | |
| 
 | |
|   static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
 | |
|     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
 | |
| 
 | |
|     // Mask sign extend has an instruction.
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v64i8,  MVT::v64i1, 1 },
 | |
| 
 | |
|     // Mask zero extend is a sext + shift.
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v64i8,  MVT::v64i1, 2 },
 | |
| 
 | |
|     { ISD::TRUNCATE,    MVT::v32i8,  MVT::v32i16, 2 },
 | |
|     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 }, // widen to zmm
 | |
|     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // widen to zmm
 | |
|     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // widen to zmm
 | |
|     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // widen to zmm
 | |
|     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // widen to zmm
 | |
|     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // widen to zmm
 | |
|     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // widen to zmm
 | |
|     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // widen to zmm
 | |
|     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // widen to zmm
 | |
|     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // widen to zmm
 | |
|     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i16, 2 },
 | |
|     { ISD::TRUNCATE,    MVT::v64i1,  MVT::v64i8,  2 },
 | |
|   };
 | |
| 
 | |
|   static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  1 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f32,  1 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v8i64,  MVT::v8f64,  1 },
 | |
| 
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f32,  1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i64,  MVT::v8f64,  1 },
 | |
|   };
 | |
| 
 | |
|   // TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
 | |
|   // 256-bit wide vectors.
 | |
| 
 | |
|   static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
 | |
|     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
 | |
|     { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
 | |
|     { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
 | |
| 
 | |
|     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  3 }, // sext+vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
 | |
|     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
 | |
|     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
 | |
|     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 3 }, // sext+vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // zmm vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // zmm vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // zmm vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i32, 2 }, // vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // zmm vpsllq+vptestmq
 | |
|     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // zmm vpsllq+vptestmq
 | |
|     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i64,  2 }, // vpsllq+vptestmq
 | |
|     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 2 },
 | |
|     { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 2 },
 | |
|     { ISD::TRUNCATE,  MVT::v8i8,    MVT::v8i64,  2 },
 | |
|     { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  2 },
 | |
|     { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
 | |
|     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // zmm vpmovqd
 | |
|     { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
 | |
| 
 | |
|     { ISD::TRUNCATE,  MVT::v16i8,  MVT::v16i16,  3 }, // extend to v16i32
 | |
|     { ISD::TRUNCATE,  MVT::v32i8,  MVT::v32i16,  8 },
 | |
| 
 | |
|     // Sign extend is zmm vpternlogd+vptruncdb.
 | |
|     // Zero extend is zmm broadcast load+vptruncdw.
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1,  3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1,  4 },
 | |
| 
 | |
|     // Sign extend is zmm vpternlogd+vptruncdw.
 | |
|     // Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  4 },
 | |
| 
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // zmm vpternlogd
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // zmm vpternlogd+psrld
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // zmm vpternlogd
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // zmm vpternlogd+psrld
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // zmm vpternlogd
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // zmm vpternlogd+psrld
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // zmm vpternlogq
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // zmm vpternlogq+psrlq
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // zmm vpternlogq
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // zmm vpternlogq+psrlq
 | |
| 
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  1 }, // vpternlogd
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 }, // vpternlogd+psrld
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i1,   1 }, // vpternlogq
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i1,   2 }, // vpternlogq+psrlq
 | |
| 
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i16,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v8i32,  1 },
 | |
| 
 | |
|     { ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
 | |
|     { ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
 | |
| 
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i8,   2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i64, 26 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f64,  MVT::v8i64,  5 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f64,  3 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v8i16,  MVT::v8f64,  3 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v16i8,  MVT::v16f32, 3 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v16i16, MVT::v16f32, 3 },
 | |
| 
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f64,  1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i16,  MVT::v8f64,  3 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f64,  3 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v16i32, MVT::v16f32, 1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v16i16, MVT::v16f32, 3 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v16i8,  MVT::v16f32, 3 },
 | |
|   };
 | |
| 
 | |
|   static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
 | |
|     // Mask sign extend has an instruction.
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v32i8,  MVT::v32i1, 1 },
 | |
| 
 | |
|     // Mask zero extend is a sext + shift.
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v32i8,  MVT::v32i1, 2 },
 | |
| 
 | |
|     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 2 },
 | |
|     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   2 }, // vpsllw+vptestmb
 | |
|     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // vpsllw+vptestmw
 | |
|     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // vpsllw+vptestmb
 | |
|     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  2 }, // vpsllw+vptestmw
 | |
|     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   2 }, // vpsllw+vptestmb
 | |
|     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i16,  2 }, // vpsllw+vptestmw
 | |
|     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i8,  2 }, // vpsllw+vptestmb
 | |
|     { ISD::TRUNCATE,    MVT::v16i1,  MVT::v16i16, 2 }, // vpsllw+vptestmw
 | |
|     { ISD::TRUNCATE,    MVT::v32i1,  MVT::v32i8,  2 }, // vpsllw+vptestmb
 | |
|   };
 | |
| 
 | |
|   static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i64,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  1 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f32,  1 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f32,  1 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v2i64,  MVT::v2f64,  1 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i64,  MVT::v4f64,  1 },
 | |
| 
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f32,  1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f32,  1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i64,  MVT::v2f64,  1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i64,  MVT::v4f64,  1 },
 | |
|   };
 | |
| 
 | |
|   static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
 | |
|     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i8,   3 }, // sext+vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i8,   3 }, // sext+vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i8,   3 }, // sext+vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i8,  8 }, // split+2*v8i8
 | |
|     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i16,  3 }, // sext+vpsllq+vptestmq
 | |
|     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i16,  3 }, // sext+vpsllq+vptestmq
 | |
|     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i16,  3 }, // sext+vpsllq+vptestmq
 | |
|     { ISD::TRUNCATE,  MVT::v16i1,   MVT::v16i16, 8 }, // split+2*v8i16
 | |
|     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i32,  2 }, // vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i32,  2 }, // vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v8i1,    MVT::v8i32,  2 }, // vpslld+vptestmd
 | |
|     { ISD::TRUNCATE,  MVT::v2i1,    MVT::v2i64,  2 }, // vpsllq+vptestmq
 | |
|     { ISD::TRUNCATE,  MVT::v4i1,    MVT::v4i64,  2 }, // vpsllq+vptestmq
 | |
|     { ISD::TRUNCATE,  MVT::v4i32,   MVT::v4i64,  1 }, // vpmovqd
 | |
| 
 | |
|     // sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
 | |
|     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i8,   MVT::v2i1,   5 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i8,   MVT::v2i1,   6 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i8,   MVT::v4i1,   5 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i8,   MVT::v4i1,   6 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i8,   MVT::v8i1,   5 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i8,   MVT::v8i1,   6 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i8,  MVT::v16i1, 10 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i8,  MVT::v16i1, 12 },
 | |
| 
 | |
|     // sign extend is vpcmpeq+maskedmove+vpmovdw
 | |
|     // zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i16,  MVT::v2i1,   4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i16,  MVT::v2i1,   5 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i1,   4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i1,   5 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i1,   4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i1,   5 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
 | |
| 
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i32,  MVT::v2i1,   1 }, // vpternlogd
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i32,  MVT::v2i1,   2 }, // vpternlogd+psrld
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i1,   1 }, // vpternlogd
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i1,   2 }, // vpternlogd+psrld
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   1 }, // vpternlogd
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   2 }, // vpternlogd+psrld
 | |
|     { ISD::SIGN_EXTEND, MVT::v2i64,  MVT::v2i1,   1 }, // vpternlogq
 | |
|     { ISD::ZERO_EXTEND, MVT::v2i64,  MVT::v2i1,   2 }, // vpternlogq+psrlq
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   1 }, // vpternlogq
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   2 }, // vpternlogq+psrlq
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i8,   2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i8,   2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i8,   2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i16,  5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i16,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i16,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i32,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i32,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32,  MVT::v4i32,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i32,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f32,  MVT::v2i64,  5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64,  MVT::v2i64,  5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64,  MVT::v4i64,  5 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    1 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    1 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v8i8,   MVT::v8f32,  3 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i8,   MVT::v8f32,  3 },
 | |
| 
 | |
|     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    1 },
 | |
| 
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f32,  1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f32,  1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i32,  MVT::v2f64,  1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i32,  MVT::v4f64,  1 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i32,  MVT::v8f32,  1 },
 | |
|   };
 | |
| 
 | |
|   static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
 | |
| 
 | |
|     { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i32,  2 },
 | |
| 
 | |
|     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
 | |
| 
 | |
|     { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
 | |
|     { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
 | |
|   };
 | |
| 
 | |
|   static const TypeConversionCostTblEntry AVXConversionTbl[] = {
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
 | |
| 
 | |
|     { ISD::TRUNCATE,    MVT::v4i1,  MVT::v4i64,  4 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i32,  5 },
 | |
|     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i16, 4 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i1,  MVT::v8i64,  9 },
 | |
|     { ISD::TRUNCATE,    MVT::v16i1, MVT::v16i64, 11 },
 | |
| 
 | |
|     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  2 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i64, 11 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i64,  9 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  3 },
 | |
|     { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i64, 11 },
 | |
| 
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i32, 6 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 5 },
 | |
|     { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 6 },
 | |
|     // The generic code to compute the scalar overhead is currently broken.
 | |
|     // Workaround this limitation by estimating the scalarization overhead
 | |
|     // here. We have roughly 10 instructions per scalar element.
 | |
|     // Multiply that by the vector width.
 | |
|     // FIXME: remove that when PR19268 is fixed.
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
 | |
|     { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i64, 13 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 4 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f64, 3 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i16, MVT::v4f64, 2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v8i16, MVT::v8f32, 3 },
 | |
| 
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i8,  MVT::v4f64, 3 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i16, MVT::v4f64, 2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i8,  MVT::v8f32, 4 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i16, MVT::v8f32, 3 },
 | |
|     // This node is expanded into scalarized operations but BasicTTI is overly
 | |
|     // optimistic estimating its cost.  It computes 3 per element (one
 | |
|     // vector-extract, one scalar conversion and one vector-insert).  The
 | |
|     // problem is that the inserts form a read-modify-write chain so latency
 | |
|     // should be factored in too.  Inflating the cost per element by 1.
 | |
|     { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
 | |
| 
 | |
|     { ISD::FP_EXTEND,   MVT::v4f64,  MVT::v4f32,  1 },
 | |
|     { ISD::FP_ROUND,    MVT::v4f32,  MVT::v4f64,  1 },
 | |
|   };
 | |
| 
 | |
|   static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i8,    2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i16,   2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32,   2 },
 | |
| 
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 4 },
 | |
| 
 | |
|     // These truncates end up widening elements.
 | |
|     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   1 }, // PMOVXZBQ
 | |
|     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  1 }, // PMOVXZWQ
 | |
|     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   1 }, // PMOVXZBD
 | |
| 
 | |
|     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  1 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  1 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  1 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  1 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  1 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  3 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  3 },
 | |
|     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 6 },
 | |
|     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  1 }, // PSHUFB
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    4 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    4 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  3 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  3 },
 | |
| 
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  3 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  3 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  2 },
 | |
|   };
 | |
| 
 | |
|   static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
 | |
|     // These are somewhat magic numbers justified by looking at the output of
 | |
|     // Intel's IACA, running some kernels and making sure when we take
 | |
|     // legalization into account the throughput will be overestimated.
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 2*10 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i32, 2*10 },
 | |
|     { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
 | |
|     { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
 | |
|     { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 6 },
 | |
|     { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f32,  4 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f32,  2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i8,   MVT::v4f32,  3 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v4i16,  MVT::v4f32,  2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v2i16,  MVT::v2f64,  2 },
 | |
|     { ISD::FP_TO_SINT,  MVT::v2i8,   MVT::v2f64,  4 },
 | |
| 
 | |
|     { ISD::FP_TO_SINT,  MVT::v2i32,  MVT::v2f64,  1 },
 | |
| 
 | |
|     { ISD::UINT_TO_FP,  MVT::f32,    MVT::i64,    6 },
 | |
|     { ISD::UINT_TO_FP,  MVT::f64,    MVT::i64,    6 },
 | |
| 
 | |
|     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f32,    4 },
 | |
|     { ISD::FP_TO_UINT,  MVT::i64,    MVT::f64,    4 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f32,  4 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i8,   MVT::v2f64,  4 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i8,   MVT::v4f32,  3 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f32,  2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v2i16,  MVT::v2f64,  2 },
 | |
|     { ISD::FP_TO_UINT,  MVT::v4i16,  MVT::v4f32,  4 },
 | |
| 
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i16,  MVT::v4i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i16,  MVT::v4i8,   6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i8,   2 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i8,   3 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   4 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   8 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i16,  MVT::v8i8,   1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i16,  MVT::v8i8,   2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   6 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  9 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  12 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i32,  MVT::v4i16,  1 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i32,  MVT::v4i16,  2 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  10 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  4 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 6 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 8 },
 | |
|     { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  3 },
 | |
|     { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  5 },
 | |
| 
 | |
|     // These truncates are really widening elements.
 | |
|     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i32,  1 }, // PSHUFD
 | |
|     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i16,  2 }, // PUNPCKLWD+DQ
 | |
|     { ISD::TRUNCATE,    MVT::v2i1,   MVT::v2i8,   3 }, // PUNPCKLBW+WD+PSHUFD
 | |
|     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i16,  1 }, // PUNPCKLWD
 | |
|     { ISD::TRUNCATE,    MVT::v4i1,   MVT::v4i8,   2 }, // PUNPCKLBW+WD
 | |
|     { ISD::TRUNCATE,    MVT::v8i1,   MVT::v8i8,   1 }, // PUNPCKLBW
 | |
| 
 | |
|     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i16,  2 }, // PAND+PACKUSWB
 | |
|     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i16,  2 }, // PAND+PACKUSWB
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i16,  2 }, // PAND+PACKUSWB
 | |
|     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i16, 3 },
 | |
|     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i32,  3 }, // PAND+2*PACKUSWB
 | |
|     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i32,  1 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i32,  3 },
 | |
|     { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i32,  3 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  4 },
 | |
|     { ISD::TRUNCATE,    MVT::v16i8,  MVT::v16i32, 7 },
 | |
|     { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  5 },
 | |
|     { ISD::TRUNCATE,    MVT::v16i16, MVT::v16i32, 10 },
 | |
|     { ISD::TRUNCATE,    MVT::v2i8,   MVT::v2i64,  4 }, // PAND+3*PACKUSWB
 | |
|     { ISD::TRUNCATE,    MVT::v2i16,  MVT::v2i64,  2 }, // PSHUFD+PSHUFLW
 | |
|     { ISD::TRUNCATE,    MVT::v2i32,  MVT::v2i64,  1 }, // PSHUFD
 | |
|   };
 | |
| 
 | |
|   std::pair<int, MVT> LTSrc = TLI->getTypeLegalizationCost(DL, Src);
 | |
|   std::pair<int, MVT> LTDest = TLI->getTypeLegalizationCost(DL, Dst);
 | |
| 
 | |
|   if (ST->hasSSE2() && !ST->hasAVX()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
 | |
|                                                    LTDest.second, LTSrc.second))
 | |
|       return AdjustCost(LTSrc.first * Entry->Cost);
 | |
|   }
 | |
| 
 | |
|   EVT SrcTy = TLI->getValueType(DL, Src);
 | |
|   EVT DstTy = TLI->getValueType(DL, Dst);
 | |
| 
 | |
|   // The function getSimpleVT only handles simple value types.
 | |
|   if (!SrcTy.isSimple() || !DstTy.isSimple())
 | |
|     return AdjustCost(BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind));
 | |
| 
 | |
|   MVT SimpleSrcTy = SrcTy.getSimpleVT();
 | |
|   MVT SimpleDstTy = DstTy.getSimpleVT();
 | |
| 
 | |
|   if (ST->useAVX512Regs()) {
 | |
|     if (ST->hasBWI())
 | |
|       if (const auto *Entry = ConvertCostTableLookup(AVX512BWConversionTbl, ISD,
 | |
|                                                      SimpleDstTy, SimpleSrcTy))
 | |
|         return AdjustCost(Entry->Cost);
 | |
| 
 | |
|     if (ST->hasDQI())
 | |
|       if (const auto *Entry = ConvertCostTableLookup(AVX512DQConversionTbl, ISD,
 | |
|                                                      SimpleDstTy, SimpleSrcTy))
 | |
|         return AdjustCost(Entry->Cost);
 | |
| 
 | |
|     if (ST->hasAVX512())
 | |
|       if (const auto *Entry = ConvertCostTableLookup(AVX512FConversionTbl, ISD,
 | |
|                                                      SimpleDstTy, SimpleSrcTy))
 | |
|         return AdjustCost(Entry->Cost);
 | |
|   }
 | |
| 
 | |
|   if (ST->hasBWI())
 | |
|     if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
 | |
|                                                    SimpleDstTy, SimpleSrcTy))
 | |
|       return AdjustCost(Entry->Cost);
 | |
| 
 | |
|   if (ST->hasDQI())
 | |
|     if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
 | |
|                                                    SimpleDstTy, SimpleSrcTy))
 | |
|       return AdjustCost(Entry->Cost);
 | |
| 
 | |
|   if (ST->hasAVX512())
 | |
|     if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
 | |
|                                                    SimpleDstTy, SimpleSrcTy))
 | |
|       return AdjustCost(Entry->Cost);
 | |
| 
 | |
|   if (ST->hasAVX2()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
 | |
|                                                    SimpleDstTy, SimpleSrcTy))
 | |
|       return AdjustCost(Entry->Cost);
 | |
|   }
 | |
| 
 | |
|   if (ST->hasAVX()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
 | |
|                                                    SimpleDstTy, SimpleSrcTy))
 | |
|       return AdjustCost(Entry->Cost);
 | |
|   }
 | |
| 
 | |
|   if (ST->hasSSE41()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
 | |
|                                                    SimpleDstTy, SimpleSrcTy))
 | |
|       return AdjustCost(Entry->Cost);
 | |
|   }
 | |
| 
 | |
|   if (ST->hasSSE2()) {
 | |
|     if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
 | |
|                                                    SimpleDstTy, SimpleSrcTy))
 | |
|       return AdjustCost(Entry->Cost);
 | |
|   }
 | |
| 
 | |
|   return AdjustCost(
 | |
|       BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
 | |
|                                    CmpInst::Predicate VecPred,
 | |
|                                    TTI::TargetCostKind CostKind,
 | |
|                                    const Instruction *I) {
 | |
|   // TODO: Handle other cost kinds.
 | |
|   if (CostKind != TTI::TCK_RecipThroughput)
 | |
|     return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
 | |
|                                      I);
 | |
| 
 | |
|   // Legalize the type.
