1121 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1121 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- StructurizeCFG.cpp -------------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/StructurizeCFG.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/SCCIterator.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/RegionInfo.h"
 | 
						|
#include "llvm/Analysis/RegionIterator.h"
 | 
						|
#include "llvm/Analysis/RegionPass.h"
 | 
						|
#include "llvm/IR/Argument.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Constant.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstrTypes.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/IR/Use.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/InitializePasses.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Transforms/Utils/SSAUpdater.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <utility>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
#define DEBUG_TYPE "structurizecfg"
 | 
						|
 | 
						|
// The name for newly created blocks.
 | 
						|
const char FlowBlockName[] = "Flow";
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
static cl::opt<bool> ForceSkipUniformRegions(
 | 
						|
  "structurizecfg-skip-uniform-regions",
 | 
						|
  cl::Hidden,
 | 
						|
  cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
 | 
						|
  cl::init(false));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    RelaxedUniformRegions("structurizecfg-relaxed-uniform-regions", cl::Hidden,
 | 
						|
                          cl::desc("Allow relaxed uniform region checks"),
 | 
						|
                          cl::init(true));
 | 
						|
 | 
						|
// Definition of the complex types used in this pass.
 | 
						|
 | 
						|
using BBValuePair = std::pair<BasicBlock *, Value *>;
 | 
						|
 | 
						|
using RNVector = SmallVector<RegionNode *, 8>;
 | 
						|
using BBVector = SmallVector<BasicBlock *, 8>;
 | 
						|
using BranchVector = SmallVector<BranchInst *, 8>;
 | 
						|
using BBValueVector = SmallVector<BBValuePair, 2>;
 | 
						|
 | 
						|
using BBSet = SmallPtrSet<BasicBlock *, 8>;
 | 
						|
 | 
						|
using PhiMap = MapVector<PHINode *, BBValueVector>;
 | 
						|
using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;
 | 
						|
 | 
						|
using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
 | 
						|
using BBPredicates = DenseMap<BasicBlock *, Value *>;
 | 
						|
using PredMap = DenseMap<BasicBlock *, BBPredicates>;
 | 
						|
using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;
 | 
						|
 | 
						|
// A traits type that is intended to be used in graph algorithms. The graph
 | 
						|
// traits starts at an entry node, and traverses the RegionNodes that are in
 | 
						|
// the Nodes set.
 | 
						|
struct SubGraphTraits {
 | 
						|
  using NodeRef = std::pair<RegionNode *, SmallDenseSet<RegionNode *> *>;
 | 
						|
  using BaseSuccIterator = GraphTraits<RegionNode *>::ChildIteratorType;
 | 
						|
 | 
						|
  // This wraps a set of Nodes into the iterator, so we know which edges to
 | 
						|
  // filter out.
 | 
						|
  class WrappedSuccIterator
 | 
						|
      : public iterator_adaptor_base<
 | 
						|
            WrappedSuccIterator, BaseSuccIterator,
 | 
						|
            typename std::iterator_traits<BaseSuccIterator>::iterator_category,
 | 
						|
            NodeRef, std::ptrdiff_t, NodeRef *, NodeRef> {
 | 
						|
    SmallDenseSet<RegionNode *> *Nodes;
 | 
						|
 | 
						|
  public:
 | 
						|
    WrappedSuccIterator(BaseSuccIterator It, SmallDenseSet<RegionNode *> *Nodes)
 | 
						|
        : iterator_adaptor_base(It), Nodes(Nodes) {}
 | 
						|
 | 
						|
    NodeRef operator*() const { return {*I, Nodes}; }
 | 
						|
  };
 | 
						|
 | 
						|
  static bool filterAll(const NodeRef &N) { return true; }
 | 
						|
  static bool filterSet(const NodeRef &N) { return N.second->count(N.first); }
 | 
						|
 | 
						|
  using ChildIteratorType =
 | 
						|
      filter_iterator<WrappedSuccIterator, bool (*)(const NodeRef &)>;
 | 
						|
 | 
						|
  static NodeRef getEntryNode(Region *R) {
 | 
						|
    return {GraphTraits<Region *>::getEntryNode(R), nullptr};
 | 
						|
  }
 | 
						|
 | 
						|
  static NodeRef getEntryNode(NodeRef N) { return N; }
 | 
						|
 | 
						|
  static iterator_range<ChildIteratorType> children(const NodeRef &N) {
 | 
						|
    auto *filter = N.second ? &filterSet : &filterAll;
 | 
						|
    return make_filter_range(
 | 
						|
        make_range<WrappedSuccIterator>(
 | 
						|
            {GraphTraits<RegionNode *>::child_begin(N.first), N.second},
 | 
						|
            {GraphTraits<RegionNode *>::child_end(N.first), N.second}),
 | 
						|
        filter);
 | 
						|
  }
 | 
						|
 | 
						|
  static ChildIteratorType child_begin(const NodeRef &N) {
 | 
						|
    return children(N).begin();
 | 
						|
  }
 | 
						|
 | 
						|
  static ChildIteratorType child_end(const NodeRef &N) {
 | 
						|
    return children(N).end();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Finds the nearest common dominator of a set of BasicBlocks.
