947 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			947 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- MergeICmps.cpp - Optimize chains of integer comparisons ------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass turns chains of integer comparisons into memcmp (the memcmp is
 | 
						|
// later typically inlined as a chain of efficient hardware comparisons). This
 | 
						|
// typically benefits c++ member or nonmember operator==().
 | 
						|
//
 | 
						|
// The basic idea is to replace a longer chain of integer comparisons loaded
 | 
						|
// from contiguous memory locations into a shorter chain of larger integer
 | 
						|
// comparisons. Benefits are double:
 | 
						|
//  - There are less jumps, and therefore less opportunities for mispredictions
 | 
						|
//    and I-cache misses.
 | 
						|
//  - Code size is smaller, both because jumps are removed and because the
 | 
						|
//    encoding of a 2*n byte compare is smaller than that of two n-byte
 | 
						|
//    compares.
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//  struct S {
 | 
						|
//    int a;
 | 
						|
//    char b;
 | 
						|
//    char c;
 | 
						|
//    uint16_t d;
 | 
						|
//    bool operator==(const S& o) const {
 | 
						|
//      return a == o.a && b == o.b && c == o.c && d == o.d;
 | 
						|
//    }
 | 
						|
//  };
 | 
						|
//
 | 
						|
//  Is optimized as :
 | 
						|
//
 | 
						|
//    bool S::operator==(const S& o) const {
 | 
						|
//      return memcmp(this, &o, 8) == 0;
 | 
						|
//    }
 | 
						|
//
 | 
						|
//  Which will later be expanded (ExpandMemCmp) as a single 8-bytes icmp.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/MergeICmps.h"
 | 
						|
#include "llvm/Analysis/DomTreeUpdater.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/BuildLibCalls.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <numeric>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
#define DEBUG_TYPE "mergeicmps"
 | 
						|
 | 
						|
// Returns true if the instruction is a simple load or a simple store
 | 
						|
static bool isSimpleLoadOrStore(const Instruction *I) {
 | 
						|
  if (const LoadInst *LI = dyn_cast<LoadInst>(I))
 | 
						|
    return LI->isSimple();
 | 
						|
  if (const StoreInst *SI = dyn_cast<StoreInst>(I))
 | 
						|
    return SI->isSimple();
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// A BCE atom "Binary Compare Expression Atom" represents an integer load
 | 
						|
// that is a constant offset from a base value, e.g. `a` or `o.c` in the example
 | 
						|
// at the top.
 | 
						|
struct BCEAtom {
 | 
						|
  BCEAtom() = default;
 | 
						|
  BCEAtom(GetElementPtrInst *GEP, LoadInst *LoadI, int BaseId, APInt Offset)
 | 
						|
      : GEP(GEP), LoadI(LoadI), BaseId(BaseId), Offset(Offset) {}
 | 
						|
 | 
						|
  BCEAtom(const BCEAtom &) = delete;
 | 
						|
  BCEAtom &operator=(const BCEAtom &) = delete;
 | 
						|
 | 
						|
  BCEAtom(BCEAtom &&that) = default;
 | 
						|
  BCEAtom &operator=(BCEAtom &&that) {
 | 
						|
    if (this == &that)
 | 
						|
      return *this;
 | 
						|
    GEP = that.GEP;
 | 
						|
    LoadI = that.LoadI;
 | 
						|
    BaseId = that.BaseId;
 | 
						|
    Offset = std::move(that.Offset);
 | 
						|
    return *this;
 | 
						|
  }
 | 
						|
 | 
						|
  // We want to order BCEAtoms by (Base, Offset). However we cannot use
 | 
						|
  // the pointer values for Base because these are non-deterministic.
 | 
						|
  // To make sure that the sort order is stable, we first assign to each atom
 | 
						|
  // base value an index based on its order of appearance in the chain of
 | 
						|
  // comparisons. We call this index `BaseOrdering`. For example, for:
 | 
						|
  //    b[3] == c[2] && a[1] == d[1] && b[4] == c[3]
 | 
						|
  //    |  block 1 |    |  block 2 |    |  block 3 |
 | 
						|
  // b gets assigned index 0 and a index 1, because b appears as LHS in block 1,
 | 
						|
  // which is before block 2.
 | 
						|
  // We then sort by (BaseOrdering[LHS.Base()], LHS.Offset), which is stable.
 | 
						|
  bool operator<(const BCEAtom &O) const {
 | 
						|
    return BaseId != O.BaseId ? BaseId < O.BaseId : Offset.slt(O.Offset);
 | 
						|
  }
 | 
						|
 | 
						|
  GetElementPtrInst *GEP = nullptr;
 | 
						|
  LoadInst *LoadI = nullptr;
 | 
						|
  unsigned BaseId = 0;
 | 
						|
  APInt Offset;
 | 
						|
};
 | 
						|
 | 
						|
// A class that assigns increasing ids to values in the order in which they are
 | 
						|
// seen. See comment in `BCEAtom::operator<()``.
 | 
						|
class BaseIdentifier {
 | 
						|
public:
 | 
						|
  // Returns the id for value `Base`, after assigning one if `Base` has not been
 | 
						|
  // seen before.
 | 
						|
  int getBaseId(const Value *Base) {
 | 
						|
    assert(Base && "invalid base");
 | 
						|
    const auto Insertion = BaseToIndex.try_emplace(Base, Order);
 | 
						|
    if (Insertion.second)
 | 
						|
      ++Order;
 | 
						|
    return Insertion.first->second;
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  unsigned Order = 1;
 | 
						|
  DenseMap<const Value*, int> BaseToIndex;
 | 
						|
};
 | 
						|
 | 
						|
// If this value is a load from a constant offset w.r.t. a base address, and
 | 
						|
// there are no other users of the load or address, returns the base address and
 | 
						|
// the offset.