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
 | |
| 
 | |
|   MVT MTy = LT.second;
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   unsigned ExtraCost = 0;
 | |
|   if (I && (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp)) {
 | |
|     // Some vector comparison predicates cost extra instructions.
 | |
|     if (MTy.isVector() &&
 | |
|         !((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
 | |
|           (ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
 | |
|           ST->hasBWI())) {
 | |
|       switch (cast<CmpInst>(I)->getPredicate()) {
 | |
|       case CmpInst::Predicate::ICMP_NE:
 | |
|         // xor(cmpeq(x,y),-1)
 | |
|         ExtraCost = 1;
 | |
|         break;
 | |
|       case CmpInst::Predicate::ICMP_SGE:
 | |
|       case CmpInst::Predicate::ICMP_SLE:
 | |
|         // xor(cmpgt(x,y),-1)
 | |
|         ExtraCost = 1;
 | |
|         break;
 | |
|       case CmpInst::Predicate::ICMP_ULT:
 | |
|       case CmpInst::Predicate::ICMP_UGT:
 | |
|         // cmpgt(xor(x,signbit),xor(y,signbit))
 | |
|         // xor(cmpeq(pmaxu(x,y),x),-1)
 | |
|         ExtraCost = 2;
 | |
|         break;
 | |
|       case CmpInst::Predicate::ICMP_ULE:
 | |
|       case CmpInst::Predicate::ICMP_UGE:
 | |
|         if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
 | |
|             (ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
 | |
|           // cmpeq(psubus(x,y),0)
 | |
|           // cmpeq(pminu(x,y),x)
 | |
|           ExtraCost = 1;
 | |
|         } else {
 | |
|           // xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
 | |
|           ExtraCost = 3;
 | |
|         }
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry SLMCostTbl[] = {
 | |
|     // slm pcmpeq/pcmpgt throughput is 2
 | |
|     { ISD::SETCC,   MVT::v2i64,   2 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX512BWCostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v32i16,  1 },
 | |
|     { ISD::SETCC,   MVT::v64i8,   1 },
 | |
| 
 | |
|     { ISD::SELECT,  MVT::v32i16,  1 },
 | |
|     { ISD::SELECT,  MVT::v64i8,   1 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX512CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v8i64,   1 },
 | |
|     { ISD::SETCC,   MVT::v16i32,  1 },
 | |
|     { ISD::SETCC,   MVT::v8f64,   1 },
 | |
|     { ISD::SETCC,   MVT::v16f32,  1 },
 | |
| 
 | |
|     { ISD::SELECT,  MVT::v8i64,   1 },
 | |
|     { ISD::SELECT,  MVT::v16i32,  1 },
 | |
|     { ISD::SELECT,  MVT::v8f64,   1 },
 | |
|     { ISD::SELECT,  MVT::v16f32,  1 },
 | |
| 
 | |
|     { ISD::SETCC,   MVT::v32i16,  2 }, // FIXME: should probably be 4
 | |
|     { ISD::SETCC,   MVT::v64i8,   2 }, // FIXME: should probably be 4
 | |
| 
 | |
|     { ISD::SELECT,  MVT::v32i16,  2 }, // FIXME: should be 3
 | |
|     { ISD::SELECT,  MVT::v64i8,   2 }, // FIXME: should be 3
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX2CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v4i64,   1 },
 | |
|     { ISD::SETCC,   MVT::v8i32,   1 },
 | |
|     { ISD::SETCC,   MVT::v16i16,  1 },
 | |
|     { ISD::SETCC,   MVT::v32i8,   1 },
 | |
| 
 | |
|     { ISD::SELECT,  MVT::v4i64,   1 }, // pblendvb
 | |
|     { ISD::SELECT,  MVT::v8i32,   1 }, // pblendvb
 | |
|     { ISD::SELECT,  MVT::v16i16,  1 }, // pblendvb
 | |
|     { ISD::SELECT,  MVT::v32i8,   1 }, // pblendvb
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX1CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v4f64,   1 },
 | |
|     { ISD::SETCC,   MVT::v8f32,   1 },
 | |
|     // AVX1 does not support 8-wide integer compare.
 | |
|     { ISD::SETCC,   MVT::v4i64,   4 },
 | |
|     { ISD::SETCC,   MVT::v8i32,   4 },
 | |
|     { ISD::SETCC,   MVT::v16i16,  4 },
 | |
|     { ISD::SETCC,   MVT::v32i8,   4 },
 | |
| 
 | |
|     { ISD::SELECT,  MVT::v4f64,   1 }, // vblendvpd
 | |
|     { ISD::SELECT,  MVT::v8f32,   1 }, // vblendvps
 | |
|     { ISD::SELECT,  MVT::v4i64,   1 }, // vblendvpd
 | |
|     { ISD::SELECT,  MVT::v8i32,   1 }, // vblendvps
 | |
|     { ISD::SELECT,  MVT::v16i16,  3 }, // vandps + vandnps + vorps
 | |
|     { ISD::SELECT,  MVT::v32i8,   3 }, // vandps + vandnps + vorps
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry SSE42CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v2f64,   1 },
 | |
|     { ISD::SETCC,   MVT::v4f32,   1 },
 | |
|     { ISD::SETCC,   MVT::v2i64,   1 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry SSE41CostTbl[] = {
 | |
|     { ISD::SELECT,  MVT::v2f64,   1 }, // blendvpd
 | |
|     { ISD::SELECT,  MVT::v4f32,   1 }, // blendvps
 | |
|     { ISD::SELECT,  MVT::v2i64,   1 }, // pblendvb
 | |
|     { ISD::SELECT,  MVT::v4i32,   1 }, // pblendvb
 | |
|     { ISD::SELECT,  MVT::v8i16,   1 }, // pblendvb
 | |
|     { ISD::SELECT,  MVT::v16i8,   1 }, // pblendvb
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry SSE2CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v2f64,   2 },
 | |
|     { ISD::SETCC,   MVT::f64,     1 },
 | |
|     { ISD::SETCC,   MVT::v2i64,   8 },
 | |
|     { ISD::SETCC,   MVT::v4i32,   1 },
 | |
|     { ISD::SETCC,   MVT::v8i16,   1 },
 | |
|     { ISD::SETCC,   MVT::v16i8,   1 },
 | |
| 
 | |
|     { ISD::SELECT,  MVT::v2f64,   3 }, // andpd + andnpd + orpd
 | |
|     { ISD::SELECT,  MVT::v2i64,   3 }, // pand + pandn + por
 | |
|     { ISD::SELECT,  MVT::v4i32,   3 }, // pand + pandn + por
 | |
|     { ISD::SELECT,  MVT::v8i16,   3 }, // pand + pandn + por
 | |
|     { ISD::SELECT,  MVT::v16i8,   3 }, // pand + pandn + por
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry SSE1CostTbl[] = {
 | |
|     { ISD::SETCC,   MVT::v4f32,   2 },
 | |
|     { ISD::SETCC,   MVT::f32,     1 },
 | |
| 
 | |
|     { ISD::SELECT,  MVT::v4f32,   3 }, // andps + andnps + orps
 | |
|   };
 | |
| 
 | |
|   if (ST->isSLM())
 | |
|     if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
 | |
|       return LT.first * (ExtraCost + Entry->Cost);
 | |
| 
 | |
|   if (ST->hasBWI())
 | |
|     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
 | |
|       return LT.first * (ExtraCost + Entry->Cost);
 | |
| 
 | |
|   if (ST->hasAVX512())
 | |
|     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
 | |
|       return LT.first * (ExtraCost + Entry->Cost);
 | |
| 
 | |
|   if (ST->hasAVX2())
 | |
|     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
 | |
|       return LT.first * (ExtraCost + Entry->Cost);
 | |
| 
 | |
|   if (ST->hasAVX())
 | |
|     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
 | |
|       return LT.first * (ExtraCost + Entry->Cost);
 | |
| 
 | |
|   if (ST->hasSSE42())
 | |
|     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
 | |
|       return LT.first * (ExtraCost + Entry->Cost);
 | |
| 
 | |
|   if (ST->hasSSE41())
 | |
|     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
 | |
|       return LT.first * (ExtraCost + Entry->Cost);
 | |
| 
 | |
|   if (ST->hasSSE2())
 | |
|     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
 | |
|       return LT.first * (ExtraCost + Entry->Cost);
 | |
| 
 | |
|   if (ST->hasSSE1())
 | |
|     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
 | |
|       return LT.first * (ExtraCost + Entry->Cost);
 | |
| 
 | |
|   return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
 | |
| }
 | |
| 
 | |
| unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
 | |
| 
 | |
| int X86TTIImpl::getTypeBasedIntrinsicInstrCost(
 | |
|   const IntrinsicCostAttributes &ICA, TTI::TargetCostKind CostKind) {
 | |
| 
 | |
|   // Costs should match the codegen from:
 | |
|   // BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
 | |
|   // BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
 | |
|   // CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
 | |
|   // CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
 | |
|   // CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
 | |
| 
 | |
|   // TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
 | |
|   //       specialized in these tables yet.
 | |
|   static const CostTblEntry AVX512CDCostTbl[] = {
 | |
|     { ISD::CTLZ,       MVT::v8i64,   1 },
 | |
|     { ISD::CTLZ,       MVT::v16i32,  1 },
 | |
|     { ISD::CTLZ,       MVT::v32i16,  8 },
 | |
|     { ISD::CTLZ,       MVT::v64i8,  20 },
 | |
|     { ISD::CTLZ,       MVT::v4i64,   1 },
 | |
|     { ISD::CTLZ,       MVT::v8i32,   1 },
 | |
|     { ISD::CTLZ,       MVT::v16i16,  4 },
 | |
|     { ISD::CTLZ,       MVT::v32i8,  10 },
 | |
|     { ISD::CTLZ,       MVT::v2i64,   1 },
 | |
|     { ISD::CTLZ,       MVT::v4i32,   1 },
 | |
|     { ISD::CTLZ,       MVT::v8i16,   4 },
 | |
|     { ISD::CTLZ,       MVT::v16i8,   4 },
 | |
|   };
 | |
|   static const CostTblEntry AVX512BWCostTbl[] = {
 | |
|     { ISD::ABS,        MVT::v32i16,  1 },
 | |
|     { ISD::ABS,        MVT::v64i8,   1 },
 | |
|     { ISD::BITREVERSE, MVT::v8i64,   5 },
 | |
|     { ISD::BITREVERSE, MVT::v16i32,  5 },
 | |
|     { ISD::BITREVERSE, MVT::v32i16,  5 },
 | |
|     { ISD::BITREVERSE, MVT::v64i8,   5 },
 | |
|     { ISD::CTLZ,       MVT::v8i64,  23 },
 | |
|     { ISD::CTLZ,       MVT::v16i32, 22 },
 | |
|     { ISD::CTLZ,       MVT::v32i16, 18 },
 | |
|     { ISD::CTLZ,       MVT::v64i8,  17 },
 | |
|     { ISD::CTPOP,      MVT::v8i64,   7 },
 | |
|     { ISD::CTPOP,      MVT::v16i32, 11 },
 | |
|     { ISD::CTPOP,      MVT::v32i16,  9 },
 | |
|     { ISD::CTPOP,      MVT::v64i8,   6 },
 | |
|     { ISD::CTTZ,       MVT::v8i64,  10 },
 | |
|     { ISD::CTTZ,       MVT::v16i32, 14 },
 | |
|     { ISD::CTTZ,       MVT::v32i16, 12 },
 | |
|     { ISD::CTTZ,       MVT::v64i8,   9 },
 | |
|     { ISD::SADDSAT,    MVT::v32i16,  1 },
 | |
|     { ISD::SADDSAT,    MVT::v64i8,   1 },
 | |
|     { ISD::SMAX,       MVT::v32i16,  1 },
 | |
|     { ISD::SMAX,       MVT::v64i8,   1 },
 | |
|     { ISD::SMIN,       MVT::v32i16,  1 },
 | |
|     { ISD::SMIN,       MVT::v64i8,   1 },
 | |
|     { ISD::SSUBSAT,    MVT::v32i16,  1 },
 | |
|     { ISD::SSUBSAT,    MVT::v64i8,   1 },
 | |
|     { ISD::UADDSAT,    MVT::v32i16,  1 },
 | |
|     { ISD::UADDSAT,    MVT::v64i8,   1 },
 | |
|     { ISD::UMAX,       MVT::v32i16,  1 },
 | |
|     { ISD::UMAX,       MVT::v64i8,   1 },
 | |
|     { ISD::UMIN,       MVT::v32i16,  1 },
 | |
|     { ISD::UMIN,       MVT::v64i8,   1 },
 | |
|     { ISD::USUBSAT,    MVT::v32i16,  1 },
 | |
|     { ISD::USUBSAT,    MVT::v64i8,   1 },
 | |
|   };
 | |
|   static const CostTblEntry AVX512CostTbl[] = {
 | |
|     { ISD::ABS,        MVT::v8i64,   1 },
 | |
|     { ISD::ABS,        MVT::v16i32,  1 },
 | |
|     { ISD::ABS,        MVT::v32i16,  2 }, // FIXME: include split
 | |
|     { ISD::ABS,        MVT::v64i8,   2 }, // FIXME: include split
 | |
|     { ISD::ABS,        MVT::v4i64,   1 },
 | |
|     { ISD::ABS,        MVT::v2i64,   1 },
 | |
|     { ISD::BITREVERSE, MVT::v8i64,  36 },
 | |
|     { ISD::BITREVERSE, MVT::v16i32, 24 },
 | |
|     { ISD::BITREVERSE, MVT::v32i16, 10 },
 | |
|     { ISD::BITREVERSE, MVT::v64i8,  10 },
 | |
|     { ISD::CTLZ,       MVT::v8i64,  29 },
 | |
|     { ISD::CTLZ,       MVT::v16i32, 35 },
 | |
|     { ISD::CTLZ,       MVT::v32i16, 28 },
 | |
|     { ISD::CTLZ,       MVT::v64i8,  18 },
 | |
|     { ISD::CTPOP,      MVT::v8i64,  16 },
 | |
|     { ISD::CTPOP,      MVT::v16i32, 24 },
 | |
|     { ISD::CTPOP,      MVT::v32i16, 18 },
 | |
|     { ISD::CTPOP,      MVT::v64i8,  12 },
 | |
|     { ISD::CTTZ,       MVT::v8i64,  20 },
 | |
|     { ISD::CTTZ,       MVT::v16i32, 28 },
 | |
|     { ISD::CTTZ,       MVT::v32i16, 24 },
 | |
|     { ISD::CTTZ,       MVT::v64i8,  18 },
 | |
|     { ISD::SMAX,       MVT::v8i64,   1 },
 | |
|     { ISD::SMAX,       MVT::v16i32,  1 },
 | |
|     { ISD::SMAX,       MVT::v32i16,  2 }, // FIXME: include split
 | |
|     { ISD::SMAX,       MVT::v64i8,   2 }, // FIXME: include split
 | |
|     { ISD::SMAX,       MVT::v4i64,   1 },
 | |
|     { ISD::SMAX,       MVT::v2i64,   1 },
 | |
|     { ISD::SMIN,       MVT::v8i64,   1 },
 | |
|     { ISD::SMIN,       MVT::v16i32,  1 },
 | |
|     { ISD::SMIN,       MVT::v32i16,  2 }, // FIXME: include split
 | |
|     { ISD::SMIN,       MVT::v64i8,   2 }, // FIXME: include split
 | |
|     { ISD::SMIN,       MVT::v4i64,   1 },
 | |
|     { ISD::SMIN,       MVT::v2i64,   1 },
 | |
|     { ISD::UMAX,       MVT::v8i64,   1 },
 | |
|     { ISD::UMAX,       MVT::v16i32,  1 },
 | |
|     { ISD::UMAX,       MVT::v32i16,  2 }, // FIXME: include split
 | |
|     { ISD::UMAX,       MVT::v64i8,   2 }, // FIXME: include split
 | |
|     { ISD::UMAX,       MVT::v4i64,   1 },
 | |
|     { ISD::UMAX,       MVT::v2i64,   1 },
 | |
|     { ISD::UMIN,       MVT::v8i64,   1 },
 | |
|     { ISD::UMIN,       MVT::v16i32,  1 },
 | |
|     { ISD::UMIN,       MVT::v32i16,  2 }, // FIXME: include split
 | |
|     { ISD::UMIN,       MVT::v64i8,   2 }, // FIXME: include split
 | |
|     { ISD::UMIN,       MVT::v4i64,   1 },
 | |
|     { ISD::UMIN,       MVT::v2i64,   1 },
 | |
|     { ISD::USUBSAT,    MVT::v16i32,  2 }, // pmaxud + psubd
 | |
|     { ISD::USUBSAT,    MVT::v2i64,   2 }, // pmaxuq + psubq
 | |
|     { ISD::USUBSAT,    MVT::v4i64,   2 }, // pmaxuq + psubq
 | |
|     { ISD::USUBSAT,    MVT::v8i64,   2 }, // pmaxuq + psubq
 | |
|     { ISD::UADDSAT,    MVT::v16i32,  3 }, // not + pminud + paddd
 | |
|     { ISD::UADDSAT,    MVT::v2i64,   3 }, // not + pminuq + paddq
 | |
|     { ISD::UADDSAT,    MVT::v4i64,   3 }, // not + pminuq + paddq
 | |
|     { ISD::UADDSAT,    MVT::v8i64,   3 }, // not + pminuq + paddq
 | |
|     { ISD::SADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
 | |
|     { ISD::SADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
 | |
|     { ISD::SSUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
 | |
|     { ISD::SSUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
 | |
|     { ISD::UADDSAT,    MVT::v32i16,  2 }, // FIXME: include split
 | |
|     { ISD::UADDSAT,    MVT::v64i8,   2 }, // FIXME: include split
 | |
|     { ISD::USUBSAT,    MVT::v32i16,  2 }, // FIXME: include split
 | |
|     { ISD::USUBSAT,    MVT::v64i8,   2 }, // FIXME: include split
 | |
|     { ISD::FMAXNUM,    MVT::f32,     2 },
 | |
|     { ISD::FMAXNUM,    MVT::v4f32,   2 },
 | |
|     { ISD::FMAXNUM,    MVT::v8f32,   2 },
 | |
|     { ISD::FMAXNUM,    MVT::v16f32,  2 },
 | |
|     { ISD::FMAXNUM,    MVT::f64,     2 },
 | |
|     { ISD::FMAXNUM,    MVT::v2f64,   2 },
 | |
|     { ISD::FMAXNUM,    MVT::v4f64,   2 },
 | |
|     { ISD::FMAXNUM,    MVT::v8f64,   2 },
 | |
|   };
 | |
|   static const CostTblEntry XOPCostTbl[] = {
 | |
|     { ISD::BITREVERSE, MVT::v4i64,   4 },
 | |
|     { ISD::BITREVERSE, MVT::v8i32,   4 },
 | |
|     { ISD::BITREVERSE, MVT::v16i16,  4 },
 | |
|     { ISD::BITREVERSE, MVT::v32i8,   4 },
 | |
|     { ISD::BITREVERSE, MVT::v2i64,   1 },
 | |
|     { ISD::BITREVERSE, MVT::v4i32,   1 },
 | |
|     { ISD::BITREVERSE, MVT::v8i16,   1 },
 | |
|     { ISD::BITREVERSE, MVT::v16i8,   1 },
 | |
|     { ISD::BITREVERSE, MVT::i64,     3 },
 | |
|     { ISD::BITREVERSE, MVT::i32,     3 },
 | |
|     { ISD::BITREVERSE, MVT::i16,     3 },
 | |
|     { ISD::BITREVERSE, MVT::i8,      3 }
 | |
|   };
 | |
|   static const CostTblEntry AVX2CostTbl[] = {
 | |
|     { ISD::ABS,        MVT::v4i64,   2 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
 | |
|     { ISD::ABS,        MVT::v8i32,   1 },
 | |
|     { ISD::ABS,        MVT::v16i16,  1 },
 | |
|     { ISD::ABS,        MVT::v32i8,   1 },
 | |
|     { ISD::BITREVERSE, MVT::v4i64,   5 },
 | |
|     { ISD::BITREVERSE, MVT::v8i32,   5 },
 | |
|     { ISD::BITREVERSE, MVT::v16i16,  5 },
 | |