 | 
						|
///
 | 
						|
/// For every BB you add to the set, you can specify whether we "remember" the
 | 
						|
/// block.  When you get the common dominator, you can also ask whether it's one
 | 
						|
/// of the blocks we remembered.
 | 
						|
class NearestCommonDominator {
 | 
						|
  DominatorTree *DT;
 | 
						|
  BasicBlock *Result = nullptr;
 | 
						|
  bool ResultIsRemembered = false;
 | 
						|
 | 
						|
  /// Add BB to the resulting dominator.
 | 
						|
  void addBlock(BasicBlock *BB, bool Remember) {
 | 
						|
    if (!Result) {
 | 
						|
      Result = BB;
 | 
						|
      ResultIsRemembered = Remember;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
 | 
						|
    if (NewResult != Result)
 | 
						|
      ResultIsRemembered = false;
 | 
						|
    if (NewResult == BB)
 | 
						|
      ResultIsRemembered |= Remember;
 | 
						|
    Result = NewResult;
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}
 | 
						|
 | 
						|
  void addBlock(BasicBlock *BB) {
 | 
						|
    addBlock(BB, /* Remember = */ false);
 | 
						|
  }
 | 
						|
 | 
						|
  void addAndRememberBlock(BasicBlock *BB) {
 | 
						|
    addBlock(BB, /* Remember = */ true);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Get the nearest common dominator of all the BBs added via addBlock() and
 | 
						|
  /// addAndRememberBlock().
 | 
						|
  BasicBlock *result() { return Result; }
 | 
						|
 | 
						|
  /// Is the BB returned by getResult() one of the blocks we added to the set
 | 
						|
  /// with addAndRememberBlock()?
 | 
						|
  bool resultIsRememberedBlock() { return ResultIsRemembered; }
 | 
						|
};
 | 
						|
 | 
						|
/// Transforms the control flow graph on one single entry/exit region
 | 
						|
/// at a time.
 | 
						|
///
 | 
						|
/// After the transform all "If"/"Then"/"Else" style control flow looks like
 | 
						|
/// this:
 | 
						|
///
 | 
						|
/// \verbatim
 | 
						|
/// 1
 | 
						|
/// ||
 | 
						|
/// | |
 | 
						|
/// 2 |
 | 
						|
/// | /
 | 
						|
/// |/
 | 
						|
/// 3
 | 
						|
/// ||   Where:
 | 
						|
/// | |  1 = "If" block, calculates the condition
 | 
						|
/// 4 |  2 = "Then" subregion, runs if the condition is true
 | 
						|
/// | /  3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
 | 
						|
/// |/   4 = "Else" optional subregion, runs if the condition is false
 | 
						|
/// 5    5 = "End" block, also rejoins the control flow
 | 
						|
/// \endverbatim
 | 
						|
///
 | 
						|
/// Control flow is expressed as a branch where the true exit goes into the
 | 
						|
/// "Then"/"Else" region, while the false exit skips the region
 | 
						|
/// The condition for the optional "Else" region is expressed as a PHI node.
 | 
						|
/// The incoming values of the PHI node are true for the "If" edge and false
 | 
						|
/// for the "Then" edge.
 | 
						|
///
 | 
						|
/// Additionally to that even complicated loops look like this:
 | 
						|
///
 | 
						|
/// \verbatim
 | 
						|
/// 1
 | 
						|
/// ||
 | 
						|
/// | |
 | 
						|
/// 2 ^  Where:
 | 
						|
/// | /  1 = "Entry" block
 | 
						|
/// |/   2 = "Loop" optional subregion, with all exits at "Flow" block
 | 
						|
/// 3    3 = "Flow" block, with back edge to entry block
 | 
						|
/// |
 | 
						|
/// \endverbatim
 | 
						|
///
 | 
						|
/// The back edge of the "Flow" block is always on the false side of the branch
 | 
						|
/// while the true side continues the general flow. So the loop condition
 | 
						|
/// consist of a network of PHI nodes where the true incoming values expresses
 | 
						|
/// breaks and the false values expresses continue states.
