1696 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1696 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This Pass handles loop interchange transform.
 | 
						|
// This pass interchanges loops to provide a more cache-friendly memory access
 | 
						|
// patterns.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/LoopInterchange.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/Analysis/DependenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/LoopPass.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolution.h"
 | 
						|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/LoopUtils.h"
 | 
						|
#include <cassert>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-interchange"
 | 
						|
 | 
						|
STATISTIC(LoopsInterchanged, "Number of loops interchanged");
 | 
						|
 | 
						|
static cl::opt<int> LoopInterchangeCostThreshold(
 | 
						|
    "loop-interchange-threshold", cl::init(0), cl::Hidden,
 | 
						|
    cl::desc("Interchange if you gain more than this number"));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
using LoopVector = SmallVector<Loop *, 8>;
 | 
						|
 | 
						|
// TODO: Check if we can use a sparse matrix here.
 | 
						|
using CharMatrix = std::vector<std::vector<char>>;
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
// Maximum number of dependencies that can be handled in the dependency matrix.
 | 
						|
static const unsigned MaxMemInstrCount = 100;
 | 
						|
 | 
						|
// Maximum loop depth supported.
 | 
						|
static const unsigned MaxLoopNestDepth = 10;
 | 
						|
 | 
						|
#ifdef DUMP_DEP_MATRICIES
 | 
						|
static void printDepMatrix(CharMatrix &DepMatrix) {
 | 
						|
  for (auto &Row : DepMatrix) {
 | 
						|
    for (auto D : Row)
 | 
						|
      LLVM_DEBUG(dbgs() << D << " ");
 | 
						|
    LLVM_DEBUG(dbgs() << "\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
 | 
						|
                                     Loop *L, DependenceInfo *DI) {
 | 
						|
  using ValueVector = SmallVector<Value *, 16>;
 | 
						|
 | 
						|
  ValueVector MemInstr;
 | 
						|
 | 
						|
  // For each block.
 | 
						|
  for (BasicBlock *BB : L->blocks()) {
 | 
						|
    // Scan the BB and collect legal loads and stores.
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      if (!isa<Instruction>(I))
 | 
						|
        return false;
 | 
						|
      if (auto *Ld = dyn_cast<LoadInst>(&I)) {
 | 
						|
        if (!Ld->isSimple())
 | 
						|
          return false;
 | 
						|
        MemInstr.push_back(&I);
 | 
						|
      } else if (auto *St = dyn_cast<StoreInst>(&I)) {
 | 
						|
        if (!St->isSimple())
 | 
						|
          return false;
 | 
						|
        MemInstr.push_back(&I);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
 | 
						|
                    << " Loads and Stores to analyze\n");
 | 
						|
 | 
						|
  ValueVector::iterator I, IE, J, JE;
 | 
						|
 | 
						|
  for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
 | 
						|
    for (J = I, JE = MemInstr.end(); J != JE; ++J) {
 | 
						|
      std::vector<char> Dep;
 | 
						|
      Instruction *Src = cast<Instruction>(*I);
 | 
						|
      Instruction *Dst = cast<Instruction>(*J);
 | 
						|
      if (Src == Dst)
 | 
						|
        continue;
 | 
						|
      // Ignore Input dependencies.
 | 
						|
      if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
 | 
						|
        continue;
 | 
						|
      // Track Output, Flow, and Anti dependencies.
 | 
						|
      if (auto D = DI->depends(Src, Dst, true)) {
 | 
						|
        assert(D->isOrdered() && "Expected an output, flow or anti dep.");
 | 
						|
        LLVM_DEBUG(StringRef DepType =
 | 
						|
                       D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
 | 
						|
                   dbgs() << "Found " << DepType
 | 
						|
                          << " dependency between Src and Dst\n"
 | 
						|
                          << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
 | 
						|
        unsigned Levels = D->getLevels();
 | 
						|
        char Direction;
 | 
						|
        for (unsigned II = 1; II <= Levels; ++II) {
 | 
						|
          const SCEV *Distance = D->getDistance(II);
 | 
						|
          const SCEVConstant *SCEVConst =
 | 
						|
              dyn_cast_or_null<SCEVConstant>(Distance);
 | 
						|
          if (SCEVConst) {
 | 
						|
            const ConstantInt *CI = SCEVConst->getValue();
 | 
						|
            if (CI->isNegative())
 | 
						|
              Direction = '<';
 | 
						|
            else if (CI->isZero())
 | 
						|
              Direction = '=';
 | 
						|
            else
 | 
						|
              Direction = '>';
 | 
						|
            Dep.push_back(Direction);
 | 
						|
          } else if (D->isScalar(II)) {
 | 
						|
            Direction = 'S';
 | 
						|
            Dep.push_back(Direction);
 | 
						|
          } else {
 | 
						|
            unsigned Dir = D->getDirection(II);
 | 
						|
            if (Dir == Dependence::DVEntry::LT ||
 | 
						|
                Dir == Dependence::DVEntry::LE)
 | 
						|
              Direction = '<';
 | 
						|
            else if (Dir == Dependence::DVEntry::GT ||
 | 
						|
                     Dir == Dependence::DVEntry::GE)
 | 
						|
              Direction = '>';
 | 
						|
            else if (Dir == Dependence::DVEntry::EQ)
 | 
						|
              Direction = '=';
 | 
						|
            else
 | 
						|
              Direction = '*';
 | 
						|
            Dep.push_back(Direction);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        while (Dep.size() != Level) {
 | 
						|
          Dep.push_back('I');
 | 
						|
        }
 | 
						|
 | 
						|
        DepMatrix.push_back(Dep);
 | 
						|
        if (DepMatrix.size() > MaxMemInstrCount) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
 | 
						|
                            << " dependencies inside loop\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// A loop is moved from index 'from' to an index 'to'. Update the Dependence
 | 
						|
// matrix by exchanging the two columns.
 | 
						|
static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
 | 
						|
                                    unsigned ToIndx) {
 | 
						|
  unsigned numRows = DepMatrix.size();
 | 
						|
  for (unsigned i = 0; i < numRows; ++i) {
 | 
						|
    char TmpVal = DepMatrix[i][ToIndx];
 | 
						|
    DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
 | 
						|
    DepMatrix[i][FromIndx] = TmpVal;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
 | 
						|
// '>'
 | 
						|
static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
 | 
						|
                                   unsigned Column) {
 | 
						|
  for (unsigned i = 0; i <= Column; ++i) {
 | 
						|
    if (DepMatrix[Row][i] == '<')
 | 
						|
      return false;
 | 
						|
    if (DepMatrix[Row][i] == '>')
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  // All dependencies were '=','S' or 'I'
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Checks if no dependence exist in the dependency matrix in Row before Column.
 | 
						|
static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
 | 
						|
                                 unsigned Column) {
 | 
						|
  for (unsigned i = 0; i < Column; ++i) {
 | 
						|
    if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
 | 
						|
        DepMatrix[Row][i] != 'I')
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
 | 
						|
                                unsigned OuterLoopId, char InnerDep,
 | 
						|
                                char OuterDep) {
 | 
						|
  if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (InnerDep == OuterDep)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // It is legal to interchange if and only if after interchange no row has a
 | 
						|
  // '>' direction as the leftmost non-'='.
 | 
						|
 | 
						|
  if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (InnerDep == '<')
 | 
						|
    return true;
 | 
						|
 | 
						|
  if (InnerDep == '>') {
 | 
						|
    // If OuterLoopId represents outermost loop then interchanging will make the
 | 
						|
    // 1st dependency as '>'
 | 
						|
    if (OuterLoopId == 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // If all dependencies before OuterloopId are '=','S'or 'I'. Then
 | 
						|
    // interchanging will result in this row having an outermost non '='
 | 
						|
    // dependency of '>'
 | 
						|
    if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Checks if it is legal to interchange 2 loops.
 | 
						|
// [Theorem] A permutation of the loops in a perfect nest is legal if and only
 | 
						|
// if the direction matrix, after the same permutation is applied to its
 | 
						|
// columns, has no ">" direction as the leftmost non-"=" direction in any row.