 | 
						|
BCEAtom visitICmpLoadOperand(Value *const Val, BaseIdentifier &BaseId) {
 | 
						|
  auto *const LoadI = dyn_cast<LoadInst>(Val);
 | 
						|
  if (!LoadI)
 | 
						|
    return {};
 | 
						|
  LLVM_DEBUG(dbgs() << "load\n");
 | 
						|
  if (LoadI->isUsedOutsideOfBlock(LoadI->getParent())) {
 | 
						|
    LLVM_DEBUG(dbgs() << "used outside of block\n");
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
  // Do not optimize atomic loads to non-atomic memcmp
 | 
						|
  if (!LoadI->isSimple()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "volatile or atomic\n");
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
  Value *const Addr = LoadI->getOperand(0);
 | 
						|
  auto *const GEP = dyn_cast<GetElementPtrInst>(Addr);
 | 
						|
  if (!GEP)
 | 
						|
    return {};
 | 
						|
  LLVM_DEBUG(dbgs() << "GEP\n");
 | 
						|
  if (GEP->isUsedOutsideOfBlock(LoadI->getParent())) {
 | 
						|
    LLVM_DEBUG(dbgs() << "used outside of block\n");
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
  const auto &DL = GEP->getModule()->getDataLayout();
 | 
						|
  if (!isDereferenceablePointer(GEP, LoadI->getType(), DL)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "not dereferenceable\n");
 | 
						|
    // We need to make sure that we can do comparison in any order, so we
 | 
						|
    // require memory to be unconditionnally dereferencable.
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
  APInt Offset = APInt(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
 | 
						|
  if (!GEP->accumulateConstantOffset(DL, Offset))
 | 
						|
    return {};
 | 
						|
  return BCEAtom(GEP, LoadI, BaseId.getBaseId(GEP->getPointerOperand()),
 | 
						|
                 Offset);
 | 
						|
}
 | 
						|
 | 
						|
// A basic block with a comparison between two BCE atoms, e.g. `a == o.a` in the
 | 
						|
// example at the top.
 | 
						|
// The block might do extra work besides the atom comparison, in which case
 | 
						|
// doesOtherWork() returns true. Under some conditions, the block can be
 | 
						|
// split into the atom comparison part and the "other work" part
 | 
						|
// (see canSplit()).
 | 
						|
// Note: the terminology is misleading: the comparison is symmetric, so there
 | 
						|
// is no real {l/r}hs. What we want though is to have the same base on the
 | 
						|
// left (resp. right), so that we can detect consecutive loads. To ensure this
 | 
						|
// we put the smallest atom on the left.
 | 
						|
class BCECmpBlock {
 | 
						|
 public:
 | 
						|
  BCECmpBlock() {}
 | 
						|
 | 
						|
  BCECmpBlock(BCEAtom L, BCEAtom R, int SizeBits)
 | 
						|
      : Lhs_(std::move(L)), Rhs_(std::move(R)), SizeBits_(SizeBits) {
 | 
						|
    if (Rhs_ < Lhs_) std::swap(Rhs_, Lhs_);
 | 
						|
  }
 | 
						|
 | 
						|
  bool IsValid() const { return Lhs_.BaseId != 0 && Rhs_.BaseId != 0; }
 | 
						|
 | 
						|
  // Assert the block is consistent: If valid, it should also have
 | 
						|
  // non-null members besides Lhs_ and Rhs_.
 | 
						|
  void AssertConsistent() const {
 | 
						|
    if (IsValid()) {
 | 
						|
      assert(BB);
 | 
						|
      assert(CmpI);
 | 
						|
      assert(BranchI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  const BCEAtom &Lhs() const { return Lhs_; }
 | 
						|
  const BCEAtom &Rhs() const { return Rhs_; }
 | 
						|
  int SizeBits() const { return SizeBits_; }
 | 
						|
 | 
						|
  // Returns true if the block does other works besides comparison.
 | 
						|
  bool doesOtherWork() const;
 | 
						|
 | 
						|
  // Returns true if the non-BCE-cmp instructions can be separated from BCE-cmp
 | 
						|
  // instructions in the block.
 | 
						|
  bool canSplit(AliasAnalysis &AA) const;
 | 
						|
 | 
						|
  // Return true if this all the relevant instructions in the BCE-cmp-block can
 | 
						|
  // be sunk below this instruction. By doing this, we know we can separate the
 | 
						|
  // BCE-cmp-block instructions from the non-BCE-cmp-block instructions in the
 | 
						|
  // block.
 | 
						|
  bool canSinkBCECmpInst(const Instruction *, DenseSet<Instruction *> &,
 | 
						|
                         AliasAnalysis &AA) const;
 | 
						|
 | 
						|
  // We can separate the BCE-cmp-block instructions and the non-BCE-cmp-block
 | 
						|
  // instructions. Split the old block and move all non-BCE-cmp-insts into the
 | 
						|
  // new parent block.
 | 
						|
  void split(BasicBlock *NewParent, AliasAnalysis &AA) const;
 | 
						|
 | 
						|
  // The basic block where this comparison happens.
 | 
						|
  BasicBlock *BB = nullptr;
 | 
						|
  // The ICMP for this comparison.
 | 
						|
  ICmpInst *CmpI = nullptr;
 | 
						|
  // The terminating branch.
 | 
						|
  BranchInst *BranchI = nullptr;
 | 
						|
  // The block requires splitting.
 | 
						|
  bool RequireSplit = false;
 | 
						|
 | 
						|
private:
 | 
						|
  BCEAtom Lhs_;
 | 
						|
  BCEAtom Rhs_;
 | 
						|
  int SizeBits_ = 0;
 | 
						|
};
 | 
						|
 | 
						|
bool BCECmpBlock::canSinkBCECmpInst(const Instruction *Inst,
 | 
						|
                                    DenseSet<Instruction *> &BlockInsts,
 | 
						|
                                    AliasAnalysis &AA) const {
 | 
						|
  // If this instruction has side effects and its in middle of the BCE cmp block
 | 
						|
  // instructions, then bail for now.
 | 
						|
  if (Inst->mayHaveSideEffects()) {
 | 
						|
    // Bail if this is not a simple load or store
 | 
						|
    if (!isSimpleLoadOrStore(Inst))
 | 
						|
      return false;
 | 
						|
    // Disallow stores that might alias the BCE operands
 | 
						|
    MemoryLocation LLoc = MemoryLocation::get(Lhs_.LoadI);
 | 
						|
    MemoryLocation RLoc = MemoryLocation::get(Rhs_.LoadI);
 | 
						|
    if (isModSet(AA.getModRefInfo(Inst, LLoc)) ||
 | 
						|
        isModSet(AA.getModRefInfo(Inst, RLoc)))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  // Make sure this instruction does not use any of the BCE cmp block
 | 
						|
  // instructions as operand.
