2360 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2360 lines
		
	
	
		
			98 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass performs loop invariant code motion, attempting to remove as much
 | 
						|
// code from the body of a loop as possible.  It does this by either hoisting
 | 
						|
// code into the preheader block, or by sinking code to the exit blocks if it is
 | 
						|
// safe.  This pass also promotes must-aliased memory locations in the loop to
 | 
						|
// live in registers, thus hoisting and sinking "invariant" loads and stores.
 | 
						|
//
 | 
						|
// Hoisting operations out of loops is a canonicalization transform.  It
 | 
						|
// enables and simplifies subsequent optimizations in the middle-end.
 | 
						|
// Rematerialization of hoisted instructions to reduce register pressure is the
 | 
						|
// responsibility of the back-end, which has more accurate information about
 | 
						|
// register pressure and also handles other optimizations than LICM that
 | 
						|
// increase live-ranges.
 | 
						|
//
 | 
						|
// This pass uses alias analysis for two purposes:
 | 
						|
//
 | 
						|
//  1. Moving loop invariant loads and calls out of loops.  If we can determine
 | 
						|
//     that a load or call inside of a loop never aliases anything stored to,
 | 
						|
//     we can hoist it or sink it like any other instruction.
 | 
						|
//  2. Scalar Promotion of Memory - If there is a store instruction inside of
 | 
						|
//     the loop, we try to move the store to happen AFTER the loop instead of
 | 
						|
//     inside of the loop.  This can only happen if a few conditions are true:
 | 
						|
//       A. The pointer stored through is loop invariant
 | 
						|
//       B. There are no stores or loads in the loop which _may_ alias the
 | 
						|
//          pointer.  There are no calls in the loop which mod/ref the pointer.
 | 
						|
//     If these conditions are true, we can promote the loads and stores in the
 | 
						|
//     loop of the pointer to use a temporary alloca'd variable.  We then use
 | 
						|
//     the SSAUpdater to construct the appropriate SSA form for the value.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/LICM.h"
 | 
						|
#include "llvm/ADT/SetOperations.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AliasSetTracker.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/GuardUtils.h"
 | 
						|
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Analysis/MemorySSA.h"
 | 
						|
#include "llvm/Analysis/MemorySSAUpdater.h"
 | 
						|
#include "llvm/Analysis/MustExecute.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugInfoMetadata.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/PredIteratorCache.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Scalar/LoopPassManager.h"
 | 
						|
#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <utility>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "licm"
 | 
						|
 | 
						|
STATISTIC(NumCreatedBlocks, "Number of blocks created");
 | 
						|
STATISTIC(NumClonedBranches, "Number of branches cloned");
 | 
						|
STATISTIC(NumSunk, "Number of instructions sunk out of loop");
 | 
						|
STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
 | 
						|
STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
 | 
						|
STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
 | 
						|
STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
 | 
						|
 | 
						|
/// Memory promotion is enabled by default.
 | 
						|
static cl::opt<bool>
 | 
						|
    DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
 | 
						|
                     cl::desc("Disable memory promotion in LICM pass"));
 | 
						|
 | 
						|
static cl::opt<bool> ControlFlowHoisting(
 | 
						|
    "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
 | 
						|
    cl::desc("Enable control flow (and PHI) hoisting in LICM"));
 | 
						|
 | 
						|
static cl::opt<unsigned> HoistSinkColdnessThreshold(
 | 
						|
    "licm-coldness-threshold", cl::Hidden, cl::init(4),
 | 
						|
    cl::desc("Relative coldness Threshold of hoisting/sinking destination "
 | 
						|
             "block for LICM to be considered beneficial"));
 | 
						|
 | 
						|
static cl::opt<uint32_t> MaxNumUsesTraversed(
 | 
						|
    "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
 | 
						|
    cl::desc("Max num uses visited for identifying load "
 | 
						|
             "invariance in loop using invariant start (default = 8)"));
 | 
						|
 | 
						|
// Default value of zero implies we use the regular alias set tracker mechanism
 | 
						|
// instead of the cross product using AA to identify aliasing of the memory
 | 
						|
// location we are interested in.
 | 
						|
static cl::opt<int>
 | 
						|
LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
 | 
						|
               cl::desc("How many instruction to cross product using AA"));
 | 
						|
 | 
						|
// Experimental option to allow imprecision in LICM in pathological cases, in
 | 
						|
// exchange for faster compile. This is to be removed if MemorySSA starts to
 | 
						|
// address the same issue. This flag applies only when LICM uses MemorySSA
 | 
						|
// instead on AliasSetTracker. LICM calls MemorySSAWalker's
 | 
						|
// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
 | 
						|
// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
 | 
						|
// which may not be precise, since optimizeUses is capped. The result is
 | 
						|
// correct, but we may not get as "far up" as possible to get which access is
 | 
						|
// clobbering the one queried.
 | 
						|
cl::opt<unsigned> llvm::SetLicmMssaOptCap(
 | 
						|
    "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
 | 
						|
    cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
 | 
						|
             "for faster compile. Caps the MemorySSA clobbering calls."));
 | 
						|
 | 
						|
// Experimentally, memory promotion carries less importance than sinking and
 | 
						|
// hoisting. Limit when we do promotion when using MemorySSA, in order to save
 | 
						|
// compile time.
 | 
						|
cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
 | 
						|
    "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
 | 
						|
    cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
 | 
						|
             "effect. When MSSA in LICM is enabled, then this is the maximum "
 | 
						|
             "number of accesses allowed to be present in a loop in order to "
 | 
						|
             "enable memory promotion."));
 | 
						|
 | 
						|
static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
 | 
						|
static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
 | 
						|
                                  const LoopSafetyInfo *SafetyInfo,
 | 
						|
                                  TargetTransformInfo *TTI, bool &FreeInLoop);
 | 
						|
static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
 | 
						|
                  BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
 | 
						|
                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
 | 
						|
                  OptimizationRemarkEmitter *ORE);
 | 
						|
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
 | 
						|
                 BlockFrequencyInfo *BFI, const Loop *CurLoop,
 | 
						|
                 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
 | 
						|
                 OptimizationRemarkEmitter *ORE);
 | 
						|
static bool isSafeToExecuteUnconditionally(Instruction &Inst,
 | 
						|
                                           const DominatorTree *DT,
 | 
						|
                                           const Loop *CurLoop,
 | 
						|
                                           const LoopSafetyInfo *SafetyInfo,
 | 
						|
                                           OptimizationRemarkEmitter *ORE,
 | 
						|
                                           const Instruction *CtxI = nullptr);
 | 
						|
static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
 | 
						|
                                     AliasSetTracker *CurAST, Loop *CurLoop,
 | 
						|
                                     AAResults *AA);
 | 
						|
static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
 | 
						|
                                             Loop *CurLoop, Instruction &I,
 | 
						|
                                             SinkAndHoistLICMFlags &Flags);
 | 
						|
static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
 | 
						|
                                              MemoryUse &MU);
 | 
						|
static Instruction *cloneInstructionInExitBlock(
 | 
						|
    Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
 | 
						|
    const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
 | 
						|
 | 
						|
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
 | 
						|
                             AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
 | 
						|
 | 
						|
static void moveInstructionBefore(Instruction &I, Instruction &Dest,
 | 
						|
                                  ICFLoopSafetyInfo &SafetyInfo,
 | 
						|
                                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
 | 
						|
 | 
						|
namespace {
 | 
						|
struct LoopInvariantCodeMotion {
 | 
						|
  bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
 | 
						|
                 BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
 | 
						|
                 TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
 | 
						|
                 OptimizationRemarkEmitter *ORE);
 | 
						|
 | 
						|
  LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
 | 
						|
                          unsigned LicmMssaNoAccForPromotionCap)
 | 
						|
      : LicmMssaOptCap(LicmMssaOptCap),
 | 
						|
        LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
 | 
						|
 | 
						|
private:
 | 
						|
  unsigned LicmMssaOptCap;
 | 
						|
  unsigned LicmMssaNoAccForPromotionCap;
 | 
						|
 | 
						|
  std::unique_ptr<AliasSetTracker>
 | 
						|
  collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA);
 | 
						|
  std::unique_ptr<AliasSetTracker>
 | 
						|
  collectAliasInfoForLoopWithMSSA(Loop *L, AAResults *AA,
 | 
						|
                                  MemorySSAUpdater *MSSAU);
 | 
						|
};
 | 
						|
 | 
						|
struct LegacyLICMPass : public LoopPass {
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
  LegacyLICMPass(
 | 
						|
      unsigned LicmMssaOptCap = SetLicmMssaOptCap,
 | 
						|
      unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
 | 
						|
      : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
 | 
						|
    initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
 | 
						|
    if (skipLoop(L))
 | 
						|
      return false;
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
 | 
						|
                      << L->getHeader()->getNameOrAsOperand() << "\n");
 | 
						|
 | 
						|
    auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
 | 
						|
    MemorySSA *MSSA = EnableMSSALoopDependency
 | 
						|
                          ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
 | 
						|
                          : nullptr;
 | 
						|
    bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
 | 
						|
    BlockFrequencyInfo *BFI =
 | 
						|
        hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
 | 
						|
                       : nullptr;
 | 
						|
    // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
 | 
						|
    // pass. Function analyses need to be preserved across loop transformations
 | 
						|
    // but ORE cannot be preserved (see comment before the pass definition).
 | 
						|
    OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
 | 
						|
    return LICM.runOnLoop(
 | 
						|
        L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
 | 
						|
        &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
 | 
						|
        &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), BFI,
 | 
						|
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(
 | 
						|
            *L->getHeader()->getParent()),
 | 
						|
        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
 | 
						|
            *L->getHeader()->getParent()),
 | 
						|
        SE ? &SE->getSE() : nullptr, MSSA, &ORE);
 | 
						|
  }
 | 
						|
 | 
						|
  /// This transformation requires natural loop information & requires that
 | 
						|
  /// loop preheaders be inserted into the CFG...
 | 
						|
  ///
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<LoopInfoWrapperPass>();
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    if (EnableMSSALoopDependency) {
 | 
						|
      AU.addRequired<MemorySSAWrapperPass>();
 | 
						|
      AU.addPreserved<MemorySSAWrapperPass>();
 | 
						|
    }
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    getLoopAnalysisUsage(AU);
 | 
						|
    LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
 | 
						|
    AU.addPreserved<LazyBlockFrequencyInfoPass>();
 | 
						|
    AU.addPreserved<LazyBranchProbabilityInfoPass>();
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  LoopInvariantCodeMotion LICM;
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
 | 
						|
                                LoopStandardAnalysisResults &AR, LPMUpdater &) {
 | 
						|
  // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
 | 
						|
  // pass.  Function analyses need to be preserved across loop transformations
 | 
						|
  // but ORE cannot be preserved (see comment before the pass definition).
 | 
						|
  OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
 | 
						|
 | 
						|
  LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
 | 
						|
  if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
 | 
						|
                      &AR.SE, AR.MSSA, &ORE))
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  auto PA = getLoopPassPreservedAnalyses();
 | 
						|
 | 
						|
  PA.preserve<DominatorTreeAnalysis>();
 | 
						|
  PA.preserve<LoopAnalysis>();
 | 
						|
  if (AR.MSSA)
 | 
						|
    PA.preserve<MemorySSAAnalysis>();
 | 
						|
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
char LegacyLICMPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
 | 
						|
INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
 | 
						|
                    false)
 | 
						|
 | 
						|
Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
 | 
						|
Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
 | 
						|
                           unsigned LicmMssaNoAccForPromotionCap) {
 | 
						|
  return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
 | 
						|
}
 | 
						|
 | 
						|
llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
 | 
						|
                                                   MemorySSA *MSSA)
 | 
						|
    : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
 | 
						|
                            IsSink, L, MSSA) {}
 | 
						|
 | 
						|
llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
 | 
						|
    unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink,
 | 
						|
    Loop *L, MemorySSA *MSSA)
 | 
						|
    : LicmMssaOptCap(LicmMssaOptCap),
 | 
						|
      LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap),
 | 
						|
      IsSink(IsSink) {
 | 
						|
  assert(((L != nullptr) == (MSSA != nullptr)) &&
 | 
						|
         "Unexpected values for SinkAndHoistLICMFlags");
 | 
						|
  if (!MSSA)
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned AccessCapCount = 0;
 | 
						|
  for (auto *BB : L->getBlocks())
 | 
						|
    if (const auto *Accesses = MSSA->getBlockAccesses(BB))
 | 
						|
      for (const auto &MA : *Accesses) {
 | 
						|
        (void)MA;
 | 
						|
        ++AccessCapCount;
 | 
						|
        if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
 | 
						|
          NoOfMemAccTooLarge = true;
 | 
						|
          return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
}
 | 
						|
 | 
						|
/// Hoist expressions out of the specified loop. Note, alias info for inner
 | 
						|
/// loop is not preserved so it is not a good idea to run LICM multiple
 | 
						|
/// times on one loop.
