408 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			408 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- ConstraintElimination.cpp - Eliminate conds using constraints. ----===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Eliminate conditions based on constraints collected from dominating
 | 
						|
// conditions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/ConstraintElimination.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/ConstraintSystem.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/DebugCounter.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "constraint-elimination"
 | 
						|
 | 
						|
STATISTIC(NumCondsRemoved, "Number of instructions removed");
 | 
						|
DEBUG_COUNTER(EliminatedCounter, "conds-eliminated",
 | 
						|
              "Controls which conditions are eliminated");
 | 
						|
 | 
						|
static int64_t MaxConstraintValue = std::numeric_limits<int64_t>::max();
 | 
						|
 | 
						|
// Decomposes \p V into a vector of pairs of the form { c, X } where c * X. The
 | 
						|
// sum of the pairs equals \p V.  The first pair is the constant-factor and X
 | 
						|
// must be nullptr. If the expression cannot be decomposed, returns an empty
 | 
						|
// vector.
 | 
						|
static SmallVector<std::pair<int64_t, Value *>, 4> decompose(Value *V) {
 | 
						|
  if (auto *CI = dyn_cast<ConstantInt>(V)) {
 | 
						|
    if (CI->isNegative() || CI->uge(MaxConstraintValue))
 | 
						|
      return {};
 | 
						|
    return {{CI->getSExtValue(), nullptr}};
 | 
						|
  }
 | 
						|
  auto *GEP = dyn_cast<GetElementPtrInst>(V);
 | 
						|
  if (GEP && GEP->getNumOperands() == 2) {
 | 
						|
    if (isa<ConstantInt>(GEP->getOperand(GEP->getNumOperands() - 1))) {
 | 
						|
      return {{cast<ConstantInt>(GEP->getOperand(GEP->getNumOperands() - 1))
 | 
						|
                   ->getSExtValue(),
 | 
						|
               nullptr},
 | 
						|
              {1, GEP->getPointerOperand()}};
 | 
						|
    }
 | 
						|
    Value *Op0;
 | 
						|
    ConstantInt *CI;
 | 
						|
    if (match(GEP->getOperand(GEP->getNumOperands() - 1),
 | 
						|
              m_NUWShl(m_Value(Op0), m_ConstantInt(CI))))
 | 
						|
      return {{0, nullptr},
 | 
						|
              {1, GEP->getPointerOperand()},
 | 
						|
              {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
 | 
						|
    if (match(GEP->getOperand(GEP->getNumOperands() - 1),
 | 
						|
              m_ZExt(m_NUWShl(m_Value(Op0), m_ConstantInt(CI)))))
 | 
						|
      return {{0, nullptr},
 | 
						|
              {1, GEP->getPointerOperand()},
 | 
						|
              {std::pow(int64_t(2), CI->getSExtValue()), Op0}};
 | 
						|
 | 
						|
    return {{0, nullptr},
 | 
						|
            {1, GEP->getPointerOperand()},
 | 
						|
            {1, GEP->getOperand(GEP->getNumOperands() - 1)}};
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Op0;
 | 
						|
  Value *Op1;
 | 
						|
  ConstantInt *CI;
 | 
						|
  if (match(V, m_NUWAdd(m_Value(Op0), m_ConstantInt(CI))))
 | 
						|
    return {{CI->getSExtValue(), nullptr}, {1, Op0}};
 | 
						|
  if (match(V, m_NUWAdd(m_Value(Op0), m_Value(Op1))))
 | 
						|
    return {{0, nullptr}, {1, Op0}, {1, Op1}};
 | 
						|
 | 
						|
  if (match(V, m_NUWSub(m_Value(Op0), m_ConstantInt(CI))))
 | 
						|
    return {{-1 * CI->getSExtValue(), nullptr}, {1, Op0}};
 | 
						|
  if (match(V, m_NUWSub(m_Value(Op0), m_Value(Op1))))
 | 
						|
    return {{0, nullptr}, {1, Op0}, {1, Op1}};
 | 
						|
 | 
						|
  return {{0, nullptr}, {1, V}};
 | 
						|
}
 | 
						|
 | 
						|
/// Turn a condition \p CmpI into a constraint vector, using indices from \p
 | 
						|
/// Value2Index. If \p ShouldAdd is true, new indices are added for values not
 | 
						|
/// yet in \p Value2Index.