 | 
						|
 | 
						|
class StructurizeCFG {
 | 
						|
  Type *Boolean;
 | 
						|
  ConstantInt *BoolTrue;
 | 
						|
  ConstantInt *BoolFalse;
 | 
						|
  UndefValue *BoolUndef;
 | 
						|
 | 
						|
  Function *Func;
 | 
						|
  Region *ParentRegion;
 | 
						|
 | 
						|
  LegacyDivergenceAnalysis *DA = nullptr;
 | 
						|
  DominatorTree *DT;
 | 
						|
 | 
						|
  SmallVector<RegionNode *, 8> Order;
 | 
						|
  BBSet Visited;
 | 
						|
 | 
						|
  SmallVector<WeakVH, 8> AffectedPhis;
 | 
						|
  BBPhiMap DeletedPhis;
 | 
						|
  BB2BBVecMap AddedPhis;
 | 
						|
 | 
						|
  PredMap Predicates;
 | 
						|
  BranchVector Conditions;
 | 
						|
 | 
						|
  BB2BBMap Loops;
 | 
						|
  PredMap LoopPreds;
 | 
						|
  BranchVector LoopConds;
 | 
						|
 | 
						|
  RegionNode *PrevNode;
 | 
						|
 | 
						|
  void orderNodes();
 | 
						|
 | 
						|
  void analyzeLoops(RegionNode *N);
 | 
						|
 | 
						|
  Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
 | 
						|
 | 
						|
  void gatherPredicates(RegionNode *N);
 | 
						|
 | 
						|
  void collectInfos();
 | 
						|
 | 
						|
  void insertConditions(bool Loops);
 | 
						|
 | 
						|
  void delPhiValues(BasicBlock *From, BasicBlock *To);
 | 
						|
 | 
						|
  void addPhiValues(BasicBlock *From, BasicBlock *To);
 | 
						|
 | 
						|
  void setPhiValues();
 | 
						|
 | 
						|
  void simplifyAffectedPhis();
 | 
						|
 | 
						|
  void killTerminator(BasicBlock *BB);
 | 
						|
 | 
						|
  void changeExit(RegionNode *Node, BasicBlock *NewExit,
 | 
						|
                  bool IncludeDominator);
 | 
						|
 | 
						|
  BasicBlock *getNextFlow(BasicBlock *Dominator);
 | 
						|
 | 
						|
  BasicBlock *needPrefix(bool NeedEmpty);
 | 
						|
 | 
						|
  BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
 | 
						|
 | 
						|
  void setPrevNode(BasicBlock *BB);
 | 
						|
 | 
						|
  bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
 | 
						|
 | 
						|
  bool isPredictableTrue(RegionNode *Node);
 | 
						|
 | 
						|
  void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);
 | 
						|
 | 
						|
  void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);
 | 
						|
 | 
						|
  void createFlow();
 | 
						|
 | 
						|
  void rebuildSSA();
 | 
						|
 | 
						|
public:
 | 
						|
  void init(Region *R);
 | 
						|
  bool run(Region *R, DominatorTree *DT);
 | 
						|
  bool makeUniformRegion(Region *R, LegacyDivergenceAnalysis *DA);
 | 
						|
};
 | 
						|
 | 
						|
class StructurizeCFGLegacyPass : public RegionPass {
 | 
						|
  bool SkipUniformRegions;
 | 
						|
 | 
						|
public:
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  explicit StructurizeCFGLegacyPass(bool SkipUniformRegions_ = false)
 | 
						|
      : RegionPass(ID), SkipUniformRegions(SkipUniformRegions_) {
 | 
						|
    if (ForceSkipUniformRegions.getNumOccurrences())
 | 
						|
      SkipUniformRegions = ForceSkipUniformRegions.getValue();
 | 
						|
    initializeStructurizeCFGLegacyPassPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnRegion(Region *R, RGPassManager &RGM) override {
 | 
						|
    StructurizeCFG SCFG;
 | 
						|
    SCFG.init(R);
 | 
						|
    if (SkipUniformRegions) {
 | 
						|
      LegacyDivergenceAnalysis *DA = &getAnalysis<LegacyDivergenceAnalysis>();
 | 
						|
      if (SCFG.makeUniformRegion(R, DA))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
    return SCFG.run(R, DT);
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef getPassName() const override { return "Structurize control flow"; }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    if (SkipUniformRegions)
 | 
						|
      AU.addRequired<LegacyDivergenceAnalysis>();
 | 
						|
    AU.addRequiredID(LowerSwitchID);
 | 
						|
    AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
    RegionPass::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
char StructurizeCFGLegacyPass::ID = 0;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(StructurizeCFGLegacyPass, "structurizecfg",
 | 
						|
                      "Structurize the CFG", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
 | 
						|
INITIALIZE_PASS_END(StructurizeCFGLegacyPass, "structurizecfg",
 | 
						|
                    "Structurize the CFG", false, false)
 | 
						|
 | 
						|
/// Build up the general order of nodes, by performing a topological sort of the
 | 
						|
/// parent region's nodes, while ensuring that there is no outer cycle node
 | 
						|
/// between any two inner cycle nodes.