|     { ISD::BITREVERSE, MVT::v32i8,   5 },
 | |
|     { ISD::BSWAP,      MVT::v4i64,   1 },
 | |
|     { ISD::BSWAP,      MVT::v8i32,   1 },
 | |
|     { ISD::BSWAP,      MVT::v16i16,  1 },
 | |
|     { ISD::CTLZ,       MVT::v4i64,  23 },
 | |
|     { ISD::CTLZ,       MVT::v8i32,  18 },
 | |
|     { ISD::CTLZ,       MVT::v16i16, 14 },
 | |
|     { ISD::CTLZ,       MVT::v32i8,   9 },
 | |
|     { ISD::CTPOP,      MVT::v4i64,   7 },
 | |
|     { ISD::CTPOP,      MVT::v8i32,  11 },
 | |
|     { ISD::CTPOP,      MVT::v16i16,  9 },
 | |
|     { ISD::CTPOP,      MVT::v32i8,   6 },
 | |
|     { ISD::CTTZ,       MVT::v4i64,  10 },
 | |
|     { ISD::CTTZ,       MVT::v8i32,  14 },
 | |
|     { ISD::CTTZ,       MVT::v16i16, 12 },
 | |
|     { ISD::CTTZ,       MVT::v32i8,   9 },
 | |
|     { ISD::SADDSAT,    MVT::v16i16,  1 },
 | |
|     { ISD::SADDSAT,    MVT::v32i8,   1 },
 | |
|     { ISD::SMAX,       MVT::v8i32,   1 },
 | |
|     { ISD::SMAX,       MVT::v16i16,  1 },
 | |
|     { ISD::SMAX,       MVT::v32i8,   1 },
 | |
|     { ISD::SMIN,       MVT::v8i32,   1 },
 | |
|     { ISD::SMIN,       MVT::v16i16,  1 },
 | |
|     { ISD::SMIN,       MVT::v32i8,   1 },
 | |
|     { ISD::SSUBSAT,    MVT::v16i16,  1 },
 | |
|     { ISD::SSUBSAT,    MVT::v32i8,   1 },
 | |
|     { ISD::UADDSAT,    MVT::v16i16,  1 },
 | |
|     { ISD::UADDSAT,    MVT::v32i8,   1 },
 | |
|     { ISD::UADDSAT,    MVT::v8i32,   3 }, // not + pminud + paddd
 | |
|     { ISD::UMAX,       MVT::v8i32,   1 },
 | |
|     { ISD::UMAX,       MVT::v16i16,  1 },
 | |
|     { ISD::UMAX,       MVT::v32i8,   1 },
 | |
|     { ISD::UMIN,       MVT::v8i32,   1 },
 | |
|     { ISD::UMIN,       MVT::v16i16,  1 },
 | |
|     { ISD::UMIN,       MVT::v32i8,   1 },
 | |
|     { ISD::USUBSAT,    MVT::v16i16,  1 },
 | |
|     { ISD::USUBSAT,    MVT::v32i8,   1 },
 | |
|     { ISD::USUBSAT,    MVT::v8i32,   2 }, // pmaxud + psubd
 | |
|     { ISD::FMAXNUM,    MVT::v8f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
 | |
|     { ISD::FMAXNUM,    MVT::v4f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
 | |
|     { ISD::FSQRT,      MVT::f32,     7 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::v4f32,   7 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::v8f32,  14 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::f64,    14 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::v2f64,  14 }, // Haswell from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::v4f64,  28 }, // Haswell from http://www.agner.org/
 | |
|   };
 | |
|   static const CostTblEntry AVX1CostTbl[] = {
 | |
|     { ISD::ABS,        MVT::v4i64,   5 }, // VBLENDVPD(X,VPSUBQ(0,X),X)
 | |
|     { ISD::ABS,        MVT::v8i32,   3 },
 | |
|     { ISD::ABS,        MVT::v16i16,  3 },
 | |
|     { ISD::ABS,        MVT::v32i8,   3 },
 | |
|     { ISD::BITREVERSE, MVT::v4i64,  12 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::BITREVERSE, MVT::v8i32,  12 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::BITREVERSE, MVT::v16i16, 12 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::BITREVERSE, MVT::v32i8,  12 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::BSWAP,      MVT::v4i64,   4 },
 | |
|     { ISD::BSWAP,      MVT::v8i32,   4 },
 | |
|     { ISD::BSWAP,      MVT::v16i16,  4 },
 | |
|     { ISD::CTLZ,       MVT::v4i64,  48 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::CTLZ,       MVT::v8i32,  38 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::CTLZ,       MVT::v16i16, 30 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::CTLZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::CTPOP,      MVT::v4i64,  16 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::CTPOP,      MVT::v8i32,  24 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::CTPOP,      MVT::v16i16, 20 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::CTPOP,      MVT::v32i8,  14 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::CTTZ,       MVT::v4i64,  22 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::CTTZ,       MVT::v8i32,  30 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::CTTZ,       MVT::v16i16, 26 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::CTTZ,       MVT::v32i8,  20 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::SADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::SADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::SMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::SMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::SMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::SMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::SMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::SMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::SSUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::SSUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::UADDSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::UADDSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::UADDSAT,    MVT::v8i32,   8 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::UMAX,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::UMAX,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::UMAX,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::UMIN,       MVT::v8i32,   4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::UMIN,       MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::UMIN,       MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::USUBSAT,    MVT::v16i16,  4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::USUBSAT,    MVT::v32i8,   4 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::USUBSAT,    MVT::v8i32,   6 }, // 2 x 128-bit Op + extract/insert
 | |
|     { ISD::FMAXNUM,    MVT::f32,     3 }, // MAXSS + CMPUNORDSS + BLENDVPS
 | |
|     { ISD::FMAXNUM,    MVT::v4f32,   3 }, // MAXPS + CMPUNORDPS + BLENDVPS
 | |
|     { ISD::FMAXNUM,    MVT::v8f32,   5 }, // MAXPS + CMPUNORDPS + BLENDVPS + ?
 | |
|     { ISD::FMAXNUM,    MVT::f64,     3 }, // MAXSD + CMPUNORDSD + BLENDVPD
 | |
|     { ISD::FMAXNUM,    MVT::v2f64,   3 }, // MAXPD + CMPUNORDPD + BLENDVPD
 | |
|     { ISD::FMAXNUM,    MVT::v4f64,   5 }, // MAXPD + CMPUNORDPD + BLENDVPD + ?
 | |
|     { ISD::FSQRT,      MVT::f32,    14 }, // SNB from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::v4f32,  14 }, // SNB from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::v8f32,  28 }, // SNB from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::f64,    21 }, // SNB from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::v2f64,  21 }, // SNB from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::v4f64,  43 }, // SNB from http://www.agner.org/
 | |
|   };
 | |
|   static const CostTblEntry GLMCostTbl[] = {
 | |
|     { ISD::FSQRT, MVT::f32,   19 }, // sqrtss
 | |
|     { ISD::FSQRT, MVT::v4f32, 37 }, // sqrtps
 | |
|     { ISD::FSQRT, MVT::f64,   34 }, // sqrtsd
 | |
|     { ISD::FSQRT, MVT::v2f64, 67 }, // sqrtpd
 | |
|   };
 | |
|   static const CostTblEntry SLMCostTbl[] = {
 | |
|     { ISD::FSQRT, MVT::f32,   20 }, // sqrtss
 | |
|     { ISD::FSQRT, MVT::v4f32, 40 }, // sqrtps
 | |
|     { ISD::FSQRT, MVT::f64,   35 }, // sqrtsd
 | |
|     { ISD::FSQRT, MVT::v2f64, 70 }, // sqrtpd
 | |
|   };
 | |
|   static const CostTblEntry SSE42CostTbl[] = {
 | |
|     { ISD::USUBSAT,    MVT::v4i32,   2 }, // pmaxud + psubd
 | |
|     { ISD::UADDSAT,    MVT::v4i32,   3 }, // not + pminud + paddd
 | |
|     { ISD::FSQRT,      MVT::f32,    18 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::v4f32,  18 }, // Nehalem from http://www.agner.org/
 | |
|   };
 | |
|   static const CostTblEntry SSE41CostTbl[] = {
 | |
|     { ISD::ABS,        MVT::v2i64,   2 }, // BLENDVPD(X,PSUBQ(0,X),X)
 | |
|     { ISD::SMAX,       MVT::v4i32,   1 },
 | |
|     { ISD::SMAX,       MVT::v16i8,   1 },
 | |
|     { ISD::SMIN,       MVT::v4i32,   1 },
 | |
|     { ISD::SMIN,       MVT::v16i8,   1 },
 | |
|     { ISD::UMAX,       MVT::v4i32,   1 },
 | |
|     { ISD::UMAX,       MVT::v8i16,   1 },
 | |
|     { ISD::UMIN,       MVT::v4i32,   1 },
 | |
|     { ISD::UMIN,       MVT::v8i16,   1 },
 | |
|   };
 | |
|   static const CostTblEntry SSSE3CostTbl[] = {
 | |
|     { ISD::ABS,        MVT::v4i32,   1 },
 | |
|     { ISD::ABS,        MVT::v8i16,   1 },
 | |
|     { ISD::ABS,        MVT::v16i8,   1 },
 | |
|     { ISD::BITREVERSE, MVT::v2i64,   5 },
 | |
|     { ISD::BITREVERSE, MVT::v4i32,   5 },
 | |
|     { ISD::BITREVERSE, MVT::v8i16,   5 },
 | |
|     { ISD::BITREVERSE, MVT::v16i8,   5 },
 | |
|     { ISD::BSWAP,      MVT::v2i64,   1 },
 | |
|     { ISD::BSWAP,      MVT::v4i32,   1 },
 | |
|     { ISD::BSWAP,      MVT::v8i16,   1 },
 | |
|     { ISD::CTLZ,       MVT::v2i64,  23 },
 | |
|     { ISD::CTLZ,       MVT::v4i32,  18 },
 | |
|     { ISD::CTLZ,       MVT::v8i16,  14 },
 | |
|     { ISD::CTLZ,       MVT::v16i8,   9 },
 | |
|     { ISD::CTPOP,      MVT::v2i64,   7 },
 | |
|     { ISD::CTPOP,      MVT::v4i32,  11 },
 | |
|     { ISD::CTPOP,      MVT::v8i16,   9 },
 | |
|     { ISD::CTPOP,      MVT::v16i8,   6 },
 | |
|     { ISD::CTTZ,       MVT::v2i64,  10 },
 | |
|     { ISD::CTTZ,       MVT::v4i32,  14 },
 | |
|     { ISD::CTTZ,       MVT::v8i16,  12 },
 | |
|     { ISD::CTTZ,       MVT::v16i8,   9 }
 | |
|   };
 | |
|   static const CostTblEntry SSE2CostTbl[] = {
 | |
|     { ISD::ABS,        MVT::v2i64,   4 },
 | |
|     { ISD::ABS,        MVT::v4i32,   3 },
 | |
|     { ISD::ABS,        MVT::v8i16,   2 },
 | |
|     { ISD::ABS,        MVT::v16i8,   2 },
 | |
|     { ISD::BITREVERSE, MVT::v2i64,  29 },
 | |
|     { ISD::BITREVERSE, MVT::v4i32,  27 },
 | |
|     { ISD::BITREVERSE, MVT::v8i16,  27 },
 | |
|     { ISD::BITREVERSE, MVT::v16i8,  20 },
 | |
|     { ISD::BSWAP,      MVT::v2i64,   7 },
 | |
|     { ISD::BSWAP,      MVT::v4i32,   7 },
 | |
|     { ISD::BSWAP,      MVT::v8i16,   7 },
 | |
|     { ISD::CTLZ,       MVT::v2i64,  25 },
 | |
|     { ISD::CTLZ,       MVT::v4i32,  26 },
 | |
|     { ISD::CTLZ,       MVT::v8i16,  20 },
 | |
|     { ISD::CTLZ,       MVT::v16i8,  17 },
 | |
|     { ISD::CTPOP,      MVT::v2i64,  12 },
 | |
|     { ISD::CTPOP,      MVT::v4i32,  15 },
 | |
|     { ISD::CTPOP,      MVT::v8i16,  13 },
 | |
|     { ISD::CTPOP,      MVT::v16i8,  10 },
 | |
|     { ISD::CTTZ,       MVT::v2i64,  14 },
 | |
|     { ISD::CTTZ,       MVT::v4i32,  18 },
 | |
|     { ISD::CTTZ,       MVT::v8i16,  16 },
 | |
|     { ISD::CTTZ,       MVT::v16i8,  13 },
 | |
|     { ISD::SADDSAT,    MVT::v8i16,   1 },
 | |
|     { ISD::SADDSAT,    MVT::v16i8,   1 },
 | |
|     { ISD::SMAX,       MVT::v8i16,   1 },
 | |
|     { ISD::SMIN,       MVT::v8i16,   1 },
 | |
|     { ISD::SSUBSAT,    MVT::v8i16,   1 },
 | |
|     { ISD::SSUBSAT,    MVT::v16i8,   1 },
 | |
|     { ISD::UADDSAT,    MVT::v8i16,   1 },
 | |
|     { ISD::UADDSAT,    MVT::v16i8,   1 },
 | |
|     { ISD::UMAX,       MVT::v8i16,   2 },
 | |
|     { ISD::UMAX,       MVT::v16i8,   1 },
 | |
|     { ISD::UMIN,       MVT::v8i16,   2 },
 | |
|     { ISD::UMIN,       MVT::v16i8,   1 },
 | |
|     { ISD::USUBSAT,    MVT::v8i16,   1 },
 | |
|     { ISD::USUBSAT,    MVT::v16i8,   1 },
 | |
|     { ISD::FMAXNUM,    MVT::f64,     4 },
 | |
|     { ISD::FMAXNUM,    MVT::v2f64,   4 },
 | |
|     { ISD::FSQRT,      MVT::f64,    32 }, // Nehalem from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::v2f64,  32 }, // Nehalem from http://www.agner.org/
 | |
|   };
 | |
|   static const CostTblEntry SSE1CostTbl[] = {
 | |
|     { ISD::FMAXNUM,    MVT::f32,     4 },
 | |
|     { ISD::FMAXNUM,    MVT::v4f32,   4 },
 | |
|     { ISD::FSQRT,      MVT::f32,    28 }, // Pentium III from http://www.agner.org/
 | |
|     { ISD::FSQRT,      MVT::v4f32,  56 }, // Pentium III from http://www.agner.org/
 | |
|   };
 | |
|   static const CostTblEntry BMI64CostTbl[] = { // 64-bit targets
 | |
|     { ISD::CTTZ,       MVT::i64,     1 },
 | |
|   };
 | |
|   static const CostTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
 | |
|     { ISD::CTTZ,       MVT::i32,     1 },
 | |
|     { ISD::CTTZ,       MVT::i16,     1 },
 | |
|     { ISD::CTTZ,       MVT::i8,      1 },
 | |
|   };
 | |
|   static const CostTblEntry LZCNT64CostTbl[] = { // 64-bit targets
 | |
|     { ISD::CTLZ,       MVT::i64,     1 },
 | |
|   };
 | |
|   static const CostTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
 | |
|     { ISD::CTLZ,       MVT::i32,     1 },
 | |
|     { ISD::CTLZ,       MVT::i16,     1 },
 | |
|     { ISD::CTLZ,       MVT::i8,      1 },
 | |
|   };
 | |
|   static const CostTblEntry POPCNT64CostTbl[] = { // 64-bit targets
 | |
|     { ISD::CTPOP,      MVT::i64,     1 },
 | |
|   };
 | |
|   static const CostTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
 | |
|     { ISD::CTPOP,      MVT::i32,     1 },
 | |
|     { ISD::CTPOP,      MVT::i16,     1 },
 | |
|     { ISD::CTPOP,      MVT::i8,      1 },
 | |
|   };
 | |
|   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
 | |
|     { ISD::ABS,        MVT::i64,     2 }, // SUB+CMOV
 | |
|     { ISD::BITREVERSE, MVT::i64,    14 },
 | |
|     { ISD::CTLZ,       MVT::i64,     4 }, // BSR+XOR or BSR+XOR+CMOV
 | |
|     { ISD::CTTZ,       MVT::i64,     3 }, // TEST+BSF+CMOV/BRANCH
 | |
|     { ISD::CTPOP,      MVT::i64,    10 },
 | |
|     { ISD::SADDO,      MVT::i64,     1 },
 | |
|     { ISD::UADDO,      MVT::i64,     1 },
 | |
|     { ISD::UMULO,      MVT::i64,     2 }, // mulq + seto
 | |
|   };
 | |
|   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
 | |
|     { ISD::ABS,        MVT::i32,     2 }, // SUB+CMOV
 | |
|     { ISD::ABS,        MVT::i16,     2 }, // SUB+CMOV
 | |
|     { ISD::BITREVERSE, MVT::i32,    14 },
 | |
|     { ISD::BITREVERSE, MVT::i16,    14 },
 | |
|     { ISD::BITREVERSE, MVT::i8,     11 },
 | |
|     { ISD::CTLZ,       MVT::i32,     4 }, // BSR+XOR or BSR+XOR+CMOV
 | |
|     { ISD::CTLZ,       MVT::i16,     4 }, // BSR+XOR or BSR+XOR+CMOV
 | |
|     { ISD::CTLZ,       MVT::i8,      4 }, // BSR+XOR or BSR+XOR+CMOV
 | |
|     { ISD::CTTZ,       MVT::i32,     3 }, // TEST+BSF+CMOV/BRANCH
 | |
|     { ISD::CTTZ,       MVT::i16,     3 }, // TEST+BSF+CMOV/BRANCH
 | |
|     { ISD::CTTZ,       MVT::i8,      3 }, // TEST+BSF+CMOV/BRANCH
 | |
|     { ISD::CTPOP,      MVT::i32,     8 },
 | |
|     { ISD::CTPOP,      MVT::i16,     9 },
 | |
|     { ISD::CTPOP,      MVT::i8,      7 },
 | |
|     { ISD::SADDO,      MVT::i32,     1 },
 | |
|     { ISD::SADDO,      MVT::i16,     1 },
 | |
|     { ISD::SADDO,      MVT::i8,      1 },
 | |
|     { ISD::UADDO,      MVT::i32,     1 },
 | |
|     { ISD::UADDO,      MVT::i16,     1 },
 | |
|     { ISD::UADDO,      MVT::i8,      1 },
 | |
|     { ISD::UMULO,      MVT::i32,     2 }, // mul + seto
 | |
|     { ISD::UMULO,      MVT::i16,     2 },
 | |
|     { ISD::UMULO,      MVT::i8,      2 },
 | |
|   };
 | |
| 
 | |
|   Type *RetTy = ICA.getReturnType();
 | |
|   Type *OpTy = RetTy;
 | |
|   Intrinsic::ID IID = ICA.getID();
 | |
|   unsigned ISD = ISD::DELETED_NODE;
 | |
|   switch (IID) {
 | |
|   default:
 | |
|     break;
 | |
|   case Intrinsic::abs:
 | |
|     ISD = ISD::ABS;
 | |
|     break;
 | |
|   case Intrinsic::bitreverse:
 | |
|     ISD = ISD::BITREVERSE;
 | |
|     break;
 | |
|   case Intrinsic::bswap:
 | |
|     ISD = ISD::BSWAP;
 | |
|     break;
 | |
|   case Intrinsic::ctlz:
 | |
|     ISD = ISD::CTLZ;
 | |
|     break;
 | |
|   case Intrinsic::ctpop:
 | |
|     ISD = ISD::CTPOP;
 | |
|     break;
 | |
|   case Intrinsic::cttz:
 | |
|     ISD = ISD::CTTZ;
 | |
|     break;
 | |
|   case Intrinsic::maxnum:
 | |
|   case Intrinsic::minnum:
 | |
|     // FMINNUM has same costs so don't duplicate.
