1049 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1049 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the Correlated Value Propagation pass.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h"
 | 
						|
#include "llvm/ADT/DepthFirstIterator.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/DomTreeUpdater.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LazyValueInfo.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/ConstantRange.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include <cassert>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "correlated-value-propagation"
 | 
						|
 | 
						|
STATISTIC(NumPhis,      "Number of phis propagated");
 | 
						|
STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value");
 | 
						|
STATISTIC(NumSelects,   "Number of selects propagated");
 | 
						|
STATISTIC(NumMemAccess, "Number of memory access targets propagated");
 | 
						|
STATISTIC(NumCmps,      "Number of comparisons propagated");
 | 
						|
STATISTIC(NumReturns,   "Number of return values propagated");
 | 
						|
STATISTIC(NumDeadCases, "Number of switch cases removed");
 | 
						|
STATISTIC(NumSDivSRemsNarrowed,
 | 
						|
          "Number of sdivs/srems whose width was decreased");
 | 
						|
STATISTIC(NumSDivs,     "Number of sdiv converted to udiv");
 | 
						|
STATISTIC(NumUDivURemsNarrowed,
 | 
						|
          "Number of udivs/urems whose width was decreased");
 | 
						|
STATISTIC(NumAShrs,     "Number of ashr converted to lshr");
 | 
						|
STATISTIC(NumSRems,     "Number of srem converted to urem");
 | 
						|
STATISTIC(NumSExt,      "Number of sext converted to zext");
 | 
						|
STATISTIC(NumAnd,       "Number of ands removed");
 | 
						|
STATISTIC(NumNW,        "Number of no-wrap deductions");
 | 
						|
STATISTIC(NumNSW,       "Number of no-signed-wrap deductions");
 | 
						|
STATISTIC(NumNUW,       "Number of no-unsigned-wrap deductions");
 | 
						|
STATISTIC(NumAddNW,     "Number of no-wrap deductions for add");
 | 
						|
STATISTIC(NumAddNSW,    "Number of no-signed-wrap deductions for add");
 | 
						|
STATISTIC(NumAddNUW,    "Number of no-unsigned-wrap deductions for add");
 | 
						|
STATISTIC(NumSubNW,     "Number of no-wrap deductions for sub");
 | 
						|
STATISTIC(NumSubNSW,    "Number of no-signed-wrap deductions for sub");
 | 
						|
STATISTIC(NumSubNUW,    "Number of no-unsigned-wrap deductions for sub");
 | 
						|
STATISTIC(NumMulNW,     "Number of no-wrap deductions for mul");
 | 
						|
STATISTIC(NumMulNSW,    "Number of no-signed-wrap deductions for mul");
 | 
						|
STATISTIC(NumMulNUW,    "Number of no-unsigned-wrap deductions for mul");
 | 
						|
STATISTIC(NumShlNW,     "Number of no-wrap deductions for shl");
 | 
						|
STATISTIC(NumShlNSW,    "Number of no-signed-wrap deductions for shl");
 | 
						|
STATISTIC(NumShlNUW,    "Number of no-unsigned-wrap deductions for shl");
 | 
						|
STATISTIC(NumOverflows, "Number of overflow checks removed");
 | 
						|
STATISTIC(NumSaturating,
 | 
						|
    "Number of saturating arithmetics converted to normal arithmetics");
 | 
						|
 | 
						|
static cl::opt<bool> DontAddNoWrapFlags("cvp-dont-add-nowrap-flags", cl::init(false));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
  class CorrelatedValuePropagation : public FunctionPass {
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
 | 
						|
    CorrelatedValuePropagation(): FunctionPass(ID) {
 | 
						|
     initializeCorrelatedValuePropagationPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) override;
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
      AU.addRequired<LazyValueInfoWrapperPass>();
 | 
						|
      AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
      AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
      AU.addPreserved<LazyValueInfoWrapperPass>();
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char CorrelatedValuePropagation::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(CorrelatedValuePropagation, "correlated-propagation",
 | 
						|
                "Value Propagation", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LazyValueInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(CorrelatedValuePropagation, "correlated-propagation",
 | 
						|
                "Value Propagation", false, false)
 | 
						|
 | 
						|
// Public interface to the Value Propagation pass
 | 
						|
Pass *llvm::createCorrelatedValuePropagationPass() {
 | 
						|
  return new CorrelatedValuePropagation();
 | 
						|
}
 | 
						|
 | 
						|
static bool processSelect(SelectInst *S, LazyValueInfo *LVI) {
 | 
						|
  if (S->getType()->isVectorTy()) return false;
 | 
						|
  if (isa<Constant>(S->getCondition())) return false;
 | 
						|
 | 
						|
  Constant *C = LVI->getConstant(S->getCondition(), S);
 | 
						|
  if (!C) return false;
 | 
						|
 | 
						|
  ConstantInt *CI = dyn_cast<ConstantInt>(C);
 | 
						|
  if (!CI) return false;
 | 
						|
 | 
						|
  Value *ReplaceWith = CI->isOne() ? S->getTrueValue() : S->getFalseValue();
 | 
						|
  S->replaceAllUsesWith(ReplaceWith);
 | 
						|
  S->eraseFromParent();
 | 
						|
 | 
						|
  ++NumSelects;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to simplify a phi with constant incoming values that match the edge
 | 
						|
/// values of a non-constant value on all other edges:
 | 
						|
/// bb0:
 | 
						|
///   %isnull = icmp eq i8* %x, null
 | 
						|
///   br i1 %isnull, label %bb2, label %bb1
 | 
						|
/// bb1:
 | 
						|
///   br label %bb2
 | 
						|
/// bb2:
 | 
						|
///   %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ]
 | 
						|
/// -->
 | 
						|
///   %r = %x
 | 
						|
static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI,
 | 
						|
                                   DominatorTree *DT) {
 | 
						|
  // Collect incoming constants and initialize possible common value.