 | 
						|
static SmallVector<int64_t, 8>
 | 
						|
getConstraint(CmpInst::Predicate Pred, Value *Op0, Value *Op1,
 | 
						|
              DenseMap<Value *, unsigned> &Value2Index, bool ShouldAdd) {
 | 
						|
  int64_t Offset1 = 0;
 | 
						|
  int64_t Offset2 = 0;
 | 
						|
 | 
						|
  auto TryToGetIndex = [ShouldAdd,
 | 
						|
                        &Value2Index](Value *V) -> Optional<unsigned> {
 | 
						|
    if (ShouldAdd) {
 | 
						|
      Value2Index.insert({V, Value2Index.size() + 1});
 | 
						|
      return Value2Index[V];
 | 
						|
    }
 | 
						|
    auto I = Value2Index.find(V);
 | 
						|
    if (I == Value2Index.end())
 | 
						|
      return None;
 | 
						|
    return I->second;
 | 
						|
  };
 | 
						|
 | 
						|
  if (Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE)
 | 
						|
    return getConstraint(CmpInst::getSwappedPredicate(Pred), Op1, Op0,
 | 
						|
                         Value2Index, ShouldAdd);
 | 
						|
 | 
						|
  // Only ULE and ULT predicates are supported at the moment.
 | 
						|
  if (Pred != CmpInst::ICMP_ULE && Pred != CmpInst::ICMP_ULT)
 | 
						|
    return {};
 | 
						|
 | 
						|
  auto ADec = decompose(Op0);
 | 
						|
  auto BDec = decompose(Op1);
 | 
						|
  // Skip if decomposing either of the values failed.
 | 
						|
  if (ADec.empty() || BDec.empty())
 | 
						|
    return {};
 | 
						|
 | 
						|
  // Skip trivial constraints without any variables.
 | 
						|
  if (ADec.size() == 1 && BDec.size() == 1)
 | 
						|
    return {};
 | 
						|
 | 
						|
  Offset1 = ADec[0].first;
 | 
						|
  Offset2 = BDec[0].first;
 | 
						|
  Offset1 *= -1;
 | 
						|
 | 
						|
  // Create iterator ranges that skip the constant-factor.
 | 
						|
  auto VariablesA = make_range(std::next(ADec.begin()), ADec.end());
 | 
						|
  auto VariablesB = make_range(std::next(BDec.begin()), BDec.end());
 | 
						|
 | 
						|
  // Check if each referenced value in the constraint is already in the system
 | 
						|
  // or can be added (if ShouldAdd is true).
 | 
						|
  for (const auto &KV :
 | 
						|
       concat<std::pair<int64_t, Value *>>(VariablesA, VariablesB))
 | 
						|
    if (!TryToGetIndex(KV.second))
 | 
						|
      return {};
 | 
						|
 | 
						|
  // Build result constraint, by first adding all coefficients from A and then
 | 
						|
  // subtracting all coefficients from B.
 | 
						|
  SmallVector<int64_t, 8> R(Value2Index.size() + 1, 0);
 | 
						|
  for (const auto &KV : VariablesA)
 | 
						|
    R[Value2Index[KV.second]] += KV.first;
 | 
						|
 | 
						|
  for (const auto &KV : VariablesB)
 | 
						|
    R[Value2Index[KV.second]] -= KV.first;
 | 
						|
 | 
						|
  R[0] = Offset1 + Offset2 + (Pred == CmpInst::ICMP_ULT ? -1 : 0);
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
static SmallVector<int64_t, 8>
 | 
						|
getConstraint(CmpInst *Cmp, DenseMap<Value *, unsigned> &Value2Index,
 | 
						|
              bool ShouldAdd) {
 | 
						|
  return getConstraint(Cmp->getPredicate(), Cmp->getOperand(0),
 | 
						|
                       Cmp->getOperand(1), Value2Index, ShouldAdd);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Represents either a condition that holds on entry to a block or a basic
 | 
						|
/// block, with their respective Dominator DFS in and out numbers.
 | 
						|
struct ConstraintOrBlock {
 | 
						|
  unsigned NumIn;
 | 
						|
  unsigned NumOut;
 | 
						|
  bool IsBlock;
 | 
						|
  bool Not;
 | 
						|
  union {
 | 
						|
    BasicBlock *BB;
 | 
						|
    CmpInst *Condition;
 | 
						|
  };
 | 
						|
 | 
						|
  ConstraintOrBlock(DomTreeNode *DTN)
 | 
						|
      : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(true),
 | 
						|
        BB(DTN->getBlock()) {}
 | 
						|
  ConstraintOrBlock(DomTreeNode *DTN, CmpInst *Condition, bool Not)
 | 
						|
      : NumIn(DTN->getDFSNumIn()), NumOut(DTN->getDFSNumOut()), IsBlock(false),
 | 
						|
        Not(Not), Condition(Condition) {}
 | 
						|
};
 | 
						|
 | 
						|
struct StackEntry {
 | 
						|
  unsigned NumIn;
 | 
						|
  unsigned NumOut;
 | 
						|
  CmpInst *Condition;
 | 
						|
  bool IsNot;
 | 
						|
 | 
						|
  StackEntry(unsigned NumIn, unsigned NumOut, CmpInst *Condition, bool IsNot)
 | 
						|
      : NumIn(NumIn), NumOut(NumOut), Condition(Condition), IsNot(IsNot) {}
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
static bool eliminateConstraints(Function &F, DominatorTree &DT) {
 | 
						|
  bool Changed = false;
 | 
						|
  DT.updateDFSNumbers();
 | 
						|
  ConstraintSystem CS;
 | 
						|
 | 
						|
  SmallVector<ConstraintOrBlock, 64> WorkList;
 | 
						|
 | 
						|
  // First, collect conditions implied by branches and blocks with their
 | 
						|
  // Dominator DFS in and out numbers.