 | 
						|
bool LoopInvariantCodeMotion::runOnLoop(
 | 
						|
    Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
 | 
						|
    BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
 | 
						|
    ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
 | 
						|
 | 
						|
  // If this loop has metadata indicating that LICM is not to be performed then
 | 
						|
  // just exit.
 | 
						|
  if (hasDisableLICMTransformsHint(L)) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  std::unique_ptr<AliasSetTracker> CurAST;
 | 
						|
  std::unique_ptr<MemorySSAUpdater> MSSAU;
 | 
						|
  std::unique_ptr<SinkAndHoistLICMFlags> Flags;
 | 
						|
 | 
						|
  if (!MSSA) {
 | 
						|
    LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
 | 
						|
    CurAST = collectAliasInfoForLoop(L, LI, AA);
 | 
						|
    Flags = std::make_unique<SinkAndHoistLICMFlags>(
 | 
						|
        LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true);
 | 
						|
  } else {
 | 
						|
    LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
 | 
						|
    MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
 | 
						|
    Flags = std::make_unique<SinkAndHoistLICMFlags>(
 | 
						|
        LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true, L, MSSA);
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the preheader block to move instructions into...
 | 
						|
  BasicBlock *Preheader = L->getLoopPreheader();
 | 
						|
 | 
						|
  // Compute loop safety information.
 | 
						|
  ICFLoopSafetyInfo SafetyInfo;
 | 
						|
  SafetyInfo.computeLoopSafetyInfo(L);
 | 
						|
 | 
						|
  // We want to visit all of the instructions in this loop... that are not parts
 | 
						|
  // of our subloops (they have already had their invariants hoisted out of
 | 
						|
  // their loop, into this loop, so there is no need to process the BODIES of
 | 
						|
  // the subloops).
 | 
						|
  //
 | 
						|
  // Traverse the body of the loop in depth first order on the dominator tree so
 | 
						|
  // that we are guaranteed to see definitions before we see uses.  This allows
 | 
						|
  // us to sink instructions in one pass, without iteration.  After sinking
 | 
						|
  // instructions, we perform another pass to hoist them out of the loop.
 | 
						|
  if (L->hasDedicatedExits())
 | 
						|
    Changed |=
 | 
						|
        sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, TTI, L,
 | 
						|
                   CurAST.get(), MSSAU.get(), &SafetyInfo, *Flags.get(), ORE);
 | 
						|
  Flags->setIsSink(false);
 | 
						|
  if (Preheader)
 | 
						|
    Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
 | 
						|
                           CurAST.get(), MSSAU.get(), SE, &SafetyInfo,
 | 
						|
                           *Flags.get(), ORE);
 | 
						|
 | 
						|
  // Now that all loop invariants have been removed from the loop, promote any
 | 
						|
  // memory references to scalars that we can.
 | 
						|
  // Don't sink stores from loops without dedicated block exits. Exits
 | 
						|
  // containing indirect branches are not transformed by loop simplify,
 | 
						|
  // make sure we catch that. An additional load may be generated in the
 | 
						|
  // preheader for SSA updater, so also avoid sinking when no preheader
 | 
						|
  // is available.
 | 
						|
  if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
 | 
						|
      !Flags->tooManyMemoryAccesses()) {
 | 
						|
    // Figure out the loop exits and their insertion points
 | 
						|
    SmallVector<BasicBlock *, 8> ExitBlocks;
 | 
						|
    L->getUniqueExitBlocks(ExitBlocks);
 | 
						|
 | 
						|
    // We can't insert into a catchswitch.
 | 
						|
    bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
 | 
						|
      return isa<CatchSwitchInst>(Exit->getTerminator());
 | 
						|
    });
 | 
						|
 | 
						|
    if (!HasCatchSwitch) {
 | 
						|
      SmallVector<Instruction *, 8> InsertPts;
 | 
						|
      SmallVector<MemoryAccess *, 8> MSSAInsertPts;
 | 
						|
      InsertPts.reserve(ExitBlocks.size());
 | 
						|
      if (MSSAU)
 | 
						|
        MSSAInsertPts.reserve(ExitBlocks.size());
 | 
						|
      for (BasicBlock *ExitBlock : ExitBlocks) {
 | 
						|
        InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
 | 
						|
        if (MSSAU)
 | 
						|
          MSSAInsertPts.push_back(nullptr);
 | 
						|
      }
 | 
						|
 | 
						|
      PredIteratorCache PIC;
 | 
						|
 | 
						|
      bool Promoted = false;
 | 
						|
 | 
						|
      // Build an AST using MSSA.
 | 
						|
      if (!CurAST.get())
 | 
						|
        CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
 | 
						|
 | 
						|
      // Loop over all of the alias sets in the tracker object.
 | 
						|
      for (AliasSet &AS : *CurAST) {
 | 
						|
        // We can promote this alias set if it has a store, if it is a "Must"
 | 
						|
        // alias set, if the pointer is loop invariant, and if we are not
 | 
						|
        // eliminating any volatile loads or stores.
 | 
						|
        if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
 | 
						|
            !L->isLoopInvariant(AS.begin()->getValue()))
 | 
						|
          continue;
 | 
						|
 | 
						|
        assert(
 | 
						|
            !AS.empty() &&
 | 
						|
            "Must alias set should have at least one pointer element in it!");
 | 
						|
 | 
						|
        SmallSetVector<Value *, 8> PointerMustAliases;
 | 
						|
        for (const auto &ASI : AS)
 | 
						|
          PointerMustAliases.insert(ASI.getValue());
 | 
						|
 | 
						|
        Promoted |= promoteLoopAccessesToScalars(
 | 
						|
            PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
 | 
						|
            DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
 | 
						|
      }
 | 
						|
 | 
						|
      // Once we have promoted values across the loop body we have to
 | 
						|
      // recursively reform LCSSA as any nested loop may now have values defined
 | 
						|
      // within the loop used in the outer loop.
 | 
						|
      // FIXME: This is really heavy handed. It would be a bit better to use an
 | 
						|
      // SSAUpdater strategy during promotion that was LCSSA aware and reformed
 | 
						|
      // it as it went.
 | 
						|
      if (Promoted)
 | 
						|
        formLCSSARecursively(*L, *DT, LI, SE);
 | 
						|
 | 
						|
      Changed |= Promoted;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that neither this loop nor its parent have had LCSSA broken. LICM is
 | 
						|
  // specifically moving instructions across the loop boundary and so it is
 | 
						|
  // especially in need of sanity checking here.
 | 
						|
  assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
 | 
						|
  assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
 | 
						|
         "Parent loop not left in LCSSA form after LICM!");
 | 
						|
 | 
						|
  if (MSSAU.get() && VerifyMemorySSA)
 | 
						|
    MSSAU->getMemorySSA()->verifyMemorySSA();
 | 
						|
 | 
						|
  if (Changed && SE)
 | 
						|
    SE->forgetLoopDispositions(L);
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Walk the specified region of the CFG (defined by all blocks dominated by
 | 
						|
/// the specified block, and that are in the current loop) in reverse depth
 | 
						|
/// first order w.r.t the DominatorTree.  This allows us to visit uses before
 | 
						|
/// definitions, allowing us to sink a loop body in one pass without iteration.
 | 
						|
///
 | 
						|
bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
 | 
						|
                      DominatorTree *DT, BlockFrequencyInfo *BFI,
 | 
						|
                      TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
 | 
						|
                      Loop *CurLoop, AliasSetTracker *CurAST,
 | 
						|
                      MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
 | 
						|
                      SinkAndHoistLICMFlags &Flags,
 | 
						|
                      OptimizationRemarkEmitter *ORE) {
 | 
						|
 | 
						|
  // Verify inputs.
 | 
						|
  assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
 | 
						|
         CurLoop != nullptr && SafetyInfo != nullptr &&
 | 
						|
         "Unexpected input to sinkRegion.");
 | 
						|
  assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
 | 
						|
         "Either AliasSetTracker or MemorySSA should be initialized.");
 | 
						|
 | 
						|
  // We want to visit children before parents. We will enque all the parents
 | 
						|
  // before their children in the worklist and process the worklist in reverse
 | 
						|
  // order.
 | 
						|
  SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (DomTreeNode *DTN : reverse(Worklist)) {
 | 
						|
    BasicBlock *BB = DTN->getBlock();
 | 
						|
    // Only need to process the contents of this block if it is not part of a
 | 
						|
    // subloop (which would already have been processed).
 | 
						|
    if (inSubLoop(BB, CurLoop, LI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
 | 
						|
      Instruction &I = *--II;
 | 
						|
 | 
						|
      // If the instruction is dead, we would try to sink it because it isn't
 | 
						|
      // used in the loop, instead, just delete it.
 | 
						|
      if (isInstructionTriviallyDead(&I, TLI)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
 | 
						|
        salvageKnowledge(&I);
 | 
						|
        salvageDebugInfo(I);
 | 
						|
        ++II;
 | 
						|
        eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check to see if we can sink this instruction to the exit blocks
 | 
						|
      // of the loop.  We can do this if the all users of the instruction are
 | 
						|
      // outside of the loop.  In this case, it doesn't even matter if the
 | 
						|
      // operands of the instruction are loop invariant.
 | 
						|
      //
 | 
						|
      bool FreeInLoop = false;
 | 
						|
      if (!I.mayHaveSideEffects() &&
 | 
						|
          isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
 | 
						|
          canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
 | 
						|
                             ORE)) {
 | 
						|
        if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
 | 
						|
          if (!FreeInLoop) {
 | 
						|
            ++II;
 | 
						|
            salvageDebugInfo(I);
 | 
						|
            eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
 | 
						|
          }
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (MSSAU && VerifyMemorySSA)
 | 
						|
    MSSAU->getMemorySSA()->verifyMemorySSA();
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
// This is a helper class for hoistRegion to make it able to hoist control flow
 | 
						|
// in order to be able to hoist phis. The way this works is that we initially
 | 
						|
// start hoisting to the loop preheader, and when we see a loop invariant branch
 | 
						|
// we make note of this. When we then come to hoist an instruction that's
 | 
						|
// conditional on such a branch we duplicate the branch and the relevant control
 | 
						|
// flow, then hoist the instruction into the block corresponding to its original
 | 
						|
// block in the duplicated control flow.
 | 
						|
class ControlFlowHoister {
 | 
						|
private:
 | 
						|
  // Information about the loop we are hoisting from
 | 
						|
  LoopInfo *LI;
 | 
						|
  DominatorTree *DT;
 | 
						|
  Loop *CurLoop;
 | 
						|
  MemorySSAUpdater *MSSAU;
 | 
						|
 | 
						|
  // A map of blocks in the loop to the block their instructions will be hoisted
 | 
						|
  // to.
 | 
						|
  DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
 | 
						|
 | 
						|
  // The branches that we can hoist, mapped to the block that marks a
 | 
						|
  // convergence point of their control flow.
 | 
						|
  DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
 | 
						|
 | 
						|
public:
 | 
						|
  ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
 | 
						|
                     MemorySSAUpdater *MSSAU)
 | 
						|
      : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
 | 
						|
 | 
						|
  void registerPossiblyHoistableBranch(BranchInst *BI) {
 | 
						|
    // We can only hoist conditional branches with loop invariant operands.
 | 
						|
    if (!ControlFlowHoisting || !BI->isConditional() ||
 | 
						|
        !CurLoop->hasLoopInvariantOperands(BI))
 | 
						|
      return;
 | 
						|
 | 
						|
    // The branch destinations need to be in the loop, and we don't gain
 | 
						|
    // anything by duplicating conditional branches with duplicate successors,
 | 
						|
    // as it's essentially the same as an unconditional branch.
 | 
						|
    BasicBlock *TrueDest = BI->getSuccessor(0);
 | 
						|
    BasicBlock *FalseDest = BI->getSuccessor(1);
 | 
						|
    if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
 | 
						|
        TrueDest == FalseDest)
 | 
						|
      return;
 | 
						|
 | 
						|
    // We can hoist BI if one branch destination is the successor of the other,
 | 
						|
    // or both have common successor which we check by seeing if the
 | 
						|
    // intersection of their successors is non-empty.
 | 
						|
    // TODO: This could be expanded to allowing branches where both ends
 | 
						|
    // eventually converge to a single block.
 | 
						|
    SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
 | 
						|
    TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
 | 
						|
    FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
 | 
						|
    BasicBlock *CommonSucc = nullptr;
 | 
						|
    if (TrueDestSucc.count(FalseDest)) {
 | 
						|
      CommonSucc = FalseDest;
 | 
						|
    } else if (FalseDestSucc.count(TrueDest)) {
 | 
						|
      CommonSucc = TrueDest;
 | 
						|
    } else {
 | 
						|
      set_intersect(TrueDestSucc, FalseDestSucc);
 | 
						|
      // If there's one common successor use that.
 | 
						|
      if (TrueDestSucc.size() == 1)
 | 
						|
        CommonSucc = *TrueDestSucc.begin();
 | 
						|
      // If there's more than one pick whichever appears first in the block list
 | 
						|
      // (we can't use the value returned by TrueDestSucc.begin() as it's
 | 
						|
      // unpredicatable which element gets returned).