 | 
						|
  for (auto BI : BlockInsts) {
 | 
						|
    if (is_contained(Inst->operands(), BI))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void BCECmpBlock::split(BasicBlock *NewParent, AliasAnalysis &AA) const {
 | 
						|
  DenseSet<Instruction *> BlockInsts(
 | 
						|
      {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
 | 
						|
  llvm::SmallVector<Instruction *, 4> OtherInsts;
 | 
						|
  for (Instruction &Inst : *BB) {
 | 
						|
    if (BlockInsts.count(&Inst))
 | 
						|
      continue;
 | 
						|
      assert(canSinkBCECmpInst(&Inst, BlockInsts, AA) &&
 | 
						|
             "Split unsplittable block");
 | 
						|
    // This is a non-BCE-cmp-block instruction. And it can be separated
 | 
						|
    // from the BCE-cmp-block instruction.
 | 
						|
    OtherInsts.push_back(&Inst);
 | 
						|
  }
 | 
						|
 | 
						|
  // Do the actual spliting.
 | 
						|
  for (Instruction *Inst : reverse(OtherInsts)) {
 | 
						|
    Inst->moveBefore(&*NewParent->begin());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool BCECmpBlock::canSplit(AliasAnalysis &AA) const {
 | 
						|
  DenseSet<Instruction *> BlockInsts(
 | 
						|
      {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
 | 
						|
  for (Instruction &Inst : *BB) {
 | 
						|
    if (!BlockInsts.count(&Inst)) {
 | 
						|
      if (!canSinkBCECmpInst(&Inst, BlockInsts, AA))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool BCECmpBlock::doesOtherWork() const {
 | 
						|
  AssertConsistent();
 | 
						|
  // All the instructions we care about in the BCE cmp block.
 | 
						|
  DenseSet<Instruction *> BlockInsts(
 | 
						|
      {Lhs_.GEP, Rhs_.GEP, Lhs_.LoadI, Rhs_.LoadI, CmpI, BranchI});
 | 
						|
  // TODO(courbet): Can we allow some other things ? This is very conservative.
 | 
						|
  // We might be able to get away with anything does not have any side
 | 
						|
  // effects outside of the basic block.
 | 
						|
  // Note: The GEPs and/or loads are not necessarily in the same block.
 | 
						|
  for (const Instruction &Inst : *BB) {
 | 
						|
    if (!BlockInsts.count(&Inst))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Visit the given comparison. If this is a comparison between two valid
 | 
						|
// BCE atoms, returns the comparison.
 | 
						|
BCECmpBlock visitICmp(const ICmpInst *const CmpI,
 | 
						|
                      const ICmpInst::Predicate ExpectedPredicate,
 | 
						|
                      BaseIdentifier &BaseId) {
 | 
						|
  // The comparison can only be used once:
 | 
						|
  //  - For intermediate blocks, as a branch condition.
 | 
						|
  //  - For the final block, as an incoming value for the Phi.
 | 
						|
  // If there are any other uses of the comparison, we cannot merge it with
 | 
						|
  // other comparisons as we would create an orphan use of the value.
 | 
						|
  if (!CmpI->hasOneUse()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "cmp has several uses\n");
 | 
						|
    return {};
 | 
						|
  }
 | 
						|
  if (CmpI->getPredicate() != ExpectedPredicate)
 | 
						|
    return {};
 | 
						|
  LLVM_DEBUG(dbgs() << "cmp "
 | 
						|
                    << (ExpectedPredicate == ICmpInst::ICMP_EQ ? "eq" : "ne")
 | 
						|
                    << "\n");
 | 
						|
  auto Lhs = visitICmpLoadOperand(CmpI->getOperand(0), BaseId);
 | 
						|
  if (!Lhs.BaseId)
 | 
						|
    return {};
 | 
						|
  auto Rhs = visitICmpLoadOperand(CmpI->getOperand(1), BaseId);
 | 
						|
  if (!Rhs.BaseId)
 | 
						|
    return {};
 | 
						|
  const auto &DL = CmpI->getModule()->getDataLayout();
 | 
						|
  return BCECmpBlock(std::move(Lhs), std::move(Rhs),
 | 
						|
                     DL.getTypeSizeInBits(CmpI->getOperand(0)->getType()));
 | 
						|
}
 | 
						|
 | 
						|
// Visit the given comparison block. If this is a comparison between two valid
 | 
						|
// BCE atoms, returns the comparison.
 | 
						|
BCECmpBlock visitCmpBlock(Value *const Val, BasicBlock *const Block,
 | 
						|
                          const BasicBlock *const PhiBlock,
 | 
						|
                          BaseIdentifier &BaseId) {
 | 
						|
  if (Block->empty()) return {};
 | 
						|
  auto *const BranchI = dyn_cast<BranchInst>(Block->getTerminator());
 | 
						|
  if (!BranchI) return {};
 | 
						|
  LLVM_DEBUG(dbgs() << "branch\n");
 | 
						|
  if (BranchI->isUnconditional()) {
 | 
						|
    // In this case, we expect an incoming value which is the result of the
 | 
						|
    // comparison. This is the last link in the chain of comparisons (note
 | 
						|
    // that this does not mean that this is the last incoming value, blocks
 | 
						|
    // can be reordered).
 | 
						|
    auto *const CmpI = dyn_cast<ICmpInst>(Val);
 | 
						|
    if (!CmpI) return {};
 | 
						|
    LLVM_DEBUG(dbgs() << "icmp\n");
 | 
						|
    auto Result = visitICmp(CmpI, ICmpInst::ICMP_EQ, BaseId);
 | 
						|
    Result.CmpI = CmpI;
 | 
						|
    Result.BranchI = BranchI;
 | 
						|
    return Result;
 | 
						|
  } else {
 | 
						|
    // In this case, we expect a constant incoming value (the comparison is
 | 
						|
    // chained).