 | 
						|
  for (BasicBlock &BB : F) {
 | 
						|
    if (!DT.getNode(&BB))
 | 
						|
      continue;
 | 
						|
    WorkList.emplace_back(DT.getNode(&BB));
 | 
						|
 | 
						|
    auto *Br = dyn_cast<BranchInst>(BB.getTerminator());
 | 
						|
    if (!Br || !Br->isConditional())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the condition is an OR of 2 compares and the false successor only has
 | 
						|
    // the current block as predecessor, queue both negated conditions for the
 | 
						|
    // false successor.
 | 
						|
    Value *Op0, *Op1;
 | 
						|
    if (match(Br->getCondition(), m_LogicalOr(m_Value(Op0), m_Value(Op1))) &&
 | 
						|
        match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
 | 
						|
      BasicBlock *FalseSuccessor = Br->getSuccessor(1);
 | 
						|
      if (FalseSuccessor->getSinglePredecessor()) {
 | 
						|
        WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op0),
 | 
						|
                              true);
 | 
						|
        WorkList.emplace_back(DT.getNode(FalseSuccessor), cast<CmpInst>(Op1),
 | 
						|
                              true);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If the condition is an AND of 2 compares and the true successor only has
 | 
						|
    // the current block as predecessor, queue both conditions for the true
 | 
						|
    // successor.
 | 
						|
    if (match(Br->getCondition(), m_LogicalAnd(m_Value(Op0), m_Value(Op1))) &&
 | 
						|
        match(Op0, m_Cmp()) && match(Op1, m_Cmp())) {
 | 
						|
      BasicBlock *TrueSuccessor = Br->getSuccessor(0);
 | 
						|
      if (TrueSuccessor->getSinglePredecessor()) {
 | 
						|
        WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op0),
 | 
						|
                              false);
 | 
						|
        WorkList.emplace_back(DT.getNode(TrueSuccessor), cast<CmpInst>(Op1),
 | 
						|
                              false);
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    auto *CmpI = dyn_cast<CmpInst>(Br->getCondition());
 | 
						|
    if (!CmpI)
 | 
						|
      continue;
 | 
						|
    if (Br->getSuccessor(0)->getSinglePredecessor())
 | 
						|
      WorkList.emplace_back(DT.getNode(Br->getSuccessor(0)), CmpI, false);
 | 
						|
    if (Br->getSuccessor(1)->getSinglePredecessor())
 | 
						|
      WorkList.emplace_back(DT.getNode(Br->getSuccessor(1)), CmpI, true);
 | 
						|
  }
 | 
						|
 | 
						|
  // Next, sort worklist by dominance, so that dominating blocks and conditions
 | 
						|
  // come before blocks and conditions dominated by them. If a block and a
 | 
						|
  // condition have the same numbers, the condition comes before the block, as
 | 
						|
  // it holds on entry to the block.
 | 
						|
  sort(WorkList, [](const ConstraintOrBlock &A, const ConstraintOrBlock &B) {
 | 
						|
    return std::tie(A.NumIn, A.IsBlock) < std::tie(B.NumIn, B.IsBlock);
 | 
						|
  });
 | 
						|
 | 
						|
  // Finally, process ordered worklist and eliminate implied conditions.
 | 
						|
  SmallVector<StackEntry, 16> DFSInStack;
 | 
						|
  DenseMap<Value *, unsigned> Value2Index;
 | 
						|
  for (ConstraintOrBlock &CB : WorkList) {
 | 
						|
    // First, pop entries from the stack that are out-of-scope for CB. Remove
 | 
						|
    // the corresponding entry from the constraint system.