 | 
						|
  SmallVector<std::pair<Constant *, unsigned>, 4> IncomingConstants;
 | 
						|
  Value *CommonValue = nullptr;
 | 
						|
  for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
 | 
						|
    Value *Incoming = P->getIncomingValue(i);
 | 
						|
    if (auto *IncomingConstant = dyn_cast<Constant>(Incoming)) {
 | 
						|
      IncomingConstants.push_back(std::make_pair(IncomingConstant, i));
 | 
						|
    } else if (!CommonValue) {
 | 
						|
      // The potential common value is initialized to the first non-constant.
 | 
						|
      CommonValue = Incoming;
 | 
						|
    } else if (Incoming != CommonValue) {
 | 
						|
      // There can be only one non-constant common value.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!CommonValue || IncomingConstants.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The common value must be valid in all incoming blocks.
 | 
						|
  BasicBlock *ToBB = P->getParent();
 | 
						|
  if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
 | 
						|
    if (!DT->dominates(CommonInst, ToBB))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // We have a phi with exactly 1 variable incoming value and 1 or more constant
 | 
						|
  // incoming values. See if all constant incoming values can be mapped back to
 | 
						|
  // the same incoming variable value.
 | 
						|
  for (auto &IncomingConstant : IncomingConstants) {
 | 
						|
    Constant *C = IncomingConstant.first;
 | 
						|
    BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second);
 | 
						|
    if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // All constant incoming values map to the same variable along the incoming
 | 
						|
  // edges of the phi. The phi is unnecessary. However, we must drop all
 | 
						|
  // poison-generating flags to ensure that no poison is propagated to the phi
 | 
						|
  // location by performing this substitution.
 | 
						|
  // Warning: If the underlying analysis changes, this may not be enough to
 | 
						|
  //          guarantee that poison is not propagated.
 | 
						|
  // TODO: We may be able to re-infer flags by re-analyzing the instruction.
 | 
						|
  if (auto *CommonInst = dyn_cast<Instruction>(CommonValue))
 | 
						|
    CommonInst->dropPoisonGeneratingFlags();
 | 
						|
  P->replaceAllUsesWith(CommonValue);
 | 
						|
  P->eraseFromParent();
 | 
						|
  ++NumPhiCommon;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT,
 | 
						|
                       const SimplifyQuery &SQ) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  BasicBlock *BB = P->getParent();
 | 
						|
  for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
 | 
						|
    Value *Incoming = P->getIncomingValue(i);
 | 
						|
    if (isa<Constant>(Incoming)) continue;
 | 
						|
 | 
						|
    Value *V = LVI->getConstantOnEdge(Incoming, P->getIncomingBlock(i), BB, P);
 | 
						|
 | 
						|
    // Look if the incoming value is a select with a scalar condition for which
 | 
						|
    // LVI can tells us the value. In that case replace the incoming value with
 | 
						|
    // the appropriate value of the select. This often allows us to remove the
 | 
						|
    // select later.
 | 
						|
    if (!V) {
 | 
						|
      SelectInst *SI = dyn_cast<SelectInst>(Incoming);
 | 
						|
      if (!SI) continue;
 | 
						|
 | 
						|
      Value *Condition = SI->getCondition();
 | 
						|
      if (!Condition->getType()->isVectorTy()) {
 | 
						|
        if (Constant *C = LVI->getConstantOnEdge(
 | 
						|
                Condition, P->getIncomingBlock(i), BB, P)) {
 | 
						|
          if (C->isOneValue()) {
 | 
						|
            V = SI->getTrueValue();
 | 
						|
          } else if (C->isZeroValue()) {
 | 
						|
            V = SI->getFalseValue();
 | 
						|
          }
 | 
						|
          // Once LVI learns to handle vector types, we could also add support
 | 
						|
          // for vector type constants that are not all zeroes or all ones.
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Look if the select has a constant but LVI tells us that the incoming
 | 
						|
      // value can never be that constant. In that case replace the incoming
 | 
						|
      // value with the other value of the select. This often allows us to
 | 
						|
      // remove the select later.
 | 
						|
      if (!V) {
 | 
						|
        Constant *C = dyn_cast<Constant>(SI->getFalseValue());
 | 
						|
        if (!C) continue;
 | 
						|
 | 
						|
        if (LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C,
 | 
						|
              P->getIncomingBlock(i), BB, P) !=
 | 
						|
            LazyValueInfo::False)
 | 
						|
          continue;
 | 
						|
        V = SI->getTrueValue();
 | 
						|
      }
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "CVP: Threading PHI over " << *SI << '\n');
 | 
						|
    }
 | 
						|
 | 
						|
    P->setIncomingValue(i, V);
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Value *V = SimplifyInstruction(P, SQ)) {
 | 
						|
    P->replaceAllUsesWith(V);
 | 
						|
    P->eraseFromParent();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Changed)
 | 
						|
    Changed = simplifyCommonValuePhi(P, LVI, DT);
 | 
						|
 | 
						|
  if (Changed)
 | 
						|
    ++NumPhis;
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
static bool processMemAccess(Instruction *I, LazyValueInfo *LVI) {
 | 
						|
  Value *Pointer = nullptr;
 | 
						|
  if (LoadInst *L = dyn_cast<LoadInst>(I))
 | 
						|
    Pointer = L->getPointerOperand();
 | 
						|
  else
 | 
						|
    Pointer = cast<StoreInst>(I)->getPointerOperand();
 | 
						|
 | 
						|
  if (isa<Constant>(Pointer)) return false;
 | 
						|
 | 
						|
  Constant *C = LVI->getConstant(Pointer, I);
 | 
						|
  if (!C) return false;
 | 
						|
 | 
						|
  ++NumMemAccess;
 | 
						|
  I->replaceUsesOfWith(Pointer, C);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// See if LazyValueInfo's ability to exploit edge conditions or range
 | 
						|
/// information is sufficient to prove this comparison. Even for local
 | 
						|
/// conditions, this can sometimes prove conditions instcombine can't by
 | 
						|
/// exploiting range information.