 | 
						|
    const auto *const Const = cast<ConstantInt>(Val);
 | 
						|
    LLVM_DEBUG(dbgs() << "const\n");
 | 
						|
    if (!Const->isZero()) return {};
 | 
						|
    LLVM_DEBUG(dbgs() << "false\n");
 | 
						|
    auto *const CmpI = dyn_cast<ICmpInst>(BranchI->getCondition());
 | 
						|
    if (!CmpI) return {};
 | 
						|
    LLVM_DEBUG(dbgs() << "icmp\n");
 | 
						|
    assert(BranchI->getNumSuccessors() == 2 && "expecting a cond branch");
 | 
						|
    BasicBlock *const FalseBlock = BranchI->getSuccessor(1);
 | 
						|
    auto Result = visitICmp(
 | 
						|
        CmpI, FalseBlock == PhiBlock ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
 | 
						|
        BaseId);
 | 
						|
    Result.CmpI = CmpI;
 | 
						|
    Result.BranchI = BranchI;
 | 
						|
    return Result;
 | 
						|
  }
 | 
						|
  return {};
 | 
						|
}
 | 
						|
 | 
						|
static inline void enqueueBlock(std::vector<BCECmpBlock> &Comparisons,
 | 
						|
                                BCECmpBlock &&Comparison) {
 | 
						|
  LLVM_DEBUG(dbgs() << "Block '" << Comparison.BB->getName()
 | 
						|
                    << "': Found cmp of " << Comparison.SizeBits()
 | 
						|
                    << " bits between " << Comparison.Lhs().BaseId << " + "
 | 
						|
                    << Comparison.Lhs().Offset << " and "
 | 
						|
                    << Comparison.Rhs().BaseId << " + "
 | 
						|
                    << Comparison.Rhs().Offset << "\n");
 | 
						|
  LLVM_DEBUG(dbgs() << "\n");
 | 
						|
  Comparisons.push_back(std::move(Comparison));
 | 
						|
}
 | 
						|
 | 
						|
// A chain of comparisons.
 | 
						|
class BCECmpChain {
 | 
						|
 public:
 | 
						|
   BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
 | 
						|
               AliasAnalysis &AA);
 | 
						|
 | 
						|
   int size() const { return Comparisons_.size(); }
 | 
						|
 | 
						|
#ifdef MERGEICMPS_DOT_ON
 | 
						|
  void dump() const;
 | 
						|
#endif  // MERGEICMPS_DOT_ON
 | 
						|
 | 
						|
  bool simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
 | 
						|
                DomTreeUpdater &DTU);
 | 
						|
 | 
						|
private:
 | 
						|
  static bool IsContiguous(const BCECmpBlock &First,
 | 
						|
                           const BCECmpBlock &Second) {
 | 
						|
    return First.Lhs().BaseId == Second.Lhs().BaseId &&
 | 
						|
           First.Rhs().BaseId == Second.Rhs().BaseId &&
 | 
						|
           First.Lhs().Offset + First.SizeBits() / 8 == Second.Lhs().Offset &&
 | 
						|
           First.Rhs().Offset + First.SizeBits() / 8 == Second.Rhs().Offset;
 | 
						|
  }
 | 
						|
 | 
						|
  PHINode &Phi_;
 | 
						|
  std::vector<BCECmpBlock> Comparisons_;
 | 
						|
  // The original entry block (before sorting);
 | 
						|
  BasicBlock *EntryBlock_;
 | 
						|
};
 | 
						|
 | 
						|
BCECmpChain::BCECmpChain(const std::vector<BasicBlock *> &Blocks, PHINode &Phi,
 | 
						|
                         AliasAnalysis &AA)
 | 
						|
    : Phi_(Phi) {
 | 
						|
  assert(!Blocks.empty() && "a chain should have at least one block");
 | 
						|
  // Now look inside blocks to check for BCE comparisons.
 | 
						|
  std::vector<BCECmpBlock> Comparisons;
 | 
						|
  BaseIdentifier BaseId;
 | 
						|
  for (size_t BlockIdx = 0; BlockIdx < Blocks.size(); ++BlockIdx) {
 | 
						|
    BasicBlock *const Block = Blocks[BlockIdx];
 | 
						|
    assert(Block && "invalid block");
 | 
						|
    BCECmpBlock Comparison = visitCmpBlock(Phi.getIncomingValueForBlock(Block),
 | 
						|
                                           Block, Phi.getParent(), BaseId);
 | 
						|
    Comparison.BB = Block;
 | 
						|
    if (!Comparison.IsValid()) {
 | 
						|
      LLVM_DEBUG(dbgs() << "chain with invalid BCECmpBlock, no merge.\n");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if (Comparison.doesOtherWork()) {
 | 
						|
      LLVM_DEBUG(dbgs() << "block '" << Comparison.BB->getName()
 | 
						|
                        << "' does extra work besides compare\n");
 | 
						|
      if (Comparisons.empty()) {
 | 
						|
        // This is the initial block in the chain, in case this block does other
 | 
						|
        // work, we can try to split the block and move the irrelevant
 | 
						|
        // instructions to the predecessor.
 | 
						|
        //
 | 
						|
        // If this is not the initial block in the chain, splitting it wont
 | 
						|
        // work.
 | 
						|
        //
 | 
						|
        // As once split, there will still be instructions before the BCE cmp
 | 
						|
        // instructions that do other work in program order, i.e. within the
 | 
						|
        // chain before sorting. Unless we can abort the chain at this point
 | 
						|
        // and start anew.
 | 
						|
        //
 | 
						|
        // NOTE: we only handle blocks a with single predecessor for now.