 | |
|     ISD = ISD::FMAXNUM;
 | |
|     break;
 | |
|   case Intrinsic::sadd_sat:
 | |
|     ISD = ISD::SADDSAT;
 | |
|     break;
 | |
|   case Intrinsic::smax:
 | |
|     ISD = ISD::SMAX;
 | |
|     break;
 | |
|   case Intrinsic::smin:
 | |
|     ISD = ISD::SMIN;
 | |
|     break;
 | |
|   case Intrinsic::ssub_sat:
 | |
|     ISD = ISD::SSUBSAT;
 | |
|     break;
 | |
|   case Intrinsic::uadd_sat:
 | |
|     ISD = ISD::UADDSAT;
 | |
|     break;
 | |
|   case Intrinsic::umax:
 | |
|     ISD = ISD::UMAX;
 | |
|     break;
 | |
|   case Intrinsic::umin:
 | |
|     ISD = ISD::UMIN;
 | |
|     break;
 | |
|   case Intrinsic::usub_sat:
 | |
|     ISD = ISD::USUBSAT;
 | |
|     break;
 | |
|   case Intrinsic::sqrt:
 | |
|     ISD = ISD::FSQRT;
 | |
|     break;
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|     // SSUBO has same costs so don't duplicate.
 | |
|     ISD = ISD::SADDO;
 | |
|     OpTy = RetTy->getContainedType(0);
 | |
|     break;
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|     // USUBO has same costs so don't duplicate.
 | |
|     ISD = ISD::UADDO;
 | |
|     OpTy = RetTy->getContainedType(0);
 | |
|     break;
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|     // SMULO has same costs so don't duplicate.
 | |
|     ISD = ISD::UMULO;
 | |
|     OpTy = RetTy->getContainedType(0);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (ISD != ISD::DELETED_NODE) {
 | |
|     // Legalize the type.
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, OpTy);
 | |
|     MVT MTy = LT.second;
 | |
| 
 | |
|     // Attempt to lookup cost.
 | |
|     if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
 | |
|         MTy.isVector()) {
 | |
|       // With PSHUFB the code is very similar for all types. If we have integer
 | |
|       // byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
 | |
|       // we also need a PSHUFB.
 | |
|       unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
 | |
| 
 | |
|       // Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
 | |
|       // instructions. We also need an extract and an insert.
 | |
|       if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
 | |
|             (ST->hasBWI() && MTy.is512BitVector())))
 | |
|         Cost = Cost * 2 + 2;
 | |
| 
 | |
|       return LT.first * Cost;
 | |
|     }
 | |
| 
 | |
|     auto adjustTableCost = [](const CostTblEntry &Entry, int LegalizationCost,
 | |
|                               FastMathFlags FMF) {
 | |
|       // If there are no NANs to deal with, then these are reduced to a
 | |
|       // single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
 | |
|       // assume is used in the non-fast case.
 | |
|       if (Entry.ISD == ISD::FMAXNUM || Entry.ISD == ISD::FMINNUM) {
 | |
|         if (FMF.noNaNs())
 | |
|           return LegalizationCost * 1;
 | |
|       }
 | |
|       return LegalizationCost * (int)Entry.Cost;
 | |
|     };
 | |
| 
 | |
|     if (ST->useGLMDivSqrtCosts())
 | |
|       if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->isSLM())
 | |
|       if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->hasCDI())
 | |
|       if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->hasBWI())
 | |
|       if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->hasAVX512())
 | |
|       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->hasXOP())
 | |
|       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->hasAVX2())
 | |
|       if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->hasAVX())
 | |
|       if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->hasSSE42())
 | |
|       if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->hasSSE41())
 | |
|       if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->hasSSSE3())
 | |
|       if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->hasSSE2())
 | |
|       if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->hasSSE1())
 | |
|       if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (ST->hasBMI()) {
 | |
|       if (ST->is64Bit())
 | |
|         if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
 | |
|           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|       if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
|     }
 | |
| 
 | |
|     if (ST->hasLZCNT()) {
 | |
|       if (ST->is64Bit())
 | |
|         if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
 | |
|           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|       if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
|     }
 | |
| 
 | |
|     if (ST->hasPOPCNT()) {
 | |
|       if (ST->is64Bit())
 | |
|         if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
 | |
|           return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|       if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
|     }
 | |
| 
 | |
|     // TODO - add BMI (TZCNT) scalar handling
 | |
| 
 | |
|     if (ST->is64Bit())
 | |
|       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
 | |
|         return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
| 
 | |
|     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
 | |
|       return adjustTableCost(*Entry, LT.first, ICA.getFlags());
 | |
|   }
 | |
| 
 | |
|   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
 | |
|                                       TTI::TargetCostKind CostKind) {
 | |
|   if (ICA.isTypeBasedOnly())
 | |
|     return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
 | |
| 
 | |
|   static const CostTblEntry AVX512CostTbl[] = {
 | |
|     { ISD::ROTL,       MVT::v8i64,   1 },
 | |
|     { ISD::ROTL,       MVT::v4i64,   1 },
 | |
|     { ISD::ROTL,       MVT::v2i64,   1 },
 | |
|     { ISD::ROTL,       MVT::v16i32,  1 },
 | |
|     { ISD::ROTL,       MVT::v8i32,   1 },
 | |
|     { ISD::ROTL,       MVT::v4i32,   1 },
 | |
|     { ISD::ROTR,       MVT::v8i64,   1 },
 | |
|     { ISD::ROTR,       MVT::v4i64,   1 },
 | |
|     { ISD::ROTR,       MVT::v2i64,   1 },
 | |
|     { ISD::ROTR,       MVT::v16i32,  1 },
 | |
|     { ISD::ROTR,       MVT::v8i32,   1 },
 | |
|     { ISD::ROTR,       MVT::v4i32,   1 }
 | |
|   };
 | |
|   // XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
 | |
|   static const CostTblEntry XOPCostTbl[] = {
 | |
|     { ISD::ROTL,       MVT::v4i64,   4 },
 | |
|     { ISD::ROTL,       MVT::v8i32,   4 },
 | |
|     { ISD::ROTL,       MVT::v16i16,  4 },
 | |
|     { ISD::ROTL,       MVT::v32i8,   4 },
 | |
|     { ISD::ROTL,       MVT::v2i64,   1 },
 | |
|     { ISD::ROTL,       MVT::v4i32,   1 },
 | |
|     { ISD::ROTL,       MVT::v8i16,   1 },
 | |
|     { ISD::ROTL,       MVT::v16i8,   1 },
 | |
|     { ISD::ROTR,       MVT::v4i64,   6 },
 | |
|     { ISD::ROTR,       MVT::v8i32,   6 },
 | |
|     { ISD::ROTR,       MVT::v16i16,  6 },
 | |
|     { ISD::ROTR,       MVT::v32i8,   6 },
 | |
|     { ISD::ROTR,       MVT::v2i64,   2 },
 | |
|     { ISD::ROTR,       MVT::v4i32,   2 },
 | |
|     { ISD::ROTR,       MVT::v8i16,   2 },
 | |
|     { ISD::ROTR,       MVT::v16i8,   2 }
 | |
|   };
 | |
|   static const CostTblEntry X64CostTbl[] = { // 64-bit targets
 | |
|     { ISD::ROTL,       MVT::i64,     1 },
 | |
|     { ISD::ROTR,       MVT::i64,     1 },
 | |
|     { ISD::FSHL,       MVT::i64,     4 }
 | |
|   };
 | |
|   static const CostTblEntry X86CostTbl[] = { // 32 or 64-bit targets
 | |
|     { ISD::ROTL,       MVT::i32,     1 },
 | |
|     { ISD::ROTL,       MVT::i16,     1 },
 | |
|     { ISD::ROTL,       MVT::i8,      1 },
 | |
|     { ISD::ROTR,       MVT::i32,     1 },
 | |
|     { ISD::ROTR,       MVT::i16,     1 },
 | |
|     { ISD::ROTR,       MVT::i8,      1 },
 | |
|     { ISD::FSHL,       MVT::i32,     4 },
 | |
|     { ISD::FSHL,       MVT::i16,     4 },
 | |
|     { ISD::FSHL,       MVT::i8,      4 }
 | |
|   };
 | |
| 
 | |
|   Intrinsic::ID IID = ICA.getID();
 | |
|   Type *RetTy = ICA.getReturnType();
 | |
|   const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
 | |
|   unsigned ISD = ISD::DELETED_NODE;
 | |
|   switch (IID) {
 | |
|   default:
 | |
|     break;
 | |
|   case Intrinsic::fshl:
 | |
|     ISD = ISD::FSHL;
 | |
|     if (Args[0] == Args[1])
 | |
|       ISD = ISD::ROTL;
 | |
|     break;
 | |
|   case Intrinsic::fshr:
 | |
|     // FSHR has same costs so don't duplicate.
 | |
|     ISD = ISD::FSHL;
 | |
|     if (Args[0] == Args[1])
 | |
|       ISD = ISD::ROTR;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (ISD != ISD::DELETED_NODE) {
 | |
|     // Legalize the type.
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
 | |
|     MVT MTy = LT.second;
 | |
| 
 | |
|     // Attempt to lookup cost.
 | |
|     if (ST->hasAVX512())
 | |
|       if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
 | |
|         return LT.first * Entry->Cost;
 | |
| 
 | |
|     if (ST->hasXOP())
 | |
|       if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
 | |
|         return LT.first * Entry->Cost;
 | |
| 
 | |
|     if (ST->is64Bit())
 | |
|       if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
 | |
|         return LT.first * Entry->Cost;
 | |
| 
 | |
|     if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   return BaseT::getIntrinsicInstrCost(ICA, CostKind);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
 | |
|   static const CostTblEntry SLMCostTbl[] = {
 | |
|      { ISD::EXTRACT_VECTOR_ELT,       MVT::i8,      4 },
 | |
|      { ISD::EXTRACT_VECTOR_ELT,       MVT::i16,     4 },
 | |
|      { ISD::EXTRACT_VECTOR_ELT,       MVT::i32,     4 },
 | |
|      { ISD::EXTRACT_VECTOR_ELT,       MVT::i64,     7 }
 | |
|    };
 | |
| 
 | |
|   assert(Val->isVectorTy() && "This must be a vector type");
 | |
|   Type *ScalarType = Val->getScalarType();
 | |
|   int RegisterFileMoveCost = 0;
 | |
| 
 | |
|   if (Index != -1U && (Opcode == Instruction::ExtractElement ||
 | |
|                        Opcode == Instruction::InsertElement)) {
 | |
|     // Legalize the type.
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Val);
 | |
| 
 | |
|     // This type is legalized to a scalar type.
 | |
|     if (!LT.second.isVector())
 | |
|       return 0;
 | |
| 
 | |
|     // The type may be split. Normalize the index to the new type.
 | |
|     unsigned NumElts = LT.second.getVectorNumElements();
 | |
|     unsigned SubNumElts = NumElts;
 | |
|     Index = Index % NumElts;
 | |
| 
 | |
|     // For >128-bit vectors, we need to extract higher 128-bit subvectors.
 | |
|     // For inserts, we also need to insert the subvector back.
 | |
|     if (LT.second.getSizeInBits() > 128) {
 | |
|       assert((LT.second.getSizeInBits() % 128) == 0 && "Illegal vector");
 | |
|       unsigned NumSubVecs = LT.second.getSizeInBits() / 128;
 | |
|       SubNumElts = NumElts / NumSubVecs;
 | |
|       if (SubNumElts <= Index) {
 | |
|         RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
 | |
|         Index %= SubNumElts;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Index == 0) {
 | |
|       // Floating point scalars are already located in index #0.
 | |
|       // Many insertions to #0 can fold away for scalar fp-ops, so let's assume
 | |
|       // true for all.
 | |
|       if (ScalarType->isFloatingPointTy())
 | |
|         return RegisterFileMoveCost;
 | |
| 
 | |
|       // Assume movd/movq XMM -> GPR is relatively cheap on all targets.
 | |
|       if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
 | |
|         return 1 + RegisterFileMoveCost;
 | |
|     }
 | |
| 
 | |
|     int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|     assert(ISD && "Unexpected vector opcode");
 | |
|     MVT MScalarTy = LT.second.getScalarType();
 | |
|     if (ST->isSLM())
 | |
|       if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
 | |
|         return Entry->Cost + RegisterFileMoveCost;
 | |
| 
 | |
|     // Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
 | |
|     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
 | |
|         (MScalarTy.isInteger() && ST->hasSSE41()))
 | |
|       return 1 + RegisterFileMoveCost;
 | |
| 
 | |
|     // Assume insertps is relatively cheap on all targets.
 | |
|     if (MScalarTy == MVT::f32 && ST->hasSSE41() &&
 | |
|         Opcode == Instruction::InsertElement)
 | |
|       return 1 + RegisterFileMoveCost;
 | |
| 
 | |
|     // For extractions we just need to shuffle the element to index 0, which
 | |
|     // should be very cheap (assume cost = 1). For insertions we need to shuffle
 | |
|     // the elements to its destination. In both cases we must handle the
 | |
|     // subvector move(s).
 | |
|     // If the vector type is already less than 128-bits then don't reduce it.
 | |
|     // TODO: Under what circumstances should we shuffle using the full width?
 | |
|     int ShuffleCost = 1;
 | |
|     if (Opcode == Instruction::InsertElement) {
 | |
|       auto *SubTy = cast<VectorType>(Val);
 | |
|       EVT VT = TLI->getValueType(DL, Val);
 | |
|       if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
 | |
|         SubTy = FixedVectorType::get(ScalarType, SubNumElts);
 | |
|       ShuffleCost = getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, 0, SubTy);
 | |
|     }
 | |
|     int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
 | |
|     return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
 | |
|   }
 | |
| 
 | |
|   // Add to the base cost if we know that the extracted element of a vector is
 | |
|   // destined to be moved to and used in the integer register file.
 | |
|   if (Opcode == Instruction::ExtractElement && ScalarType->isPointerTy())
 | |
|     RegisterFileMoveCost += 1;
 | |
| 
 | |
|   return BaseT::getVectorInstrCost(Opcode, Val, Index) + RegisterFileMoveCost;
 | |
| }
 | |
| 
 | |
| unsigned X86TTIImpl::getScalarizationOverhead(VectorType *Ty,
 | |
|                                               const APInt &DemandedElts,
 | |
|                                               bool Insert, bool Extract) {
 | |
|   unsigned Cost = 0;
 | |
| 
 | |
|   // For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
 | |
|   // cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
 | |
|   if (Insert) {
 | |
|     std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
 | |
|     MVT MScalarTy = LT.second.getScalarType();
 | |
| 
 | |
|     if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
 | |
|         (MScalarTy.isInteger() && ST->hasSSE41()) ||
 | |
|         (MScalarTy == MVT::f32 && ST->hasSSE41())) {
 | |
|       // For types we can insert directly, insertion into 128-bit sub vectors is
 | |
|       // cheap, followed by a cheap chain of concatenations.