 | 
						|
static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
 | 
						|
                                      unsigned InnerLoopId,
 | 
						|
                                      unsigned OuterLoopId) {
 | 
						|
  unsigned NumRows = DepMatrix.size();
 | 
						|
  // For each row check if it is valid to interchange.
 | 
						|
  for (unsigned Row = 0; Row < NumRows; ++Row) {
 | 
						|
    char InnerDep = DepMatrix[Row][InnerLoopId];
 | 
						|
    char OuterDep = DepMatrix[Row][OuterLoopId];
 | 
						|
    if (InnerDep == '*' || OuterDep == '*')
 | 
						|
      return false;
 | 
						|
    if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static LoopVector populateWorklist(Loop &L) {
 | 
						|
  LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
 | 
						|
                    << L.getHeader()->getParent()->getName() << " Loop: %"
 | 
						|
                    << L.getHeader()->getName() << '\n');
 | 
						|
  LoopVector LoopList;
 | 
						|
  Loop *CurrentLoop = &L;
 | 
						|
  const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
 | 
						|
  while (!Vec->empty()) {
 | 
						|
    // The current loop has multiple subloops in it hence it is not tightly
 | 
						|
    // nested.
 | 
						|
    // Discard all loops above it added into Worklist.
 | 
						|
    if (Vec->size() != 1)
 | 
						|
      return {};
 | 
						|
 | 
						|
    LoopList.push_back(CurrentLoop);
 | 
						|
    CurrentLoop = Vec->front();
 | 
						|
    Vec = &CurrentLoop->getSubLoops();
 | 
						|
  }
 | 
						|
  LoopList.push_back(CurrentLoop);
 | 
						|
  return LoopList;
 | 
						|
}
 | 
						|
 | 
						|
static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
 | 
						|
  PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
 | 
						|
  if (InnerIndexVar)
 | 
						|
    return InnerIndexVar;
 | 
						|
  if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
 | 
						|
    return nullptr;
 | 
						|
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    PHINode *PhiVar = cast<PHINode>(I);
 | 
						|
    Type *PhiTy = PhiVar->getType();
 | 
						|
    if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
 | 
						|
        !PhiTy->isPointerTy())
 | 
						|
      return nullptr;
 | 
						|
    const SCEVAddRecExpr *AddRec =
 | 
						|
        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
 | 
						|
    if (!AddRec || !AddRec->isAffine())
 | 
						|
      continue;
 | 
						|
    const SCEV *Step = AddRec->getStepRecurrence(*SE);
 | 
						|
    if (!isa<SCEVConstant>(Step))
 | 
						|
      continue;
 | 
						|
    // Found the induction variable.
 | 
						|
    // FIXME: Handle loops with more than one induction variable. Note that,
 | 
						|
    // currently, legality makes sure we have only one induction variable.
 | 
						|
    return PhiVar;
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
/// LoopInterchangeLegality checks if it is legal to interchange the loop.
 | 
						|
class LoopInterchangeLegality {
 | 
						|
public:
 | 
						|
  LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
 | 
						|
                          OptimizationRemarkEmitter *ORE)
 | 
						|
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
 | 
						|
 | 
						|
  /// Check if the loops can be interchanged.
 | 
						|
  bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
 | 
						|
                           CharMatrix &DepMatrix);
 | 
						|
 | 
						|
  /// Check if the loop structure is understood. We do not handle triangular
 | 
						|
  /// loops for now.
 | 
						|
  bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
 | 
						|
 | 
						|
  bool currentLimitations();
 | 
						|
 | 
						|
  const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
 | 
						|
    return OuterInnerReductions;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  bool tightlyNested(Loop *Outer, Loop *Inner);
 | 
						|
  bool containsUnsafeInstructions(BasicBlock *BB);
 | 
						|
 | 
						|
  /// Discover induction and reduction PHIs in the header of \p L. Induction
 | 
						|
  /// PHIs are added to \p Inductions, reductions are added to
 | 
						|
  /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
 | 
						|
  /// to be passed as \p InnerLoop.
 | 
						|
  bool findInductionAndReductions(Loop *L,
 | 
						|
                                  SmallVector<PHINode *, 8> &Inductions,
 | 
						|
                                  Loop *InnerLoop);
 | 
						|
 | 
						|
  Loop *OuterLoop;
 | 
						|
  Loop *InnerLoop;
 | 
						|
 | 
						|
  ScalarEvolution *SE;
 | 
						|
 | 
						|
  /// Interface to emit optimization remarks.
 | 
						|
  OptimizationRemarkEmitter *ORE;
 | 
						|
 | 
						|
  /// Set of reduction PHIs taking part of a reduction across the inner and
 | 
						|
  /// outer loop.
 | 
						|
  SmallPtrSet<PHINode *, 4> OuterInnerReductions;
 | 
						|
};
 | 
						|
 | 
						|
/// LoopInterchangeProfitability checks if it is profitable to interchange the
 | 
						|
/// loop.
 | 
						|
class LoopInterchangeProfitability {
 | 
						|
public:
 | 
						|
  LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
 | 
						|
                               OptimizationRemarkEmitter *ORE)
 | 
						|
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
 | 
						|
 | 
						|
  /// Check if the loop interchange is profitable.
 | 
						|
  bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
 | 
						|
                    CharMatrix &DepMatrix);
 | 
						|
 | 
						|
private:
 | 
						|
  int getInstrOrderCost();
 | 
						|
 | 
						|
  Loop *OuterLoop;
 | 
						|
  Loop *InnerLoop;
 | 
						|
 | 
						|
  /// Scev analysis.
 | 
						|
  ScalarEvolution *SE;
 | 
						|
 | 
						|
  /// Interface to emit optimization remarks.
 | 
						|
  OptimizationRemarkEmitter *ORE;
 | 
						|
};
 | 
						|
 | 
						|
/// LoopInterchangeTransform interchanges the loop.
 | 
						|
class LoopInterchangeTransform {
 | 
						|
public:
 | 
						|
  LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
 | 
						|
                           LoopInfo *LI, DominatorTree *DT,
 | 
						|
                           BasicBlock *LoopNestExit,
 | 
						|
                           const LoopInterchangeLegality &LIL)
 | 
						|
      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
 | 
						|
        LoopExit(LoopNestExit), LIL(LIL) {}
 | 
						|
 | 
						|
  /// Interchange OuterLoop and InnerLoop.
 | 
						|
  bool transform();
 | 
						|
  void restructureLoops(Loop *NewInner, Loop *NewOuter,
 | 
						|
                        BasicBlock *OrigInnerPreHeader,
 | 
						|
                        BasicBlock *OrigOuterPreHeader);
 | 
						|
  void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
 | 
						|
 | 
						|
private:
 | 
						|
  bool adjustLoopLinks();
 | 
						|
  bool adjustLoopBranches();
 | 
						|
 | 
						|
  Loop *OuterLoop;
 | 
						|
  Loop *InnerLoop;
 | 
						|
 | 
						|
  /// Scev analysis.
 | 
						|
  ScalarEvolution *SE;
 | 
						|
 | 
						|
  LoopInfo *LI;
 | 
						|
  DominatorTree *DT;
 | 
						|
  BasicBlock *LoopExit;
 | 
						|
 | 
						|
  const LoopInterchangeLegality &LIL;
 | 
						|
};
 | 
						|
 | 
						|
struct LoopInterchange {
 | 
						|
  ScalarEvolution *SE = nullptr;
 | 
						|
  LoopInfo *LI = nullptr;
 | 
						|
  DependenceInfo *DI = nullptr;
 | 
						|
  DominatorTree *DT = nullptr;
 | 
						|
 | 
						|
  /// Interface to emit optimization remarks.
 | 
						|
  OptimizationRemarkEmitter *ORE;
 | 
						|
 | 
						|
  LoopInterchange(ScalarEvolution *SE, LoopInfo *LI, DependenceInfo *DI,
 | 
						|
                  DominatorTree *DT, OptimizationRemarkEmitter *ORE)
 | 
						|
      : SE(SE), LI(LI), DI(DI), DT(DT), ORE(ORE) {}
 | 
						|
 | 
						|
  bool run(Loop *L) {
 | 
						|
    if (L->getParentLoop())
 | 
						|
      return false;
 | 
						|
 | 
						|
    return processLoopList(populateWorklist(*L));
 | 
						|
  }
 | 
						|
 | 
						|
  bool isComputableLoopNest(LoopVector LoopList) {
 | 
						|
    for (Loop *L : LoopList) {
 | 
						|
      const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
 | 
						|
      if (isa<SCEVCouldNotCompute>(ExitCountOuter)) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      if (L->getNumBackEdges() != 1) {
 | 
						|
        LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      if (!L->getExitingBlock()) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned selectLoopForInterchange(const LoopVector &LoopList) {
 | 
						|
    // TODO: Add a better heuristic to select the loop to be interchanged based
 | 
						|
    // on the dependence matrix. Currently we select the innermost loop.