 | 
						|
static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) {
 | 
						|
  Value *Op0 = Cmp->getOperand(0);
 | 
						|
  auto *C = dyn_cast<Constant>(Cmp->getOperand(1));
 | 
						|
  if (!C)
 | 
						|
    return false;
 | 
						|
 | 
						|
  LazyValueInfo::Tristate Result =
 | 
						|
      LVI->getPredicateAt(Cmp->getPredicate(), Op0, C, Cmp,
 | 
						|
                          /*UseBlockValue=*/true);
 | 
						|
  if (Result == LazyValueInfo::Unknown)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ++NumCmps;
 | 
						|
  Constant *TorF = ConstantInt::get(Type::getInt1Ty(Cmp->getContext()), Result);
 | 
						|
  Cmp->replaceAllUsesWith(TorF);
 | 
						|
  Cmp->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Simplify a switch instruction by removing cases which can never fire. If the
 | 
						|
/// uselessness of a case could be determined locally then constant propagation
 | 
						|
/// would already have figured it out. Instead, walk the predecessors and
 | 
						|
/// statically evaluate cases based on information available on that edge. Cases
 | 
						|
/// that cannot fire no matter what the incoming edge can safely be removed. If
 | 
						|
/// a case fires on every incoming edge then the entire switch can be removed
 | 
						|
/// and replaced with a branch to the case destination.
 | 
						|
static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI,
 | 
						|
                          DominatorTree *DT) {
 | 
						|
  DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy);
 | 
						|
  Value *Cond = I->getCondition();
 | 
						|
  BasicBlock *BB = I->getParent();
 | 
						|
 | 
						|
  // Analyse each switch case in turn.
 | 
						|
  bool Changed = false;
 | 
						|
  DenseMap<BasicBlock*, int> SuccessorsCount;
 | 
						|
  for (auto *Succ : successors(BB))
 | 
						|
    SuccessorsCount[Succ]++;
 | 
						|
 | 
						|
  { // Scope for SwitchInstProfUpdateWrapper. It must not live during
 | 
						|
    // ConstantFoldTerminator() as the underlying SwitchInst can be changed.
 | 
						|
    SwitchInstProfUpdateWrapper SI(*I);
 | 
						|
 | 
						|
    for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) {
 | 
						|
      ConstantInt *Case = CI->getCaseValue();
 | 
						|
      LazyValueInfo::Tristate State =
 | 
						|
          LVI->getPredicateAt(CmpInst::ICMP_EQ, Cond, Case, I,
 | 
						|
                              /* UseBlockValue */ true);
 | 
						|
 | 
						|
      if (State == LazyValueInfo::False) {
 | 
						|
        // This case never fires - remove it.
 | 
						|
        BasicBlock *Succ = CI->getCaseSuccessor();
 | 
						|
        Succ->removePredecessor(BB);
 | 
						|
        CI = SI.removeCase(CI);
 | 
						|
        CE = SI->case_end();
 | 
						|
 | 
						|
        // The condition can be modified by removePredecessor's PHI simplification
 | 
						|
        // logic.
 | 
						|
        Cond = SI->getCondition();
 | 
						|
 | 
						|
        ++NumDeadCases;
 | 
						|
        Changed = true;
 | 
						|
        if (--SuccessorsCount[Succ] == 0)
 | 
						|
          DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}});
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      if (State == LazyValueInfo::True) {
 | 
						|
        // This case always fires.  Arrange for the switch to be turned into an
 | 
						|
        // unconditional branch by replacing the switch condition with the case
 | 
						|
        // value.
 | 
						|
        SI->setCondition(Case);
 | 
						|
        NumDeadCases += SI->getNumCases();
 | 
						|
        Changed = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      // Increment the case iterator since we didn't delete it.
 | 
						|
      ++CI;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Changed)
 | 
						|
    // If the switch has been simplified to the point where it can be replaced
 | 
						|
    // by a branch then do so now.
 | 
						|
    ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false,
 | 
						|
                           /*TLI = */ nullptr, &DTU);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// See if we can prove that the given binary op intrinsic will not overflow.
 | 
						|
static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) {
 | 
						|
  ConstantRange LRange = LVI->getConstantRange(BO->getLHS(), BO);
 | 
						|
  ConstantRange RRange = LVI->getConstantRange(BO->getRHS(), BO);
 | 
						|
  ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
 | 
						|
      BO->getBinaryOp(), RRange, BO->getNoWrapKind());
 | 
						|
  return NWRegion.contains(LRange);
 | 
						|
}
 | 
						|
 | 
						|
static void setDeducedOverflowingFlags(Value *V, Instruction::BinaryOps Opcode,
 | 
						|
                                       bool NewNSW, bool NewNUW) {
 | 
						|
  Statistic *OpcNW, *OpcNSW, *OpcNUW;
 | 
						|
  switch (Opcode) {
 | 
						|
  case Instruction::Add:
 | 
						|
    OpcNW = &NumAddNW;
 | 
						|
    OpcNSW = &NumAddNSW;
 | 
						|
    OpcNUW = &NumAddNUW;
 | 
						|
    break;
 | 
						|
  case Instruction::Sub:
 | 
						|
    OpcNW = &NumSubNW;
 | 
						|
    OpcNSW = &NumSubNSW;
 | 
						|
    OpcNUW = &NumSubNUW;
 | 
						|
    break;
 | 
						|
  case Instruction::Mul:
 | 
						|
    OpcNW = &NumMulNW;
 | 
						|
    OpcNSW = &NumMulNSW;
 | 
						|
    OpcNUW = &NumMulNUW;
 | 
						|
    break;
 | 
						|
  case Instruction::Shl:
 | 
						|
    OpcNW = &NumShlNW;
 | 
						|
    OpcNSW = &NumShlNSW;
 | 
						|
    OpcNUW = &NumShlNUW;
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Will not be called with other binops");
 | 
						|
  }
 | 
						|
 | 
						|
  auto *Inst = dyn_cast<Instruction>(V);
 | 
						|
  if (NewNSW) {
 | 
						|
    ++NumNW;
 | 
						|
    ++*OpcNW;
 | 
						|
    ++NumNSW;
 | 
						|
    ++*OpcNSW;
 | 
						|
    if (Inst)
 | 
						|
      Inst->setHasNoSignedWrap();
 | 
						|
  }
 | 
						|
  if (NewNUW) {
 | 
						|
    ++NumNW;
 | 
						|
    ++*OpcNW;
 | 
						|
    ++NumNUW;
 | 
						|
    ++*OpcNUW;
 | 
						|
    if (Inst)
 | 
						|
      Inst->setHasNoUnsignedWrap();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI);
 | 
						|
 | 
						|
// Rewrite this with.overflow intrinsic as non-overflowing.