 | 
						|
    while (!DFSInStack.empty()) {
 | 
						|
      auto &E = DFSInStack.back();
 | 
						|
      LLVM_DEBUG(dbgs() << "Top of stack : " << E.NumIn << " " << E.NumOut
 | 
						|
                        << "\n");
 | 
						|
      LLVM_DEBUG(dbgs() << "CB: " << CB.NumIn << " " << CB.NumOut << "\n");
 | 
						|
      assert(E.NumIn <= CB.NumIn);
 | 
						|
      if (CB.NumOut <= E.NumOut)
 | 
						|
        break;
 | 
						|
      LLVM_DEBUG(dbgs() << "Removing " << *E.Condition << " " << E.IsNot
 | 
						|
                        << "\n");
 | 
						|
      DFSInStack.pop_back();
 | 
						|
      CS.popLastConstraint();
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DEBUG({
 | 
						|
      dbgs() << "Processing ";
 | 
						|
      if (CB.IsBlock)
 | 
						|
        dbgs() << *CB.BB;
 | 
						|
      else
 | 
						|
        dbgs() << *CB.Condition;
 | 
						|
      dbgs() << "\n";
 | 
						|
    });
 | 
						|
 | 
						|
    // For a block, check if any CmpInsts become known based on the current set
 | 
						|
    // of constraints.
 | 
						|
    if (CB.IsBlock) {
 | 
						|
      for (Instruction &I : *CB.BB) {
 | 
						|
        auto *Cmp = dyn_cast<CmpInst>(&I);
 | 
						|
        if (!Cmp)
 | 
						|
          continue;
 | 
						|
        auto R = getConstraint(Cmp, Value2Index, false);
 | 
						|
        if (R.empty() || R.size() == 1)
 | 
						|
          continue;
 | 
						|
        if (CS.isConditionImplied(R)) {
 | 
						|
          if (!DebugCounter::shouldExecute(EliminatedCounter))
 | 
						|
            continue;
 | 
						|
 | 
						|
          LLVM_DEBUG(dbgs() << "Condition " << *Cmp
 | 
						|
                            << " implied by dominating constraints\n");
 | 
						|
          LLVM_DEBUG({
 | 
						|
            for (auto &E : reverse(DFSInStack))
 | 
						|
              dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
 | 
						|
          });
 | 
						|
          Cmp->replaceAllUsesWith(
 | 
						|
              ConstantInt::getTrue(F.getParent()->getContext()));
 | 
						|
          NumCondsRemoved++;
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
        if (CS.isConditionImplied(ConstraintSystem::negate(R))) {
 | 
						|
          if (!DebugCounter::shouldExecute(EliminatedCounter))
 | 
						|
            continue;
 | 
						|
 | 
						|
          LLVM_DEBUG(dbgs() << "Condition !" << *Cmp
 | 
						|
                            << " implied by dominating constraints\n");
 | 
						|
          LLVM_DEBUG({
 | 
						|
            for (auto &E : reverse(DFSInStack))
 | 
						|
              dbgs() << "   C " << *E.Condition << " " << E.IsNot << "\n";
 | 
						|
          });
 | 
						|
          Cmp->replaceAllUsesWith(
 | 
						|
              ConstantInt::getFalse(F.getParent()->getContext()));
 | 
						|
          NumCondsRemoved++;
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, add the condition to the system and stack, if we can transform
 | 
						|
    // it into a constraint.
 | 
						|
    auto R = getConstraint(CB.Condition, Value2Index, true);
 | 
						|
    if (R.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Adding " << *CB.Condition << " " << CB.Not << "\n");
 | 
						|
    if (CB.Not)
 | 
						|
      R = ConstraintSystem::negate(R);
 | 
						|
 | 
						|
    // If R has been added to the system, queue it for removal once it goes
 | 
						|
    // out-of-scope.
 | 
						|
    if (CS.addVariableRowFill(R))
 | 
						|
      DFSInStack.emplace_back(CB.NumIn, CB.NumOut, CB.Condition, CB.Not);
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses ConstraintEliminationPass::run(Function &F,
 | 
						|
                                                 FunctionAnalysisManager &AM) {
 | 
						|
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  if (!eliminateConstraints(F, DT))
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<DominatorTreeAnalysis>();
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  PA.preserveSet<CFGAnalyses>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class ConstraintElimination : public FunctionPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  ConstraintElimination() : FunctionPass(ID) {
 | 
						|
    initializeConstraintEliminationPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    return eliminateConstraints(F, DT);
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.setPreservesCFG();
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char ConstraintElimination::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(ConstraintElimination, "constraint-elimination",
 | 
						|
                      "Constraint Elimination", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(ConstraintElimination, "constraint-elimination",
 | 
						|
                    "Constraint Elimination", false, false)
 | 
						|
 | 
						|
FunctionPass *llvm::createConstraintEliminationPass() {
 | 
						|
  return new ConstraintElimination();
 | 
						|
}
 |