 | |
|       if (LT.second.getSizeInBits() <= 128) {
 | |
|         Cost +=
 | |
|             BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert, false);
 | |
|       } else {
 | |
|         // In each 128-lane, if at least one index is demanded but not all
 | |
|         // indices are demanded and this 128-lane is not the first 128-lane of
 | |
|         // the legalized-vector, then this 128-lane needs a extracti128; If in
 | |
|         // each 128-lane, there is at least one demanded index, this 128-lane
 | |
|         // needs a inserti128.
 | |
| 
 | |
|         // The following cases will help you build a better understanding:
 | |
|         // Assume we insert several elements into a v8i32 vector in avx2,
 | |
|         // Case#1: inserting into 1th index needs vpinsrd + inserti128.
 | |
|         // Case#2: inserting into 5th index needs extracti128 + vpinsrd +
 | |
|         // inserti128.
 | |
|         // Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
 | |
|         unsigned Num128Lanes = LT.second.getSizeInBits() / 128 * LT.first;
 | |
|         unsigned NumElts = LT.second.getVectorNumElements() * LT.first;
 | |
|         APInt WidenedDemandedElts = DemandedElts.zextOrSelf(NumElts);
 | |
|         unsigned Scale = NumElts / Num128Lanes;
 | |
|         // We iterate each 128-lane, and check if we need a
 | |
|         // extracti128/inserti128 for this 128-lane.
 | |
|         for (unsigned I = 0; I < NumElts; I += Scale) {
 | |
|           APInt Mask = WidenedDemandedElts.getBitsSet(NumElts, I, I + Scale);
 | |
|           APInt MaskedDE = Mask & WidenedDemandedElts;
 | |
|           unsigned Population = MaskedDE.countPopulation();
 | |
|           Cost += (Population > 0 && Population != Scale &&
 | |
|                    I % LT.second.getVectorNumElements() != 0);
 | |
|           Cost += Population > 0;
 | |
|         }
 | |
|         Cost += DemandedElts.countPopulation();
 | |
| 
 | |
|         // For vXf32 cases, insertion into the 0'th index in each v4f32
 | |
|         // 128-bit vector is free.
 | |
|         // NOTE: This assumes legalization widens vXf32 vectors.
 | |
|         if (MScalarTy == MVT::f32)
 | |
|           for (unsigned i = 0, e = cast<FixedVectorType>(Ty)->getNumElements();
 | |
|                i < e; i += 4)
 | |
|             if (DemandedElts[i])
 | |
|               Cost--;
 | |
|       }
 | |
|     } else if (LT.second.isVector()) {
 | |
|       // Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
 | |
|       // integer element as a SCALAR_TO_VECTOR, then we build the vector as a
 | |
|       // series of UNPCK followed by CONCAT_VECTORS - all of these can be
 | |
|       // considered cheap.
 | |
|       if (Ty->isIntOrIntVectorTy())
 | |
|         Cost += DemandedElts.countPopulation();
 | |
| 
 | |
|       // Get the smaller of the legalized or original pow2-extended number of
 | |
|       // vector elements, which represents the number of unpacks we'll end up
 | |
|       // performing.
 | |
|       unsigned NumElts = LT.second.getVectorNumElements();
 | |
|       unsigned Pow2Elts =
 | |
|           PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
 | |
|       Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // TODO: Use default extraction for now, but we should investigate extending this
 | |
|   // to handle repeated subvector extraction.
 | |
|   if (Extract)
 | |
|     Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, false, Extract);
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
 | |
|                                 MaybeAlign Alignment, unsigned AddressSpace,
 | |
|                                 TTI::TargetCostKind CostKind,
 | |
|                                 const Instruction *I) {
 | |
|   // TODO: Handle other cost kinds.
 | |
|   if (CostKind != TTI::TCK_RecipThroughput) {
 | |
|     if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
 | |
|       // Store instruction with index and scale costs 2 Uops.
 | |
|       // Check the preceding GEP to identify non-const indices.
 | |
|       if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
 | |
|         if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
 | |
|           return TTI::TCC_Basic * 2;
 | |
|       }
 | |
|     }
 | |
|     return TTI::TCC_Basic;
 | |
|   }
 | |
| 
 | |
|   // Handle non-power-of-two vectors such as <3 x float>
 | |
|   if (auto *VTy = dyn_cast<FixedVectorType>(Src)) {
 | |
|     unsigned NumElem = VTy->getNumElements();
 | |
| 
 | |
|     // Handle a few common cases:
 | |
|     // <3 x float>
 | |
|     if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
 | |
|       // Cost = 64 bit store + extract + 32 bit store.
 | |
|       return 3;
 | |
| 
 | |
|     // <3 x double>
 | |
|     if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
 | |
|       // Cost = 128 bit store + unpack + 64 bit store.
 | |
|       return 3;
 | |
| 
 | |
|     // Assume that all other non-power-of-two numbers are scalarized.
 | |
|     if (!isPowerOf2_32(NumElem)) {
 | |
|       APInt DemandedElts = APInt::getAllOnesValue(NumElem);
 | |
|       int Cost = BaseT::getMemoryOpCost(Opcode, VTy->getScalarType(), Alignment,
 | |
|                                         AddressSpace, CostKind);
 | |
|       int SplitCost = getScalarizationOverhead(VTy, DemandedElts,
 | |
|                                                Opcode == Instruction::Load,
 | |
|                                                Opcode == Instruction::Store);
 | |
|       return NumElem * Cost + SplitCost;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Type legalization can't handle structs
 | |
|   if (TLI->getValueType(DL, Src,  true) == MVT::Other)
 | |
|     return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
 | |
|                                   CostKind);
 | |
| 
 | |
|   // Legalize the type.
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Src);
 | |
|   assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
 | |
|          "Invalid Opcode");
 | |
| 
 | |
|   // Each load/store unit costs 1.
 | |
|   int Cost = LT.first * 1;
 | |
| 
 | |
|   // This isn't exactly right. We're using slow unaligned 32-byte accesses as a
 | |
|   // proxy for a double-pumped AVX memory interface such as on Sandybridge.
 | |
|   if (LT.second.getStoreSize() == 32 && ST->isUnalignedMem32Slow())
 | |
|     Cost *= 2;
 | |
| 
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
 | |
|                                       Align Alignment, unsigned AddressSpace,
 | |
|                                       TTI::TargetCostKind CostKind) {
 | |
|   bool IsLoad = (Instruction::Load == Opcode);
 | |
|   bool IsStore = (Instruction::Store == Opcode);
 | |
| 
 | |
|   auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
 | |
|   if (!SrcVTy)
 | |
|     // To calculate scalar take the regular cost, without mask
 | |
|     return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
 | |
| 
 | |
|   unsigned NumElem = SrcVTy->getNumElements();
 | |
|   auto *MaskTy =
 | |
|       FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
 | |
|   if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
 | |
|       (IsStore && !isLegalMaskedStore(SrcVTy, Alignment)) ||
 | |
|       !isPowerOf2_32(NumElem)) {
 | |
|     // Scalarization
 | |
|     APInt DemandedElts = APInt::getAllOnesValue(NumElem);
 | |
|     int MaskSplitCost =
 | |
|         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
 | |
|     int ScalarCompareCost = getCmpSelInstrCost(
 | |
|         Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
 | |
|         CmpInst::BAD_ICMP_PREDICATE, CostKind);
 | |
|     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
 | |
|     int MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
 | |
|     int ValueSplitCost =
 | |
|         getScalarizationOverhead(SrcVTy, DemandedElts, IsLoad, IsStore);
 | |
|     int MemopCost =
 | |
|         NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
 | |
|                                          Alignment, AddressSpace, CostKind);
 | |
|     return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
 | |
|   }
 | |
| 
 | |
|   // Legalize the type.
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, SrcVTy);
 | |
|   auto VT = TLI->getValueType(DL, SrcVTy);
 | |
|   int Cost = 0;
 | |
|   if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
 | |
|       LT.second.getVectorNumElements() == NumElem)
 | |
|     // Promotion requires expand/truncate for data and a shuffle for mask.
 | |
|     Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, 0, nullptr) +
 | |
|             getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, 0, nullptr);
 | |
| 
 | |
|   else if (LT.second.getVectorNumElements() > NumElem) {
 | |
|     auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
 | |
|                                            LT.second.getVectorNumElements());
 | |
|     // Expanding requires fill mask with zeroes
 | |
|     Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, 0, MaskTy);
 | |
|   }
 | |
| 
 | |
|   // Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
 | |
|   if (!ST->hasAVX512())
 | |
|     return Cost + LT.first * (IsLoad ? 2 : 8);
 | |
| 
 | |
|   // AVX-512 masked load/store is cheapper
 | |
|   return Cost + LT.first;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getAddressComputationCost(Type *Ty, ScalarEvolution *SE,
 | |
|                                           const SCEV *Ptr) {
 | |
|   // Address computations in vectorized code with non-consecutive addresses will
 | |
|   // likely result in more instructions compared to scalar code where the
 | |
|   // computation can more often be merged into the index mode. The resulting
 | |
|   // extra micro-ops can significantly decrease throughput.
 | |
|   const unsigned NumVectorInstToHideOverhead = 10;
 | |
| 
 | |
|   // Cost modeling of Strided Access Computation is hidden by the indexing
 | |
|   // modes of X86 regardless of the stride value. We dont believe that there
 | |
|   // is a difference between constant strided access in gerenal and constant
 | |
|   // strided value which is less than or equal to 64.
 | |
|   // Even in the case of (loop invariant) stride whose value is not known at
 | |
|   // compile time, the address computation will not incur more than one extra
 | |
|   // ADD instruction.
 | |
|   if (Ty->isVectorTy() && SE) {
 | |
|     if (!BaseT::isStridedAccess(Ptr))
 | |
|       return NumVectorInstToHideOverhead;
 | |
|     if (!BaseT::getConstantStrideStep(SE, Ptr))
 | |
|       return 1;
 | |
|   }
 | |
| 
 | |
|   return BaseT::getAddressComputationCost(Ty, SE, Ptr);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
 | |
|                                            bool IsPairwise,
 | |
|                                            TTI::TargetCostKind CostKind) {
 | |
|   // Just use the default implementation for pair reductions.
 | |
|   if (IsPairwise)
 | |
|     return BaseT::getArithmeticReductionCost(Opcode, ValTy, IsPairwise, CostKind);
 | |
| 
 | |
|   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
 | |
|   // and make it as the cost.
 | |
| 
 | |
|   static const CostTblEntry SLMCostTblNoPairWise[] = {
 | |
|     { ISD::FADD,  MVT::v2f64,   3 },
 | |
|     { ISD::ADD,   MVT::v2i64,   5 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry SSE2CostTblNoPairWise[] = {
 | |
|     { ISD::FADD,  MVT::v2f64,   2 },
 | |
|     { ISD::FADD,  MVT::v4f32,   4 },
 | |
|     { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
 | |
|     { ISD::ADD,   MVT::v2i32,   2 }, // FIXME: chosen to be less than v4i32
 | |
|     { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
 | |
|     { ISD::ADD,   MVT::v2i16,   2 },      // The data reported by the IACA tool is "4.3".
 | |
|     { ISD::ADD,   MVT::v4i16,   3 },      // The data reported by the IACA tool is "4.3".
 | |
|     { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
 | |
|     { ISD::ADD,   MVT::v2i8,    2 },
 | |
|     { ISD::ADD,   MVT::v4i8,    2 },
 | |
|     { ISD::ADD,   MVT::v8i8,    2 },
 | |
|     { ISD::ADD,   MVT::v16i8,   3 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX1CostTblNoPairWise[] = {
 | |
|     { ISD::FADD,  MVT::v4f64,   3 },
 | |
|     { ISD::FADD,  MVT::v4f32,   3 },
 | |
|     { ISD::FADD,  MVT::v8f32,   4 },
 | |
|     { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
 | |
|     { ISD::ADD,   MVT::v4i64,   3 },
 | |
|     { ISD::ADD,   MVT::v8i32,   5 },
 | |
|     { ISD::ADD,   MVT::v16i16,  5 },
 | |
|     { ISD::ADD,   MVT::v32i8,   4 },
 | |
|   };
 | |
| 
 | |
|   int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | |
|   assert(ISD && "Invalid opcode");
 | |
| 
 | |
|   // Before legalizing the type, give a chance to look up illegal narrow types
 | |
|   // in the table.
 | |
|   // FIXME: Is there a better way to do this?
 | |
|   EVT VT = TLI->getValueType(DL, ValTy);
 | |
|   if (VT.isSimple()) {
 | |
|     MVT MTy = VT.getSimpleVT();
 | |
|     if (ST->isSLM())
 | |
|       if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
 | |
|         return Entry->Cost;
 | |
| 
 | |
|     if (ST->hasAVX())
 | |
|       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
 | |
|         return Entry->Cost;
 | |
| 
 | |
|     if (ST->hasSSE2())
 | |
|       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
 | |
|         return Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
 | |
| 
 | |
|   MVT MTy = LT.second;
 | |
| 
 | |
|   auto *ValVTy = cast<FixedVectorType>(ValTy);
 | |
| 
 | |
|   unsigned ArithmeticCost = 0;
 | |
|   if (LT.first != 1 && MTy.isVector() &&
 | |
|       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
 | |
|     // Type needs to be split. We need LT.first - 1 arithmetic ops.
 | |
|     auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
 | |
|                                             MTy.getVectorNumElements());
 | |
|     ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
 | |
|     ArithmeticCost *= LT.first - 1;
 | |
|   }
 | |
| 
 | |
|   if (ST->isSLM())
 | |
|     if (const auto *Entry = CostTableLookup(SLMCostTblNoPairWise, ISD, MTy))
 | |
|       return ArithmeticCost + Entry->Cost;
 | |
| 
 | |
|   if (ST->hasAVX())
 | |
|     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
 | |
|       return ArithmeticCost + Entry->Cost;
 | |
| 
 | |
|   if (ST->hasSSE2())
 | |
|     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
 | |
|       return ArithmeticCost + Entry->Cost;
 | |
| 
 | |
|   // FIXME: These assume a naive kshift+binop lowering, which is probably
 | |
|   // conservative in most cases.
 | |
|   static const CostTblEntry AVX512BoolReduction[] = {
 | |
|     { ISD::AND,  MVT::v2i1,   3 },
 | |
|     { ISD::AND,  MVT::v4i1,   5 },
 | |
|     { ISD::AND,  MVT::v8i1,   7 },
 | |
|     { ISD::AND,  MVT::v16i1,  9 },
 | |
|     { ISD::AND,  MVT::v32i1, 11 },
 | |
|     { ISD::AND,  MVT::v64i1, 13 },
 | |
|     { ISD::OR,   MVT::v2i1,   3 },
 | |
|     { ISD::OR,   MVT::v4i1,   5 },
 | |
|     { ISD::OR,   MVT::v8i1,   7 },
 | |
|     { ISD::OR,   MVT::v16i1,  9 },
 | |
|     { ISD::OR,   MVT::v32i1, 11 },
 | |
|     { ISD::OR,   MVT::v64i1, 13 },
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX2BoolReduction[] = {
 | |
|     { ISD::AND,  MVT::v16i16,  2 }, // vpmovmskb + cmp
 | |
|     { ISD::AND,  MVT::v32i8,   2 }, // vpmovmskb + cmp
 | |
|     { ISD::OR,   MVT::v16i16,  2 }, // vpmovmskb + cmp
 | |
|     { ISD::OR,   MVT::v32i8,   2 }, // vpmovmskb + cmp
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX1BoolReduction[] = {
 | |
|     { ISD::AND,  MVT::v4i64,   2 }, // vmovmskpd + cmp
 | |
|     { ISD::AND,  MVT::v8i32,   2 }, // vmovmskps + cmp
 | |
|     { ISD::AND,  MVT::v16i16,  4 }, // vextractf128 + vpand + vpmovmskb + cmp
 | |
|     { ISD::AND,  MVT::v32i8,   4 }, // vextractf128 + vpand + vpmovmskb + cmp
 | |
|     { ISD::OR,   MVT::v4i64,   2 }, // vmovmskpd + cmp
 | |
|     { ISD::OR,   MVT::v8i32,   2 }, // vmovmskps + cmp
 | |
|     { ISD::OR,   MVT::v16i16,  4 }, // vextractf128 + vpor + vpmovmskb + cmp
 | |
|     { ISD::OR,   MVT::v32i8,   4 }, // vextractf128 + vpor + vpmovmskb + cmp
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry SSE2BoolReduction[] = {
 | |
|     { ISD::AND,  MVT::v2i64,   2 }, // movmskpd + cmp
 | |
|     { ISD::AND,  MVT::v4i32,   2 }, // movmskps + cmp
 | |
|     { ISD::AND,  MVT::v8i16,   2 }, // pmovmskb + cmp
 | |
|     { ISD::AND,  MVT::v16i8,   2 }, // pmovmskb + cmp
 | |
|     { ISD::OR,   MVT::v2i64,   2 }, // movmskpd + cmp
 | |
|     { ISD::OR,   MVT::v4i32,   2 }, // movmskps + cmp
 | |
|     { ISD::OR,   MVT::v8i16,   2 }, // pmovmskb + cmp
 | |
|     { ISD::OR,   MVT::v16i8,   2 }, // pmovmskb + cmp
 | |
|   };
 | |
| 
 | |
|   // Handle bool allof/anyof patterns.
 | |
|   if (ValVTy->getElementType()->isIntegerTy(1)) {
 | |
|     unsigned ArithmeticCost = 0;
 | |
|     if (LT.first != 1 && MTy.isVector() &&
 | |
|         MTy.getVectorNumElements() < ValVTy->getNumElements()) {
 | |
|       // Type needs to be split. We need LT.first - 1 arithmetic ops.
 | |
|       auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
 | |
|                                               MTy.getVectorNumElements());
 | |
|       ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
 | |
|       ArithmeticCost *= LT.first - 1;
 | |
|     }
 | |
| 
 | |
|     if (ST->hasAVX512())
 | |
|       if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
 | |
|         return ArithmeticCost + Entry->Cost;
 | |
|     if (ST->hasAVX2())
 | |
|       if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
 | |
|         return ArithmeticCost + Entry->Cost;
 | |
|     if (ST->hasAVX())
 | |
|       if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
 | |
|         return ArithmeticCost + Entry->Cost;
 | |
|     if (ST->hasSSE2())
 | |
|       if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
 | |
|         return ArithmeticCost + Entry->Cost;
 | |
| 
 | |
|     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
 | |
|                                              CostKind);
 | |
|   }
 | |
| 
 | |
|   unsigned NumVecElts = ValVTy->getNumElements();
 | |
|   unsigned ScalarSize = ValVTy->getScalarSizeInBits();
 | |
| 
 | |
|   // Special case power of 2 reductions where the scalar type isn't changed
 | |
|   // by type legalization.