 | 
						|
static void processOverflowIntrinsic(WithOverflowInst *WO, LazyValueInfo *LVI) {
 | 
						|
  IRBuilder<> B(WO);
 | 
						|
  Instruction::BinaryOps Opcode = WO->getBinaryOp();
 | 
						|
  bool NSW = WO->isSigned();
 | 
						|
  bool NUW = !WO->isSigned();
 | 
						|
 | 
						|
  Value *NewOp =
 | 
						|
      B.CreateBinOp(Opcode, WO->getLHS(), WO->getRHS(), WO->getName());
 | 
						|
  setDeducedOverflowingFlags(NewOp, Opcode, NSW, NUW);
 | 
						|
 | 
						|
  StructType *ST = cast<StructType>(WO->getType());
 | 
						|
  Constant *Struct = ConstantStruct::get(ST,
 | 
						|
      { UndefValue::get(ST->getElementType(0)),
 | 
						|
        ConstantInt::getFalse(ST->getElementType(1)) });
 | 
						|
  Value *NewI = B.CreateInsertValue(Struct, NewOp, 0);
 | 
						|
  WO->replaceAllUsesWith(NewI);
 | 
						|
  WO->eraseFromParent();
 | 
						|
  ++NumOverflows;
 | 
						|
 | 
						|
  // See if we can infer the other no-wrap too.
 | 
						|
  if (auto *BO = dyn_cast<BinaryOperator>(NewOp))
 | 
						|
    processBinOp(BO, LVI);
 | 
						|
}
 | 
						|
 | 
						|
static void processSaturatingInst(SaturatingInst *SI, LazyValueInfo *LVI) {
 | 
						|
  Instruction::BinaryOps Opcode = SI->getBinaryOp();
 | 
						|
  bool NSW = SI->isSigned();
 | 
						|
  bool NUW = !SI->isSigned();
 | 
						|
  BinaryOperator *BinOp = BinaryOperator::Create(
 | 
						|
      Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI);
 | 
						|
  BinOp->setDebugLoc(SI->getDebugLoc());
 | 
						|
  setDeducedOverflowingFlags(BinOp, Opcode, NSW, NUW);
 | 
						|
 | 
						|
  SI->replaceAllUsesWith(BinOp);
 | 
						|
  SI->eraseFromParent();
 | 
						|
  ++NumSaturating;
 | 
						|
 | 
						|
  // See if we can infer the other no-wrap too.
 | 
						|
  if (auto *BO = dyn_cast<BinaryOperator>(BinOp))
 | 
						|
    processBinOp(BO, LVI);
 | 
						|
}
 | 
						|
 | 
						|
/// Infer nonnull attributes for the arguments at the specified callsite.
 | 
						|
static bool processCallSite(CallBase &CB, LazyValueInfo *LVI) {
 | 
						|
 | 
						|
  if (auto *WO = dyn_cast<WithOverflowInst>(&CB)) {
 | 
						|
    if (WO->getLHS()->getType()->isIntegerTy() && willNotOverflow(WO, LVI)) {
 | 
						|
      processOverflowIntrinsic(WO, LVI);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (auto *SI = dyn_cast<SaturatingInst>(&CB)) {
 | 
						|
    if (SI->getType()->isIntegerTy() && willNotOverflow(SI, LVI)) {
 | 
						|
      processSaturatingInst(SI, LVI);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Deopt bundle operands are intended to capture state with minimal
 | 
						|
  // perturbance of the code otherwise.  If we can find a constant value for
 | 
						|
  // any such operand and remove a use of the original value, that's
 | 
						|
  // desireable since it may allow further optimization of that value (e.g. via
 | 
						|
  // single use rules in instcombine).  Since deopt uses tend to,
 | 
						|
  // idiomatically, appear along rare conditional paths, it's reasonable likely
 | 
						|
  // we may have a conditional fact with which LVI can fold.
 | 
						|
  if (auto DeoptBundle = CB.getOperandBundle(LLVMContext::OB_deopt)) {
 | 
						|
    for (const Use &ConstU : DeoptBundle->Inputs) {
 | 
						|
      Use &U = const_cast<Use&>(ConstU);
 | 
						|
      Value *V = U.get();
 | 
						|
      if (V->getType()->isVectorTy()) continue;
 | 
						|
      if (isa<Constant>(V)) continue;
 | 
						|
 | 
						|
      Constant *C = LVI->getConstant(V, &CB);
 | 
						|
      if (!C) continue;
 | 
						|
      U.set(C);
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<unsigned, 4> ArgNos;
 | 
						|
  unsigned ArgNo = 0;
 | 
						|
 | 
						|
  for (Value *V : CB.args()) {
 | 
						|
    PointerType *Type = dyn_cast<PointerType>(V->getType());
 | 
						|
    // Try to mark pointer typed parameters as non-null.  We skip the
 | 
						|
    // relatively expensive analysis for constants which are obviously either
 | 
						|
    // null or non-null to start with.