 | 
						|
      else if (!TrueDestSucc.empty()) {
 | 
						|
        Function *F = TrueDest->getParent();
 | 
						|
        auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
 | 
						|
        auto It = llvm::find_if(*F, IsSucc);
 | 
						|
        assert(It != F->end() && "Could not find successor in function");
 | 
						|
        CommonSucc = &*It;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // The common successor has to be dominated by the branch, as otherwise
 | 
						|
    // there will be some other path to the successor that will not be
 | 
						|
    // controlled by this branch so any phi we hoist would be controlled by the
 | 
						|
    // wrong condition. This also takes care of avoiding hoisting of loop back
 | 
						|
    // edges.
 | 
						|
    // TODO: In some cases this could be relaxed if the successor is dominated
 | 
						|
    // by another block that's been hoisted and we can guarantee that the
 | 
						|
    // control flow has been replicated exactly.
 | 
						|
    if (CommonSucc && DT->dominates(BI, CommonSucc))
 | 
						|
      HoistableBranches[BI] = CommonSucc;
 | 
						|
  }
 | 
						|
 | 
						|
  bool canHoistPHI(PHINode *PN) {
 | 
						|
    // The phi must have loop invariant operands.
 | 
						|
    if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
 | 
						|
      return false;
 | 
						|
    // We can hoist phis if the block they are in is the target of hoistable
 | 
						|
    // branches which cover all of the predecessors of the block.
 | 
						|
    SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
 | 
						|
    BasicBlock *BB = PN->getParent();
 | 
						|
    for (BasicBlock *PredBB : predecessors(BB))
 | 
						|
      PredecessorBlocks.insert(PredBB);
 | 
						|
    // If we have less predecessor blocks than predecessors then the phi will
 | 
						|
    // have more than one incoming value for the same block which we can't
 | 
						|
    // handle.
 | 
						|
    // TODO: This could be handled be erasing some of the duplicate incoming
 | 
						|
    // values.
 | 
						|
    if (PredecessorBlocks.size() != pred_size(BB))
 | 
						|
      return false;
 | 
						|
    for (auto &Pair : HoistableBranches) {
 | 
						|
      if (Pair.second == BB) {
 | 
						|
        // Which blocks are predecessors via this branch depends on if the
 | 
						|
        // branch is triangle-like or diamond-like.
 | 
						|
        if (Pair.first->getSuccessor(0) == BB) {
 | 
						|
          PredecessorBlocks.erase(Pair.first->getParent());
 | 
						|
          PredecessorBlocks.erase(Pair.first->getSuccessor(1));
 | 
						|
        } else if (Pair.first->getSuccessor(1) == BB) {
 | 
						|
          PredecessorBlocks.erase(Pair.first->getParent());
 | 
						|
          PredecessorBlocks.erase(Pair.first->getSuccessor(0));
 | 
						|
        } else {
 | 
						|
          PredecessorBlocks.erase(Pair.first->getSuccessor(0));
 | 
						|
          PredecessorBlocks.erase(Pair.first->getSuccessor(1));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // PredecessorBlocks will now be empty if for every predecessor of BB we
 | 
						|
    // found a hoistable branch source.
 | 
						|
    return PredecessorBlocks.empty();
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
 | 
						|
    if (!ControlFlowHoisting)
 | 
						|
      return CurLoop->getLoopPreheader();
 | 
						|
    // If BB has already been hoisted, return that
 | 
						|
    if (HoistDestinationMap.count(BB))
 | 
						|
      return HoistDestinationMap[BB];
 | 
						|
 | 
						|
    // Check if this block is conditional based on a pending branch
 | 
						|
    auto HasBBAsSuccessor =
 | 
						|
        [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
 | 
						|
          return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
 | 
						|
                                       Pair.first->getSuccessor(1) == BB);
 | 
						|
        };
 | 
						|
    auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
 | 
						|
 | 
						|
    // If not involved in a pending branch, hoist to preheader
 | 
						|
    BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
 | 
						|
    if (It == HoistableBranches.end()) {
 | 
						|
      LLVM_DEBUG(dbgs() << "LICM using "
 | 
						|
                        << InitialPreheader->getNameOrAsOperand()
 | 
						|
                        << " as hoist destination for "
 | 
						|
                        << BB->getNameOrAsOperand() << "\n");
 | 
						|
      HoistDestinationMap[BB] = InitialPreheader;
 | 
						|
      return InitialPreheader;
 | 
						|
    }
 | 
						|
    BranchInst *BI = It->first;
 | 
						|
    assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
 | 
						|
               HoistableBranches.end() &&
 | 
						|
           "BB is expected to be the target of at most one branch");
 | 
						|
 | 
						|
    LLVMContext &C = BB->getContext();
 | 
						|
    BasicBlock *TrueDest = BI->getSuccessor(0);
 | 
						|
    BasicBlock *FalseDest = BI->getSuccessor(1);
 | 
						|
    BasicBlock *CommonSucc = HoistableBranches[BI];
 | 
						|
    BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
 | 
						|
 | 
						|
    // Create hoisted versions of blocks that currently don't have them
 | 
						|
    auto CreateHoistedBlock = [&](BasicBlock *Orig) {
 | 
						|
      if (HoistDestinationMap.count(Orig))
 | 
						|
        return HoistDestinationMap[Orig];
 | 
						|
      BasicBlock *New =
 | 
						|
          BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
 | 
						|
      HoistDestinationMap[Orig] = New;
 | 
						|
      DT->addNewBlock(New, HoistTarget);
 | 
						|
      if (CurLoop->getParentLoop())
 | 
						|
        CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
 | 
						|
      ++NumCreatedBlocks;
 | 
						|
      LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
 | 
						|
                        << " as hoist destination for " << Orig->getName()
 | 
						|
                        << "\n");
 | 
						|
      return New;
 | 
						|
    };
 | 
						|
    BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
 | 
						|
    BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
 | 
						|
    BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
 | 
						|
 | 
						|
    // Link up these blocks with branches.
 | 
						|
    if (!HoistCommonSucc->getTerminator()) {
 | 
						|
      // The new common successor we've generated will branch to whatever that
 | 
						|
      // hoist target branched to.
 | 
						|
      BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
 | 
						|
      assert(TargetSucc && "Expected hoist target to have a single successor");
 | 
						|
      HoistCommonSucc->moveBefore(TargetSucc);
 | 
						|
      BranchInst::Create(TargetSucc, HoistCommonSucc);
 | 
						|
    }
 | 
						|
    if (!HoistTrueDest->getTerminator()) {
 | 
						|
      HoistTrueDest->moveBefore(HoistCommonSucc);
 | 
						|
      BranchInst::Create(HoistCommonSucc, HoistTrueDest);
 | 
						|
    }
 | 
						|
    if (!HoistFalseDest->getTerminator()) {
 | 
						|
      HoistFalseDest->moveBefore(HoistCommonSucc);
 | 
						|
      BranchInst::Create(HoistCommonSucc, HoistFalseDest);
 | 
						|
    }
 | 
						|
 | 
						|
    // If BI is being cloned to what was originally the preheader then
 | 
						|
    // HoistCommonSucc will now be the new preheader.
 | 
						|
    if (HoistTarget == InitialPreheader) {
 | 
						|
      // Phis in the loop header now need to use the new preheader.
 | 
						|
      InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
 | 
						|
      if (MSSAU)
 | 
						|
        MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
 | 
						|
            HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
 | 
						|
      // The new preheader dominates the loop header.
 | 
						|
      DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
 | 
						|
      DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
 | 
						|
      DT->changeImmediateDominator(HeaderNode, PreheaderNode);
 | 
						|
      // The preheader hoist destination is now the new preheader, with the
 | 
						|
      // exception of the hoist destination of this branch.
 | 
						|
      for (auto &Pair : HoistDestinationMap)
 | 
						|
        if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
 | 
						|
          Pair.second = HoistCommonSucc;
 | 
						|
    }
 | 
						|
 | 
						|
    // Now finally clone BI.
 | 
						|
    ReplaceInstWithInst(
 | 
						|
        HoistTarget->getTerminator(),
 | 
						|
        BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
 | 
						|
    ++NumClonedBranches;
 | 
						|
 | 
						|
    assert(CurLoop->getLoopPreheader() &&
 | 
						|
           "Hoisting blocks should not have destroyed preheader");
 | 
						|
    return HoistDestinationMap[BB];
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
// Hoisting/sinking instruction out of a loop isn't always beneficial. It's only
 | 
						|
// only worthwhile if the destination block is actually colder than current
 | 
						|
// block.
 | 
						|
static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock,
 | 
						|
                                 OptimizationRemarkEmitter *ORE,
 | 
						|
                                 BlockFrequencyInfo *BFI) {
 | 
						|
  // Check block frequency only when runtime profile is available
 | 
						|
  // to avoid pathological cases. With static profile, lean towards
 | 
						|
  // hosting because it helps canonicalize the loop for vectorizer.
 | 
						|
  if (!DstBlock->getParent()->hasProfileData())
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (!HoistSinkColdnessThreshold || !BFI)
 | 
						|
    return true;
 | 
						|
 | 
						|
  BasicBlock *SrcBlock = I.getParent();
 | 
						|
  if (BFI->getBlockFreq(DstBlock).getFrequency() / HoistSinkColdnessThreshold >
 | 
						|
      BFI->getBlockFreq(SrcBlock).getFrequency()) {
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "SinkHoistInst", &I)
 | 
						|
             << "failed to sink or hoist instruction because containing block "
 | 
						|
                "has lower frequency than destination block";
 | 
						|
    });
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Walk the specified region of the CFG (defined by all blocks dominated by
 | 
						|
/// the specified block, and that are in the current loop) in depth first
 | 
						|
/// order w.r.t the DominatorTree.  This allows us to visit definitions before
 | 
						|
/// uses, allowing us to hoist a loop body in one pass without iteration.
 | 
						|
///
 | 
						|
bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
 | 
						|
                       DominatorTree *DT, BlockFrequencyInfo *BFI,
 | 
						|
                       TargetLibraryInfo *TLI, Loop *CurLoop,
 | 
						|
                       AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
 | 
						|
                       ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
 | 
						|
                       SinkAndHoistLICMFlags &Flags,
 | 
						|
                       OptimizationRemarkEmitter *ORE) {
 | 
						|
  // Verify inputs.
 | 
						|
  assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
 | 
						|
         CurLoop != nullptr && SafetyInfo != nullptr &&
 | 
						|
         "Unexpected input to hoistRegion.");
 | 
						|
  assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
 | 
						|
         "Either AliasSetTracker or MemorySSA should be initialized.");
 | 
						|
 | 
						|
  ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
 | 
						|
 | 
						|
  // Keep track of instructions that have been hoisted, as they may need to be
 | 
						|
  // re-hoisted if they end up not dominating all of their uses.
 | 
						|
  SmallVector<Instruction *, 16> HoistedInstructions;
 | 
						|
 | 
						|
  // For PHI hoisting to work we need to hoist blocks before their successors.
 | 
						|
  // We can do this by iterating through the blocks in the loop in reverse
 | 
						|
  // post-order.
 | 
						|
  LoopBlocksRPO Worklist(CurLoop);
 | 
						|
  Worklist.perform(LI);
 | 
						|
  bool Changed = false;
 | 
						|
  for (BasicBlock *BB : Worklist) {
 | 
						|
    // Only need to process the contents of this block if it is not part of a
 | 
						|
    // subloop (which would already have been processed).
 | 
						|
    if (inSubLoop(BB, CurLoop, LI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
 | 
						|
      Instruction &I = *II++;
 | 
						|
      // Try constant folding this instruction.  If all the operands are
 | 
						|
      // constants, it is technically hoistable, but it would be better to
 | 
						|
      // just fold it.
 | 
						|
      if (Constant *C = ConstantFoldInstruction(
 | 
						|
              &I, I.getModule()->getDataLayout(), TLI)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << "  --> " << *C
 | 
						|
                          << '\n');
 | 
						|
        if (CurAST)
 | 
						|
          CurAST->copyValue(&I, C);
 | 
						|
        // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
 | 
						|
        I.replaceAllUsesWith(C);
 | 
						|
        if (isInstructionTriviallyDead(&I, TLI))
 | 
						|
          eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Try hoisting the instruction out to the preheader.  We can only do
 | 
						|
      // this if all of the operands of the instruction are loop invariant and
 | 
						|
      // if it is safe to hoist the instruction. We also check block frequency
 | 
						|
      // to make sure instruction only gets hoisted into colder blocks.
 | 
						|
      // TODO: It may be safe to hoist if we are hoisting to a conditional block
 | 
						|
      // and we have accurately duplicated the control flow from the loop header
 | 
						|
      // to that block.
 | 
						|
      if (CurLoop->hasLoopInvariantOperands(&I) &&
 | 
						|
          canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
 | 
						|
                             ORE) &&
 | 
						|
          worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) &&
 | 
						|
          isSafeToExecuteUnconditionally(
 | 
						|
              I, DT, CurLoop, SafetyInfo, ORE,
 | 
						|
              CurLoop->getLoopPreheader()->getTerminator())) {
 | 
						|
        hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
 | 
						|
              MSSAU, SE, ORE);
 | 
						|
        HoistedInstructions.push_back(&I);
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Attempt to remove floating point division out of the loop by
 | 
						|
      // converting it to a reciprocal multiplication.