 | |
|   if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
 | |
|     return BaseT::getArithmeticReductionCost(Opcode, ValVTy, IsPairwise,
 | |
|                                              CostKind);
 | |
| 
 | |
|   unsigned ReductionCost = 0;
 | |
| 
 | |
|   auto *Ty = ValVTy;
 | |
|   if (LT.first != 1 && MTy.isVector() &&
 | |
|       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
 | |
|     // Type needs to be split. We need LT.first - 1 arithmetic ops.
 | |
|     Ty = FixedVectorType::get(ValVTy->getElementType(),
 | |
|                               MTy.getVectorNumElements());
 | |
|     ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
 | |
|     ReductionCost *= LT.first - 1;
 | |
|     NumVecElts = MTy.getVectorNumElements();
 | |
|   }
 | |
| 
 | |
|   // Now handle reduction with the legal type, taking into account size changes
 | |
|   // at each level.
 | |
|   while (NumVecElts > 1) {
 | |
|     // Determine the size of the remaining vector we need to reduce.
 | |
|     unsigned Size = NumVecElts * ScalarSize;
 | |
|     NumVecElts /= 2;
 | |
|     // If we're reducing from 256/512 bits, use an extract_subvector.
 | |
|     if (Size > 128) {
 | |
|       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
 | |
|       ReductionCost +=
 | |
|           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
 | |
|       Ty = SubTy;
 | |
|     } else if (Size == 128) {
 | |
|       // Reducing from 128 bits is a permute of v2f64/v2i64.
 | |
|       FixedVectorType *ShufTy;
 | |
|       if (ValVTy->isFloatingPointTy())
 | |
|         ShufTy =
 | |
|             FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
 | |
|       else
 | |
|         ShufTy =
 | |
|             FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
 | |
|       ReductionCost +=
 | |
|           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
 | |
|     } else if (Size == 64) {
 | |
|       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
 | |
|       FixedVectorType *ShufTy;
 | |
|       if (ValVTy->isFloatingPointTy())
 | |
|         ShufTy =
 | |
|             FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
 | |
|       else
 | |
|         ShufTy =
 | |
|             FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
 | |
|       ReductionCost +=
 | |
|           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
 | |
|     } else {
 | |
|       // Reducing from smaller size is a shift by immediate.
 | |
|       auto *ShiftTy = FixedVectorType::get(
 | |
|           Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
 | |
|       ReductionCost += getArithmeticInstrCost(
 | |
|           Instruction::LShr, ShiftTy, CostKind,
 | |
|           TargetTransformInfo::OK_AnyValue,
 | |
|           TargetTransformInfo::OK_UniformConstantValue,
 | |
|           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
 | |
|     }
 | |
| 
 | |
|     // Add the arithmetic op for this level.
 | |
|     ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
 | |
|   }
 | |
| 
 | |
|   // Add the final extract element to the cost.
 | |
|   return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getMinMaxCost(Type *Ty, Type *CondTy, bool IsUnsigned) {
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
 | |
| 
 | |
|   MVT MTy = LT.second;
 | |
| 
 | |
|   int ISD;
 | |
|   if (Ty->isIntOrIntVectorTy()) {
 | |
|     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
 | |
|   } else {
 | |
|     assert(Ty->isFPOrFPVectorTy() &&
 | |
|            "Expected float point or integer vector type.");
 | |
|     ISD = ISD::FMINNUM;
 | |
|   }
 | |
| 
 | |
|   static const CostTblEntry SSE1CostTbl[] = {
 | |
|     {ISD::FMINNUM, MVT::v4f32, 1},
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry SSE2CostTbl[] = {
 | |
|     {ISD::FMINNUM, MVT::v2f64, 1},
 | |
|     {ISD::SMIN,    MVT::v8i16, 1},
 | |
|     {ISD::UMIN,    MVT::v16i8, 1},
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry SSE41CostTbl[] = {
 | |
|     {ISD::SMIN,    MVT::v4i32, 1},
 | |
|     {ISD::UMIN,    MVT::v4i32, 1},
 | |
|     {ISD::UMIN,    MVT::v8i16, 1},
 | |
|     {ISD::SMIN,    MVT::v16i8, 1},
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry SSE42CostTbl[] = {
 | |
|     {ISD::UMIN,    MVT::v2i64, 3}, // xor+pcmpgtq+blendvpd
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX1CostTbl[] = {
 | |
|     {ISD::FMINNUM, MVT::v8f32,  1},
 | |
|     {ISD::FMINNUM, MVT::v4f64,  1},
 | |
|     {ISD::SMIN,    MVT::v8i32,  3},
 | |
|     {ISD::UMIN,    MVT::v8i32,  3},
 | |
|     {ISD::SMIN,    MVT::v16i16, 3},
 | |
|     {ISD::UMIN,    MVT::v16i16, 3},
 | |
|     {ISD::SMIN,    MVT::v32i8,  3},
 | |
|     {ISD::UMIN,    MVT::v32i8,  3},
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX2CostTbl[] = {
 | |
|     {ISD::SMIN,    MVT::v8i32,  1},
 | |
|     {ISD::UMIN,    MVT::v8i32,  1},
 | |
|     {ISD::SMIN,    MVT::v16i16, 1},
 | |
|     {ISD::UMIN,    MVT::v16i16, 1},
 | |
|     {ISD::SMIN,    MVT::v32i8,  1},
 | |
|     {ISD::UMIN,    MVT::v32i8,  1},
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX512CostTbl[] = {
 | |
|     {ISD::FMINNUM, MVT::v16f32, 1},
 | |
|     {ISD::FMINNUM, MVT::v8f64,  1},
 | |
|     {ISD::SMIN,    MVT::v2i64,  1},
 | |
|     {ISD::UMIN,    MVT::v2i64,  1},
 | |
|     {ISD::SMIN,    MVT::v4i64,  1},
 | |
|     {ISD::UMIN,    MVT::v4i64,  1},
 | |
|     {ISD::SMIN,    MVT::v8i64,  1},
 | |
|     {ISD::UMIN,    MVT::v8i64,  1},
 | |
|     {ISD::SMIN,    MVT::v16i32, 1},
 | |
|     {ISD::UMIN,    MVT::v16i32, 1},
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX512BWCostTbl[] = {
 | |
|     {ISD::SMIN,    MVT::v32i16, 1},
 | |
|     {ISD::UMIN,    MVT::v32i16, 1},
 | |
|     {ISD::SMIN,    MVT::v64i8,  1},
 | |
|     {ISD::UMIN,    MVT::v64i8,  1},
 | |
|   };
 | |
| 
 | |
|   // If we have a native MIN/MAX instruction for this type, use it.
 | |
|   if (ST->hasBWI())
 | |
|     if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasAVX512())
 | |
|     if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasAVX2())
 | |
|     if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasAVX())
 | |
|     if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasSSE42())
 | |
|     if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasSSE41())
 | |
|     if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasSSE2())
 | |
|     if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   if (ST->hasSSE1())
 | |
|     if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
 | |
|       return LT.first * Entry->Cost;
 | |
| 
 | |
|   unsigned CmpOpcode;
 | |
|   if (Ty->isFPOrFPVectorTy()) {
 | |
|     CmpOpcode = Instruction::FCmp;
 | |
|   } else {
 | |
|     assert(Ty->isIntOrIntVectorTy() &&
 | |
|            "expecting floating point or integer type for min/max reduction");
 | |
|     CmpOpcode = Instruction::ICmp;
 | |
|   }
 | |
| 
 | |
|   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
 | |
|   // Otherwise fall back to cmp+select.
 | |
|   return getCmpSelInstrCost(CmpOpcode, Ty, CondTy, CmpInst::BAD_ICMP_PREDICATE,
 | |
|                             CostKind) +
 | |
|          getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
 | |
|                             CmpInst::BAD_ICMP_PREDICATE, CostKind);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getMinMaxReductionCost(VectorType *ValTy, VectorType *CondTy,
 | |
|                                        bool IsPairwise, bool IsUnsigned,
 | |
|                                        TTI::TargetCostKind CostKind) {
 | |
|   // Just use the default implementation for pair reductions.
 | |
|   if (IsPairwise)
 | |
|     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
 | |
|                                          CostKind);
 | |
| 
 | |
|   std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
 | |
| 
 | |
|   MVT MTy = LT.second;
 | |
| 
 | |
|   int ISD;
 | |
|   if (ValTy->isIntOrIntVectorTy()) {
 | |
|     ISD = IsUnsigned ? ISD::UMIN : ISD::SMIN;
 | |
|   } else {
 | |
|     assert(ValTy->isFPOrFPVectorTy() &&
 | |
|            "Expected float point or integer vector type.");
 | |
|     ISD = ISD::FMINNUM;
 | |
|   }
 | |
| 
 | |
|   // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
 | |
|   // and make it as the cost.
 | |
| 
 | |
|   static const CostTblEntry SSE2CostTblNoPairWise[] = {
 | |
|       {ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
 | |
|       {ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
 | |
|       {ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry SSE41CostTblNoPairWise[] = {
 | |
|       {ISD::SMIN, MVT::v2i16, 3}, // same as sse2
 | |
|       {ISD::SMIN, MVT::v4i16, 5}, // same as sse2
 | |
|       {ISD::UMIN, MVT::v2i16, 5}, // same as sse2
 | |
|       {ISD::UMIN, MVT::v4i16, 7}, // same as sse2
 | |
|       {ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
 | |
|       {ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
 | |
|       {ISD::SMIN, MVT::v2i8,  3}, // pminsb
 | |
|       {ISD::SMIN, MVT::v4i8,  5}, // pminsb
 | |
|       {ISD::SMIN, MVT::v8i8,  7}, // pminsb
 | |
|       {ISD::SMIN, MVT::v16i8, 6},
 | |
|       {ISD::UMIN, MVT::v2i8,  3}, // same as sse2
 | |
|       {ISD::UMIN, MVT::v4i8,  5}, // same as sse2
 | |
|       {ISD::UMIN, MVT::v8i8,  7}, // same as sse2
 | |
|       {ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX1CostTblNoPairWise[] = {
 | |
|       {ISD::SMIN, MVT::v16i16, 6},
 | |
|       {ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
 | |
|       {ISD::SMIN, MVT::v32i8, 8},
 | |
|       {ISD::UMIN, MVT::v32i8, 8},
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX512BWCostTblNoPairWise[] = {
 | |
|       {ISD::SMIN, MVT::v32i16, 8},
 | |
|       {ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
 | |
|       {ISD::SMIN, MVT::v64i8, 10},
 | |
|       {ISD::UMIN, MVT::v64i8, 10},
 | |
|   };
 | |
| 
 | |
|   // Before legalizing the type, give a chance to look up illegal narrow types
 | |
|   // in the table.
 | |
|   // FIXME: Is there a better way to do this?
 | |
|   EVT VT = TLI->getValueType(DL, ValTy);
 | |
|   if (VT.isSimple()) {
 | |
|     MVT MTy = VT.getSimpleVT();
 | |
|     if (ST->hasBWI())
 | |
|       if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
 | |
|         return Entry->Cost;
 | |
| 
 | |
|     if (ST->hasAVX())
 | |
|       if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
 | |
|         return Entry->Cost;
 | |
| 
 | |
|     if (ST->hasSSE41())
 | |
|       if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
 | |
|         return Entry->Cost;
 | |
| 
 | |
|     if (ST->hasSSE2())
 | |
|       if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
 | |
|         return Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   auto *ValVTy = cast<FixedVectorType>(ValTy);
 | |
|   unsigned NumVecElts = ValVTy->getNumElements();
 | |
| 
 | |
|   auto *Ty = ValVTy;
 | |
|   unsigned MinMaxCost = 0;
 | |
|   if (LT.first != 1 && MTy.isVector() &&
 | |
|       MTy.getVectorNumElements() < ValVTy->getNumElements()) {
 | |
|     // Type needs to be split. We need LT.first - 1 operations ops.
 | |
|     Ty = FixedVectorType::get(ValVTy->getElementType(),
 | |
|                               MTy.getVectorNumElements());
 | |
|     auto *SubCondTy = FixedVectorType::get(CondTy->getElementType(),
 | |
|                                            MTy.getVectorNumElements());
 | |
|     MinMaxCost = getMinMaxCost(Ty, SubCondTy, IsUnsigned);
 | |
|     MinMaxCost *= LT.first - 1;
 | |
|     NumVecElts = MTy.getVectorNumElements();
 | |
|   }
 | |
| 
 | |
|   if (ST->hasBWI())
 | |
|     if (const auto *Entry = CostTableLookup(AVX512BWCostTblNoPairWise, ISD, MTy))
 | |
|       return MinMaxCost + Entry->Cost;
 | |
| 
 | |
|   if (ST->hasAVX())
 | |
|     if (const auto *Entry = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy))
 | |
|       return MinMaxCost + Entry->Cost;
 | |
| 
 | |
|   if (ST->hasSSE41())
 | |
|     if (const auto *Entry = CostTableLookup(SSE41CostTblNoPairWise, ISD, MTy))
 | |
|       return MinMaxCost + Entry->Cost;
 | |
| 
 | |
|   if (ST->hasSSE2())
 | |
|     if (const auto *Entry = CostTableLookup(SSE2CostTblNoPairWise, ISD, MTy))
 | |
|       return MinMaxCost + Entry->Cost;
 | |
| 
 | |
|   unsigned ScalarSize = ValTy->getScalarSizeInBits();
 | |
| 
 | |
|   // Special case power of 2 reductions where the scalar type isn't changed
 | |
|   // by type legalization.
 | |
|   if (!isPowerOf2_32(ValVTy->getNumElements()) ||
 | |
|       ScalarSize != MTy.getScalarSizeInBits())
 | |
|     return BaseT::getMinMaxReductionCost(ValTy, CondTy, IsPairwise, IsUnsigned,
 | |
|                                          CostKind);
 | |
| 
 | |
|   // Now handle reduction with the legal type, taking into account size changes
 | |
|   // at each level.
 | |
|   while (NumVecElts > 1) {
 | |
|     // Determine the size of the remaining vector we need to reduce.
 | |
|     unsigned Size = NumVecElts * ScalarSize;
 | |
|     NumVecElts /= 2;
 | |
|     // If we're reducing from 256/512 bits, use an extract_subvector.
 | |
|     if (Size > 128) {
 | |
|       auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
 | |
|       MinMaxCost +=
 | |
|           getShuffleCost(TTI::SK_ExtractSubvector, Ty, NumVecElts, SubTy);
 | |
|       Ty = SubTy;
 | |
|     } else if (Size == 128) {
 | |
|       // Reducing from 128 bits is a permute of v2f64/v2i64.
 | |
|       VectorType *ShufTy;
 | |
|       if (ValTy->isFloatingPointTy())
 | |
|         ShufTy =
 | |
|             FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
 | |
|       else
 | |
|         ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
 | |
|       MinMaxCost +=
 | |
|           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
 | |
|     } else if (Size == 64) {
 | |
|       // Reducing from 64 bits is a shuffle of v4f32/v4i32.
 | |
|       FixedVectorType *ShufTy;
 | |
|       if (ValTy->isFloatingPointTy())
 | |
|         ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
 | |
|       else
 | |
|         ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
 | |
|       MinMaxCost +=
 | |
|           getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy, 0, nullptr);
 | |
|     } else {
 | |
|       // Reducing from smaller size is a shift by immediate.
 | |
|       auto *ShiftTy = FixedVectorType::get(
 | |
|           Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
 | |
|       MinMaxCost += getArithmeticInstrCost(
 | |
|           Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
 | |
|           TargetTransformInfo::OK_AnyValue,
 | |
|           TargetTransformInfo::OK_UniformConstantValue,
 | |
|           TargetTransformInfo::OP_None, TargetTransformInfo::OP_None);
 | |
|     }
 | |
| 
 | |
|     // Add the arithmetic op for this level.
 | |
|     auto *SubCondTy =
 | |
|         FixedVectorType::get(CondTy->getElementType(), Ty->getNumElements());
 | |
|     MinMaxCost += getMinMaxCost(Ty, SubCondTy, IsUnsigned);
 | |
|   }
 | |
| 
 | |
|   // Add the final extract element to the cost.
 | |
|   return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
 | |
| }
 | |
| 
 | |
| /// Calculate the cost of materializing a 64-bit value. This helper
 | |
| /// method might only calculate a fraction of a larger immediate. Therefore it
 | |
| /// is valid to return a cost of ZERO.
 | |
| int X86TTIImpl::getIntImmCost(int64_t Val) {
 | |
|   if (Val == 0)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   if (isInt<32>(Val))
 | |
|     return TTI::TCC_Basic;
 | |
| 
 | |
|   return 2 * TTI::TCC_Basic;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
 | |
|                               TTI::TargetCostKind CostKind) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   if (BitSize == 0)
 | |
|     return ~0U;
 | |
| 
 | |
|   // Never hoist constants larger than 128bit, because this might lead to
 | |
|   // incorrect code generation or assertions in codegen.
 | |
|   // Fixme: Create a cost model for types larger than i128 once the codegen
 | |
|   // issues have been fixed.
 | |
|   if (BitSize > 128)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   if (Imm == 0)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   // Sign-extend all constants to a multiple of 64-bit.
 | |
|   APInt ImmVal = Imm;
 | |
|   if (BitSize % 64 != 0)
 | |
|     ImmVal = Imm.sext(alignTo(BitSize, 64));
 | |
| 
 | |
|   // Split the constant into 64-bit chunks and calculate the cost for each
 | |
|   // chunk.
 | |
|   int Cost = 0;
 | |
|   for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
 | |
|     APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
 | |
|     int64_t Val = Tmp.getSExtValue();
 | |
|     Cost += getIntImmCost(Val);
 | |
|   }
 | |
|   // We need at least one instruction to materialize the constant.
 | |
|   return std::max(1, Cost);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
 | |
|                                   const APInt &Imm, Type *Ty,
 | |
|                                   TTI::TargetCostKind CostKind,
 | |
|                                   Instruction *Inst) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | |
|   // here, so that constant hoisting will ignore this constant.
 | |
|   if (BitSize == 0)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   unsigned ImmIdx = ~0U;
 | |
|   switch (Opcode) {
 | |
|   default:
 | |
|     return TTI::TCC_Free;
 | |
|   case Instruction::GetElementPtr:
 | |
|     // Always hoist the base address of a GetElementPtr. This prevents the
 | |
|     // creation of new constants for every base constant that gets constant
 | |
|     // folded with the offset.
 | |
|     if (Idx == 0)
 | |
|       return 2 * TTI::TCC_Basic;
 | |
|     return TTI::TCC_Free;
 | |
|   case Instruction::Store:
 | |
|     ImmIdx = 0;
 | |
|     break;
 | |
|   case Instruction::ICmp:
 | |
|     // This is an imperfect hack to prevent constant hoisting of
 | |
|     // compares that might be trying to check if a 64-bit value fits in
 | |
|     // 32-bits. The backend can optimize these cases using a right shift by 32.
 | |
|     // Ideally we would check the compare predicate here. There also other
 | |
|     // similar immediates the backend can use shifts for.
 | |
|     if (Idx == 1 && Imm.getBitWidth() == 64) {
 | |
|       uint64_t ImmVal = Imm.getZExtValue();
 | |
|       if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
 | |
|         return TTI::TCC_Free;
 | |
|     }
 | |
|     ImmIdx = 1;
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|     // We support 64-bit ANDs with immediates with 32-bits of leading zeroes
 | |
|     // by using a 32-bit operation with implicit zero extension. Detect such
 | |
|     // immediates here as the normal path expects bit 31 to be sign extended.
 | |
|     if (Idx == 1 && Imm.getBitWidth() == 64 && isUInt<32>(Imm.getZExtValue()))
 | |
|       return TTI::TCC_Free;
 | |
|     ImmIdx = 1;
 | |
|     break;
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|     // For add/sub, we can use the opposite instruction for INT32_MIN.
 | |
|     if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
 | |
|       return TTI::TCC_Free;
 | |
|     ImmIdx = 1;
 | |
|     break;
 | |
|   case Instruction::UDiv:
 | |
|   case Instruction::SDiv:
 | |
|   case Instruction::URem:
 | |
|   case Instruction::SRem:
 | |
|     // Division by constant is typically expanded later into a different
 | |
|     // instruction sequence. This completely changes the constants.
 | |
|     // Report them as "free" to stop ConstantHoist from marking them as opaque.
 | |
|     return TTI::TCC_Free;
 | |
|   case Instruction::Mul:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:
 | |
|     ImmIdx = 1;
 | |
|     break;
 | |
|   // Always return TCC_Free for the shift value of a shift instruction.