 | 
						|
    if (Type && !CB.paramHasAttr(ArgNo, Attribute::NonNull) &&
 | 
						|
        !isa<Constant>(V) &&
 | 
						|
        LVI->getPredicateAt(ICmpInst::ICMP_EQ, V,
 | 
						|
                            ConstantPointerNull::get(Type),
 | 
						|
                            &CB) == LazyValueInfo::False)
 | 
						|
      ArgNos.push_back(ArgNo);
 | 
						|
    ArgNo++;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(ArgNo == CB.arg_size() && "sanity check");
 | 
						|
 | 
						|
  if (ArgNos.empty())
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  AttributeList AS = CB.getAttributes();
 | 
						|
  LLVMContext &Ctx = CB.getContext();
 | 
						|
  AS = AS.addParamAttribute(Ctx, ArgNos,
 | 
						|
                            Attribute::get(Ctx, Attribute::NonNull));
 | 
						|
  CB.setAttributes(AS);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool isNonNegative(Value *V, LazyValueInfo *LVI, Instruction *CxtI) {
 | 
						|
  Constant *Zero = ConstantInt::get(V->getType(), 0);
 | 
						|
  auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SGE, V, Zero, CxtI);
 | 
						|
  return Result == LazyValueInfo::True;
 | 
						|
}
 | 
						|
 | 
						|
static bool isNonPositive(Value *V, LazyValueInfo *LVI, Instruction *CxtI) {
 | 
						|
  Constant *Zero = ConstantInt::get(V->getType(), 0);
 | 
						|
  auto Result = LVI->getPredicateAt(ICmpInst::ICMP_SLE, V, Zero, CxtI);
 | 
						|
  return Result == LazyValueInfo::True;
 | 
						|
}
 | 
						|
 | 
						|
enum class Domain { NonNegative, NonPositive, Unknown };
 | 
						|
 | 
						|
Domain getDomain(Value *V, LazyValueInfo *LVI, Instruction *CxtI) {
 | 
						|
  if (isNonNegative(V, LVI, CxtI))
 | 
						|
    return Domain::NonNegative;
 | 
						|
  if (isNonPositive(V, LVI, CxtI))
 | 
						|
    return Domain::NonPositive;
 | 
						|
  return Domain::Unknown;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to shrink a sdiv/srem's width down to the smallest power of two that's
 | 
						|
/// sufficient to contain its operands.
 | 
						|
static bool narrowSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
 | 
						|
  assert(Instr->getOpcode() == Instruction::SDiv ||
 | 
						|
         Instr->getOpcode() == Instruction::SRem);
 | 
						|
  if (Instr->getType()->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find the smallest power of two bitwidth that's sufficient to hold Instr's
 | 
						|
  // operands.
 | 
						|
  unsigned OrigWidth = Instr->getType()->getIntegerBitWidth();
 | 
						|
 | 
						|
  // What is the smallest bit width that can accomodate the entire value ranges
 | 
						|
  // of both of the operands?
 | 
						|
  std::array<Optional<ConstantRange>, 2> CRs;
 | 
						|
  unsigned MinSignedBits = 0;
 | 
						|
  for (auto I : zip(Instr->operands(), CRs)) {
 | 
						|
    std::get<1>(I) = LVI->getConstantRange(std::get<0>(I), Instr);
 | 
						|
    MinSignedBits = std::max(std::get<1>(I)->getMinSignedBits(), MinSignedBits);
 | 
						|
  }
 | 
						|
 | 
						|
  // sdiv/srem is UB if divisor is -1 and divident is INT_MIN, so unless we can
 | 
						|
  // prove that such a combination is impossible, we need to bump the bitwidth.
 | 
						|
  if (CRs[1]->contains(APInt::getAllOnesValue(OrigWidth)) &&
 | 
						|
      CRs[0]->contains(
 | 
						|
          APInt::getSignedMinValue(MinSignedBits).sextOrSelf(OrigWidth)))
 | 
						|
    ++MinSignedBits;
 | 
						|
 | 
						|
  // Don't shrink below 8 bits wide.
 | 
						|
  unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MinSignedBits), 8);
 | 
						|
 | 
						|
  // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
 | 
						|
  // two.
 | 
						|
  if (NewWidth >= OrigWidth)
 | 
						|
    return false;
 | 
						|
 | 
						|
  ++NumSDivSRemsNarrowed;
 | 
						|
  IRBuilder<> B{Instr};
 | 
						|
  auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
 | 
						|
  auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
 | 
						|
                                     Instr->getName() + ".lhs.trunc");
 | 
						|
  auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
 | 
						|
                                     Instr->getName() + ".rhs.trunc");
 | 
						|
  auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
 | 
						|
  auto *Sext = B.CreateSExt(BO, Instr->getType(), Instr->getName() + ".sext");
 | 
						|
  if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
 | 
						|
    if (BinOp->getOpcode() == Instruction::SDiv)
 | 
						|
      BinOp->setIsExact(Instr->isExact());
 | 
						|
 | 
						|
  Instr->replaceAllUsesWith(Sext);
 | 
						|
  Instr->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Try to shrink a udiv/urem's width down to the smallest power of two that's
 | 
						|
/// sufficient to contain its operands.
 | 
						|
static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) {
 | 
						|
  assert(Instr->getOpcode() == Instruction::UDiv ||
 | 
						|
         Instr->getOpcode() == Instruction::URem);
 | 
						|
  if (Instr->getType()->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find the smallest power of two bitwidth that's sufficient to hold Instr's
 | 
						|
  // operands.