 | 
						|
      if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
 | 
						|
          CurLoop->isLoopInvariant(I.getOperand(1))) {
 | 
						|
        auto Divisor = I.getOperand(1);
 | 
						|
        auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
 | 
						|
        auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
 | 
						|
        ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
 | 
						|
        SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
 | 
						|
        ReciprocalDivisor->insertBefore(&I);
 | 
						|
 | 
						|
        auto Product =
 | 
						|
            BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
 | 
						|
        Product->setFastMathFlags(I.getFastMathFlags());
 | 
						|
        SafetyInfo->insertInstructionTo(Product, I.getParent());
 | 
						|
        Product->insertAfter(&I);
 | 
						|
        I.replaceAllUsesWith(Product);
 | 
						|
        eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
 | 
						|
 | 
						|
        hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
 | 
						|
              SafetyInfo, MSSAU, SE, ORE);
 | 
						|
        HoistedInstructions.push_back(ReciprocalDivisor);
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      auto IsInvariantStart = [&](Instruction &I) {
 | 
						|
        using namespace PatternMatch;
 | 
						|
        return I.use_empty() &&
 | 
						|
               match(&I, m_Intrinsic<Intrinsic::invariant_start>());
 | 
						|
      };
 | 
						|
      auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
 | 
						|
        return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
 | 
						|
               SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
 | 
						|
      };
 | 
						|
      if ((IsInvariantStart(I) || isGuard(&I)) &&
 | 
						|
          CurLoop->hasLoopInvariantOperands(&I) &&
 | 
						|
          MustExecuteWithoutWritesBefore(I)) {
 | 
						|
        hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
 | 
						|
              MSSAU, SE, ORE);
 | 
						|
        HoistedInstructions.push_back(&I);
 | 
						|
        Changed = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (PHINode *PN = dyn_cast<PHINode>(&I)) {
 | 
						|
        if (CFH.canHoistPHI(PN)) {
 | 
						|
          // Redirect incoming blocks first to ensure that we create hoisted
 | 
						|
          // versions of those blocks before we hoist the phi.
 | 
						|
          for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
 | 
						|
            PN->setIncomingBlock(
 | 
						|
                i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
 | 
						|
          hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
 | 
						|
                MSSAU, SE, ORE);
 | 
						|
          assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
 | 
						|
          Changed = true;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // Remember possibly hoistable branches so we can actually hoist them
 | 
						|
      // later if needed.
 | 
						|
      if (BranchInst *BI = dyn_cast<BranchInst>(&I))
 | 
						|
        CFH.registerPossiblyHoistableBranch(BI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we hoisted instructions to a conditional block they may not dominate
 | 
						|
  // their uses that weren't hoisted (such as phis where some operands are not
 | 
						|
  // loop invariant). If so make them unconditional by moving them to their
 | 
						|
  // immediate dominator. We iterate through the instructions in reverse order
 | 
						|
  // which ensures that when we rehoist an instruction we rehoist its operands,
 | 
						|
  // and also keep track of where in the block we are rehoisting to to make sure
 | 
						|
  // that we rehoist instructions before the instructions that use them.
 | 
						|
  Instruction *HoistPoint = nullptr;
 | 
						|
  if (ControlFlowHoisting) {
 | 
						|
    for (Instruction *I : reverse(HoistedInstructions)) {
 | 
						|
      if (!llvm::all_of(I->uses(),
 | 
						|
                        [&](Use &U) { return DT->dominates(I, U); })) {
 | 
						|
        BasicBlock *Dominator =
 | 
						|
            DT->getNode(I->getParent())->getIDom()->getBlock();
 | 
						|
        if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
 | 
						|
          if (HoistPoint)
 | 
						|
            assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
 | 
						|
                   "New hoist point expected to dominate old hoist point");
 | 
						|
          HoistPoint = Dominator->getTerminator();
 | 
						|
        }
 | 
						|
        LLVM_DEBUG(dbgs() << "LICM rehoisting to "
 | 
						|
                          << HoistPoint->getParent()->getNameOrAsOperand()
 | 
						|
                          << ": " << *I << "\n");
 | 
						|
        moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
 | 
						|
        HoistPoint = I;
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (MSSAU && VerifyMemorySSA)
 | 
						|
    MSSAU->getMemorySSA()->verifyMemorySSA();
 | 
						|
 | 
						|
    // Now that we've finished hoisting make sure that LI and DT are still
 | 
						|
    // valid.
 | 
						|
#ifdef EXPENSIVE_CHECKS
 | 
						|
  if (Changed) {
 | 
						|
    assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
 | 
						|
           "Dominator tree verification failed");
 | 
						|
    LI->verify(*DT);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// Return true if LI is invariant within scope of the loop. LI is invariant if
 | 
						|
// CurLoop is dominated by an invariant.start representing the same memory
 | 
						|
// location and size as the memory location LI loads from, and also the
 | 
						|
// invariant.start has no uses.
 | 
						|
static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
 | 
						|
                                  Loop *CurLoop) {
 | 
						|
  Value *Addr = LI->getOperand(0);
 | 
						|
  const DataLayout &DL = LI->getModule()->getDataLayout();
 | 
						|
  const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
 | 
						|
 | 
						|
  // It is not currently possible for clang to generate an invariant.start
 | 
						|
  // intrinsic with scalable vector types because we don't support thread local
 | 
						|
  // sizeless types and we don't permit sizeless types in structs or classes.
 | 
						|
  // Furthermore, even if support is added for this in future the intrinsic
 | 
						|
  // itself is defined to have a size of -1 for variable sized objects. This
 | 
						|
  // makes it impossible to verify if the intrinsic envelops our region of
 | 
						|
  // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8>
 | 
						|
  // types would have a -1 parameter, but the former is clearly double the size
 | 
						|
  // of the latter.
 | 
						|
  if (LocSizeInBits.isScalable())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // if the type is i8 addrspace(x)*, we know this is the type of
 | 
						|
  // llvm.invariant.start operand
 | 
						|
  auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
 | 
						|
                                     LI->getPointerAddressSpace());
 | 
						|
  unsigned BitcastsVisited = 0;
 | 
						|
  // Look through bitcasts until we reach the i8* type (this is invariant.start
 | 
						|
  // operand type).
 | 
						|
  while (Addr->getType() != PtrInt8Ty) {
 | 
						|
    auto *BC = dyn_cast<BitCastInst>(Addr);
 | 
						|
    // Avoid traversing high number of bitcast uses.
 | 
						|
    if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
 | 
						|
      return false;
 | 
						|
    Addr = BC->getOperand(0);
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned UsesVisited = 0;
 | 
						|
  // Traverse all uses of the load operand value, to see if invariant.start is
 | 
						|
  // one of the uses, and whether it dominates the load instruction.
 | 
						|
  for (auto *U : Addr->users()) {
 | 
						|
    // Avoid traversing for Load operand with high number of users.
 | 
						|
    if (++UsesVisited > MaxNumUsesTraversed)
 | 
						|
      return false;
 | 
						|
    IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
 | 
						|
    // If there are escaping uses of invariant.start instruction, the load maybe
 | 
						|
    // non-invariant.
 | 
						|
    if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
 | 
						|
        !II->use_empty())
 | 
						|
      continue;
 | 
						|
    ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
 | 
						|
    // The intrinsic supports having a -1 argument for variable sized objects
 | 
						|
    // so we should check for that here.
 | 
						|
    if (InvariantSize->isNegative())
 | 
						|
      continue;
 | 
						|
    uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
 | 
						|
    // Confirm the invariant.start location size contains the load operand size
 | 
						|
    // in bits. Also, the invariant.start should dominate the load, and we
 | 
						|
    // should not hoist the load out of a loop that contains this dominating
 | 
						|
    // invariant.start.
 | 
						|
    if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
 | 
						|
        DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Return true if-and-only-if we know how to (mechanically) both hoist and
 | 
						|
/// sink a given instruction out of a loop.  Does not address legality
 | 
						|
/// concerns such as aliasing or speculation safety.
 | 
						|
bool isHoistableAndSinkableInst(Instruction &I) {
 | 
						|
  // Only these instructions are hoistable/sinkable.
 | 
						|
  return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
 | 
						|
          isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
 | 
						|
          isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
 | 
						|
          isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
 | 
						|
          isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
 | 
						|
          isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
 | 
						|
          isa<InsertValueInst>(I) || isa<FreezeInst>(I));
 | 
						|
}
 | 
						|
/// Return true if all of the alias sets within this AST are known not to
 | 
						|
/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
 | 
						|
bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
 | 
						|
                const Loop *L) {
 | 
						|
  if (CurAST) {
 | 
						|
    for (AliasSet &AS : *CurAST) {
 | 
						|
      if (!AS.isForwardingAliasSet() && AS.isMod()) {
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  } else { /*MSSAU*/
 | 
						|
    for (auto *BB : L->getBlocks())
 | 
						|
      if (MSSAU->getMemorySSA()->getBlockDefs(BB))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if I is the only Instruction with a MemoryAccess in L.
 | 
						|
bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
 | 
						|
                        const MemorySSAUpdater *MSSAU) {
 | 
						|
  for (auto *BB : L->getBlocks())
 | 
						|
    if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
 | 
						|
      int NotAPhi = 0;
 | 
						|
      for (const auto &Acc : *Accs) {
 | 
						|
        if (isa<MemoryPhi>(&Acc))
 | 
						|
          continue;
 | 
						|
        const auto *MUD = cast<MemoryUseOrDef>(&Acc);
 | 
						|
        if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
 | 
						|
                              Loop *CurLoop, AliasSetTracker *CurAST,
 | 
						|
                              MemorySSAUpdater *MSSAU,
 | 
						|
                              bool TargetExecutesOncePerLoop,
 | 
						|
                              SinkAndHoistLICMFlags *Flags,
 | 
						|
                              OptimizationRemarkEmitter *ORE) {
 | 
						|
  assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
 | 
						|
         "Either AliasSetTracker or MemorySSA should be initialized.");
 | 
						|
 | 
						|
  // If we don't understand the instruction, bail early.
 | 
						|
  if (!isHoistableAndSinkableInst(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
 | 
						|
  if (MSSA)
 | 
						|
    assert(Flags != nullptr && "Flags cannot be null.");
 | 
						|
 | 
						|
  // Loads have extra constraints we have to verify before we can hoist them.
 | 
						|
  if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
 | 
						|
    if (!LI->isUnordered())
 | 
						|
      return false; // Don't sink/hoist volatile or ordered atomic loads!
 | 
						|
 | 
						|
    // Loads from constant memory are always safe to move, even if they end up
 | 
						|
    // in the same alias set as something that ends up being modified.
 | 
						|
    if (AA->pointsToConstantMemory(LI->getOperand(0)))
 | 
						|
      return true;
 | 
						|
    if (LI->hasMetadata(LLVMContext::MD_invariant_load))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (LI->isAtomic() && !TargetExecutesOncePerLoop)
 | 
						|
      return false; // Don't risk duplicating unordered loads
 | 
						|
 | 
						|
    // This checks for an invariant.start dominating the load.
 | 
						|
    if (isLoadInvariantInLoop(LI, DT, CurLoop))
 | 
						|
      return true;
 | 
						|
 | 
						|
    bool Invalidated;
 | 
						|
    if (CurAST)
 | 
						|
      Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
 | 
						|
                                             CurLoop, AA);
 | 
						|
    else
 | 
						|
      Invalidated = pointerInvalidatedByLoopWithMSSA(
 | 
						|
          MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
 | 
						|
    // Check loop-invariant address because this may also be a sinkable load
 | 
						|
    // whose address is not necessarily loop-invariant.
 | 
						|
    if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
 | 
						|
      ORE->emit([&]() {
 | 
						|
        return OptimizationRemarkMissed(
 | 
						|
                   DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
 | 
						|
               << "failed to move load with loop-invariant address "
 | 
						|
                  "because the loop may invalidate its value";
 | 
						|
      });
 | 
						|
 | 
						|
    return !Invalidated;
 | 
						|
  } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
 | 
						|
    // Don't sink or hoist dbg info; it's legal, but not useful.
 | 
						|
    if (isa<DbgInfoIntrinsic>(I))
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Don't sink calls which can throw.
 | 
						|
    if (CI->mayThrow())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Convergent attribute has been used on operations that involve
 | 
						|
    // inter-thread communication which results are implicitly affected by the
 | 
						|
    // enclosing control flows. It is not safe to hoist or sink such operations
 | 
						|
    // across control flow.
 | 
						|
    if (CI->isConvergent())
 | 
						|
      return false;
 | 
						|
 | 
						|
    using namespace PatternMatch;
 | 
						|
    if (match(CI, m_Intrinsic<Intrinsic::assume>()))
 | 
						|
      // Assumes don't actually alias anything or throw
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
 | 
						|
      // Widenable conditions don't actually alias anything or throw
 | 
						|
      return true;
 | 
						|
 | 
						|
    // Handle simple cases by querying alias analysis.