 | 
						|
    return LoopList.size() - 1;
 | 
						|
  }
 | 
						|
 | 
						|
  bool processLoopList(LoopVector LoopList) {
 | 
						|
    bool Changed = false;
 | 
						|
    unsigned LoopNestDepth = LoopList.size();
 | 
						|
    if (LoopNestDepth < 2) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (LoopNestDepth > MaxLoopNestDepth) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
 | 
						|
                        << MaxLoopNestDepth << "\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (!isComputableLoopNest(LoopList)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
 | 
						|
                      << "\n");
 | 
						|
 | 
						|
    CharMatrix DependencyMatrix;
 | 
						|
    Loop *OuterMostLoop = *(LoopList.begin());
 | 
						|
    if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
 | 
						|
                                  OuterMostLoop, DI)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
#ifdef DUMP_DEP_MATRICIES
 | 
						|
    LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
 | 
						|
    printDepMatrix(DependencyMatrix);
 | 
						|
#endif
 | 
						|
 | 
						|
    // Get the Outermost loop exit.
 | 
						|
    BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
 | 
						|
    if (!LoopNestExit) {
 | 
						|
      LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned SelecLoopId = selectLoopForInterchange(LoopList);
 | 
						|
    // Move the selected loop outwards to the best possible position.
 | 
						|
    for (unsigned i = SelecLoopId; i > 0; i--) {
 | 
						|
      bool Interchanged =
 | 
						|
          processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
 | 
						|
      if (!Interchanged)
 | 
						|
        return Changed;
 | 
						|
      // Loops interchanged reflect the same in LoopList
 | 
						|
      std::swap(LoopList[i - 1], LoopList[i]);
 | 
						|
 | 
						|
      // Update the DependencyMatrix
 | 
						|
      interChangeDependencies(DependencyMatrix, i, i - 1);
 | 
						|
#ifdef DUMP_DEP_MATRICIES
 | 
						|
      LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
 | 
						|
      printDepMatrix(DependencyMatrix);
 | 
						|
#endif
 | 
						|
      Changed |= Interchanged;
 | 
						|
    }
 | 
						|
    return Changed;
 | 
						|
  }
 | 
						|
 | 
						|
  bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
 | 
						|
                   unsigned OuterLoopId, BasicBlock *LoopNestExit,
 | 
						|
                   std::vector<std::vector<char>> &DependencyMatrix) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
 | 
						|
                      << " and OuterLoopId = " << OuterLoopId << "\n");
 | 
						|
    Loop *InnerLoop = LoopList[InnerLoopId];
 | 
						|
    Loop *OuterLoop = LoopList[OuterLoopId];
 | 
						|
 | 
						|
    LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
 | 
						|
    if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
 | 
						|
    LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
 | 
						|
    if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemark(DEBUG_TYPE, "Interchanged",
 | 
						|
                                InnerLoop->getStartLoc(),
 | 
						|
                                InnerLoop->getHeader())
 | 
						|
             << "Loop interchanged with enclosing loop.";
 | 
						|
    });
 | 
						|
 | 
						|
    LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit,
 | 
						|
                                 LIL);
 | 
						|
    LIT.transform();
 | 
						|
    LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
 | 
						|
    LoopsInterchanged++;
 | 
						|
 | 
						|
    assert(InnerLoop->isLCSSAForm(*DT) &&
 | 
						|
           "Inner loop not left in LCSSA form after loop interchange!");
 | 
						|
    assert(OuterLoop->isLCSSAForm(*DT) &&
 | 
						|
           "Outer loop not left in LCSSA form after loop interchange!");
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
 | 
						|
  return any_of(*BB, [](const Instruction &I) {
 | 
						|
    return I.mayHaveSideEffects() || I.mayReadFromMemory();
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
 | 
						|
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
 | 
						|
 | 
						|
  // A perfectly nested loop will not have any branch in between the outer and
 | 
						|
  // inner block i.e. outer header will branch to either inner preheader and
 | 
						|
  // outerloop latch.
 | 
						|
  BranchInst *OuterLoopHeaderBI =
 | 
						|
      dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
 | 
						|
  if (!OuterLoopHeaderBI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
 | 
						|
    if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
 | 
						|
        Succ != OuterLoopLatch)
 | 
						|
      return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
 | 
						|
  // We do not have any basic block in between now make sure the outer header
 | 
						|
  // and outer loop latch doesn't contain any unsafe instructions.
 | 
						|
  if (containsUnsafeInstructions(OuterLoopHeader) ||
 | 
						|
      containsUnsafeInstructions(OuterLoopLatch))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Also make sure the inner loop preheader does not contain any unsafe
 | 
						|
  // instructions. Note that all instructions in the preheader will be moved to
 | 
						|
  // the outer loop header when interchanging.
 | 
						|
  if (InnerLoopPreHeader != OuterLoopHeader &&
 | 
						|
      containsUnsafeInstructions(InnerLoopPreHeader))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
 | 
						|
  // We have a perfect loop nest.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::isLoopStructureUnderstood(
 | 
						|
    PHINode *InnerInduction) {
 | 
						|
  unsigned Num = InnerInduction->getNumOperands();
 | 
						|
  BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
 | 
						|
  for (unsigned i = 0; i < Num; ++i) {
 | 
						|
    Value *Val = InnerInduction->getOperand(i);
 | 
						|
    if (isa<Constant>(Val))
 | 
						|
      continue;
 | 
						|
    Instruction *I = dyn_cast<Instruction>(Val);
 | 
						|
    if (!I)
 | 
						|
      return false;
 | 
						|
    // TODO: Handle triangular loops.
 | 
						|
    // e.g. for(int i=0;i<N;i++)
 | 
						|
    //        for(int j=i;j<N;j++)
 | 
						|
    unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
 | 
						|
    if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
 | 
						|
            InnerLoopPreheader &&
 | 
						|
        !OuterLoop->isLoopInvariant(I)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// If SV is a LCSSA PHI node with a single incoming value, return the incoming
 | 
						|
// value.
 | 
						|
static Value *followLCSSA(Value *SV) {
 | 
						|
  PHINode *PHI = dyn_cast<PHINode>(SV);
 | 
						|
  if (!PHI)
 | 
						|
    return SV;
 | 
						|
 | 
						|
  if (PHI->getNumIncomingValues() != 1)
 | 
						|
    return SV;
 | 
						|
  return followLCSSA(PHI->getIncomingValue(0));
 | 
						|
}
 | 
						|
 | 
						|
// Check V's users to see if it is involved in a reduction in L.
 | 
						|
static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
 | 
						|
  // Reduction variables cannot be constants.
 | 
						|
  if (isa<Constant>(V))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  for (Value *User : V->users()) {
 | 
						|
    if (PHINode *PHI = dyn_cast<PHINode>(User)) {
 | 
						|
      if (PHI->getNumIncomingValues() == 1)
 | 
						|
        continue;
 | 
						|
      RecurrenceDescriptor RD;
 | 
						|
      if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
 | 
						|
        return PHI;
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::findInductionAndReductions(
 | 
						|
    Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
 | 
						|
  if (!L->getLoopLatch() || !L->getLoopPredecessor())
 | 
						|
    return false;
 | 
						|
  for (PHINode &PHI : L->getHeader()->phis()) {
 | 
						|
    RecurrenceDescriptor RD;
 | 
						|
    InductionDescriptor ID;
 | 
						|
    if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
 | 
						|
      Inductions.push_back(&PHI);
 | 
						|
    else {
 | 
						|
      // PHIs in inner loops need to be part of a reduction in the outer loop,
 | 
						|
      // discovered when checking the PHIs of the outer loop earlier.