 | 
						|
 | 
						|
  // What is the smallest bit width that can accomodate the entire value ranges
 | 
						|
  // of both of the operands?
 | 
						|
  unsigned MaxActiveBits = 0;
 | 
						|
  for (Value *Operand : Instr->operands()) {
 | 
						|
    ConstantRange CR = LVI->getConstantRange(Operand, Instr);
 | 
						|
    MaxActiveBits = std::max(CR.getActiveBits(), MaxActiveBits);
 | 
						|
  }
 | 
						|
  // Don't shrink below 8 bits wide.
 | 
						|
  unsigned NewWidth = std::max<unsigned>(PowerOf2Ceil(MaxActiveBits), 8);
 | 
						|
 | 
						|
  // NewWidth might be greater than OrigWidth if OrigWidth is not a power of
 | 
						|
  // two.
 | 
						|
  if (NewWidth >= Instr->getType()->getIntegerBitWidth())
 | 
						|
    return false;
 | 
						|
 | 
						|
  ++NumUDivURemsNarrowed;
 | 
						|
  IRBuilder<> B{Instr};
 | 
						|
  auto *TruncTy = Type::getIntNTy(Instr->getContext(), NewWidth);
 | 
						|
  auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy,
 | 
						|
                                     Instr->getName() + ".lhs.trunc");
 | 
						|
  auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy,
 | 
						|
                                     Instr->getName() + ".rhs.trunc");
 | 
						|
  auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName());
 | 
						|
  auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext");
 | 
						|
  if (auto *BinOp = dyn_cast<BinaryOperator>(BO))
 | 
						|
    if (BinOp->getOpcode() == Instruction::UDiv)
 | 
						|
      BinOp->setIsExact(Instr->isExact());
 | 
						|
 | 
						|
  Instr->replaceAllUsesWith(Zext);
 | 
						|
  Instr->eraseFromParent();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool processSRem(BinaryOperator *SDI, LazyValueInfo *LVI) {
 | 
						|
  assert(SDI->getOpcode() == Instruction::SRem);
 | 
						|
  if (SDI->getType()->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  struct Operand {
 | 
						|
    Value *V;
 | 
						|
    Domain D;
 | 
						|
  };
 | 
						|
  std::array<Operand, 2> Ops;
 | 
						|
 | 
						|
  for (const auto I : zip(Ops, SDI->operands())) {
 | 
						|
    Operand &Op = std::get<0>(I);
 | 
						|
    Op.V = std::get<1>(I);
 | 
						|
    Op.D = getDomain(Op.V, LVI, SDI);
 | 
						|
    if (Op.D == Domain::Unknown)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We know domains of both of the operands!
 | 
						|
  ++NumSRems;
 | 
						|
 | 
						|
  // We need operands to be non-negative, so negate each one that isn't.
 | 
						|
  for (Operand &Op : Ops) {
 | 
						|
    if (Op.D == Domain::NonNegative)
 | 
						|
      continue;
 | 
						|
    auto *BO =
 | 
						|
        BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg", SDI);
 | 
						|
    BO->setDebugLoc(SDI->getDebugLoc());
 | 
						|
    Op.V = BO;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *URem =
 | 
						|
      BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->getName(), SDI);
 | 
						|
  URem->setDebugLoc(SDI->getDebugLoc());
 | 
						|
 | 
						|
  Value *Res = URem;
 | 
						|
 | 
						|
  // If the divident was non-positive, we need to negate the result.
 | 
						|
  if (Ops[0].D == Domain::NonPositive)
 | 
						|
    Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg", SDI);
 | 
						|
 | 
						|
  SDI->replaceAllUsesWith(Res);
 | 
						|
  SDI->eraseFromParent();
 | 
						|
 | 
						|
  // Try to simplify our new urem.
 | 
						|
  processUDivOrURem(URem, LVI);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// See if LazyValueInfo's ability to exploit edge conditions or range
 | 
						|
/// information is sufficient to prove the signs of both operands of this SDiv.
 | 
						|
/// If this is the case, replace the SDiv with a UDiv. Even for local
 | 
						|
/// conditions, this can sometimes prove conditions instcombine can't by
 | 
						|
/// exploiting range information.
 | 
						|
static bool processSDiv(BinaryOperator *SDI, LazyValueInfo *LVI) {
 | 
						|
  assert(SDI->getOpcode() == Instruction::SDiv);
 | 
						|
  if (SDI->getType()->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  struct Operand {
 | 
						|
    Value *V;
 | 
						|
    Domain D;
 | 
						|
  };
 | 
						|
  std::array<Operand, 2> Ops;
 | 
						|
 | 
						|
  for (const auto I : zip(Ops, SDI->operands())) {
 | 
						|
    Operand &Op = std::get<0>(I);
 | 
						|
    Op.V = std::get<1>(I);
 | 
						|
    Op.D = getDomain(Op.V, LVI, SDI);
 | 
						|
    if (Op.D == Domain::Unknown)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // We know domains of both of the operands!
 | 
						|
  ++NumSDivs;
 | 
						|
 | 
						|
  // We need operands to be non-negative, so negate each one that isn't.
 | 
						|
  for (Operand &Op : Ops) {
 | 
						|
    if (Op.D == Domain::NonNegative)
 | 
						|
      continue;
 | 
						|
    auto *BO =
 | 
						|
        BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg", SDI);
 | 
						|
    BO->setDebugLoc(SDI->getDebugLoc());
 | 
						|
    Op.V = BO;
 | 
						|
  }
 | 
						|
 | 
						|
  auto *UDiv =
 | 
						|
      BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->getName(), SDI);
 | 
						|
  UDiv->setDebugLoc(SDI->getDebugLoc());
 | 
						|
  UDiv->setIsExact(SDI->isExact());
 | 
						|
 | 
						|
  Value *Res = UDiv;
 | 
						|
 | 
						|
  // If the operands had two different domains, we need to negate the result.