 | 
						|
        if (Comparison.canSplit(AA)) {
 | 
						|
          LLVM_DEBUG(dbgs()
 | 
						|
                     << "Split initial block '" << Comparison.BB->getName()
 | 
						|
                     << "' that does extra work besides compare\n");
 | 
						|
          Comparison.RequireSplit = true;
 | 
						|
          enqueueBlock(Comparisons, std::move(Comparison));
 | 
						|
        } else {
 | 
						|
          LLVM_DEBUG(dbgs()
 | 
						|
                     << "ignoring initial block '" << Comparison.BB->getName()
 | 
						|
                     << "' that does extra work besides compare\n");
 | 
						|
        }
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // TODO(courbet): Right now we abort the whole chain. We could be
 | 
						|
      // merging only the blocks that don't do other work and resume the
 | 
						|
      // chain from there. For example:
 | 
						|
      //  if (a[0] == b[0]) {  // bb1
 | 
						|
      //    if (a[1] == b[1]) {  // bb2
 | 
						|
      //      some_value = 3; //bb3
 | 
						|
      //      if (a[2] == b[2]) { //bb3
 | 
						|
      //        do a ton of stuff  //bb4
 | 
						|
      //      }
 | 
						|
      //    }
 | 
						|
      //  }
 | 
						|
      //
 | 
						|
      // This is:
 | 
						|
      //
 | 
						|
      // bb1 --eq--> bb2 --eq--> bb3* -eq--> bb4 --+
 | 
						|
      //  \            \           \               \
 | 
						|
      //   ne           ne          ne              \
 | 
						|
      //    \            \           \               v
 | 
						|
      //     +------------+-----------+----------> bb_phi
 | 
						|
      //
 | 
						|
      // We can only merge the first two comparisons, because bb3* does
 | 
						|
      // "other work" (setting some_value to 3).
 | 
						|
      // We could still merge bb1 and bb2 though.
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    enqueueBlock(Comparisons, std::move(Comparison));
 | 
						|
  }
 | 
						|
 | 
						|
  // It is possible we have no suitable comparison to merge.
 | 
						|
  if (Comparisons.empty()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "chain with no BCE basic blocks, no merge\n");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  EntryBlock_ = Comparisons[0].BB;
 | 
						|
  Comparisons_ = std::move(Comparisons);
 | 
						|
#ifdef MERGEICMPS_DOT_ON
 | 
						|
  errs() << "BEFORE REORDERING:\n\n";
 | 
						|
  dump();
 | 
						|
#endif  // MERGEICMPS_DOT_ON
 | 
						|
  // Reorder blocks by LHS. We can do that without changing the
 | 
						|
  // semantics because we are only accessing dereferencable memory.
 | 
						|
  llvm::sort(Comparisons_,
 | 
						|
             [](const BCECmpBlock &LhsBlock, const BCECmpBlock &RhsBlock) {
 | 
						|
               return std::tie(LhsBlock.Lhs(), LhsBlock.Rhs()) <
 | 
						|
                      std::tie(RhsBlock.Lhs(), RhsBlock.Rhs());
 | 
						|
             });
 | 
						|
#ifdef MERGEICMPS_DOT_ON
 | 
						|
  errs() << "AFTER REORDERING:\n\n";
 | 
						|
  dump();
 | 
						|
#endif  // MERGEICMPS_DOT_ON
 | 
						|
}
 | 
						|
 | 
						|
#ifdef MERGEICMPS_DOT_ON
 | 
						|
void BCECmpChain::dump() const {
 | 
						|
  errs() << "digraph dag {\n";
 | 
						|
  errs() << " graph [bgcolor=transparent];\n";
 | 
						|
  errs() << " node [color=black,style=filled,fillcolor=lightyellow];\n";
 | 
						|
  errs() << " edge [color=black];\n";
 | 
						|
  for (size_t I = 0; I < Comparisons_.size(); ++I) {
 | 
						|
    const auto &Comparison = Comparisons_[I];
 | 
						|
    errs() << " \"" << I << "\" [label=\"%"
 | 
						|
           << Comparison.Lhs().Base()->getName() << " + "
 | 
						|
           << Comparison.Lhs().Offset << " == %"
 | 
						|
           << Comparison.Rhs().Base()->getName() << " + "
 | 
						|
           << Comparison.Rhs().Offset << " (" << (Comparison.SizeBits() / 8)
 | 
						|
           << " bytes)\"];\n";
 | 
						|
    const Value *const Val = Phi_.getIncomingValueForBlock(Comparison.BB);
 | 
						|
    if (I > 0) errs() << " \"" << (I - 1) << "\" -> \"" << I << "\";\n";
 | 
						|
    errs() << " \"" << I << "\" -> \"Phi\" [label=\"" << *Val << "\"];\n";
 | 
						|
  }
 | 
						|
  errs() << " \"Phi\" [label=\"Phi\"];\n";
 | 
						|
  errs() << "}\n\n";
 | 
						|
}
 | 
						|
#endif  // MERGEICMPS_DOT_ON
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
// A class to compute the name of a set of merged basic blocks.
 | 
						|
// This is optimized for the common case of no block names.
 | 
						|
class MergedBlockName {
 | 
						|
  // Storage for the uncommon case of several named blocks.
 | 
						|
  SmallString<16> Scratch;
 | 
						|
 | 
						|
public:
 | 
						|
  explicit MergedBlockName(ArrayRef<BCECmpBlock> Comparisons)
 | 
						|
      : Name(makeName(Comparisons)) {}
 | 
						|
  const StringRef Name;
 | 
						|
 | 
						|
private:
 | 
						|
  StringRef makeName(ArrayRef<BCECmpBlock> Comparisons) {
 | 
						|
    assert(!Comparisons.empty() && "no basic block");
 | 
						|
    // Fast path: only one block, or no names at all.
 | 
						|
    if (Comparisons.size() == 1)
 | 
						|
      return Comparisons[0].BB->getName();
 | 
						|
    const int size = std::accumulate(Comparisons.begin(), Comparisons.end(), 0,
 | 
						|
                                     [](int i, const BCECmpBlock &Cmp) {
 | 
						|
                                       return i + Cmp.BB->getName().size();
 | 
						|
                                     });
 | 
						|
    if (size == 0)
 | 
						|
      return StringRef("", 0);
 | 
						|
 | 
						|
    // Slow path: at least two blocks, at least one block with a name.
 | 
						|
    Scratch.clear();
 | 
						|
    // We'll have `size` bytes for name and `Comparisons.size() - 1` bytes for
 | 
						|
    // separators.