 | 
						|
      if (!InnerLoop) {
 | 
						|
        if (!OuterInnerReductions.count(&PHI)) {
 | 
						|
          LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
 | 
						|
                               "across the outer loop.\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        assert(PHI.getNumIncomingValues() == 2 &&
 | 
						|
               "Phis in loop header should have exactly 2 incoming values");
 | 
						|
        // Check if we have a PHI node in the outer loop that has a reduction
 | 
						|
        // result from the inner loop as an incoming value.
 | 
						|
        Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
 | 
						|
        PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
 | 
						|
        if (!InnerRedPhi ||
 | 
						|
            !llvm::is_contained(InnerRedPhi->incoming_values(), &PHI)) {
 | 
						|
          LLVM_DEBUG(
 | 
						|
              dbgs()
 | 
						|
              << "Failed to recognize PHI as an induction or reduction.\n");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
        OuterInnerReductions.insert(&PHI);
 | 
						|
        OuterInnerReductions.insert(InnerRedPhi);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// This function indicates the current limitations in the transform as a result
 | 
						|
// of which we do not proceed.
 | 
						|
bool LoopInterchangeLegality::currentLimitations() {
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | 
						|
 | 
						|
  // transform currently expects the loop latches to also be the exiting
 | 
						|
  // blocks.
 | 
						|
  if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
 | 
						|
      OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
 | 
						|
      !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
 | 
						|
      !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "Loops where the latch is not the exiting block are not"
 | 
						|
               << " supported currently.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
 | 
						|
                                      OuterLoop->getStartLoc(),
 | 
						|
                                      OuterLoop->getHeader())
 | 
						|
             << "Loops where the latch is not the exiting block cannot be"
 | 
						|
                " interchange currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  PHINode *InnerInductionVar;
 | 
						|
  SmallVector<PHINode *, 8> Inductions;
 | 
						|
  if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "Only outer loops with induction or reduction PHI nodes "
 | 
						|
               << "are supported currently.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
 | 
						|
                                      OuterLoop->getStartLoc(),
 | 
						|
                                      OuterLoop->getHeader())
 | 
						|
             << "Only outer loops with induction or reduction PHI nodes can be"
 | 
						|
                " interchanged currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Currently we handle only loops with 1 induction variable.
 | 
						|
  if (Inductions.size() != 1) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
 | 
						|
                      << "supported currently.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
 | 
						|
                                      OuterLoop->getStartLoc(),
 | 
						|
                                      OuterLoop->getHeader())
 | 
						|
             << "Only outer loops with 1 induction variable can be "
 | 
						|
                "interchanged currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  Inductions.clear();
 | 
						|
  if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "Only inner loops with induction or reduction PHI nodes "
 | 
						|
               << "are supported currently.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Only inner loops with induction or reduction PHI nodes can be"
 | 
						|
                " interchange currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Currently we handle only loops with 1 induction variable.
 | 
						|
  if (Inductions.size() != 1) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "We currently only support loops with 1 induction variable."
 | 
						|
               << "Failed to interchange due to current limitation\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Only inner loops with 1 induction variable can be "
 | 
						|
                "interchanged currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  InnerInductionVar = Inductions.pop_back_val();
 | 
						|
 | 
						|
  // TODO: Triangular loops are not handled for now.
 | 
						|
  if (!isLoopStructureUnderstood(InnerInductionVar)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Inner loop structure not understood currently.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: Current limitation: Since we split the inner loop latch at the point
 | 
						|
  // were induction variable is incremented (induction.next); We cannot have
 | 
						|
  // more than 1 user of induction.next since it would result in broken code
 | 
						|
  // after split.
 | 
						|
  // e.g.
 | 
						|
  // for(i=0;i<N;i++) {
 | 
						|
  //    for(j = 0;j<M;j++) {
 | 
						|
  //      A[j+1][i+2] = A[j][i]+k;
 | 
						|
  //  }
 | 
						|
  // }
 | 
						|
  Instruction *InnerIndexVarInc = nullptr;
 | 
						|
  if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
 | 
						|
    InnerIndexVarInc =
 | 
						|
        dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
 | 
						|
  else
 | 
						|
    InnerIndexVarInc =
 | 
						|
        dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
 | 
						|
 | 
						|
  if (!InnerIndexVarInc) {
 | 
						|
    LLVM_DEBUG(
 | 
						|
        dbgs() << "Did not find an instruction to increment the induction "
 | 
						|
               << "variable.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "The inner loop does not increment the induction variable.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Since we split the inner loop latch on this induction variable. Make sure
 | 
						|
  // we do not have any instruction between the induction variable and branch
 | 
						|
  // instruction.
 | 
						|
 | 
						|
  bool FoundInduction = false;
 | 
						|
  for (const Instruction &I :
 | 
						|
       llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
 | 
						|
    if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
 | 
						|
        isa<ZExtInst>(I))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // We found an instruction. If this is not induction variable then it is not
 | 
						|
    // safe to split this loop latch.
 | 
						|
    if (!I.isIdenticalTo(InnerIndexVarInc)) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
 | 
						|
                        << "variable increment and branch.\n");
 | 
						|
      ORE->emit([&]() {
 | 
						|
        return OptimizationRemarkMissed(
 | 
						|
                   DEBUG_TYPE, "UnsupportedInsBetweenInduction",
 | 
						|
                   InnerLoop->getStartLoc(), InnerLoop->getHeader())
 | 
						|
               << "Found unsupported instruction between induction variable "
 | 
						|
                  "increment and branch.";
 | 
						|
      });
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    FoundInduction = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  // The loop latch ended and we didn't find the induction variable return as
 | 
						|
  // current limitation.
 | 
						|
  if (!FoundInduction) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Did not find the induction variable.";
 | 
						|
    });
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// We currently only support LCSSA PHI nodes in the inner loop exit, if their
 | 
						|
// users are either reduction PHIs or PHIs outside the outer loop (which means
 | 
						|
// the we are only interested in the final value after the loop).
 | 
						|
static bool
 | 
						|
areInnerLoopExitPHIsSupported(Loop *InnerL, Loop *OuterL,
 | 
						|
                              SmallPtrSetImpl<PHINode *> &Reductions) {
 | 
						|
  BasicBlock *InnerExit = OuterL->getUniqueExitBlock();
 | 
						|
  for (PHINode &PHI : InnerExit->phis()) {
 | 
						|
    // Reduction lcssa phi will have only 1 incoming block that from loop latch.
 | 
						|
    if (PHI.getNumIncomingValues() > 1)
 | 
						|
      return false;
 | 
						|
    if (any_of(PHI.users(), [&Reductions, OuterL](User *U) {
 | 
						|
          PHINode *PN = dyn_cast<PHINode>(U);
 | 
						|
          return !PN ||
 | 
						|
                 (!Reductions.count(PN) && OuterL->contains(PN->getParent()));
 | 
						|
        })) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// We currently support LCSSA PHI nodes in the outer loop exit, if their
 | 
						|
// incoming values do not come from the outer loop latch or if the
 | 
						|
// outer loop latch has a single predecessor. In that case, the value will
 | 
						|
// be available if both the inner and outer loop conditions are true, which
 | 
						|
// will still be true after interchanging. If we have multiple predecessor,
 | 
						|
// that may not be the case, e.g. because the outer loop latch may be executed
 | 
						|
// if the inner loop is not executed.
 | 
						|
static bool areOuterLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
 | 
						|
  BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
 | 
						|
  for (PHINode &PHI : LoopNestExit->phis()) {
 | 
						|
    //  FIXME: We currently are not able to detect floating point reductions
 | 
						|
    //         and have to use floating point PHIs as a proxy to prevent
 | 
						|
    //         interchanging in the presence of floating point reductions.
 | 
						|
    if (PHI.getType()->isFloatingPointTy())
 | 
						|
      return false;
 | 
						|
    for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
 | 
						|
     Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
 | 
						|
     if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
 | 
						|
       continue;
 | 
						|
 | 
						|
     // The incoming value is defined in the outer loop latch. Currently we
 | 
						|
     // only support that in case the outer loop latch has a single predecessor.