 | 
						|
  if (Ops[0].D != Ops[1].D)
 | 
						|
    Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg", SDI);
 | 
						|
 | 
						|
  SDI->replaceAllUsesWith(Res);
 | 
						|
  SDI->eraseFromParent();
 | 
						|
 | 
						|
  // Try to simplify our new udiv.
 | 
						|
  processUDivOrURem(UDiv, LVI);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool processSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) {
 | 
						|
  assert(Instr->getOpcode() == Instruction::SDiv ||
 | 
						|
         Instr->getOpcode() == Instruction::SRem);
 | 
						|
  if (Instr->getType()->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Instr->getOpcode() == Instruction::SDiv)
 | 
						|
    if (processSDiv(Instr, LVI))
 | 
						|
      return true;
 | 
						|
 | 
						|
  if (Instr->getOpcode() == Instruction::SRem)
 | 
						|
    if (processSRem(Instr, LVI))
 | 
						|
      return true;
 | 
						|
 | 
						|
  return narrowSDivOrSRem(Instr, LVI);
 | 
						|
}
 | 
						|
 | 
						|
static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) {
 | 
						|
  if (SDI->getType()->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (!isNonNegative(SDI->getOperand(0), LVI, SDI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ++NumAShrs;
 | 
						|
  auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1),
 | 
						|
                                        SDI->getName(), SDI);
 | 
						|
  BO->setDebugLoc(SDI->getDebugLoc());
 | 
						|
  BO->setIsExact(SDI->isExact());
 | 
						|
  SDI->replaceAllUsesWith(BO);
 | 
						|
  SDI->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) {
 | 
						|
  if (SDI->getType()->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Value *Base = SDI->getOperand(0);
 | 
						|
 | 
						|
  if (!isNonNegative(Base, LVI, SDI))
 | 
						|
    return false;
 | 
						|
 | 
						|
  ++NumSExt;
 | 
						|
  auto *ZExt =
 | 
						|
      CastInst::CreateZExtOrBitCast(Base, SDI->getType(), SDI->getName(), SDI);
 | 
						|
  ZExt->setDebugLoc(SDI->getDebugLoc());
 | 
						|
  SDI->replaceAllUsesWith(ZExt);
 | 
						|
  SDI->eraseFromParent();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) {
 | 
						|
  using OBO = OverflowingBinaryOperator;
 | 
						|
 | 
						|
  if (DontAddNoWrapFlags)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (BinOp->getType()->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool NSW = BinOp->hasNoSignedWrap();
 | 
						|
  bool NUW = BinOp->hasNoUnsignedWrap();
 | 
						|
  if (NSW && NUW)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Instruction::BinaryOps Opcode = BinOp->getOpcode();
 | 
						|
  Value *LHS = BinOp->getOperand(0);
 | 
						|
  Value *RHS = BinOp->getOperand(1);
 | 
						|
 | 
						|
  ConstantRange LRange = LVI->getConstantRange(LHS, BinOp);
 | 
						|
  ConstantRange RRange = LVI->getConstantRange(RHS, BinOp);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  bool NewNUW = false, NewNSW = false;
 | 
						|
  if (!NUW) {
 | 
						|
    ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion(
 | 
						|
        Opcode, RRange, OBO::NoUnsignedWrap);
 | 
						|
    NewNUW = NUWRange.contains(LRange);
 | 
						|
    Changed |= NewNUW;
 | 
						|
  }
 | 
						|
  if (!NSW) {
 | 
						|
    ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion(
 | 
						|
        Opcode, RRange, OBO::NoSignedWrap);
 | 
						|
    NewNSW = NSWRange.contains(LRange);
 | 
						|
    Changed |= NewNSW;
 | 
						|
  }
 | 
						|
 | 
						|
  setDeducedOverflowingFlags(BinOp, Opcode, NewNSW, NewNUW);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
static bool processAnd(BinaryOperator *BinOp, LazyValueInfo *LVI) {
 | 
						|
  if (BinOp->getType()->isVectorTy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Pattern match (and lhs, C) where C includes a superset of bits which might
 | 
						|
  // be set in lhs.  This is a common truncation idiom created by instcombine.
 | 
						|
  Value *LHS = BinOp->getOperand(0);
 | 
						|
  ConstantInt *RHS = dyn_cast<ConstantInt>(BinOp->getOperand(1));
 | 
						|
  if (!RHS || !RHS->getValue().isMask())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can only replace the AND with LHS based on range info if the range does
 | 
						|
  // not include undef.
 | 
						|
  ConstantRange LRange =
 | 
						|
      LVI->getConstantRange(LHS, BinOp, /*UndefAllowed=*/false);
 | 
						|
  if (!LRange.getUnsignedMax().ule(RHS->getValue()))
 | 
						|
    return false;
 | 
						|
 | 
						|
  BinOp->replaceAllUsesWith(LHS);
 | 
						|
  BinOp->eraseFromParent();
 | 
						|
  NumAnd++;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) {
 | 
						|
  if (Constant *C = LVI->getConstant(V, At))
 | 
						|
    return C;
 | 
						|
 | 
						|
  // TODO: The following really should be sunk inside LVI's core algorithm, or
 | 
						|
  // at least the outer shims around such.
 | 
						|
  auto *C = dyn_cast<CmpInst>(V);
 | 
						|
  if (!C) return nullptr;
 | 
						|
 | 
						|
  Value *Op0 = C->getOperand(0);
 | 
						|
  Constant *Op1 = dyn_cast<Constant>(C->getOperand(1));
 | 
						|
  if (!Op1) return nullptr;
 | 
						|
 | 
						|
  LazyValueInfo::Tristate Result =
 | 
						|
    LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At);
 | 
						|
  if (Result == LazyValueInfo::Unknown)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  return (Result == LazyValueInfo::True) ?