 | 
						|
    Scratch.reserve(size + Comparisons.size() - 1);
 | 
						|
    const auto append = [this](StringRef str) {
 | 
						|
      Scratch.append(str.begin(), str.end());
 | 
						|
    };
 | 
						|
    append(Comparisons[0].BB->getName());
 | 
						|
    for (int I = 1, E = Comparisons.size(); I < E; ++I) {
 | 
						|
      const BasicBlock *const BB = Comparisons[I].BB;
 | 
						|
      if (!BB->getName().empty()) {
 | 
						|
        append("+");
 | 
						|
        append(BB->getName());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return StringRef(Scratch);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
// Merges the given contiguous comparison blocks into one memcmp block.
 | 
						|
static BasicBlock *mergeComparisons(ArrayRef<BCECmpBlock> Comparisons,
 | 
						|
                                    BasicBlock *const InsertBefore,
 | 
						|
                                    BasicBlock *const NextCmpBlock,
 | 
						|
                                    PHINode &Phi, const TargetLibraryInfo &TLI,
 | 
						|
                                    AliasAnalysis &AA, DomTreeUpdater &DTU) {
 | 
						|
  assert(!Comparisons.empty() && "merging zero comparisons");
 | 
						|
  LLVMContext &Context = NextCmpBlock->getContext();
 | 
						|
  const BCECmpBlock &FirstCmp = Comparisons[0];
 | 
						|
 | 
						|
  // Create a new cmp block before next cmp block.
 | 
						|
  BasicBlock *const BB =
 | 
						|
      BasicBlock::Create(Context, MergedBlockName(Comparisons).Name,
 | 
						|
                         NextCmpBlock->getParent(), InsertBefore);
 | 
						|
  IRBuilder<> Builder(BB);
 | 
						|
  // Add the GEPs from the first BCECmpBlock.
 | 
						|
  Value *const Lhs = Builder.Insert(FirstCmp.Lhs().GEP->clone());
 | 
						|
  Value *const Rhs = Builder.Insert(FirstCmp.Rhs().GEP->clone());
 | 
						|
 | 
						|
  Value *IsEqual = nullptr;
 | 
						|
  LLVM_DEBUG(dbgs() << "Merging " << Comparisons.size() << " comparisons -> "
 | 
						|
                    << BB->getName() << "\n");
 | 
						|
 | 
						|
  // If there is one block that requires splitting, we do it now, i.e.
 | 
						|
  // just before we know we will collapse the chain. The instructions
 | 
						|
  // can be executed before any of the instructions in the chain.
 | 
						|
  const auto ToSplit = llvm::find_if(
 | 
						|
      Comparisons, [](const BCECmpBlock &B) { return B.RequireSplit; });
 | 
						|
  if (ToSplit != Comparisons.end()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Splitting non_BCE work to header\n");
 | 
						|
    ToSplit->split(BB, AA);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Comparisons.size() == 1) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Only one comparison, updating branches\n");
 | 
						|
    Value *const LhsLoad =
 | 
						|
        Builder.CreateLoad(FirstCmp.Lhs().LoadI->getType(), Lhs);
 | 
						|
    Value *const RhsLoad =
 | 
						|
        Builder.CreateLoad(FirstCmp.Rhs().LoadI->getType(), Rhs);
 | 
						|
    // There are no blocks to merge, just do the comparison.
 | 
						|
    IsEqual = Builder.CreateICmpEQ(LhsLoad, RhsLoad);
 | 
						|
  } else {
 | 
						|
    const unsigned TotalSizeBits = std::accumulate(
 | 
						|
        Comparisons.begin(), Comparisons.end(), 0u,
 | 
						|
        [](int Size, const BCECmpBlock &C) { return Size + C.SizeBits(); });
 | 
						|
 | 
						|
    // Create memcmp() == 0.
 | 
						|
    const auto &DL = Phi.getModule()->getDataLayout();
 | 
						|
    Value *const MemCmpCall = emitMemCmp(
 | 
						|
        Lhs, Rhs,
 | 
						|
        ConstantInt::get(DL.getIntPtrType(Context), TotalSizeBits / 8), Builder,
 | 
						|
        DL, &TLI);
 | 
						|
    IsEqual = Builder.CreateICmpEQ(
 | 
						|
        MemCmpCall, ConstantInt::get(Type::getInt32Ty(Context), 0));
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *const PhiBB = Phi.getParent();
 | 
						|
  // Add a branch to the next basic block in the chain.
 | 
						|
  if (NextCmpBlock == PhiBB) {
 | 
						|
    // Continue to phi, passing it the comparison result.
 | 
						|
    Builder.CreateBr(PhiBB);
 | 
						|
    Phi.addIncoming(IsEqual, BB);
 | 
						|
    DTU.applyUpdates({{DominatorTree::Insert, BB, PhiBB}});
 | 
						|
  } else {
 | 
						|
    // Continue to next block if equal, exit to phi else.
 | 
						|
    Builder.CreateCondBr(IsEqual, NextCmpBlock, PhiBB);
 | 
						|
    Phi.addIncoming(ConstantInt::getFalse(Context), BB);
 | 
						|
    DTU.applyUpdates({{DominatorTree::Insert, BB, NextCmpBlock},
 | 
						|
                      {DominatorTree::Insert, BB, PhiBB}});
 | 
						|
  }
 | 
						|
  return BB;
 | 
						|
}
 | 
						|
 | 
						|
bool BCECmpChain::simplify(const TargetLibraryInfo &TLI, AliasAnalysis &AA,
 | 
						|
                           DomTreeUpdater &DTU) {
 | 
						|
  assert(Comparisons_.size() >= 2 && "simplifying trivial BCECmpChain");
 | 
						|
  // First pass to check if there is at least one merge. If not, we don't do
 | 
						|
  // anything and we keep analysis passes intact.
 | 
						|
  const auto AtLeastOneMerged = [this]() {
 | 
						|
    for (size_t I = 1; I < Comparisons_.size(); ++I) {
 | 
						|
      if (IsContiguous(Comparisons_[I - 1], Comparisons_[I]))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  };
 | 
						|
  if (!AtLeastOneMerged())
 | 
						|
    return false;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Simplifying comparison chain starting at block "
 | 
						|
                    << EntryBlock_->getName() << "\n");
 | 
						|
 | 
						|
  // Effectively merge blocks. We go in the reverse direction from the phi block
 | 
						|
  // so that the next block is always available to branch to.