 | 
						|
    FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
 | 
						|
    if (Behavior == FMRB_DoesNotAccessMemory)
 | 
						|
      return true;
 | 
						|
    if (AAResults::onlyReadsMemory(Behavior)) {
 | 
						|
      // A readonly argmemonly function only reads from memory pointed to by
 | 
						|
      // it's arguments with arbitrary offsets.  If we can prove there are no
 | 
						|
      // writes to this memory in the loop, we can hoist or sink.
 | 
						|
      if (AAResults::onlyAccessesArgPointees(Behavior)) {
 | 
						|
        // TODO: expand to writeable arguments
 | 
						|
        for (Value *Op : CI->arg_operands())
 | 
						|
          if (Op->getType()->isPointerTy()) {
 | 
						|
            bool Invalidated;
 | 
						|
            if (CurAST)
 | 
						|
              Invalidated = pointerInvalidatedByLoop(
 | 
						|
                  MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
 | 
						|
            else
 | 
						|
              Invalidated = pointerInvalidatedByLoopWithMSSA(
 | 
						|
                  MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
 | 
						|
                  *Flags);
 | 
						|
            if (Invalidated)
 | 
						|
              return false;
 | 
						|
          }
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this call only reads from memory and there are no writes to memory
 | 
						|
      // in the loop, we can hoist or sink the call as appropriate.
 | 
						|
      if (isReadOnly(CurAST, MSSAU, CurLoop))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: This should use mod/ref information to see if we can hoist or
 | 
						|
    // sink the call.
 | 
						|
 | 
						|
    return false;
 | 
						|
  } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
 | 
						|
    // Fences alias (most) everything to provide ordering.  For the moment,
 | 
						|
    // just give up if there are any other memory operations in the loop.
 | 
						|
    if (CurAST) {
 | 
						|
      auto Begin = CurAST->begin();
 | 
						|
      assert(Begin != CurAST->end() && "must contain FI");
 | 
						|
      if (std::next(Begin) != CurAST->end())
 | 
						|
        // constant memory for instance, TODO: handle better
 | 
						|
        return false;
 | 
						|
      auto *UniqueI = Begin->getUniqueInstruction();
 | 
						|
      if (!UniqueI)
 | 
						|
        // other memory op, give up
 | 
						|
        return false;
 | 
						|
      (void)FI; // suppress unused variable warning
 | 
						|
      assert(UniqueI == FI && "AS must contain FI");
 | 
						|
      return true;
 | 
						|
    } else // MSSAU
 | 
						|
      return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
 | 
						|
  } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
 | 
						|
    if (!SI->isUnordered())
 | 
						|
      return false; // Don't sink/hoist volatile or ordered atomic store!
 | 
						|
 | 
						|
    // We can only hoist a store that we can prove writes a value which is not
 | 
						|
    // read or overwritten within the loop.  For those cases, we fallback to
 | 
						|
    // load store promotion instead.  TODO: We can extend this to cases where
 | 
						|
    // there is exactly one write to the location and that write dominates an
 | 
						|
    // arbitrary number of reads in the loop.
 | 
						|
    if (CurAST) {
 | 
						|
      auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
 | 
						|
 | 
						|
      if (AS.isRef() || !AS.isMustAlias())
 | 
						|
        // Quick exit test, handled by the full path below as well.
 | 
						|
        return false;
 | 
						|
      auto *UniqueI = AS.getUniqueInstruction();
 | 
						|
      if (!UniqueI)
 | 
						|
        // other memory op, give up
 | 
						|
        return false;
 | 
						|
      assert(UniqueI == SI && "AS must contain SI");
 | 
						|
      return true;
 | 
						|
    } else { // MSSAU
 | 
						|
      if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
 | 
						|
        return true;
 | 
						|
      // If there are more accesses than the Promotion cap or no "quota" to
 | 
						|
      // check clobber, then give up as we're not walking a list that long.
 | 
						|
      if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
 | 
						|
        return false;
 | 
						|
      // If there are interfering Uses (i.e. their defining access is in the
 | 
						|
      // loop), or ordered loads (stored as Defs!), don't move this store.
 | 
						|
      // Could do better here, but this is conservatively correct.
 | 
						|
      // TODO: Cache set of Uses on the first walk in runOnLoop, update when
 | 
						|
      // moving accesses. Can also extend to dominating uses.
 | 
						|
      auto *SIMD = MSSA->getMemoryAccess(SI);
 | 
						|
      for (auto *BB : CurLoop->getBlocks())
 | 
						|
        if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
 | 
						|
          for (const auto &MA : *Accesses)
 | 
						|
            if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
 | 
						|
              auto *MD = MU->getDefiningAccess();
 | 
						|
              if (!MSSA->isLiveOnEntryDef(MD) &&
 | 
						|
                  CurLoop->contains(MD->getBlock()))
 | 
						|
                return false;
 | 
						|
              // Disable hoisting past potentially interfering loads. Optimized
 | 
						|
              // Uses may point to an access outside the loop, as getClobbering
 | 
						|
              // checks the previous iteration when walking the backedge.
 | 
						|
              // FIXME: More precise: no Uses that alias SI.
 | 
						|
              if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
 | 
						|
                return false;
 | 
						|
            } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
 | 
						|
              if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
 | 
						|
                (void)LI; // Silence warning.
 | 
						|
                assert(!LI->isUnordered() && "Expected unordered load");
 | 
						|
                return false;
 | 
						|
              }
 | 
						|
              // Any call, while it may not be clobbering SI, it may be a use.
 | 
						|
              if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
 | 
						|
                // Check if the call may read from the memory locattion written
 | 
						|
                // to by SI. Check CI's attributes and arguments; the number of
 | 
						|
                // such checks performed is limited above by NoOfMemAccTooLarge.
 | 
						|
                ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
 | 
						|
                if (isModOrRefSet(MRI))
 | 
						|
                  return false;
 | 
						|
              }
 | 
						|
            }
 | 
						|
        }
 | 
						|
      auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
 | 
						|
      Flags->incrementClobberingCalls();
 | 
						|
      // If there are no clobbering Defs in the loop, store is safe to hoist.
 | 
						|
      return MSSA->isLiveOnEntryDef(Source) ||
 | 
						|
             !CurLoop->contains(Source->getBlock());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
 | 
						|
 | 
						|
  // We've established mechanical ability and aliasing, it's up to the caller
 | 
						|
  // to check fault safety
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns true if a PHINode is a trivially replaceable with an
 | 
						|
/// Instruction.
 | 
						|
/// This is true when all incoming values are that instruction.
 | 
						|
/// This pattern occurs most often with LCSSA PHI nodes.
 | 
						|
///
 | 
						|
static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
 | 
						|
  for (const Value *IncValue : PN.incoming_values())
 | 
						|
    if (IncValue != &I)
 | 
						|
      return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the instruction is free in the loop.
 | 
						|
static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
 | 
						|
                         const TargetTransformInfo *TTI) {
 | 
						|
 | 
						|
  if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
 | 
						|
    if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
 | 
						|
        TargetTransformInfo::TCC_Free)
 | 
						|
      return false;
 | 
						|
    // For a GEP, we cannot simply use getUserCost because currently it
 | 
						|
    // optimistically assume that a GEP will fold into addressing mode
 | 
						|
    // regardless of its users.
 | 
						|
    const BasicBlock *BB = GEP->getParent();
 | 
						|
    for (const User *U : GEP->users()) {
 | 
						|
      const Instruction *UI = cast<Instruction>(U);
 | 
						|
      if (CurLoop->contains(UI) &&
 | 
						|
          (BB != UI->getParent() ||
 | 
						|
           (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  } else
 | 
						|
    return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
 | 
						|
           TargetTransformInfo::TCC_Free;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the only users of this instruction are outside of
 | 
						|
/// the loop. If this is true, we can sink the instruction to the exit
 | 
						|
/// blocks of the loop.
 | 
						|
///
 | 
						|
/// We also return true if the instruction could be folded away in lowering.
 | 
						|
/// (e.g.,  a GEP can be folded into a load as an addressing mode in the loop).
 | 
						|
static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
 | 
						|
                                  const LoopSafetyInfo *SafetyInfo,
 | 
						|
                                  TargetTransformInfo *TTI, bool &FreeInLoop) {
 | 
						|
  const auto &BlockColors = SafetyInfo->getBlockColors();
 | 
						|
  bool IsFree = isFreeInLoop(I, CurLoop, TTI);
 | 
						|
  for (const User *U : I.users()) {
 | 
						|
    const Instruction *UI = cast<Instruction>(U);
 | 
						|
    if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
 | 
						|
      const BasicBlock *BB = PN->getParent();
 | 
						|
      // We cannot sink uses in catchswitches.
 | 
						|
      if (isa<CatchSwitchInst>(BB->getTerminator()))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // We need to sink a callsite to a unique funclet.  Avoid sinking if the
 | 
						|
      // phi use is too muddled.
 | 
						|
      if (isa<CallInst>(I))
 | 
						|
        if (!BlockColors.empty() &&
 | 
						|
            BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
 | 
						|
          return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CurLoop->contains(UI)) {
 | 
						|
      if (IsFree) {
 | 
						|
        FreeInLoop = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *cloneInstructionInExitBlock(
 | 
						|
    Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
 | 
						|
    const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
 | 
						|
  Instruction *New;
 | 
						|
  if (auto *CI = dyn_cast<CallInst>(&I)) {
 | 
						|
    const auto &BlockColors = SafetyInfo->getBlockColors();
 | 
						|
 | 
						|
    // Sinking call-sites need to be handled differently from other
 | 
						|
    // instructions.  The cloned call-site needs a funclet bundle operand
 | 
						|
    // appropriate for its location in the CFG.
 | 
						|
    SmallVector<OperandBundleDef, 1> OpBundles;
 | 
						|
    for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
 | 
						|
         BundleIdx != BundleEnd; ++BundleIdx) {
 | 
						|
      OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
 | 
						|
      if (Bundle.getTagID() == LLVMContext::OB_funclet)
 | 
						|
        continue;
 | 
						|
 | 
						|
      OpBundles.emplace_back(Bundle);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!BlockColors.empty()) {
 | 
						|
      const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
 | 
						|
      assert(CV.size() == 1 && "non-unique color for exit block!");
 | 
						|
      BasicBlock *BBColor = CV.front();
 | 
						|
      Instruction *EHPad = BBColor->getFirstNonPHI();
 | 
						|
      if (EHPad->isEHPad())
 | 
						|
        OpBundles.emplace_back("funclet", EHPad);
 | 
						|
    }
 | 
						|
 | 
						|
    New = CallInst::Create(CI, OpBundles);
 | 
						|
  } else {
 | 
						|
    New = I.clone();
 | 
						|
  }
 | 
						|
 | 
						|
  ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
 | 
						|
  if (!I.getName().empty())
 | 
						|
    New->setName(I.getName() + ".le");
 | 
						|
 | 
						|
  if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
 | 
						|
    // Create a new MemoryAccess and let MemorySSA set its defining access.
 | 
						|
    MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
 | 
						|
        New, nullptr, New->getParent(), MemorySSA::Beginning);
 | 
						|
    if (NewMemAcc) {
 | 
						|
      if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
 | 
						|
        MSSAU->insertDef(MemDef, /*RenameUses=*/true);
 | 
						|
      else {
 | 
						|
        auto *MemUse = cast<MemoryUse>(NewMemAcc);
 | 
						|
        MSSAU->insertUse(MemUse, /*RenameUses=*/true);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Build LCSSA PHI nodes for any in-loop operands. Note that this is
 | 
						|
  // particularly cheap because we can rip off the PHI node that we're
 | 
						|
  // replacing for the number and blocks of the predecessors.
 | 
						|
  // OPT: If this shows up in a profile, we can instead finish sinking all
 | 
						|
  // invariant instructions, and then walk their operands to re-establish
 | 
						|
  // LCSSA. That will eliminate creating PHI nodes just to nuke them when
 | 
						|
  // sinking bottom-up.