 | 
						|
    ConstantInt::getTrue(C->getContext()) :
 | 
						|
    ConstantInt::getFalse(C->getContext());
 | 
						|
}
 | 
						|
 | 
						|
static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT,
 | 
						|
                    const SimplifyQuery &SQ) {
 | 
						|
  bool FnChanged = false;
 | 
						|
  // Visiting in a pre-order depth-first traversal causes us to simplify early
 | 
						|
  // blocks before querying later blocks (which require us to analyze early
 | 
						|
  // blocks).  Eagerly simplifying shallow blocks means there is strictly less
 | 
						|
  // work to do for deep blocks.  This also means we don't visit unreachable
 | 
						|
  // blocks.
 | 
						|
  for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
 | 
						|
    bool BBChanged = false;
 | 
						|
    for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
 | 
						|
      Instruction *II = &*BI++;
 | 
						|
      switch (II->getOpcode()) {
 | 
						|
      case Instruction::Select:
 | 
						|
        BBChanged |= processSelect(cast<SelectInst>(II), LVI);
 | 
						|
        break;
 | 
						|
      case Instruction::PHI:
 | 
						|
        BBChanged |= processPHI(cast<PHINode>(II), LVI, DT, SQ);
 | 
						|
        break;
 | 
						|
      case Instruction::ICmp:
 | 
						|
      case Instruction::FCmp:
 | 
						|
        BBChanged |= processCmp(cast<CmpInst>(II), LVI);
 | 
						|
        break;
 | 
						|
      case Instruction::Load:
 | 
						|
      case Instruction::Store:
 | 
						|
        BBChanged |= processMemAccess(II, LVI);
 | 
						|
        break;
 | 
						|
      case Instruction::Call:
 | 
						|
      case Instruction::Invoke:
 | 
						|
        BBChanged |= processCallSite(cast<CallBase>(*II), LVI);
 | 
						|
        break;
 | 
						|
      case Instruction::SRem:
 | 
						|
      case Instruction::SDiv:
 | 
						|
        BBChanged |= processSDivOrSRem(cast<BinaryOperator>(II), LVI);
 | 
						|
        break;
 | 
						|
      case Instruction::UDiv:
 | 
						|
      case Instruction::URem:
 | 
						|
        BBChanged |= processUDivOrURem(cast<BinaryOperator>(II), LVI);
 | 
						|
        break;
 | 
						|
      case Instruction::AShr:
 | 
						|
        BBChanged |= processAShr(cast<BinaryOperator>(II), LVI);
 | 
						|
        break;
 | 
						|
      case Instruction::SExt:
 | 
						|
        BBChanged |= processSExt(cast<SExtInst>(II), LVI);
 | 
						|
        break;
 | 
						|
      case Instruction::Add:
 | 
						|
      case Instruction::Sub:
 | 
						|
      case Instruction::Mul:
 | 
						|
      case Instruction::Shl:
 | 
						|
        BBChanged |= processBinOp(cast<BinaryOperator>(II), LVI);
 | 
						|
        break;
 | 
						|
      case Instruction::And:
 | 
						|
        BBChanged |= processAnd(cast<BinaryOperator>(II), LVI);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Instruction *Term = BB->getTerminator();
 | 
						|
    switch (Term->getOpcode()) {
 | 
						|
    case Instruction::Switch:
 | 
						|
      BBChanged |= processSwitch(cast<SwitchInst>(Term), LVI, DT);
 | 
						|
      break;
 | 
						|
    case Instruction::Ret: {
 | 
						|
      auto *RI = cast<ReturnInst>(Term);
 | 
						|
      // Try to determine the return value if we can.  This is mainly here to
 | 
						|
      // simplify the writing of unit tests, but also helps to enable IPO by
 | 
						|
      // constant folding the return values of callees.
 | 
						|
      auto *RetVal = RI->getReturnValue();
 | 
						|
      if (!RetVal) break; // handle "ret void"
 | 
						|
      if (isa<Constant>(RetVal)) break; // nothing to do
 | 
						|
      if (auto *C = getConstantAt(RetVal, RI, LVI)) {
 | 
						|
        ++NumReturns;
 | 
						|
        RI->replaceUsesOfWith(RetVal, C);
 | 
						|
        BBChanged = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    }
 | 
						|
 | 
						|
    FnChanged |= BBChanged;
 | 
						|
  }
 | 
						|
 | 
						|
  return FnChanged;
 | 
						|
}
 | 
						|
 | 
						|
bool CorrelatedValuePropagation::runOnFunction(Function &F) {
 | 
						|
  if (skipFunction(F))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LazyValueInfo *LVI = &getAnalysis<LazyValueInfoWrapperPass>().getLVI();
 | 
						|
  DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
 | 
						|
  return runImpl(F, LVI, DT, getBestSimplifyQuery(*this, F));
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses
 | 
						|
CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) {
 | 
						|
  LazyValueInfo *LVI = &AM.getResult<LazyValueAnalysis>(F);
 | 
						|
  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
 | 
						|
  bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F));
 | 
						|
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  if (!Changed) {
 | 
						|
    PA = PreservedAnalyses::all();
 | 
						|
  } else {
 | 
						|
    PA.preserve<GlobalsAA>();
 | 
						|
    PA.preserve<DominatorTreeAnalysis>();
 | 
						|
    PA.preserve<LazyValueAnalysis>();
 | 
						|
  }
 | 
						|
 | 
						|
  // Keeping LVI alive is expensive, both because it uses a lot of memory, and
 | 
						|
  // because invalidating values in LVI is expensive. While CVP does preserve
 | 
						|
  // LVI, we know that passes after JumpThreading+CVP will not need the result
 | 
						|
  // of this analysis, so we forcefully discard it early.
 | 
						|
  PA.abandon<LazyValueAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 |