 | 
						|
  const auto mergeRange = [this, &TLI, &AA, &DTU](int I, int Num,
 | 
						|
                                                  BasicBlock *InsertBefore,
 | 
						|
                                                  BasicBlock *Next) {
 | 
						|
    return mergeComparisons(makeArrayRef(Comparisons_).slice(I, Num),
 | 
						|
                            InsertBefore, Next, Phi_, TLI, AA, DTU);
 | 
						|
  };
 | 
						|
  int NumMerged = 1;
 | 
						|
  BasicBlock *NextCmpBlock = Phi_.getParent();
 | 
						|
  for (int I = static_cast<int>(Comparisons_.size()) - 2; I >= 0; --I) {
 | 
						|
    if (IsContiguous(Comparisons_[I], Comparisons_[I + 1])) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Merging block " << Comparisons_[I].BB->getName()
 | 
						|
                        << " into " << Comparisons_[I + 1].BB->getName()
 | 
						|
                        << "\n");
 | 
						|
      ++NumMerged;
 | 
						|
    } else {
 | 
						|
      NextCmpBlock = mergeRange(I + 1, NumMerged, NextCmpBlock, NextCmpBlock);
 | 
						|
      NumMerged = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Insert the entry block for the new chain before the old entry block.
 | 
						|
  // If the old entry block was the function entry, this ensures that the new
 | 
						|
  // entry can become the function entry.
 | 
						|
  NextCmpBlock = mergeRange(0, NumMerged, EntryBlock_, NextCmpBlock);
 | 
						|
 | 
						|
  // Replace the original cmp chain with the new cmp chain by pointing all
 | 
						|
  // predecessors of EntryBlock_ to NextCmpBlock instead. This makes all cmp
 | 
						|
  // blocks in the old chain unreachable.
 | 
						|
  while (!pred_empty(EntryBlock_)) {
 | 
						|
    BasicBlock* const Pred = *pred_begin(EntryBlock_);
 | 
						|
    LLVM_DEBUG(dbgs() << "Updating jump into old chain from " << Pred->getName()
 | 
						|
                      << "\n");
 | 
						|
    Pred->getTerminator()->replaceUsesOfWith(EntryBlock_, NextCmpBlock);
 | 
						|
    DTU.applyUpdates({{DominatorTree::Delete, Pred, EntryBlock_},
 | 
						|
                      {DominatorTree::Insert, Pred, NextCmpBlock}});
 | 
						|
  }
 | 
						|
 | 
						|
  // If the old cmp chain was the function entry, we need to update the function
 | 
						|
  // entry.
 | 
						|
  const bool ChainEntryIsFnEntry =
 | 
						|
      (EntryBlock_ == &EntryBlock_->getParent()->getEntryBlock());
 | 
						|
  if (ChainEntryIsFnEntry && DTU.hasDomTree()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Changing function entry from "
 | 
						|
                      << EntryBlock_->getName() << " to "
 | 
						|
                      << NextCmpBlock->getName() << "\n");
 | 
						|
    DTU.getDomTree().setNewRoot(NextCmpBlock);
 | 
						|
    DTU.applyUpdates({{DominatorTree::Delete, NextCmpBlock, EntryBlock_}});
 | 
						|
  }
 | 
						|
  EntryBlock_ = nullptr;
 | 
						|
 | 
						|
  // Delete merged blocks. This also removes incoming values in phi.
 | 
						|
  SmallVector<BasicBlock *, 16> DeadBlocks;
 | 
						|
  for (auto &Cmp : Comparisons_) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Deleting merged block " << Cmp.BB->getName() << "\n");
 | 
						|
    DeadBlocks.push_back(Cmp.BB);
 | 
						|
  }
 | 
						|
  DeleteDeadBlocks(DeadBlocks, &DTU);
 | 
						|
 | 
						|
  Comparisons_.clear();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<BasicBlock *> getOrderedBlocks(PHINode &Phi,
 | 
						|
                                           BasicBlock *const LastBlock,
 | 
						|
                                           int NumBlocks) {
 | 
						|
  // Walk up from the last block to find other blocks.
 | 
						|
  std::vector<BasicBlock *> Blocks(NumBlocks);
 | 
						|
  assert(LastBlock && "invalid last block");
 | 
						|
  BasicBlock *CurBlock = LastBlock;
 | 
						|
  for (int BlockIndex = NumBlocks - 1; BlockIndex > 0; --BlockIndex) {
 | 
						|
    if (CurBlock->hasAddressTaken()) {
 | 
						|
      // Somebody is jumping to the block through an address, all bets are
 | 
						|
      // off.
 | 
						|
      LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
 | 
						|
                        << " has its address taken\n");
 | 
						|
      return {};
 | 
						|
    }
 | 
						|
    Blocks[BlockIndex] = CurBlock;
 | 
						|
    auto *SinglePredecessor = CurBlock->getSinglePredecessor();
 | 
						|
    if (!SinglePredecessor) {
 | 
						|
      // The block has two or more predecessors.
 | 
						|
      LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
 | 
						|
                        << " has two or more predecessors\n");
 | 
						|
      return {};
 | 
						|
    }
 | 
						|
    if (Phi.getBasicBlockIndex(SinglePredecessor) < 0) {
 | 
						|
      // The block does not link back to the phi.
 | 
						|
      LLVM_DEBUG(dbgs() << "skip: block " << BlockIndex
 | 
						|
                        << " does not link back to the phi\n");
 | 
						|
      return {};
 | 
						|
    }
 | 
						|
    CurBlock = SinglePredecessor;
 | 
						|
  }
 | 
						|
  Blocks[0] = CurBlock;
 | 
						|
  return Blocks;
 | 
						|
}
 | 
						|
 | 
						|
bool processPhi(PHINode &Phi, const TargetLibraryInfo &TLI, AliasAnalysis &AA,
 | 
						|
                DomTreeUpdater &DTU) {
 | 
						|
  LLVM_DEBUG(dbgs() << "processPhi()\n");
 | 
						|
  if (Phi.getNumIncomingValues() <= 1) {
 | 
						|
    LLVM_DEBUG(dbgs() << "skip: only one incoming value in phi\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  // We are looking for something that has the following structure:
 | 
						|
  //   bb1 --eq--> bb2 --eq--> bb3 --eq--> bb4 --+
 | 
						|
  //     \            \           \               \
 | 
						|
  //      ne           ne          ne              \
 | 
						|
  //       \            \           \               v
 | 
						|
  //        +------------+-----------+----------> bb_phi
 | 
						|
  //
 | 
						|
  //  - The last basic block (bb4 here) must branch unconditionally to bb_phi.