 | 
						|
  for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
 | 
						|
       ++OI)
 | 
						|
    if (Instruction *OInst = dyn_cast<Instruction>(*OI))
 | 
						|
      if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
 | 
						|
        if (!OLoop->contains(&PN)) {
 | 
						|
          PHINode *OpPN =
 | 
						|
              PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
 | 
						|
                              OInst->getName() + ".lcssa", &ExitBlock.front());
 | 
						|
          for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | 
						|
            OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
 | 
						|
          *OI = OpPN;
 | 
						|
        }
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
 | 
						|
                             AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
 | 
						|
  if (AST)
 | 
						|
    AST->deleteValue(&I);
 | 
						|
  if (MSSAU)
 | 
						|
    MSSAU->removeMemoryAccess(&I);
 | 
						|
  SafetyInfo.removeInstruction(&I);
 | 
						|
  I.eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
static void moveInstructionBefore(Instruction &I, Instruction &Dest,
 | 
						|
                                  ICFLoopSafetyInfo &SafetyInfo,
 | 
						|
                                  MemorySSAUpdater *MSSAU,
 | 
						|
                                  ScalarEvolution *SE) {
 | 
						|
  SafetyInfo.removeInstruction(&I);
 | 
						|
  SafetyInfo.insertInstructionTo(&I, Dest.getParent());
 | 
						|
  I.moveBefore(&Dest);
 | 
						|
  if (MSSAU)
 | 
						|
    if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
 | 
						|
            MSSAU->getMemorySSA()->getMemoryAccess(&I)))
 | 
						|
      MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
 | 
						|
                         MemorySSA::BeforeTerminator);
 | 
						|
  if (SE)
 | 
						|
    SE->forgetValue(&I);
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *sinkThroughTriviallyReplaceablePHI(
 | 
						|
    PHINode *TPN, Instruction *I, LoopInfo *LI,
 | 
						|
    SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
 | 
						|
    const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
 | 
						|
    MemorySSAUpdater *MSSAU) {
 | 
						|
  assert(isTriviallyReplaceablePHI(*TPN, *I) &&
 | 
						|
         "Expect only trivially replaceable PHI");
 | 
						|
  BasicBlock *ExitBlock = TPN->getParent();
 | 
						|
  Instruction *New;
 | 
						|
  auto It = SunkCopies.find(ExitBlock);
 | 
						|
  if (It != SunkCopies.end())
 | 
						|
    New = It->second;
 | 
						|
  else
 | 
						|
    New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
 | 
						|
        *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
 | 
						|
  BasicBlock *BB = PN->getParent();
 | 
						|
  if (!BB->canSplitPredecessors())
 | 
						|
    return false;
 | 
						|
  // It's not impossible to split EHPad blocks, but if BlockColors already exist
 | 
						|
  // it require updating BlockColors for all offspring blocks accordingly. By
 | 
						|
  // skipping such corner case, we can make updating BlockColors after splitting
 | 
						|
  // predecessor fairly simple.
 | 
						|
  if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
 | 
						|
    return false;
 | 
						|
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
    BasicBlock *BBPred = *PI;
 | 
						|
    if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
 | 
						|
        isa<CallBrInst>(BBPred->getTerminator()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
 | 
						|
                                        LoopInfo *LI, const Loop *CurLoop,
 | 
						|
                                        LoopSafetyInfo *SafetyInfo,
 | 
						|
                                        MemorySSAUpdater *MSSAU) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  SmallVector<BasicBlock *, 32> ExitBlocks;
 | 
						|
  CurLoop->getUniqueExitBlocks(ExitBlocks);
 | 
						|
  SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
 | 
						|
                                             ExitBlocks.end());
 | 
						|
#endif
 | 
						|
  BasicBlock *ExitBB = PN->getParent();
 | 
						|
  assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
 | 
						|
 | 
						|
  // Split predecessors of the loop exit to make instructions in the loop are
 | 
						|
  // exposed to exit blocks through trivially replaceable PHIs while keeping the
 | 
						|
  // loop in the canonical form where each predecessor of each exit block should
 | 
						|
  // be contained within the loop. For example, this will convert the loop below
 | 
						|
  // from
 | 
						|
  //
 | 
						|
  // LB1:
 | 
						|
  //   %v1 =
 | 
						|
  //   br %LE, %LB2
 | 
						|
  // LB2:
 | 
						|
  //   %v2 =
 | 
						|
  //   br %LE, %LB1
 | 
						|
  // LE:
 | 
						|
  //   %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
 | 
						|
  //
 | 
						|
  // to
 | 
						|
  //
 | 
						|
  // LB1:
 | 
						|
  //   %v1 =
 | 
						|
  //   br %LE.split, %LB2
 | 
						|
  // LB2:
 | 
						|
  //   %v2 =
 | 
						|
  //   br %LE.split2, %LB1
 | 
						|
  // LE.split:
 | 
						|
  //   %p1 = phi [%v1, %LB1]  <-- trivially replaceable
 | 
						|
  //   br %LE
 | 
						|
  // LE.split2:
 | 
						|
  //   %p2 = phi [%v2, %LB2]  <-- trivially replaceable
 | 
						|
  //   br %LE
 | 
						|
  // LE:
 | 
						|
  //   %p = phi [%p1, %LE.split], [%p2, %LE.split2]
 | 
						|
  //
 | 
						|
  const auto &BlockColors = SafetyInfo->getBlockColors();
 | 
						|
  SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
 | 
						|
  while (!PredBBs.empty()) {
 | 
						|
    BasicBlock *PredBB = *PredBBs.begin();
 | 
						|
    assert(CurLoop->contains(PredBB) &&
 | 
						|
           "Expect all predecessors are in the loop");
 | 
						|
    if (PN->getBasicBlockIndex(PredBB) >= 0) {
 | 
						|
      BasicBlock *NewPred = SplitBlockPredecessors(
 | 
						|
          ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
 | 
						|
      // Since we do not allow splitting EH-block with BlockColors in
 | 
						|
      // canSplitPredecessors(), we can simply assign predecessor's color to
 | 
						|
      // the new block.
 | 
						|
      if (!BlockColors.empty())
 | 
						|
        // Grab a reference to the ColorVector to be inserted before getting the
 | 
						|
        // reference to the vector we are copying because inserting the new
 | 
						|
        // element in BlockColors might cause the map to be reallocated.
 | 
						|
        SafetyInfo->copyColors(NewPred, PredBB);
 | 
						|
    }
 | 
						|
    PredBBs.remove(PredBB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// When an instruction is found to only be used outside of the loop, this
 | 
						|
/// function moves it to the exit blocks and patches up SSA form as needed.
 | 
						|
/// This method is guaranteed to remove the original instruction from its
 | 
						|
/// position, and may either delete it or move it to outside of the loop.
 | 
						|
///
 | 
						|
static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
 | 
						|
                 BlockFrequencyInfo *BFI, const Loop *CurLoop,
 | 
						|
                 ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
 | 
						|
                 OptimizationRemarkEmitter *ORE) {
 | 
						|
  LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
 | 
						|
  ORE->emit([&]() {
 | 
						|
    return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
 | 
						|
           << "sinking " << ore::NV("Inst", &I);
 | 
						|
  });
 | 
						|
  bool Changed = false;
 | 
						|
  if (isa<LoadInst>(I))
 | 
						|
    ++NumMovedLoads;
 | 
						|
  else if (isa<CallInst>(I))
 | 
						|
    ++NumMovedCalls;
 | 
						|
  ++NumSunk;
 | 
						|
 | 
						|
  // Iterate over users to be ready for actual sinking. Replace users via
 | 
						|
  // unreachable blocks with undef and make all user PHIs trivially replaceable.
 | 
						|
  SmallPtrSet<Instruction *, 8> VisitedUsers;
 | 
						|
  for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
 | 
						|
    auto *User = cast<Instruction>(*UI);
 | 
						|
    Use &U = UI.getUse();
 | 
						|
    ++UI;
 | 
						|
 | 
						|
    if (VisitedUsers.count(User) || CurLoop->contains(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!DT->isReachableFromEntry(User->getParent())) {
 | 
						|
      U = UndefValue::get(I.getType());
 | 
						|
      Changed = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // The user must be a PHI node.
 | 
						|
    PHINode *PN = cast<PHINode>(User);
 | 
						|
 | 
						|
    // Surprisingly, instructions can be used outside of loops without any
 | 
						|
    // exits.  This can only happen in PHI nodes if the incoming block is
 | 
						|
    // unreachable.
 | 
						|
    BasicBlock *BB = PN->getIncomingBlock(U);
 | 
						|
    if (!DT->isReachableFromEntry(BB)) {
 | 
						|
      U = UndefValue::get(I.getType());
 | 
						|
      Changed = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    VisitedUsers.insert(PN);
 | 
						|
    if (isTriviallyReplaceablePHI(*PN, I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (!canSplitPredecessors(PN, SafetyInfo))
 | 
						|
      return Changed;
 | 
						|
 | 
						|
    // Split predecessors of the PHI so that we can make users trivially
 | 
						|
    // replaceable.
 | 
						|
    splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
 | 
						|
 | 
						|
    // Should rebuild the iterators, as they may be invalidated by
 | 
						|
    // splitPredecessorsOfLoopExit().
 | 
						|
    UI = I.user_begin();
 | 
						|
    UE = I.user_end();
 | 
						|
  }
 | 
						|
 | 
						|
  if (VisitedUsers.empty())
 | 
						|
    return Changed;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  SmallVector<BasicBlock *, 32> ExitBlocks;
 | 
						|
  CurLoop->getUniqueExitBlocks(ExitBlocks);
 | 
						|
  SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
 | 
						|
                                             ExitBlocks.end());
 | 
						|
#endif
 | 
						|
 | 
						|
  // Clones of this instruction. Don't create more than one per exit block!
 | 
						|
  SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
 | 
						|
 | 
						|
  // If this instruction is only used outside of the loop, then all users are
 | 
						|
  // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
 | 
						|
  // the instruction.
 | 
						|
  // First check if I is worth sinking for all uses. Sink only when it is worth
 | 
						|
  // across all uses.
 | 
						|
  SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
 | 
						|
  SmallVector<PHINode *, 8> ExitPNs;
 | 
						|
  for (auto *UI : Users) {
 | 
						|
    auto *User = cast<Instruction>(UI);
 | 
						|
 | 
						|
    if (CurLoop->contains(User))
 | 
						|
      continue;
 | 
						|
 | 
						|
    PHINode *PN = cast<PHINode>(User);
 | 
						|
    assert(ExitBlockSet.count(PN->getParent()) &&
 | 
						|
           "The LCSSA PHI is not in an exit block!");
 | 
						|
    if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) {
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
 | 
						|
    ExitPNs.push_back(PN);
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto *PN : ExitPNs) {
 | 
						|
 | 
						|
    // The PHI must be trivially replaceable.
 | 
						|
    Instruction *New = sinkThroughTriviallyReplaceablePHI(
 | 
						|
        PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
 | 
						|
    PN->replaceAllUsesWith(New);
 | 
						|
    eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// When an instruction is found to only use loop invariant operands that
 | 
						|
/// is safe to hoist, this instruction is called to do the dirty work.
 | 
						|
///
 | 
						|
static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
 | 
						|
                  BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
 | 
						|
                  MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
 | 
						|
                  OptimizationRemarkEmitter *ORE) {
 | 
						|
  LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
 | 
						|
                    << I << "\n");
 | 
						|
  ORE->emit([&]() {
 | 
						|
    return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
 | 
						|
                                                         << ore::NV("Inst", &I);
 | 
						|
  });
 | 
						|
 | 
						|
  // Metadata can be dependent on conditions we are hoisting above.
 | 
						|
  // Conservatively strip all metadata on the instruction unless we were
 | 
						|
  // guaranteed to execute I if we entered the loop, in which case the metadata
 | 
						|
  // is valid in the loop preheader.
 | 
						|
  if (I.hasMetadataOtherThanDebugLoc() &&
 | 
						|
      // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
 | 
						|
      // time in isGuaranteedToExecute if we don't actually have anything to
 | 
						|
      // drop.  It is a compile time optimization, not required for correctness.
 | 
						|
      !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
 | 
						|
    I.dropUnknownNonDebugMetadata();
 | 
						|
 | 
						|
  if (isa<PHINode>(I))
 | 
						|
    // Move the new node to the end of the phi list in the destination block.
 | 
						|
    moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
 | 
						|
  else
 | 
						|
    // Move the new node to the destination block, before its terminator.
 | 
						|
    moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
 | 
						|
 | 
						|
  I.updateLocationAfterHoist();
 | 
						|
 | 
						|
  if (isa<LoadInst>(I))
 | 
						|
    ++NumMovedLoads;
 | 
						|
  else if (isa<CallInst>(I))
 | 
						|
    ++NumMovedCalls;
 | 
						|
  ++NumHoisted;
 | 
						|
}
 | 
						|
 | 
						|
/// Only sink or hoist an instruction if it is not a trapping instruction,
 | 
						|
/// or if the instruction is known not to trap when moved to the preheader.
 | 
						|
/// or if it is a trapping instruction and is guaranteed to execute.
 | 
						|
static bool isSafeToExecuteUnconditionally(Instruction &Inst,
 | 
						|
                                           const DominatorTree *DT,
 | 
						|
                                           const Loop *CurLoop,
 | 
						|
                                           const LoopSafetyInfo *SafetyInfo,
 | 
						|
                                           OptimizationRemarkEmitter *ORE,
 | 
						|
                                           const Instruction *CtxI) {
 | 
						|
  if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
 | 
						|
    return true;
 | 
						|
 | 
						|
  bool GuaranteedToExecute =
 | 
						|
      SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
 | 
						|
 | 
						|
  if (!GuaranteedToExecute) {
 | 
						|
    auto *LI = dyn_cast<LoadInst>(&Inst);
 | 
						|
    if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
 | 
						|
      ORE->emit([&]() {
 | 
						|
        return OptimizationRemarkMissed(
 | 
						|
                   DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
 | 
						|
               << "failed to hoist load with loop-invariant address "
 | 
						|
                  "because load is conditionally executed";
 | 
						|
      });
 | 
						|
  }
 | 
						|
 | 
						|
  return GuaranteedToExecute;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class LoopPromoter : public LoadAndStorePromoter {
 | 
						|
  Value *SomePtr; // Designated pointer to store to.