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::LShr:
 | |
|   case Instruction::AShr:
 | |
|     if (Idx == 1)
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   case Instruction::Trunc:
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::SExt:
 | |
|   case Instruction::IntToPtr:
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::BitCast:
 | |
|   case Instruction::PHI:
 | |
|   case Instruction::Call:
 | |
|   case Instruction::Select:
 | |
|   case Instruction::Ret:
 | |
|   case Instruction::Load:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   if (Idx == ImmIdx) {
 | |
|     int NumConstants = divideCeil(BitSize, 64);
 | |
|     int Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
 | |
|     return (Cost <= NumConstants * TTI::TCC_Basic)
 | |
|                ? static_cast<int>(TTI::TCC_Free)
 | |
|                : Cost;
 | |
|   }
 | |
| 
 | |
|   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
 | |
|                                     const APInt &Imm, Type *Ty,
 | |
|                                     TTI::TargetCostKind CostKind) {
 | |
|   assert(Ty->isIntegerTy());
 | |
| 
 | |
|   unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | |
|   // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | |
|   // here, so that constant hoisting will ignore this constant.
 | |
|   if (BitSize == 0)
 | |
|     return TTI::TCC_Free;
 | |
| 
 | |
|   switch (IID) {
 | |
|   default:
 | |
|     return TTI::TCC_Free;
 | |
|   case Intrinsic::sadd_with_overflow:
 | |
|   case Intrinsic::uadd_with_overflow:
 | |
|   case Intrinsic::ssub_with_overflow:
 | |
|   case Intrinsic::usub_with_overflow:
 | |
|   case Intrinsic::smul_with_overflow:
 | |
|   case Intrinsic::umul_with_overflow:
 | |
|     if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   case Intrinsic::experimental_stackmap:
 | |
|     if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   case Intrinsic::experimental_patchpoint_void:
 | |
|   case Intrinsic::experimental_patchpoint_i64:
 | |
|     if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | |
|       return TTI::TCC_Free;
 | |
|     break;
 | |
|   }
 | |
|   return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
 | |
| }
 | |
| 
 | |
| unsigned
 | |
| X86TTIImpl::getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
 | |
|   if (CostKind != TTI::TCK_RecipThroughput)
 | |
|     return Opcode == Instruction::PHI ? 0 : 1;
 | |
|   // Branches are assumed to be predicted.
 | |
|   return CostKind == TTI::TCK_RecipThroughput ? 0 : 1;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getGatherOverhead() const {
 | |
|   // Some CPUs have more overhead for gather. The specified overhead is relative
 | |
|   // to the Load operation. "2" is the number provided by Intel architects. This
 | |
|   // parameter is used for cost estimation of Gather Op and comparison with
 | |
|   // other alternatives.
 | |
|   // TODO: Remove the explicit hasAVX512()?, That would mean we would only
 | |
|   // enable gather with a -march.
 | |
|   if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
 | |
|     return 2;
 | |
| 
 | |
|   return 1024;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getScatterOverhead() const {
 | |
|   if (ST->hasAVX512())
 | |
|     return 2;
 | |
| 
 | |
|   return 1024;
 | |
| }
 | |
| 
 | |
| // Return an average cost of Gather / Scatter instruction, maybe improved later.
 | |
| // FIXME: Add TargetCostKind support.
 | |
| int X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy, const Value *Ptr,
 | |
|                                 Align Alignment, unsigned AddressSpace) {
 | |
| 
 | |
|   assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
 | |
|   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
 | |
| 
 | |
|   // Try to reduce index size from 64 bit (default for GEP)
 | |
|   // to 32. It is essential for VF 16. If the index can't be reduced to 32, the
 | |
|   // operation will use 16 x 64 indices which do not fit in a zmm and needs
 | |
|   // to split. Also check that the base pointer is the same for all lanes,
 | |
|   // and that there's at most one variable index.
 | |
|   auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
 | |
|     unsigned IndexSize = DL.getPointerSizeInBits();
 | |
|     const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
 | |
|     if (IndexSize < 64 || !GEP)
 | |
|       return IndexSize;
 | |
| 
 | |
|     unsigned NumOfVarIndices = 0;
 | |
|     const Value *Ptrs = GEP->getPointerOperand();
 | |
|     if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
 | |
|       return IndexSize;
 | |
|     for (unsigned i = 1; i < GEP->getNumOperands(); ++i) {
 | |
|       if (isa<Constant>(GEP->getOperand(i)))
 | |
|         continue;
 | |
|       Type *IndxTy = GEP->getOperand(i)->getType();
 | |
|       if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
 | |
|         IndxTy = IndexVTy->getElementType();
 | |
|       if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
 | |
|           !isa<SExtInst>(GEP->getOperand(i))) ||
 | |
|          ++NumOfVarIndices > 1)
 | |
|         return IndexSize; // 64
 | |
|     }
 | |
|     return (unsigned)32;
 | |
|   };
 | |
| 
 | |
|   // Trying to reduce IndexSize to 32 bits for vector 16.
 | |
|   // By default the IndexSize is equal to pointer size.
 | |
|   unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
 | |
|                            ? getIndexSizeInBits(Ptr, DL)
 | |
|                            : DL.getPointerSizeInBits();
 | |
| 
 | |
|   auto *IndexVTy = FixedVectorType::get(
 | |
|       IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
 | |
|   std::pair<int, MVT> IdxsLT = TLI->getTypeLegalizationCost(DL, IndexVTy);
 | |
|   std::pair<int, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, SrcVTy);
 | |
|   int SplitFactor = std::max(IdxsLT.first, SrcLT.first);
 | |
|   if (SplitFactor > 1) {
 | |
|     // Handle splitting of vector of pointers
 | |
|     auto *SplitSrcTy =
 | |
|         FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
 | |
|     return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
 | |
|                                          AddressSpace);
 | |
|   }
 | |
| 
 | |
|   // The gather / scatter cost is given by Intel architects. It is a rough
 | |
|   // number since we are looking at one instruction in a time.
 | |
|   const int GSOverhead = (Opcode == Instruction::Load)
 | |
|                              ? getGatherOverhead()
 | |
|                              : getScatterOverhead();
 | |
|   return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
 | |
|                                            MaybeAlign(Alignment), AddressSpace,
 | |
|                                            TTI::TCK_RecipThroughput);
 | |
| }
 | |
| 
 | |
| /// Return the cost of full scalarization of gather / scatter operation.
 | |
| ///
 | |
| /// Opcode - Load or Store instruction.
 | |
| /// SrcVTy - The type of the data vector that should be gathered or scattered.
 | |
| /// VariableMask - The mask is non-constant at compile time.
 | |
| /// Alignment - Alignment for one element.
 | |
| /// AddressSpace - pointer[s] address space.
 | |
| ///
 | |
| /// FIXME: Add TargetCostKind support.
 | |
| int X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
 | |
|                                 bool VariableMask, Align Alignment,
 | |
|                                 unsigned AddressSpace) {
 | |
|   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
 | |
|   APInt DemandedElts = APInt::getAllOnesValue(VF);
 | |
|   TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
 | |
| 
 | |
|   int MaskUnpackCost = 0;
 | |
|   if (VariableMask) {
 | |
|     auto *MaskTy =
 | |
|         FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
 | |
|     MaskUnpackCost =
 | |
|         getScalarizationOverhead(MaskTy, DemandedElts, false, true);
 | |
|     int ScalarCompareCost = getCmpSelInstrCost(
 | |
|         Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
 | |
|         CmpInst::BAD_ICMP_PREDICATE, CostKind);
 | |
|     int BranchCost = getCFInstrCost(Instruction::Br, CostKind);
 | |
|     MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
 | |
|   }
 | |
| 
 | |
|   // The cost of the scalar loads/stores.
 | |
|   int MemoryOpCost = VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
 | |
|                                           MaybeAlign(Alignment), AddressSpace,
 | |
|                                           CostKind);
 | |
| 
 | |
|   int InsertExtractCost = 0;
 | |
|   if (Opcode == Instruction::Load)
 | |
|     for (unsigned i = 0; i < VF; ++i)
 | |
|       // Add the cost of inserting each scalar load into the vector
 | |
|       InsertExtractCost +=
 | |
|         getVectorInstrCost(Instruction::InsertElement, SrcVTy, i);
 | |
|   else
 | |
|     for (unsigned i = 0; i < VF; ++i)
 | |
|       // Add the cost of extracting each element out of the data vector
 | |
|       InsertExtractCost +=
 | |
|         getVectorInstrCost(Instruction::ExtractElement, SrcVTy, i);
 | |
| 
 | |
|   return MemoryOpCost + MaskUnpackCost + InsertExtractCost;
 | |
| }
 | |
| 
 | |
| /// Calculate the cost of Gather / Scatter operation
 | |
| int X86TTIImpl::getGatherScatterOpCost(unsigned Opcode, Type *SrcVTy,
 | |
|                                        const Value *Ptr, bool VariableMask,
 | |
|                                        Align Alignment,
 | |
|                                        TTI::TargetCostKind CostKind,
 | |
|                                        const Instruction *I = nullptr) {
 | |
|   if (CostKind != TTI::TCK_RecipThroughput) {
 | |
|     if ((Opcode == Instruction::Load &&
 | |
|          isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
 | |
|         (Opcode == Instruction::Store &&
 | |
|          isLegalMaskedScatter(SrcVTy, Align(Alignment))))
 | |
|       return 1;
 | |
|     return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
 | |
|                                          Alignment, CostKind, I);
 | |
|   }
 | |
| 
 | |
|   assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
 | |
|   unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
 | |
|   PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
 | |
|   if (!PtrTy && Ptr->getType()->isVectorTy())
 | |
|     PtrTy = dyn_cast<PointerType>(
 | |
|         cast<VectorType>(Ptr->getType())->getElementType());
 | |
|   assert(PtrTy && "Unexpected type for Ptr argument");
 | |
|   unsigned AddressSpace = PtrTy->getAddressSpace();
 | |
| 
 | |
|   bool Scalarize = false;
 | |
|   if ((Opcode == Instruction::Load &&
 | |
|        !isLegalMaskedGather(SrcVTy, Align(Alignment))) ||
 | |
|       (Opcode == Instruction::Store &&
 | |
|        !isLegalMaskedScatter(SrcVTy, Align(Alignment))))
 | |
|     Scalarize = true;
 | |
|   // Gather / Scatter for vector 2 is not profitable on KNL / SKX
 | |
|   // Vector-4 of gather/scatter instruction does not exist on KNL.
 | |
|   // We can extend it to 8 elements, but zeroing upper bits of
 | |
|   // the mask vector will add more instructions. Right now we give the scalar
 | |
|   // cost of vector-4 for KNL. TODO: Check, maybe the gather/scatter instruction
 | |
|   // is better in the VariableMask case.
 | |
|   if (ST->hasAVX512() && (VF == 2 || (VF == 4 && !ST->hasVLX())))
 | |
|     Scalarize = true;
 | |
| 
 | |
|   if (Scalarize)
 | |
|     return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
 | |
|                            AddressSpace);
 | |
| 
 | |
|   return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
 | |
|                                TargetTransformInfo::LSRCost &C2) {
 | |
|     // X86 specific here are "instruction number 1st priority".
 | |
|     return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
 | |
|                     C1.NumIVMuls, C1.NumBaseAdds,
 | |
|                     C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
 | |
|            std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
 | |
|                     C2.NumIVMuls, C2.NumBaseAdds,
 | |
|                     C2.ScaleCost, C2.ImmCost, C2.SetupCost);
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::canMacroFuseCmp() {
 | |
|   return ST->hasMacroFusion() || ST->hasBranchFusion();
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
 | |
|   if (!ST->hasAVX())
 | |
|     return false;
 | |
| 
 | |
|   // The backend can't handle a single element vector.
 | |
|   if (isa<VectorType>(DataTy) &&
 | |
|       cast<FixedVectorType>(DataTy)->getNumElements() == 1)
 | |
|     return false;
 | |
|   Type *ScalarTy = DataTy->getScalarType();
 | |
| 
 | |
|   if (ScalarTy->isPointerTy())
 | |
|     return true;
 | |
| 
 | |
|   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
 | |
|     return true;
 | |
| 
 | |
|   if (!ScalarTy->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
 | |
|   return IntWidth == 32 || IntWidth == 64 ||
 | |
|          ((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
 | |
|   return isLegalMaskedLoad(DataType, Alignment);
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
 | |
|   unsigned DataSize = DL.getTypeStoreSize(DataType);
 | |
|   // The only supported nontemporal loads are for aligned vectors of 16 or 32
 | |
|   // bytes.  Note that 32-byte nontemporal vector loads are supported by AVX2
 | |
|   // (the equivalent stores only require AVX).
 | |
|   if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
 | |
|     return DataSize == 16 ?  ST->hasSSE1() : ST->hasAVX2();
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
 | |
|   unsigned DataSize = DL.getTypeStoreSize(DataType);
 | |
| 
 | |
|   // SSE4A supports nontemporal stores of float and double at arbitrary
 | |
|   // alignment.
 | |
|   if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
 | |
|     return true;
 | |
| 
 | |
|   // Besides the SSE4A subtarget exception above, only aligned stores are
 | |
|   // available nontemporaly on any other subtarget.  And only stores with a size
 | |
|   // of 4..32 bytes (powers of 2, only) are permitted.
 | |
|   if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
 | |
|       !isPowerOf2_32(DataSize))
 | |
|     return false;
 | |
| 
 | |
|   // 32-byte vector nontemporal stores are supported by AVX (the equivalent
 | |
|   // loads require AVX2).
 | |
|   if (DataSize == 32)
 | |
|     return ST->hasAVX();
 | |
|   else if (DataSize == 16)
 | |
|     return ST->hasSSE1();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
 | |
|   if (!isa<VectorType>(DataTy))
 | |
|     return false;
 | |
| 
 | |
|   if (!ST->hasAVX512())
 | |
|     return false;
 | |
| 
 | |
|   // The backend can't handle a single element vector.
 | |
|   if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
 | |
|     return false;
 | |
| 
 | |
|   Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
 | |
| 
 | |
|   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
 | |
|     return true;
 | |
| 
 | |
|   if (!ScalarTy->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
 | |
|   return IntWidth == 32 || IntWidth == 64 ||
 | |
|          ((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
 | |
|   return isLegalMaskedExpandLoad(DataTy);
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
 | |
|   // Some CPUs have better gather performance than others.
 | |
|   // TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
 | |
|   // enable gather with a -march.
 | |
|   if (!(ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2())))
 | |
|     return false;
 | |
| 
 | |
|   // This function is called now in two cases: from the Loop Vectorizer
 | |
|   // and from the Scalarizer.
 | |
|   // When the Loop Vectorizer asks about legality of the feature,
 | |
|   // the vectorization factor is not calculated yet. The Loop Vectorizer
 | |
|   // sends a scalar type and the decision is based on the width of the
 | |
|   // scalar element.
 | |
|   // Later on, the cost model will estimate usage this intrinsic based on
 | |
|   // the vector type.
 | |
|   // The Scalarizer asks again about legality. It sends a vector type.
 | |
|   // In this case we can reject non-power-of-2 vectors.
 | |
|   // We also reject single element vectors as the type legalizer can't
 | |
|   // scalarize it.
 | |
|   if (auto *DataVTy = dyn_cast<FixedVectorType>(DataTy)) {
 | |
|     unsigned NumElts = DataVTy->getNumElements();
 | |
|     if (NumElts == 1)
 | |
|       return false;
 | |
|   }
 | |
|   Type *ScalarTy = DataTy->getScalarType();
 | |
|   if (ScalarTy->isPointerTy())
 | |
|     return true;
 | |
| 
 | |
|   if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
 | |
|     return true;
 | |
| 
 | |
|   if (!ScalarTy->isIntegerTy())
 | |
|     return false;
 | |
| 
 | |
|   unsigned IntWidth = ScalarTy->getIntegerBitWidth();
 | |
|   return IntWidth == 32 || IntWidth == 64;
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
 | |
|   // AVX2 doesn't support scatter
 | |
|   if (!ST->hasAVX512())
 | |
|     return false;
 | |
|   return isLegalMaskedGather(DataType, Alignment);
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
 | |
|   EVT VT = TLI->getValueType(DL, DataType);
 | |
|   return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::areInlineCompatible(const Function *Caller,
 | |
|                                      const Function *Callee) const {
 | |
|   const TargetMachine &TM = getTLI()->getTargetMachine();
 | |
| 
 | |
|   // Work this as a subsetting of subtarget features.