 | 
						|
     // This guarantees that the outer loop latch is executed if and only if
 | 
						|
     // the inner loop is executed (because tightlyNested() guarantees that the
 | 
						|
     // outer loop header only branches to the inner loop or the outer loop
 | 
						|
     // latch).
 | 
						|
     // FIXME: We could weaken this logic and allow multiple predecessors,
 | 
						|
     //        if the values are produced outside the loop latch. We would need
 | 
						|
     //        additional logic to update the PHI nodes in the exit block as
 | 
						|
     //        well.
 | 
						|
     if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
 | 
						|
       return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
 | 
						|
                                                  unsigned OuterLoopId,
 | 
						|
                                                  CharMatrix &DepMatrix) {
 | 
						|
  if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
 | 
						|
                      << " and OuterLoopId = " << OuterLoopId
 | 
						|
                      << " due to dependence\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Cannot interchange loops due to dependences.";
 | 
						|
    });
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  // Check if outer and inner loop contain legal instructions only.
 | 
						|
  for (auto *BB : OuterLoop->blocks())
 | 
						|
    for (Instruction &I : BB->instructionsWithoutDebug())
 | 
						|
      if (CallInst *CI = dyn_cast<CallInst>(&I)) {
 | 
						|
        // readnone functions do not prevent interchanging.
 | 
						|
        if (CI->doesNotReadMemory())
 | 
						|
          continue;
 | 
						|
        LLVM_DEBUG(
 | 
						|
            dbgs() << "Loops with call instructions cannot be interchanged "
 | 
						|
                   << "safely.");
 | 
						|
        ORE->emit([&]() {
 | 
						|
          return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
 | 
						|
                                          CI->getDebugLoc(),
 | 
						|
                                          CI->getParent())
 | 
						|
                 << "Cannot interchange loops due to call instruction.";
 | 
						|
        });
 | 
						|
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
  // TODO: The loops could not be interchanged due to current limitations in the
 | 
						|
  // transform module.
 | 
						|
  if (currentLimitations()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if the loops are tightly nested.
 | 
						|
  if (!tightlyNested(OuterLoop, InnerLoop)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Cannot interchange loops because they are not tightly "
 | 
						|
                "nested.";
 | 
						|
    });
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!areInnerLoopExitPHIsSupported(OuterLoop, InnerLoop,
 | 
						|
                                     OuterInnerReductions)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in inner loop exit.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
 | 
						|
                                      InnerLoop->getStartLoc(),
 | 
						|
                                      InnerLoop->getHeader())
 | 
						|
             << "Found unsupported PHI node in loop exit.";
 | 
						|
    });
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!areOuterLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
 | 
						|
    ORE->emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
 | 
						|
                                      OuterLoop->getStartLoc(),
 | 
						|
                                      OuterLoop->getHeader())
 | 
						|
             << "Found unsupported PHI node in loop exit.";
 | 
						|
    });
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
int LoopInterchangeProfitability::getInstrOrderCost() {
 | 
						|
  unsigned GoodOrder, BadOrder;
 | 
						|
  BadOrder = GoodOrder = 0;
 | 
						|
  for (BasicBlock *BB : InnerLoop->blocks()) {
 | 
						|
    for (Instruction &Ins : *BB) {
 | 
						|
      if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
 | 
						|
        unsigned NumOp = GEP->getNumOperands();
 | 
						|
        bool FoundInnerInduction = false;
 | 
						|
        bool FoundOuterInduction = false;
 | 
						|
        for (unsigned i = 0; i < NumOp; ++i) {
 | 
						|
          // Skip operands that are not SCEV-able.
 | 
						|
          if (!SE->isSCEVable(GEP->getOperand(i)->getType()))
 | 
						|
            continue;
 | 
						|
 | 
						|
          const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
 | 
						|
          const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
 | 
						|
          if (!AR)
 | 
						|
            continue;
 | 
						|
 | 
						|
          // If we find the inner induction after an outer induction e.g.
 | 
						|
          // for(int i=0;i<N;i++)
 | 
						|
          //   for(int j=0;j<N;j++)
 | 
						|
          //     A[i][j] = A[i-1][j-1]+k;
 | 
						|
          // then it is a good order.
 | 
						|
          if (AR->getLoop() == InnerLoop) {
 | 
						|
            // We found an InnerLoop induction after OuterLoop induction. It is
 | 
						|
            // a good order.
 | 
						|
            FoundInnerInduction = true;
 | 
						|
            if (FoundOuterInduction) {
 | 
						|
              GoodOrder++;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // If we find the outer induction after an inner induction e.g.
 | 
						|
          // for(int i=0;i<N;i++)
 | 
						|
          //   for(int j=0;j<N;j++)
 | 
						|
          //     A[j][i] = A[j-1][i-1]+k;
 | 
						|
          // then it is a bad order.
 | 
						|
          if (AR->getLoop() == OuterLoop) {
 | 
						|
            // We found an OuterLoop induction after InnerLoop induction. It is
 | 
						|
            // a bad order.
 | 
						|
            FoundOuterInduction = true;
 | 
						|
            if (FoundInnerInduction) {
 | 
						|
              BadOrder++;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return GoodOrder - BadOrder;
 | 
						|
}
 | 
						|
 | 
						|
static bool isProfitableForVectorization(unsigned InnerLoopId,
 | 
						|
                                         unsigned OuterLoopId,
 | 
						|
                                         CharMatrix &DepMatrix) {
 | 
						|
  // TODO: Improve this heuristic to catch more cases.
 | 
						|
  // If the inner loop is loop independent or doesn't carry any dependency it is
 | 
						|
  // profitable to move this to outer position.
 | 
						|
  for (auto &Row : DepMatrix) {
 | 
						|
    if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
 | 
						|
      return false;
 | 
						|
    // TODO: We need to improve this heuristic.
 | 
						|
    if (Row[OuterLoopId] != '=')
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  // If outer loop has dependence and inner loop is loop independent then it is
 | 
						|
  // profitable to interchange to enable parallelism.
 | 
						|
  // If there are no dependences, interchanging will not improve anything.
 | 
						|
  return !DepMatrix.empty();
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
 | 
						|
                                                unsigned OuterLoopId,
 | 
						|
                                                CharMatrix &DepMatrix) {
 | 
						|
  // TODO: Add better profitability checks.
 | 
						|
  // e.g
 | 
						|
  // 1) Construct dependency matrix and move the one with no loop carried dep
 | 
						|
  //    inside to enable vectorization.
 | 
						|
 | 
						|
  // This is rough cost estimation algorithm. It counts the good and bad order
 | 
						|
  // of induction variables in the instruction and allows reordering if number
 | 
						|
  // of bad orders is more than good.
 | 
						|
  int Cost = getInstrOrderCost();
 | 
						|
  LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
 | 
						|
  if (Cost < -LoopInterchangeCostThreshold)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // It is not profitable as per current cache profitability model. But check if
 | 
						|
  // we can move this loop outside to improve parallelism.
 | 
						|
  if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
 | 
						|
    return true;
 | 
						|
 | 
						|
  ORE->emit([&]() {
 | 
						|
    return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
 | 
						|
                                    InnerLoop->getStartLoc(),
 | 
						|
                                    InnerLoop->getHeader())
 | 
						|
           << "Interchanging loops is too costly (cost="
 | 
						|
           << ore::NV("Cost", Cost) << ", threshold="
 | 
						|
           << ore::NV("Threshold", LoopInterchangeCostThreshold)
 | 
						|
           << ") and it does not improve parallelism.";
 | 
						|
  });
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
 | 
						|
                                               Loop *InnerLoop) {
 | 
						|
  for (Loop *L : *OuterLoop)
 | 
						|
    if (L == InnerLoop) {
 | 
						|
      OuterLoop->removeChildLoop(L);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  llvm_unreachable("Couldn't find loop");
 | 
						|
}
 | 
						|
 | 
						|
/// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
 | 
						|
/// new inner and outer loop after interchanging: NewInner is the original
 | 
						|
/// outer loop and NewOuter is the original inner loop.