 | 
						|
  const SmallSetVector<Value *, 8> &PointerMustAliases;
 | 
						|
  SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
 | 
						|
  SmallVectorImpl<Instruction *> &LoopInsertPts;
 | 
						|
  SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
 | 
						|
  PredIteratorCache &PredCache;
 | 
						|
  AliasSetTracker *AST;
 | 
						|
  MemorySSAUpdater *MSSAU;
 | 
						|
  LoopInfo &LI;
 | 
						|
  DebugLoc DL;
 | 
						|
  int Alignment;
 | 
						|
  bool UnorderedAtomic;
 | 
						|
  AAMDNodes AATags;
 | 
						|
  ICFLoopSafetyInfo &SafetyInfo;
 | 
						|
 | 
						|
  Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
      if (Loop *L = LI.getLoopFor(I->getParent()))
 | 
						|
        if (!L->contains(BB)) {
 | 
						|
          // We need to create an LCSSA PHI node for the incoming value and
 | 
						|
          // store that.
 | 
						|
          PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
 | 
						|
                                        I->getName() + ".lcssa", &BB->front());
 | 
						|
          for (BasicBlock *Pred : PredCache.get(BB))
 | 
						|
            PN->addIncoming(I, Pred);
 | 
						|
          return PN;
 | 
						|
        }
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
 | 
						|
               const SmallSetVector<Value *, 8> &PMA,
 | 
						|
               SmallVectorImpl<BasicBlock *> &LEB,
 | 
						|
               SmallVectorImpl<Instruction *> &LIP,
 | 
						|
               SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
 | 
						|
               AliasSetTracker *ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
 | 
						|
               DebugLoc dl, int alignment, bool UnorderedAtomic,
 | 
						|
               const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
 | 
						|
      : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
 | 
						|
        LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
 | 
						|
        PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
 | 
						|
        Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
 | 
						|
        SafetyInfo(SafetyInfo) {}
 | 
						|
 | 
						|
  bool isInstInList(Instruction *I,
 | 
						|
                    const SmallVectorImpl<Instruction *> &) const override {
 | 
						|
    Value *Ptr;
 | 
						|
    if (LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
      Ptr = LI->getOperand(0);
 | 
						|
    else
 | 
						|
      Ptr = cast<StoreInst>(I)->getPointerOperand();
 | 
						|
    return PointerMustAliases.count(Ptr);
 | 
						|
  }
 | 
						|
 | 
						|
  void doExtraRewritesBeforeFinalDeletion() override {
 | 
						|
    // Insert stores after in the loop exit blocks.  Each exit block gets a
 | 
						|
    // store of the live-out values that feed them.  Since we've already told
 | 
						|
    // the SSA updater about the defs in the loop and the preheader
 | 
						|
    // definition, it is all set and we can start using it.
 | 
						|
    for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
 | 
						|
      BasicBlock *ExitBlock = LoopExitBlocks[i];
 | 
						|
      Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
 | 
						|
      LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
 | 
						|
      Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
 | 
						|
      Instruction *InsertPos = LoopInsertPts[i];
 | 
						|
      StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
 | 
						|
      if (UnorderedAtomic)
 | 
						|
        NewSI->setOrdering(AtomicOrdering::Unordered);
 | 
						|
      NewSI->setAlignment(Align(Alignment));
 | 
						|
      NewSI->setDebugLoc(DL);
 | 
						|
      if (AATags)
 | 
						|
        NewSI->setAAMetadata(AATags);
 | 
						|
 | 
						|
      if (MSSAU) {
 | 
						|
        MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
 | 
						|
        MemoryAccess *NewMemAcc;
 | 
						|
        if (!MSSAInsertPoint) {
 | 
						|
          NewMemAcc = MSSAU->createMemoryAccessInBB(
 | 
						|
              NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
 | 
						|
        } else {
 | 
						|
          NewMemAcc =
 | 
						|
              MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
 | 
						|
        }
 | 
						|
        MSSAInsertPts[i] = NewMemAcc;
 | 
						|
        MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
 | 
						|
        // FIXME: true for safety, false may still be correct.
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
 | 
						|
    // Update alias analysis.
 | 
						|
    if (AST)
 | 
						|
      AST->copyValue(LI, V);
 | 
						|
  }
 | 
						|
  void instructionDeleted(Instruction *I) const override {
 | 
						|
    SafetyInfo.removeInstruction(I);
 | 
						|
    if (AST)
 | 
						|
      AST->deleteValue(I);
 | 
						|
    if (MSSAU)
 | 
						|
      MSSAU->removeMemoryAccess(I);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/// Return true iff we can prove that a caller of this function can not inspect
 | 
						|
/// the contents of the provided object in a well defined program.
 | 
						|
bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
 | 
						|
  if (isa<AllocaInst>(Object))
 | 
						|
    // Since the alloca goes out of scope, we know the caller can't retain a
 | 
						|
    // reference to it and be well defined.  Thus, we don't need to check for
 | 
						|
    // capture.
 | 
						|
    return true;
 | 
						|
 | 
						|
  // For all other objects we need to know that the caller can't possibly
 | 
						|
  // have gotten a reference to the object.  There are two components of
 | 
						|
  // that:
 | 
						|
  //   1) Object can't be escaped by this function.  This is what
 | 
						|
  //      PointerMayBeCaptured checks.
 | 
						|
  //   2) Object can't have been captured at definition site.  For this, we
 | 
						|
  //      need to know the return value is noalias.  At the moment, we use a
 | 
						|
  //      weaker condition and handle only AllocLikeFunctions (which are
 | 
						|
  //      known to be noalias).  TODO
 | 
						|
  return isAllocLikeFn(Object, TLI) &&
 | 
						|
    !PointerMayBeCaptured(Object, true, true);
 | 
						|
}
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
/// Try to promote memory values to scalars by sinking stores out of the
 | 
						|
/// loop and moving loads to before the loop.  We do this by looping over
 | 
						|
/// the stores in the loop, looking for stores to Must pointers which are
 | 
						|
/// loop invariant.
 | 
						|
///
 | 
						|
bool llvm::promoteLoopAccessesToScalars(
 | 
						|
    const SmallSetVector<Value *, 8> &PointerMustAliases,
 | 
						|
    SmallVectorImpl<BasicBlock *> &ExitBlocks,
 | 
						|
    SmallVectorImpl<Instruction *> &InsertPts,
 | 
						|
    SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
 | 
						|
    LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
 | 
						|
    Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
 | 
						|
    ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
 | 
						|
  // Verify inputs.
 | 
						|
  assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
 | 
						|
         SafetyInfo != nullptr &&
 | 
						|
         "Unexpected Input to promoteLoopAccessesToScalars");
 | 
						|
 | 
						|
  Value *SomePtr = *PointerMustAliases.begin();
 | 
						|
  BasicBlock *Preheader = CurLoop->getLoopPreheader();
 | 
						|
 | 
						|
  // It is not safe to promote a load/store from the loop if the load/store is
 | 
						|
  // conditional.  For example, turning:
 | 
						|
  //
 | 
						|
  //    for () { if (c) *P += 1; }
 | 
						|
  //
 | 
						|
  // into:
 | 
						|
  //
 | 
						|
  //    tmp = *P;  for () { if (c) tmp +=1; } *P = tmp;
 | 
						|
  //
 | 
						|
  // is not safe, because *P may only be valid to access if 'c' is true.
 | 
						|
  //
 | 
						|
  // The safety property divides into two parts:
 | 
						|
  // p1) The memory may not be dereferenceable on entry to the loop.  In this
 | 
						|
  //    case, we can't insert the required load in the preheader.
 | 
						|
  // p2) The memory model does not allow us to insert a store along any dynamic
 | 
						|
  //    path which did not originally have one.
 | 
						|
  //
 | 
						|
  // If at least one store is guaranteed to execute, both properties are
 | 
						|
  // satisfied, and promotion is legal.
 | 
						|
  //
 | 
						|
  // This, however, is not a necessary condition. Even if no store/load is
 | 
						|
  // guaranteed to execute, we can still establish these properties.
 | 
						|
  // We can establish (p1) by proving that hoisting the load into the preheader
 | 
						|
  // is safe (i.e. proving dereferenceability on all paths through the loop). We
 | 
						|
  // can use any access within the alias set to prove dereferenceability,
 | 
						|
  // since they're all must alias.
 | 
						|
  //
 | 
						|
  // There are two ways establish (p2):
 | 
						|
  // a) Prove the location is thread-local. In this case the memory model
 | 
						|
  // requirement does not apply, and stores are safe to insert.
 | 
						|
  // b) Prove a store dominates every exit block. In this case, if an exit
 | 
						|
  // blocks is reached, the original dynamic path would have taken us through
 | 
						|
  // the store, so inserting a store into the exit block is safe. Note that this
 | 
						|
  // is different from the store being guaranteed to execute. For instance,
 | 
						|
  // if an exception is thrown on the first iteration of the loop, the original
 | 
						|
  // store is never executed, but the exit blocks are not executed either.
 | 
						|
 | 
						|
  bool DereferenceableInPH = false;
 | 
						|
  bool SafeToInsertStore = false;
 | 
						|
 | 
						|
  SmallVector<Instruction *, 64> LoopUses;
 | 
						|
 | 
						|
  // We start with an alignment of one and try to find instructions that allow
 | 
						|
  // us to prove better alignment.
 | 
						|
  Align Alignment;
 | 
						|
  // Keep track of which types of access we see
 | 
						|
  bool SawUnorderedAtomic = false;
 | 
						|
  bool SawNotAtomic = false;
 | 
						|
  AAMDNodes AATags;
 | 
						|
 | 
						|
  const DataLayout &MDL = Preheader->getModule()->getDataLayout();
 | 
						|
 | 
						|
  bool IsKnownThreadLocalObject = false;
 | 
						|
  if (SafetyInfo->anyBlockMayThrow()) {
 | 
						|
    // If a loop can throw, we have to insert a store along each unwind edge.
 | 
						|
    // That said, we can't actually make the unwind edge explicit. Therefore,
 | 
						|
    // we have to prove that the store is dead along the unwind edge.  We do
 | 
						|
    // this by proving that the caller can't have a reference to the object
 | 
						|
    // after return and thus can't possibly load from the object.
 | 
						|
    Value *Object = getUnderlyingObject(SomePtr);
 | 
						|
    if (!isKnownNonEscaping(Object, TLI))
 | 
						|
      return false;
 | 
						|
    // Subtlety: Alloca's aren't visible to callers, but *are* potentially
 | 
						|
    // visible to other threads if captured and used during their lifetimes.
 | 
						|
    IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check that all of the pointers in the alias set have the same type.  We
 | 
						|
  // cannot (yet) promote a memory location that is loaded and stored in
 | 
						|
  // different sizes.  While we are at it, collect alignment and AA info.
 | 
						|
  for (Value *ASIV : PointerMustAliases) {
 | 
						|
    // Check that all of the pointers in the alias set have the same type.  We
 | 
						|
    // cannot (yet) promote a memory location that is loaded and stored in
 | 
						|
    // different sizes.
 | 
						|
    if (SomePtr->getType() != ASIV->getType())
 | 
						|
      return false;
 | 
						|
 | 
						|
    for (User *U : ASIV->users()) {
 | 
						|
      // Ignore instructions that are outside the loop.
 | 
						|
      Instruction *UI = dyn_cast<Instruction>(U);
 | 
						|
      if (!UI || !CurLoop->contains(UI))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If there is an non-load/store instruction in the loop, we can't promote
 | 
						|
      // it.
 | 
						|
      if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
 | 
						|
        if (!Load->isUnordered())
 | 
						|
          return false;
 | 
						|
 | 
						|
        SawUnorderedAtomic |= Load->isAtomic();
 | 
						|
        SawNotAtomic |= !Load->isAtomic();
 | 
						|
 | 
						|
        Align InstAlignment = Load->getAlign();
 | 
						|
 | 
						|
        // Note that proving a load safe to speculate requires proving
 | 
						|
        // sufficient alignment at the target location.  Proving it guaranteed
 | 
						|
        // to execute does as well.  Thus we can increase our guaranteed
 | 
						|
        // alignment as well. 
 | 
						|
        if (!DereferenceableInPH || (InstAlignment > Alignment))
 | 
						|
          if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
 | 
						|
                                             ORE, Preheader->getTerminator())) {
 | 
						|
            DereferenceableInPH = true;
 | 
						|
            Alignment = std::max(Alignment, InstAlignment);
 | 
						|
          }
 | 
						|
      } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
 | 
						|
        // Stores *of* the pointer are not interesting, only stores *to* the
 | 
						|
        // pointer.
 | 
						|
        if (UI->getOperand(1) != ASIV)
 | 
						|
          continue;
 | 
						|
        if (!Store->isUnordered())
 | 
						|
          return false;
 | 
						|
 | 
						|
        SawUnorderedAtomic |= Store->isAtomic();
 | 
						|
        SawNotAtomic |= !Store->isAtomic();
 | 
						|
 | 
						|
        // If the store is guaranteed to execute, both properties are satisfied.