 | 
						|
  //    It's the only block that contributes a non-constant value to the Phi.
 | 
						|
  //  - All other blocks (b1, b2, b3) must have exactly two successors, one of
 | 
						|
  //    them being the phi block.
 | 
						|
  //  - All intermediate blocks (bb2, bb3) must have only one predecessor.
 | 
						|
  //  - Blocks cannot do other work besides the comparison, see doesOtherWork()
 | 
						|
 | 
						|
  // The blocks are not necessarily ordered in the phi, so we start from the
 | 
						|
  // last block and reconstruct the order.
 | 
						|
  BasicBlock *LastBlock = nullptr;
 | 
						|
  for (unsigned I = 0; I < Phi.getNumIncomingValues(); ++I) {
 | 
						|
    if (isa<ConstantInt>(Phi.getIncomingValue(I))) continue;
 | 
						|
    if (LastBlock) {
 | 
						|
      // There are several non-constant values.
 | 
						|
      LLVM_DEBUG(dbgs() << "skip: several non-constant values\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    if (!isa<ICmpInst>(Phi.getIncomingValue(I)) ||
 | 
						|
        cast<ICmpInst>(Phi.getIncomingValue(I))->getParent() !=
 | 
						|
            Phi.getIncomingBlock(I)) {
 | 
						|
      // Non-constant incoming value is not from a cmp instruction or not
 | 
						|
      // produced by the last block. We could end up processing the value
 | 
						|
      // producing block more than once.
 | 
						|
      //
 | 
						|
      // This is an uncommon case, so we bail.
 | 
						|
      LLVM_DEBUG(
 | 
						|
          dbgs()
 | 
						|
          << "skip: non-constant value not from cmp or not from last block.\n");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    LastBlock = Phi.getIncomingBlock(I);
 | 
						|
  }
 | 
						|
  if (!LastBlock) {
 | 
						|
    // There is no non-constant block.
 | 
						|
    LLVM_DEBUG(dbgs() << "skip: no non-constant block\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (LastBlock->getSingleSuccessor() != Phi.getParent()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "skip: last block non-phi successor\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  const auto Blocks =
 | 
						|
      getOrderedBlocks(Phi, LastBlock, Phi.getNumIncomingValues());
 | 
						|
  if (Blocks.empty()) return false;
 | 
						|
  BCECmpChain CmpChain(Blocks, Phi, AA);
 | 
						|
 | 
						|
  if (CmpChain.size() < 2) {
 | 
						|
    LLVM_DEBUG(dbgs() << "skip: only one compare block\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return CmpChain.simplify(TLI, AA, DTU);
 | 
						|
}
 | 
						|
 | 
						|
static bool runImpl(Function &F, const TargetLibraryInfo &TLI,
 | 
						|
                    const TargetTransformInfo &TTI, AliasAnalysis &AA,
 | 
						|
                    DominatorTree *DT) {
 | 
						|
  LLVM_DEBUG(dbgs() << "MergeICmpsLegacyPass: " << F.getName() << "\n");
 | 
						|
 | 
						|
  // We only try merging comparisons if the target wants to expand memcmp later.
 | 
						|
  // The rationale is to avoid turning small chains into memcmp calls.
 | 
						|
  if (!TTI.enableMemCmpExpansion(F.hasOptSize(), true))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we don't have memcmp avaiable we can't emit calls to it.
 | 
						|
  if (!TLI.has(LibFunc_memcmp))
 | 
						|
    return false;
 | 
						|
 | 
						|
  DomTreeUpdater DTU(DT, /*PostDominatorTree*/ nullptr,
 | 
						|
                     DomTreeUpdater::UpdateStrategy::Eager);
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
 | 
						|
  for (auto BBIt = ++F.begin(); BBIt != F.end(); ++BBIt) {
 | 
						|
    // A Phi operation is always first in a basic block.
 | 
						|
    if (auto *const Phi = dyn_cast<PHINode>(&*BBIt->begin()))
 | 
						|
      MadeChange |= processPhi(*Phi, TLI, AA, DTU);
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
class MergeICmpsLegacyPass : public FunctionPass {
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  MergeICmpsLegacyPass() : FunctionPass(ID) {
 | 
						|
    initializeMergeICmpsLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    if (skipFunction(F)) return false;
 | 
						|
    const auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
 | 
						|
    const auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
 | 
						|
    // MergeICmps does not need the DominatorTree, but we update it if it's
 | 
						|
    // already available.
 | 
						|
    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
 | 
						|
    return runImpl(F, TLI, TTI, AA, DTWP ? &DTWP->getDomTree() : nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
 private:
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    AU.addRequired<AAResultsWrapperPass>();
 | 
						|
    AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
char MergeICmpsLegacyPass::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(MergeICmpsLegacyPass, "mergeicmps",
 | 
						|
                      "Merge contiguous icmps into a memcmp", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | 
						|
INITIALIZE_PASS_END(MergeICmpsLegacyPass, "mergeicmps",
 | 
						|
                    "Merge contiguous icmps into a memcmp", false, false)
 | 
						|
 | 
						|
Pass *llvm::createMergeICmpsLegacyPass() { return new MergeICmpsLegacyPass(); }
 | 
						|
 | 
						|
PreservedAnalyses MergeICmpsPass::run(Function &F,
 | 
						|
                                      FunctionAnalysisManager &AM) {
 | 
						|
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
 | 
						|
  auto &TTI = AM.getResult<TargetIRAnalysis>(F);
 | 
						|
  auto &AA = AM.getResult<AAManager>(F);
 | 
						|
  auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
 | 
						|
  const bool MadeChanges = runImpl(F, TLI, TTI, AA, DT);
 | 
						|
  if (!MadeChanges)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  PA.preserve<DominatorTreeAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 |