 | 
						|
///
 | 
						|
/// Before interchanging, we have the following structure
 | 
						|
/// Outer preheader
 | 
						|
//  Outer header
 | 
						|
//    Inner preheader
 | 
						|
//    Inner header
 | 
						|
//      Inner body
 | 
						|
//      Inner latch
 | 
						|
//   outer bbs
 | 
						|
//   Outer latch
 | 
						|
//
 | 
						|
// After interchanging:
 | 
						|
// Inner preheader
 | 
						|
// Inner header
 | 
						|
//   Outer preheader
 | 
						|
//   Outer header
 | 
						|
//     Inner body
 | 
						|
//     outer bbs
 | 
						|
//     Outer latch
 | 
						|
//   Inner latch
 | 
						|
void LoopInterchangeTransform::restructureLoops(
 | 
						|
    Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
 | 
						|
    BasicBlock *OrigOuterPreHeader) {
 | 
						|
  Loop *OuterLoopParent = OuterLoop->getParentLoop();
 | 
						|
  // The original inner loop preheader moves from the new inner loop to
 | 
						|
  // the parent loop, if there is one.
 | 
						|
  NewInner->removeBlockFromLoop(OrigInnerPreHeader);
 | 
						|
  LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
 | 
						|
 | 
						|
  // Switch the loop levels.
 | 
						|
  if (OuterLoopParent) {
 | 
						|
    // Remove the loop from its parent loop.
 | 
						|
    removeChildLoop(OuterLoopParent, NewInner);
 | 
						|
    removeChildLoop(NewInner, NewOuter);
 | 
						|
    OuterLoopParent->addChildLoop(NewOuter);
 | 
						|
  } else {
 | 
						|
    removeChildLoop(NewInner, NewOuter);
 | 
						|
    LI->changeTopLevelLoop(NewInner, NewOuter);
 | 
						|
  }
 | 
						|
  while (!NewOuter->isInnermost())
 | 
						|
    NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
 | 
						|
  NewOuter->addChildLoop(NewInner);
 | 
						|
 | 
						|
  // BBs from the original inner loop.
 | 
						|
  SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
 | 
						|
 | 
						|
  // Add BBs from the original outer loop to the original inner loop (excluding
 | 
						|
  // BBs already in inner loop)
 | 
						|
  for (BasicBlock *BB : NewInner->blocks())
 | 
						|
    if (LI->getLoopFor(BB) == NewInner)
 | 
						|
      NewOuter->addBlockEntry(BB);
 | 
						|
 | 
						|
  // Now remove inner loop header and latch from the new inner loop and move
 | 
						|
  // other BBs (the loop body) to the new inner loop.
 | 
						|
  BasicBlock *OuterHeader = NewOuter->getHeader();
 | 
						|
  BasicBlock *OuterLatch = NewOuter->getLoopLatch();
 | 
						|
  for (BasicBlock *BB : OrigInnerBBs) {
 | 
						|
    // Nothing will change for BBs in child loops.
 | 
						|
    if (LI->getLoopFor(BB) != NewOuter)
 | 
						|
      continue;
 | 
						|
    // Remove the new outer loop header and latch from the new inner loop.
 | 
						|
    if (BB == OuterHeader || BB == OuterLatch)
 | 
						|
      NewInner->removeBlockFromLoop(BB);
 | 
						|
    else
 | 
						|
      LI->changeLoopFor(BB, NewInner);
 | 
						|
  }
 | 
						|
 | 
						|
  // The preheader of the original outer loop becomes part of the new
 | 
						|
  // outer loop.
 | 
						|
  NewOuter->addBlockEntry(OrigOuterPreHeader);
 | 
						|
  LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
 | 
						|
 | 
						|
  // Tell SE that we move the loops around.
 | 
						|
  SE->forgetLoop(NewOuter);
 | 
						|
  SE->forgetLoop(NewInner);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeTransform::transform() {
 | 
						|
  bool Transformed = false;
 | 
						|
  Instruction *InnerIndexVar;
 | 
						|
 | 
						|
  if (InnerLoop->getSubLoops().empty()) {
 | 
						|
    BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
    LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n");
 | 
						|
    PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
 | 
						|
    if (!InductionPHI) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
 | 
						|
      InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
 | 
						|
    else
 | 
						|
      InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
 | 
						|
 | 
						|
    // Ensure that InductionPHI is the first Phi node.
 | 
						|
    if (&InductionPHI->getParent()->front() != InductionPHI)
 | 
						|
      InductionPHI->moveBefore(&InductionPHI->getParent()->front());
 | 
						|
 | 
						|
    // Create a new latch block for the inner loop. We split at the
 | 
						|
    // current latch's terminator and then move the condition and all
 | 
						|
    // operands that are not either loop-invariant or the induction PHI into the
 | 
						|
    // new latch block.
 | 
						|
    BasicBlock *NewLatch =
 | 
						|
        SplitBlock(InnerLoop->getLoopLatch(),
 | 
						|
                   InnerLoop->getLoopLatch()->getTerminator(), DT, LI);
 | 
						|
 | 
						|
    SmallSetVector<Instruction *, 4> WorkList;
 | 
						|
    unsigned i = 0;
 | 
						|
    auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() {
 | 
						|
      for (; i < WorkList.size(); i++) {
 | 
						|
        // Duplicate instruction and move it the new latch. Update uses that
 | 
						|
        // have been moved.
 | 
						|
        Instruction *NewI = WorkList[i]->clone();
 | 
						|
        NewI->insertBefore(NewLatch->getFirstNonPHI());
 | 
						|
        assert(!NewI->mayHaveSideEffects() &&
 | 
						|
               "Moving instructions with side-effects may change behavior of "
 | 
						|
               "the loop nest!");
 | 
						|
        for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end();
 | 
						|
             UI != UE;) {
 | 
						|
          Use &U = *UI++;
 | 
						|
          Instruction *UserI = cast<Instruction>(U.getUser());
 | 
						|
          if (!InnerLoop->contains(UserI->getParent()) ||
 | 
						|
              UserI->getParent() == NewLatch || UserI == InductionPHI)
 | 
						|
            U.set(NewI);
 | 
						|
        }
 | 
						|
        // Add operands of moved instruction to the worklist, except if they are
 | 
						|
        // outside the inner loop or are the induction PHI.
 | 
						|
        for (Value *Op : WorkList[i]->operands()) {
 | 
						|
          Instruction *OpI = dyn_cast<Instruction>(Op);
 | 
						|
          if (!OpI ||
 | 
						|
              this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop ||
 | 
						|
              OpI == InductionPHI)
 | 
						|
            continue;
 | 
						|
          WorkList.insert(OpI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    // FIXME: Should we interchange when we have a constant condition?
 | 
						|
    Instruction *CondI = dyn_cast<Instruction>(
 | 
						|
        cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator())
 | 
						|
            ->getCondition());
 | 
						|
    if (CondI)
 | 
						|
      WorkList.insert(CondI);
 | 
						|
    MoveInstructions();
 | 
						|
    WorkList.insert(cast<Instruction>(InnerIndexVar));
 | 
						|
    MoveInstructions();
 | 
						|
 | 
						|
    // Splits the inner loops phi nodes out into a separate basic block.
 | 
						|
    BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
 | 
						|
    SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
 | 
						|
    LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // Instructions in the original inner loop preheader may depend on values
 | 
						|
  // defined in the outer loop header. Move them there, because the original
 | 
						|
  // inner loop preheader will become the entry into the interchanged loop nest.
 | 
						|
  // Currently we move all instructions and rely on LICM to move invariant
 | 
						|
  // instructions outside the loop nest.