 | |
|   const FeatureBitset &CallerBits =
 | |
|       TM.getSubtargetImpl(*Caller)->getFeatureBits();
 | |
|   const FeatureBitset &CalleeBits =
 | |
|       TM.getSubtargetImpl(*Callee)->getFeatureBits();
 | |
| 
 | |
|   FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
 | |
|   FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
 | |
|   return (RealCallerBits & RealCalleeBits) == RealCalleeBits;
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::areFunctionArgsABICompatible(
 | |
|     const Function *Caller, const Function *Callee,
 | |
|     SmallPtrSetImpl<Argument *> &Args) const {
 | |
|   if (!BaseT::areFunctionArgsABICompatible(Caller, Callee, Args))
 | |
|     return false;
 | |
| 
 | |
|   // If we get here, we know the target features match. If one function
 | |
|   // considers 512-bit vectors legal and the other does not, consider them
 | |
|   // incompatible.
 | |
|   const TargetMachine &TM = getTLI()->getTargetMachine();
 | |
| 
 | |
|   if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
 | |
|       TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
 | |
|     return true;
 | |
| 
 | |
|   // Consider the arguments compatible if they aren't vectors or aggregates.
 | |
|   // FIXME: Look at the size of vectors.
 | |
|   // FIXME: Look at the element types of aggregates to see if there are vectors.
 | |
|   // FIXME: The API of this function seems intended to allow arguments
 | |
|   // to be removed from the set, but the caller doesn't check if the set
 | |
|   // becomes empty so that may not work in practice.
 | |
|   return llvm::none_of(Args, [](Argument *A) {
 | |
|     auto *EltTy = cast<PointerType>(A->getType())->getElementType();
 | |
|     return EltTy->isVectorTy() || EltTy->isAggregateType();
 | |
|   });
 | |
| }
 | |
| 
 | |
| X86TTIImpl::TTI::MemCmpExpansionOptions
 | |
| X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
 | |
|   TTI::MemCmpExpansionOptions Options;
 | |
|   Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
 | |
|   Options.NumLoadsPerBlock = 2;
 | |
|   // All GPR and vector loads can be unaligned.
 | |
|   Options.AllowOverlappingLoads = true;
 | |
|   if (IsZeroCmp) {
 | |
|     // Only enable vector loads for equality comparison. Right now the vector
 | |
|     // version is not as fast for three way compare (see #33329).
 | |
|     const unsigned PreferredWidth = ST->getPreferVectorWidth();
 | |
|     if (PreferredWidth >= 512 && ST->hasAVX512()) Options.LoadSizes.push_back(64);
 | |
|     if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
 | |
|     if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
 | |
|   }
 | |
|   if (ST->is64Bit()) {
 | |
|     Options.LoadSizes.push_back(8);
 | |
|   }
 | |
|   Options.LoadSizes.push_back(4);
 | |
|   Options.LoadSizes.push_back(2);
 | |
|   Options.LoadSizes.push_back(1);
 | |
|   return Options;
 | |
| }
 | |
| 
 | |
| bool X86TTIImpl::enableInterleavedAccessVectorization() {
 | |
|   // TODO: We expect this to be beneficial regardless of arch,
 | |
|   // but there are currently some unexplained performance artifacts on Atom.
 | |
|   // As a temporary solution, disable on Atom.
 | |
|   return !(ST->isAtom());
 | |
| }
 | |
| 
 | |
| // Get estimation for interleaved load/store operations for AVX2.
 | |
| // \p Factor is the interleaved-access factor (stride) - number of
 | |
| // (interleaved) elements in the group.
 | |
| // \p Indices contains the indices for a strided load: when the
 | |
| // interleaved load has gaps they indicate which elements are used.
 | |
| // If Indices is empty (or if the number of indices is equal to the size
 | |
| // of the interleaved-access as given in \p Factor) the access has no gaps.
 | |
| //
 | |
| // As opposed to AVX-512, AVX2 does not have generic shuffles that allow
 | |
| // computing the cost using a generic formula as a function of generic
 | |
| // shuffles. We therefore use a lookup table instead, filled according to
 | |
| // the instruction sequences that codegen currently generates.
 | |
| int X86TTIImpl::getInterleavedMemoryOpCostAVX2(
 | |
|     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
 | |
|     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
 | |
|     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
 | |
| 
 | |
|   if (UseMaskForCond || UseMaskForGaps)
 | |
|     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | |
|                                              Alignment, AddressSpace, CostKind,
 | |
|                                              UseMaskForCond, UseMaskForGaps);
 | |
| 
 | |
|   // We currently Support only fully-interleaved groups, with no gaps.
 | |
|   // TODO: Support also strided loads (interleaved-groups with gaps).
 | |
|   if (Indices.size() && Indices.size() != Factor)
 | |
|     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | |
|                                              Alignment, AddressSpace,
 | |
|                                              CostKind);
 | |
| 
 | |
|   // VecTy for interleave memop is <VF*Factor x Elt>.
 | |
|   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
 | |
|   // VecTy = <12 x i32>.
 | |
|   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
 | |
| 
 | |
|   // This function can be called with VecTy=<6xi128>, Factor=3, in which case
 | |
|   // the VF=2, while v2i128 is an unsupported MVT vector type
 | |
|   // (see MachineValueType.h::getVectorVT()).
 | |
|   if (!LegalVT.isVector())
 | |
|     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | |
|                                              Alignment, AddressSpace,
 | |
|                                              CostKind);
 | |
| 
 | |
|   unsigned VF = VecTy->getNumElements() / Factor;
 | |
|   Type *ScalarTy = VecTy->getElementType();
 | |
| 
 | |
|   // Calculate the number of memory operations (NumOfMemOps), required
 | |
|   // for load/store the VecTy.
 | |
|   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
 | |
|   unsigned LegalVTSize = LegalVT.getStoreSize();
 | |
|   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
 | |
| 
 | |
|   // Get the cost of one memory operation.
 | |
|   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
 | |
|                                              LegalVT.getVectorNumElements());
 | |
|   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
 | |
|                                        MaybeAlign(Alignment), AddressSpace,
 | |
|                                        CostKind);
 | |
| 
 | |
|   auto *VT = FixedVectorType::get(ScalarTy, VF);
 | |
|   EVT ETy = TLI->getValueType(DL, VT);
 | |
|   if (!ETy.isSimple())
 | |
|     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | |
|                                              Alignment, AddressSpace,
 | |
|                                              CostKind);
 | |
| 
 | |
|   // TODO: Complete for other data-types and strides.
 | |
|   // Each combination of Stride, ElementTy and VF results in a different
 | |
|   // sequence; The cost tables are therefore accessed with:
 | |
|   // Factor (stride) and VectorType=VFxElemType.
 | |
|   // The Cost accounts only for the shuffle sequence;
 | |
|   // The cost of the loads/stores is accounted for separately.
 | |
|   //
 | |
|   static const CostTblEntry AVX2InterleavedLoadTbl[] = {
 | |
|     { 2, MVT::v4i64, 6 }, //(load 8i64 and) deinterleave into 2 x 4i64
 | |
|     { 2, MVT::v4f64, 6 }, //(load 8f64 and) deinterleave into 2 x 4f64
 | |
| 
 | |
|     { 3, MVT::v2i8,  10 }, //(load 6i8 and)  deinterleave into 3 x 2i8
 | |
|     { 3, MVT::v4i8,  4 },  //(load 12i8 and) deinterleave into 3 x 4i8
 | |
|     { 3, MVT::v8i8,  9 },  //(load 24i8 and) deinterleave into 3 x 8i8
 | |
|     { 3, MVT::v16i8, 11},  //(load 48i8 and) deinterleave into 3 x 16i8
 | |
|     { 3, MVT::v32i8, 13},  //(load 96i8 and) deinterleave into 3 x 32i8
 | |
|     { 3, MVT::v8f32, 17 }, //(load 24f32 and)deinterleave into 3 x 8f32
 | |
| 
 | |
|     { 4, MVT::v2i8,  12 }, //(load 8i8 and)   deinterleave into 4 x 2i8
 | |
|     { 4, MVT::v4i8,  4 },  //(load 16i8 and)  deinterleave into 4 x 4i8
 | |
|     { 4, MVT::v8i8,  20 }, //(load 32i8 and)  deinterleave into 4 x 8i8
 | |
|     { 4, MVT::v16i8, 39 }, //(load 64i8 and)  deinterleave into 4 x 16i8
 | |
|     { 4, MVT::v32i8, 80 }, //(load 128i8 and) deinterleave into 4 x 32i8
 | |
| 
 | |
|     { 8, MVT::v8f32, 40 }  //(load 64f32 and)deinterleave into 8 x 8f32
 | |
|   };
 | |
| 
 | |
|   static const CostTblEntry AVX2InterleavedStoreTbl[] = {
 | |
|     { 2, MVT::v4i64, 6 }, //interleave into 2 x 4i64 into 8i64 (and store)
 | |
|     { 2, MVT::v4f64, 6 }, //interleave into 2 x 4f64 into 8f64 (and store)
 | |
| 
 | |
|     { 3, MVT::v2i8,  7 },  //interleave 3 x 2i8  into 6i8 (and store)
 | |
|     { 3, MVT::v4i8,  8 },  //interleave 3 x 4i8  into 12i8 (and store)
 | |
|     { 3, MVT::v8i8,  11 }, //interleave 3 x 8i8  into 24i8 (and store)
 | |
|     { 3, MVT::v16i8, 11 }, //interleave 3 x 16i8 into 48i8 (and store)
 | |
|     { 3, MVT::v32i8, 13 }, //interleave 3 x 32i8 into 96i8 (and store)
 | |
| 
 | |
|     { 4, MVT::v2i8,  12 }, //interleave 4 x 2i8  into 8i8 (and store)
 | |
|     { 4, MVT::v4i8,  9 },  //interleave 4 x 4i8  into 16i8 (and store)
 | |
|     { 4, MVT::v8i8,  10 }, //interleave 4 x 8i8  into 32i8 (and store)
 | |
|     { 4, MVT::v16i8, 10 }, //interleave 4 x 16i8 into 64i8 (and store)
 | |
|     { 4, MVT::v32i8, 12 }  //interleave 4 x 32i8 into 128i8 (and store)
 | |
|   };
 | |
| 
 | |
|   if (Opcode == Instruction::Load) {
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(AVX2InterleavedLoadTbl, Factor, ETy.getSimpleVT()))
 | |
|       return NumOfMemOps * MemOpCost + Entry->Cost;
 | |
|   } else {
 | |
|     assert(Opcode == Instruction::Store &&
 | |
|            "Expected Store Instruction at this  point");
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(AVX2InterleavedStoreTbl, Factor, ETy.getSimpleVT()))
 | |
|       return NumOfMemOps * MemOpCost + Entry->Cost;
 | |
|   }
 | |
| 
 | |
|   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | |
|                                            Alignment, AddressSpace, CostKind);
 | |
| }
 | |
| 
 | |
| // Get estimation for interleaved load/store operations and strided load.
 | |
| // \p Indices contains indices for strided load.
 | |
| // \p Factor - the factor of interleaving.
 | |
| // AVX-512 provides 3-src shuffles that significantly reduces the cost.
 | |
| int X86TTIImpl::getInterleavedMemoryOpCostAVX512(
 | |
|     unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
 | |
|     ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
 | |
|     TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
 | |
| 
 | |
|   if (UseMaskForCond || UseMaskForGaps)
 | |
|     return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | |
|                                              Alignment, AddressSpace, CostKind,
 | |
|                                              UseMaskForCond, UseMaskForGaps);
 | |
| 
 | |
|   // VecTy for interleave memop is <VF*Factor x Elt>.
 | |
|   // So, for VF=4, Interleave Factor = 3, Element type = i32 we have
 | |
|   // VecTy = <12 x i32>.
 | |
| 
 | |
|   // Calculate the number of memory operations (NumOfMemOps), required
 | |
|   // for load/store the VecTy.
 | |
|   MVT LegalVT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
 | |
|   unsigned VecTySize = DL.getTypeStoreSize(VecTy);
 | |
|   unsigned LegalVTSize = LegalVT.getStoreSize();
 | |
|   unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
 | |
| 
 | |
|   // Get the cost of one memory operation.
 | |
|   auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
 | |
|                                              LegalVT.getVectorNumElements());
 | |
|   unsigned MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy,
 | |
|                                        MaybeAlign(Alignment), AddressSpace,
 | |
|                                        CostKind);
 | |
| 
 | |
|   unsigned VF = VecTy->getNumElements() / Factor;
 | |
|   MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
 | |
| 
 | |
|   if (Opcode == Instruction::Load) {
 | |
|     // The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
 | |
|     // contain the cost of the optimized shuffle sequence that the
 | |
|     // X86InterleavedAccess pass will generate.
 | |
|     // The cost of loads and stores are computed separately from the table.
 | |
| 
 | |
|     // X86InterleavedAccess support only the following interleaved-access group.
 | |
|     static const CostTblEntry AVX512InterleavedLoadTbl[] = {
 | |
|         {3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
 | |
|         {3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
 | |
|         {3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
 | |
|     };
 | |
| 
 | |
|     if (const auto *Entry =
 | |
|             CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
 | |
|       return NumOfMemOps * MemOpCost + Entry->Cost;
 | |
|     //If an entry does not exist, fallback to the default implementation.
 | |
| 
 | |
|     // Kind of shuffle depends on number of loaded values.
 | |
|     // If we load the entire data in one register, we can use a 1-src shuffle.
 | |
|     // Otherwise, we'll merge 2 sources in each operation.
 | |
|     TTI::ShuffleKind ShuffleKind =
 | |
|         (NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
 | |
| 
 | |
|     unsigned ShuffleCost =
 | |
|         getShuffleCost(ShuffleKind, SingleMemOpTy, 0, nullptr);
 | |
| 
 | |
|     unsigned NumOfLoadsInInterleaveGrp =
 | |
|         Indices.size() ? Indices.size() : Factor;
 | |
|     auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
 | |
|                                           VecTy->getNumElements() / Factor);
 | |
|     unsigned NumOfResults =
 | |
|         getTLI()->getTypeLegalizationCost(DL, ResultTy).first *
 | |
|         NumOfLoadsInInterleaveGrp;
 | |
| 
 | |
|     // About a half of the loads may be folded in shuffles when we have only
 | |
|     // one result. If we have more than one result, we do not fold loads at all.
 | |
|     unsigned NumOfUnfoldedLoads =
 | |
|         NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
 | |
| 
 | |
|     // Get a number of shuffle operations per result.
 | |
|     unsigned NumOfShufflesPerResult =
 | |
|         std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
 | |
| 
 | |
|     // The SK_MergeTwoSrc shuffle clobbers one of src operands.
 | |
|     // When we have more than one destination, we need additional instructions
 | |
|     // to keep sources.
 | |
|     unsigned NumOfMoves = 0;
 | |
|     if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
 | |
|       NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
 | |
| 
 | |
|     int Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
 | |
|                NumOfUnfoldedLoads * MemOpCost + NumOfMoves;
 | |
| 
 | |
|     return Cost;
 | |
|   }
 | |
| 
 | |
|   // Store.
 | |
|   assert(Opcode == Instruction::Store &&
 | |
|          "Expected Store Instruction at this  point");
 | |
|   // X86InterleavedAccess support only the following interleaved-access group.
 | |
|   static const CostTblEntry AVX512InterleavedStoreTbl[] = {
 | |
|       {3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
 | |
|       {3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
 | |
|       {3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
 | |
| 
 | |
|       {4, MVT::v8i8, 10},  // interleave 4 x 8i8  into 32i8  (and store)
 | |
|       {4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8  (and store)
 | |
|       {4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
 | |
|       {4, MVT::v64i8, 24}  // interleave 4 x 32i8 into 256i8 (and store)
 | |
|   };
 | |
| 
 | |
|   if (const auto *Entry =
 | |
|           CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
 | |
|     return NumOfMemOps * MemOpCost + Entry->Cost;
 | |
|   //If an entry does not exist, fallback to the default implementation.
 | |
| 
 | |
|   // There is no strided stores meanwhile. And store can't be folded in
 | |
|   // shuffle.
 | |
|   unsigned NumOfSources = Factor; // The number of values to be merged.
 | |
|   unsigned ShuffleCost =
 | |
|       getShuffleCost(TTI::SK_PermuteTwoSrc, SingleMemOpTy, 0, nullptr);
 | |
|   unsigned NumOfShufflesPerStore = NumOfSources - 1;
 | |
| 
 | |
|   // The SK_MergeTwoSrc shuffle clobbers one of src operands.
 | |
|   // We need additional instructions to keep sources.
 | |
|   unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
 | |
|   int Cost = NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
 | |
|              NumOfMoves;
 | |
|   return Cost;
 | |
| }
 | |
| 
 | |
| int X86TTIImpl::getInterleavedMemoryOpCost(
 | |
|     unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
 | |
|     Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
 | |
|     bool UseMaskForCond, bool UseMaskForGaps) {
 | |
|   auto isSupportedOnAVX512 = [](Type *VecTy, bool HasBW) {
 | |
|     Type *EltTy = cast<VectorType>(VecTy)->getElementType();
 | |
|     if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
 | |
|         EltTy->isIntegerTy(32) || EltTy->isPointerTy())
 | |
|       return true;
 | |
|     if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8))
 | |
|       return HasBW;
 | |
|     return false;
 | |
|   };
 | |
|   if (ST->hasAVX512() && isSupportedOnAVX512(VecTy, ST->hasBWI()))
 | |
|     return getInterleavedMemoryOpCostAVX512(
 | |
|         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
 | |
|         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
 | |
|   if (ST->hasAVX2())
 | |
|     return getInterleavedMemoryOpCostAVX2(
 | |
|         Opcode, cast<FixedVectorType>(VecTy), Factor, Indices, Alignment,
 | |
|         AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
 | |
| 
 | |
|   return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
 | |
|                                            Alignment, AddressSpace, CostKind,
 | |
|                                            UseMaskForCond, UseMaskForGaps);
 | |
| }
 |