 | 
						|
        // We may want to check if a store is guaranteed to execute even if we
 | 
						|
        // already know that promotion is safe, since it may have higher
 | 
						|
        // alignment than any other guaranteed stores, in which case we can
 | 
						|
        // raise the alignment on the promoted store.
 | 
						|
        Align InstAlignment = Store->getAlign();
 | 
						|
 | 
						|
        if (!DereferenceableInPH || !SafeToInsertStore ||
 | 
						|
            (InstAlignment > Alignment)) {
 | 
						|
          if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
 | 
						|
            DereferenceableInPH = true;
 | 
						|
            SafeToInsertStore = true;
 | 
						|
            Alignment = std::max(Alignment, InstAlignment);
 | 
						|
          }
 | 
						|
        }
 | 
						|
 | 
						|
        // If a store dominates all exit blocks, it is safe to sink.
 | 
						|
        // As explained above, if an exit block was executed, a dominating
 | 
						|
        // store must have been executed at least once, so we are not
 | 
						|
        // introducing stores on paths that did not have them.
 | 
						|
        // Note that this only looks at explicit exit blocks. If we ever
 | 
						|
        // start sinking stores into unwind edges (see above), this will break.
 | 
						|
        if (!SafeToInsertStore)
 | 
						|
          SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
 | 
						|
            return DT->dominates(Store->getParent(), Exit);
 | 
						|
          });
 | 
						|
 | 
						|
        // If the store is not guaranteed to execute, we may still get
 | 
						|
        // deref info through it.
 | 
						|
        if (!DereferenceableInPH) {
 | 
						|
          DereferenceableInPH = isDereferenceableAndAlignedPointer(
 | 
						|
              Store->getPointerOperand(), Store->getValueOperand()->getType(),
 | 
						|
              Store->getAlign(), MDL, Preheader->getTerminator(), DT);
 | 
						|
        }
 | 
						|
      } else
 | 
						|
        return false; // Not a load or store.
 | 
						|
 | 
						|
      // Merge the AA tags.
 | 
						|
      if (LoopUses.empty()) {
 | 
						|
        // On the first load/store, just take its AA tags.
 | 
						|
        UI->getAAMetadata(AATags);
 | 
						|
      } else if (AATags) {
 | 
						|
        UI->getAAMetadata(AATags, /* Merge = */ true);
 | 
						|
      }
 | 
						|
 | 
						|
      LoopUses.push_back(UI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we found both an unordered atomic instruction and a non-atomic memory
 | 
						|
  // access, bail.  We can't blindly promote non-atomic to atomic since we
 | 
						|
  // might not be able to lower the result.  We can't downgrade since that
 | 
						|
  // would violate memory model.  Also, align 0 is an error for atomics.
 | 
						|
  if (SawUnorderedAtomic && SawNotAtomic)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we're inserting an atomic load in the preheader, we must be able to
 | 
						|
  // lower it.  We're only guaranteed to be able to lower naturally aligned
 | 
						|
  // atomics.
 | 
						|
  auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
 | 
						|
  if (SawUnorderedAtomic &&
 | 
						|
      Alignment < MDL.getTypeStoreSize(SomePtrElemType))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we couldn't prove we can hoist the load, bail.
 | 
						|
  if (!DereferenceableInPH)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We know we can hoist the load, but don't have a guaranteed store.
 | 
						|
  // Check whether the location is thread-local. If it is, then we can insert
 | 
						|
  // stores along paths which originally didn't have them without violating the
 | 
						|
  // memory model.
 | 
						|
  if (!SafeToInsertStore) {
 | 
						|
    if (IsKnownThreadLocalObject)
 | 
						|
      SafeToInsertStore = true;
 | 
						|
    else {
 | 
						|
      Value *Object = getUnderlyingObject(SomePtr);
 | 
						|
      SafeToInsertStore =
 | 
						|
          (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
 | 
						|
          !PointerMayBeCaptured(Object, true, true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we've still failed to prove we can sink the store, give up.
 | 
						|
  if (!SafeToInsertStore)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, this is safe to promote, lets do it!
 | 
						|
  LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
 | 
						|
                    << '\n');
 | 
						|
  ORE->emit([&]() {
 | 
						|
    return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
 | 
						|
                              LoopUses[0])
 | 
						|
           << "Moving accesses to memory location out of the loop";
 | 
						|
  });
 | 
						|
  ++NumPromoted;
 | 
						|
 | 
						|
  // Look at all the loop uses, and try to merge their locations.
 | 
						|
  std::vector<const DILocation *> LoopUsesLocs;
 | 
						|
  for (auto U : LoopUses)
 | 
						|
    LoopUsesLocs.push_back(U->getDebugLoc().get());
 | 
						|
  auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
 | 
						|
 | 
						|
  // We use the SSAUpdater interface to insert phi nodes as required.
 | 
						|
  SmallVector<PHINode *, 16> NewPHIs;
 | 
						|
  SSAUpdater SSA(&NewPHIs);
 | 
						|
  LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
 | 
						|
                        InsertPts, MSSAInsertPts, PIC, CurAST, MSSAU, *LI, DL,
 | 
						|
                        Alignment.value(), SawUnorderedAtomic, AATags,
 | 
						|
                        *SafetyInfo);
 | 
						|
 | 
						|
  // Set up the preheader to have a definition of the value.  It is the live-out
 | 
						|
  // value from the preheader that uses in the loop will use.
 | 
						|
  LoadInst *PreheaderLoad = new LoadInst(
 | 
						|
      SomePtr->getType()->getPointerElementType(), SomePtr,
 | 
						|
      SomePtr->getName() + ".promoted", Preheader->getTerminator());
 | 
						|
  if (SawUnorderedAtomic)
 | 
						|
    PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
 | 
						|
  PreheaderLoad->setAlignment(Alignment);
 | 
						|
  PreheaderLoad->setDebugLoc(DebugLoc());
 | 
						|
  if (AATags)
 | 
						|
    PreheaderLoad->setAAMetadata(AATags);
 | 
						|
  SSA.AddAvailableValue(Preheader, PreheaderLoad);
 | 
						|
 | 
						|
  if (MSSAU) {
 | 
						|
    MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
 | 
						|
        PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
 | 
						|
    MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
 | 
						|
    MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  if (MSSAU && VerifyMemorySSA)
 | 
						|
    MSSAU->getMemorySSA()->verifyMemorySSA();
 | 
						|
  // Rewrite all the loads in the loop and remember all the definitions from
 | 
						|
  // stores in the loop.
 | 
						|
  Promoter.run(LoopUses);
 | 
						|
 | 
						|
  if (MSSAU && VerifyMemorySSA)
 | 
						|
    MSSAU->getMemorySSA()->verifyMemorySSA();
 | 
						|
  // If the SSAUpdater didn't use the load in the preheader, just zap it now.
 | 
						|
  if (PreheaderLoad->use_empty())
 | 
						|
    eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns an owning pointer to an alias set which incorporates aliasing info
 | 
						|
/// from L and all subloops of L.
 | 
						|
std::unique_ptr<AliasSetTracker>
 | 
						|
LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
 | 
						|
                                                 AAResults *AA) {
 | 
						|
  auto CurAST = std::make_unique<AliasSetTracker>(*AA);
 | 
						|
 | 
						|
  // Add everything from all the sub loops.
 | 
						|
  for (Loop *InnerL : L->getSubLoops())
 | 
						|
    for (BasicBlock *BB : InnerL->blocks())
 | 
						|
      CurAST->add(*BB);
 | 
						|
 | 
						|
  // And merge in this loop (without anything from inner loops).
 | 
						|
  for (BasicBlock *BB : L->blocks())
 | 
						|
    if (LI->getLoopFor(BB) == L)
 | 
						|
      CurAST->add(*BB);
 | 
						|
 | 
						|
  return CurAST;
 | 
						|
}
 | 
						|
 | 
						|
std::unique_ptr<AliasSetTracker>
 | 
						|
LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
 | 
						|
    Loop *L, AAResults *AA, MemorySSAUpdater *MSSAU) {
 | 
						|
  auto *MSSA = MSSAU->getMemorySSA();
 | 
						|
  auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
 | 
						|
  CurAST->addAllInstructionsInLoopUsingMSSA();
 | 
						|
  return CurAST;
 | 
						|
}
 | 
						|
 | 
						|
static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
 | 
						|
                                     AliasSetTracker *CurAST, Loop *CurLoop,
 | 
						|
                                     AAResults *AA) {
 | 
						|
  // First check to see if any of the basic blocks in CurLoop invalidate *V.
 | 
						|
  bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
 | 
						|
 | 
						|
  if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
 | 
						|
    return isInvalidatedAccordingToAST;
 | 
						|
 | 
						|
  // Check with a diagnostic analysis if we can refine the information above.
 | 
						|
  // This is to identify the limitations of using the AST.
 | 
						|
  // The alias set mechanism used by LICM has a major weakness in that it
 | 
						|
  // combines all things which may alias into a single set *before* asking
 | 
						|
  // modref questions. As a result, a single readonly call within a loop will
 | 
						|
  // collapse all loads and stores into a single alias set and report
 | 
						|
  // invalidation if the loop contains any store. For example, readonly calls
 | 
						|
  // with deopt states have this form and create a general alias set with all
 | 
						|
  // loads and stores.  In order to get any LICM in loops containing possible
 | 
						|
  // deopt states we need a more precise invalidation of checking the mod ref
 | 
						|
  // info of each instruction within the loop and LI. This has a complexity of
 | 
						|
  // O(N^2), so currently, it is used only as a diagnostic tool since the
 | 
						|
  // default value of LICMN2Threshold is zero.
 | 
						|
 | 
						|
  // Don't look at nested loops.
 | 
						|
  if (CurLoop->begin() != CurLoop->end())
 | 
						|
    return true;
 | 
						|
 | 
						|
  int N = 0;
 | 
						|
  for (BasicBlock *BB : CurLoop->getBlocks())
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      if (N >= LICMN2Theshold) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
 | 
						|
                          << *(MemLoc.Ptr) << "\n");
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      N++;
 | 
						|
      auto Res = AA->getModRefInfo(&I, MemLoc);
 | 
						|
      if (isModSet(Res)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
 | 
						|
                          << *(MemLoc.Ptr) << "\n");
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
 | 
						|
                                      Loop *CurLoop, Instruction &I,
 | 
						|
                                      SinkAndHoistLICMFlags &Flags) {
 | 
						|
  // For hoisting, use the walker to determine safety
 | 
						|
  if (!Flags.getIsSink()) {
 | 
						|
    MemoryAccess *Source;
 | 
						|
    // See declaration of SetLicmMssaOptCap for usage details.
 | 
						|
    if (Flags.tooManyClobberingCalls())
 | 
						|
      Source = MU->getDefiningAccess();
 | 
						|
    else {
 | 
						|
      Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
 | 
						|
      Flags.incrementClobberingCalls();
 | 
						|
    }
 | 
						|
    return !MSSA->isLiveOnEntryDef(Source) &&
 | 
						|
           CurLoop->contains(Source->getBlock());
 | 
						|
  }
 | 
						|
 | 
						|
  // For sinking, we'd need to check all Defs below this use. The getClobbering
 | 
						|
  // call will look on the backedge of the loop, but will check aliasing with
 | 
						|
  // the instructions on the previous iteration.
 | 
						|
  // For example:
 | 
						|
  // for (i ... )
 | 
						|
  //   load a[i] ( Use (LoE)
 | 
						|
  //   store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
 | 
						|
  //   i++;
 | 
						|
  // The load sees no clobbering inside the loop, as the backedge alias check
 | 
						|
  // does phi translation, and will check aliasing against store a[i-1].
 | 
						|
  // However sinking the load outside the loop, below the store is incorrect.
 | 
						|
 | 
						|
  // For now, only sink if there are no Defs in the loop, and the existing ones
 | 
						|
  // precede the use and are in the same block.
 | 
						|
  // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
 | 
						|
  // needs PostDominatorTreeAnalysis.
 | 
						|
  // FIXME: More precise: no Defs that alias this Use.
 | 
						|
  if (Flags.tooManyMemoryAccesses())
 | 
						|
    return true;
 | 
						|
  for (auto *BB : CurLoop->getBlocks())
 | 
						|
    if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
 | 
						|
      return true;
 | 
						|
  // When sinking, the source block may not be part of the loop so check it.
 | 
						|
  if (!CurLoop->contains(&I))
 | 
						|
    return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
 | 
						|
                                       MemoryUse &MU) {
 | 
						|
  if (const auto *Accesses = MSSA.getBlockDefs(&BB))
 | 
						|
    for (const auto &MA : *Accesses)
 | 
						|
      if (const auto *MD = dyn_cast<MemoryDef>(&MA))
 | 
						|
        if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU))
 | 
						|
          return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Little predicate that returns true if the specified basic block is in
 | 
						|
/// a subloop of the current one, not the current one itself.
 | 
						|
///
 | 
						|
static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
 | 
						|
  assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
 | 
						|
  return LI->getLoopFor(BB) != CurLoop;
 | 
						|
}
 |