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | 
						|
  if (InnerLoopPreHeader != OuterLoopHeader) {
 | 
						|
    SmallPtrSet<Instruction *, 4> NeedsMoving;
 | 
						|
    for (Instruction &I :
 | 
						|
         make_early_inc_range(make_range(InnerLoopPreHeader->begin(),
 | 
						|
                                         std::prev(InnerLoopPreHeader->end()))))
 | 
						|
      I.moveBefore(OuterLoopHeader->getTerminator());
 | 
						|
  }
 | 
						|
 | 
						|
  Transformed |= adjustLoopLinks();
 | 
						|
  if (!Transformed) {
 | 
						|
    LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Move all instructions except the terminator from FromBB right before
 | 
						|
/// InsertBefore
 | 
						|
static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
 | 
						|
  auto &ToList = InsertBefore->getParent()->getInstList();
 | 
						|
  auto &FromList = FromBB->getInstList();
 | 
						|
 | 
						|
  ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
 | 
						|
                FromBB->getTerminator()->getIterator());
 | 
						|
}
 | 
						|
 | 
						|
/// Swap instructions between \p BB1 and \p BB2 but keep terminators intact.
 | 
						|
static void swapBBContents(BasicBlock *BB1, BasicBlock *BB2) {
 | 
						|
  // Save all non-terminator instructions of BB1 into TempInstrs and unlink them
 | 
						|
  // from BB1 afterwards.
 | 
						|
  auto Iter = map_range(*BB1, [](Instruction &I) { return &I; });
 | 
						|
  SmallVector<Instruction *, 4> TempInstrs(Iter.begin(), std::prev(Iter.end()));
 | 
						|
  for (Instruction *I : TempInstrs)
 | 
						|
    I->removeFromParent();
 | 
						|
 | 
						|
  // Move instructions from BB2 to BB1.
 | 
						|
  moveBBContents(BB2, BB1->getTerminator());
 | 
						|
 | 
						|
  // Move instructions from TempInstrs to BB2.
 | 
						|
  for (Instruction *I : TempInstrs)
 | 
						|
    I->insertBefore(BB2->getTerminator());
 | 
						|
}
 | 
						|
 | 
						|
// Update BI to jump to NewBB instead of OldBB. Records updates to the
 | 
						|
// dominator tree in DTUpdates. If \p MustUpdateOnce is true, assert that
 | 
						|
// \p OldBB  is exactly once in BI's successor list.
 | 
						|
static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
 | 
						|
                            BasicBlock *NewBB,
 | 
						|
                            std::vector<DominatorTree::UpdateType> &DTUpdates,
 | 
						|
                            bool MustUpdateOnce = true) {
 | 
						|
  assert((!MustUpdateOnce ||
 | 
						|
          llvm::count_if(successors(BI),
 | 
						|
                         [OldBB](BasicBlock *BB) {
 | 
						|
                           return BB == OldBB;
 | 
						|
                         }) == 1) && "BI must jump to OldBB exactly once.");
 | 
						|
  bool Changed = false;
 | 
						|
  for (Use &Op : BI->operands())
 | 
						|
    if (Op == OldBB) {
 | 
						|
      Op.set(NewBB);
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
 | 
						|
  if (Changed) {
 | 
						|
    DTUpdates.push_back(
 | 
						|
        {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
 | 
						|
    DTUpdates.push_back(
 | 
						|
        {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
 | 
						|
  }
 | 
						|
  assert(Changed && "Expected a successor to be updated");
 | 
						|
}
 | 
						|
 | 
						|
// Move Lcssa PHIs to the right place.
 | 
						|
static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
 | 
						|
                          BasicBlock *InnerLatch, BasicBlock *OuterHeader,
 | 
						|
                          BasicBlock *OuterLatch, BasicBlock *OuterExit,
 | 
						|
                          Loop *InnerLoop, LoopInfo *LI) {
 | 
						|
 | 
						|
  // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
 | 
						|
  // defined either in the header or latch. Those blocks will become header and
 | 
						|
  // latch of the new outer loop, and the only possible users can PHI nodes
 | 
						|
  // in the exit block of the loop nest or the outer loop header (reduction
 | 
						|
  // PHIs, in that case, the incoming value must be defined in the inner loop
 | 
						|
  // header). We can just substitute the user with the incoming value and remove
 | 
						|
  // the PHI.
 | 
						|
  for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
 | 
						|
    assert(P.getNumIncomingValues() == 1 &&
 | 
						|
           "Only loops with a single exit are supported!");
 | 
						|
 | 
						|
    // Incoming values are guaranteed be instructions currently.
 | 
						|
    auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
 | 
						|
    // Skip phis with incoming values from the inner loop body, excluding the
 | 
						|
    // header and latch.
 | 
						|
    if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
 | 
						|
      continue;
 | 
						|
 | 
						|
    assert(all_of(P.users(),
 | 
						|
                  [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
 | 
						|
                    return (cast<PHINode>(U)->getParent() == OuterHeader &&
 | 
						|
                            IncI->getParent() == InnerHeader) ||
 | 
						|
                           cast<PHINode>(U)->getParent() == OuterExit;
 | 
						|
                  }) &&
 | 
						|
           "Can only replace phis iff the uses are in the loop nest exit or "
 | 
						|
           "the incoming value is defined in the inner header (it will "
 | 
						|
           "dominate all loop blocks after interchanging)");
 | 
						|
    P.replaceAllUsesWith(IncI);
 | 
						|
    P.eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  SmallVector<PHINode *, 8> LcssaInnerExit;
 | 
						|
  for (PHINode &P : InnerExit->phis())
 | 
						|
    LcssaInnerExit.push_back(&P);
 | 
						|
 | 
						|
  SmallVector<PHINode *, 8> LcssaInnerLatch;
 | 
						|
  for (PHINode &P : InnerLatch->phis())
 | 
						|
    LcssaInnerLatch.push_back(&P);
 | 
						|
 | 
						|
  // Lcssa PHIs for values used outside the inner loop are in InnerExit.
 | 
						|
  // If a PHI node has users outside of InnerExit, it has a use outside the
 | 
						|
  // interchanged loop and we have to preserve it. We move these to
 | 
						|
  // InnerLatch, which will become the new exit block for the innermost
 | 
						|
  // loop after interchanging.
 | 
						|
  for (PHINode *P : LcssaInnerExit)
 | 
						|
    P->moveBefore(InnerLatch->getFirstNonPHI());
 | 
						|
 | 
						|
  // If the inner loop latch contains LCSSA PHIs, those come from a child loop
 | 
						|
  // and we have to move them to the new inner latch.
 | 
						|
  for (PHINode *P : LcssaInnerLatch)
 | 
						|
    P->moveBefore(InnerExit->getFirstNonPHI());
 | 
						|
 | 
						|
  // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
 | 
						|
  // incoming values defined in the outer loop, we have to add a new PHI
 | 
						|
  // in the inner loop latch, which became the exit block of the outer loop,
 | 
						|
  // after interchanging.
 | 
						|
  if (OuterExit) {
 | 
						|
    for (PHINode &P : OuterExit->phis()) {
 | 
						|
      if (P.getNumIncomingValues() != 1)
 | 
						|
        continue;
 | 
						|
      // Skip Phis with incoming values defined in the inner loop. Those should
 | 
						|
      // already have been updated.
 | 
						|
      auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
 | 
						|
      if (!I || LI->getLoopFor(I->getParent()) == InnerLoop)
 | 
						|
        continue;
 | 
						|
 | 
						|
      PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
 | 
						|
      NewPhi->setIncomingValue(0, P.getIncomingValue(0));
 | 
						|
      NewPhi->setIncomingBlock(0, OuterLatch);
 | 
						|
      NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
 | 
						|
      P.setIncomingValue(0, NewPhi);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now adjust the incoming blocks for the LCSSA PHIs.
 | 
						|
  // For PHIs moved from Inner's exit block, we need to replace Inner's latch
 | 
						|
  // with the new latch.
 | 
						|
  InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeTransform::adjustLoopBranches() {
 | 
						|
  LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
 | 
						|
  std::vector<DominatorTree::UpdateType> DTUpdates;
 | 
						|
 | 
						|
  BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | 
						|
  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
 | 
						|
  assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
 | 
						|
         InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
 | 
						|
         InnerLoopPreHeader && "Guaranteed by loop-simplify form");
 | 
						|
  // Ensure that both preheaders do not contain PHI nodes and have single
 | 
						|
  // predecessors. This allows us to move them easily. We use
 | 
						|
  // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
 | 
						|
  // preheaders do not satisfy those conditions.
 | 
						|
  if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
 | 
						|
      !OuterLoopPreHeader->getUniquePredecessor())
 | 
						|
    OuterLoopPreHeader =
 | 
						|
        InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
 | 
						|
  if (InnerLoopPreHeader == OuterLoop->getHeader())
 | 
						|
    InnerLoopPreHeader =
 | 
						|
        InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
 | 
						|
 | 
						|
  // Adjust the loop preheader
 | 
						|
  BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
 | 
						|
  BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
 | 
						|
  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
 | 
						|
  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
 | 
						|
  BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
 | 
						|
  BasicBlock *InnerLoopLatchPredecessor =
 | 
						|
      InnerLoopLatch->getUniquePredecessor();
 | 
						|
  BasicBlock *InnerLoopLatchSuccessor;
 | 
						|
  BasicBlock *OuterLoopLatchSuccessor;
 | 
						|
 | 
						|
  BranchInst *OuterLoopLatchBI =
 | 
						|
      dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
 | 
						|
  BranchInst *InnerLoopLatchBI =
 | 
						|
      dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
 | 
						|
  BranchInst *OuterLoopHeaderBI =
 | 
						|
      dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
 | 
						|
  BranchInst *InnerLoopHeaderBI =
 | 
						|
      dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
 | 
						|
 | 
						|
  if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
 | 
						|
      !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
 | 
						|
      !InnerLoopHeaderBI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  BranchInst *InnerLoopLatchPredecessorBI =
 | 
						|
      dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
 | 
						|
  BranchInst *OuterLoopPredecessorBI =
 | 
						|
      dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
 | 
						|
 | 
						|
  if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
 | 
						|
    return false;
 | 
						|
  BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
 | 
						|
  if (!InnerLoopHeaderSuccessor)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Adjust Loop Preheader and headers.
 | 
						|
  // The branches in the outer loop predecessor and the outer loop header can
 | 
						|
  // be unconditional branches or conditional branches with duplicates. Consider
 | 
						|
  // this when updating the successors.
 | 
						|
  updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
 | 
						|
                  InnerLoopPreHeader, DTUpdates, /*MustUpdateOnce=*/false);
 | 
						|
  // The outer loop header might or might not branch to the outer latch.
 | 
						|
  // We are guaranteed to branch to the inner loop preheader.
 | 
						|
  if (llvm::is_contained(OuterLoopHeaderBI->successors(), OuterLoopLatch))
 | 
						|
    updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates,
 | 
						|
                    /*MustUpdateOnce=*/false);
 | 
						|
  updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
 | 
						|
                  InnerLoopHeaderSuccessor, DTUpdates,
 | 
						|
                  /*MustUpdateOnce=*/false);
 | 
						|
 | 
						|
  // Adjust reduction PHI's now that the incoming block has changed.
 | 
						|
  InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
 | 
						|
                                               OuterLoopHeader);
 | 
						|
 | 
						|
  updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
 | 
						|
                  OuterLoopPreHeader, DTUpdates);
 | 
						|
 | 
						|
  // -------------Adjust loop latches-----------
 | 
						|
  if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
 | 
						|
    InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
 | 
						|
  else
 | 
						|
    InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
 | 
						|
 | 
						|
  updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
 | 
						|
                  InnerLoopLatchSuccessor, DTUpdates);
 | 
						|
 | 
						|
 | 
						|
  if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
 | 
						|
    OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
 | 
						|
  else
 | 
						|
    OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
 | 
						|
 | 
						|
  updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
 | 
						|
                  OuterLoopLatchSuccessor, DTUpdates);
 | 
						|
  updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
 | 
						|
                  DTUpdates);
 | 
						|
 | 
						|
  DT->applyUpdates(DTUpdates);
 | 
						|
  restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
 | 
						|
                   OuterLoopPreHeader);
 | 
						|
 | 
						|
  moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
 | 
						|
                OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock(),
 | 
						|
                InnerLoop, LI);
 | 
						|
  // For PHIs in the exit block of the outer loop, outer's latch has been
 | 
						|
  // replaced by Inners'.
 | 
						|
  OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
 | 
						|
 | 
						|
  // Now update the reduction PHIs in the inner and outer loop headers.
 | 
						|
  SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
 | 
						|
  for (PHINode &PHI : drop_begin(InnerLoopHeader->phis()))
 | 
						|
    InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
 | 
						|
  for (PHINode &PHI : drop_begin(OuterLoopHeader->phis()))
 | 
						|
    OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
 | 
						|
 | 
						|
  auto &OuterInnerReductions = LIL.getOuterInnerReductions();
 | 
						|
  (void)OuterInnerReductions;
 | 
						|
 | 
						|
  // Now move the remaining reduction PHIs from outer to inner loop header and
 | 
						|
  // vice versa. The PHI nodes must be part of a reduction across the inner and
 | 
						|
  // outer loop and all the remains to do is and updating the incoming blocks.
 | 
						|
  for (PHINode *PHI : OuterLoopPHIs) {
 | 
						|
    PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
 | 
						|
    assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
 | 
						|
  }
 | 
						|
  for (PHINode *PHI : InnerLoopPHIs) {
 | 
						|
    PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
 | 
						|
    assert(OuterInnerReductions.count(PHI) && "Expected a reduction PHI node");
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the incoming blocks for moved PHI nodes.
 | 
						|
  OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
 | 
						|
  OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
 | 
						|
  InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
 | 
						|
  InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
 | 
						|
 | 
						|
  // Values defined in the outer loop header could be used in the inner loop
 | 
						|
  // latch. In that case, we need to create LCSSA phis for them, because after
 | 
						|
  // interchanging they will be defined in the new inner loop and used in the
 | 
						|
  // new outer loop.
 | 
						|
  IRBuilder<> Builder(OuterLoopHeader->getContext());
 | 
						|
  SmallVector<Instruction *, 4> MayNeedLCSSAPhis;
 | 
						|
  for (Instruction &I :
 | 
						|
       make_range(OuterLoopHeader->begin(), std::prev(OuterLoopHeader->end())))
 | 
						|
    MayNeedLCSSAPhis.push_back(&I);
 | 
						|
  formLCSSAForInstructions(MayNeedLCSSAPhis, *DT, *LI, SE, Builder);
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool LoopInterchangeTransform::adjustLoopLinks() {
 | 
						|
  // Adjust all branches in the inner and outer loop.
 | 
						|
  bool Changed = adjustLoopBranches();
 | 
						|
  if (Changed) {
 | 
						|
    // We have interchanged the preheaders so we need to interchange the data in
 | 
						|
    // the preheaders as well. This is because the content of the inner
 | 
						|
    // preheader was previously executed inside the outer loop.
 | 
						|
    BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
 | 
						|
    BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
 | 
						|
    swapBBContents(OuterLoopPreHeader, InnerLoopPreHeader);
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// Main LoopInterchange Pass.
 | 
						|
struct LoopInterchangeLegacyPass : public LoopPass {
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  LoopInterchangeLegacyPass() : LoopPass(ID) {
 | 
						|
    initializeLoopInterchangeLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<DependenceAnalysisWrapperPass>();
 | 
						|
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
 | 
						|
 | 
						|
    getLoopAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
 | 
						|
    if (skipLoop(L))
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | 
						|
    auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
    auto *DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
 | 
						|
    auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
 | 
						|
 | 
						|
    return LoopInterchange(SE, LI, DI, DT, ORE).run(L);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
char LoopInterchangeLegacyPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(LoopInterchangeLegacyPass, "loop-interchange",
 | 
						|
                      "Interchanges loops for cache reuse", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
 | 
						|
 | 
						|
INITIALIZE_PASS_END(LoopInterchangeLegacyPass, "loop-interchange",
 | 
						|
                    "Interchanges loops for cache reuse", false, false)
 | 
						|
 | 
						|
Pass *llvm::createLoopInterchangePass() {
 | 
						|
  return new LoopInterchangeLegacyPass();
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses LoopInterchangePass::run(Loop &L, LoopAnalysisManager &AM,
 | 
						|
                                           LoopStandardAnalysisResults &AR,
 | 
						|
                                           LPMUpdater &U) {
 | 
						|
  Function &F = *L.getHeader()->getParent();
 | 
						|
 | 
						|
  DependenceInfo DI(&F, &AR.AA, &AR.SE, &AR.LI);
 | 
						|
  OptimizationRemarkEmitter ORE(&F);
 | 
						|
  if (!LoopInterchange(&AR.SE, &AR.LI, &DI, &AR.DT, &ORE).run(&L))
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  return getLoopPassPreservedAnalyses();
 | 
						|
}
 |