 | 
						|
void StructurizeCFG::orderNodes() {
 | 
						|
  Order.resize(std::distance(GraphTraits<Region *>::nodes_begin(ParentRegion),
 | 
						|
                             GraphTraits<Region *>::nodes_end(ParentRegion)));
 | 
						|
  if (Order.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallDenseSet<RegionNode *> Nodes;
 | 
						|
  auto EntryNode = SubGraphTraits::getEntryNode(ParentRegion);
 | 
						|
 | 
						|
  // A list of range indices of SCCs in Order, to be processed.
 | 
						|
  SmallVector<std::pair<unsigned, unsigned>, 8> WorkList;
 | 
						|
  unsigned I = 0, E = Order.size();
 | 
						|
  while (true) {
 | 
						|
    // Run through all the SCCs in the subgraph starting with Entry.
 | 
						|
    for (auto SCCI =
 | 
						|
             scc_iterator<SubGraphTraits::NodeRef, SubGraphTraits>::begin(
 | 
						|
                 EntryNode);
 | 
						|
         !SCCI.isAtEnd(); ++SCCI) {
 | 
						|
      auto &SCC = *SCCI;
 | 
						|
 | 
						|
      // An SCC up to the size of 2, can be reduced to an entry (the last node),
 | 
						|
      // and a possible additional node. Therefore, it is already in order, and
 | 
						|
      // there is no need to add it to the work-list.
 | 
						|
      unsigned Size = SCC.size();
 | 
						|
      if (Size > 2)
 | 
						|
        WorkList.emplace_back(I, I + Size);
 | 
						|
 | 
						|
      // Add the SCC nodes to the Order array.
 | 
						|
      for (auto &N : SCC) {
 | 
						|
        assert(I < E && "SCC size mismatch!");
 | 
						|
        Order[I++] = N.first;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    assert(I == E && "SCC size mismatch!");
 | 
						|
 | 
						|
    // If there are no more SCCs to order, then we are done.
 | 
						|
    if (WorkList.empty())
 | 
						|
      break;
 | 
						|
 | 
						|
    std::tie(I, E) = WorkList.pop_back_val();
 | 
						|
 | 
						|
    // Collect the set of nodes in the SCC's subgraph. These are only the
 | 
						|
    // possible child nodes; we do not add the entry (last node) otherwise we
 | 
						|
    // will have the same exact SCC all over again.
 | 
						|
    Nodes.clear();
 | 
						|
    Nodes.insert(Order.begin() + I, Order.begin() + E - 1);
 | 
						|
 | 
						|
    // Update the entry node.
 | 
						|
    EntryNode.first = Order[E - 1];
 | 
						|
    EntryNode.second = &Nodes;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Determine the end of the loops
 | 
						|
void StructurizeCFG::analyzeLoops(RegionNode *N) {
 | 
						|
  if (N->isSubRegion()) {
 | 
						|
    // Test for exit as back edge
 | 
						|
    BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
 | 
						|
    if (Visited.count(Exit))
 | 
						|
      Loops[Exit] = N->getEntry();
 | 
						|
 | 
						|
  } else {
 | 
						|
    // Test for successors as back edge
 | 
						|
    BasicBlock *BB = N->getNodeAs<BasicBlock>();
 | 
						|
    BranchInst *Term = cast<BranchInst>(BB->getTerminator());
 | 
						|
 | 
						|
    for (BasicBlock *Succ : Term->successors())
 | 
						|
      if (Visited.count(Succ))
 | 
						|
        Loops[Succ] = BB;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Build the condition for one edge
 | 
						|
Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
 | 
						|
                                      bool Invert) {
 | 
						|
  Value *Cond = Invert ? BoolFalse : BoolTrue;
 | 
						|
  if (Term->isConditional()) {
 | 
						|
    Cond = Term->getCondition();
 | 
						|
 | 
						|
    if (Idx != (unsigned)Invert)
 | 
						|
      Cond = invertCondition(Cond);
 | 
						|
  }
 | 
						|
  return Cond;
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze the predecessors of each block and build up predicates
 | 
						|
void StructurizeCFG::gatherPredicates(RegionNode *N) {
 | 
						|
  RegionInfo *RI = ParentRegion->getRegionInfo();
 | 
						|
  BasicBlock *BB = N->getEntry();
 | 
						|
  BBPredicates &Pred = Predicates[BB];
 | 
						|
  BBPredicates &LPred = LoopPreds[BB];
 | 
						|
 | 
						|
  for (BasicBlock *P : predecessors(BB)) {
 | 
						|
    // Ignore it if it's a branch from outside into our region entry
 | 
						|
    if (!ParentRegion->contains(P))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Region *R = RI->getRegionFor(P);
 | 
						|
    if (R == ParentRegion) {
 | 
						|
      // It's a top level block in our region
 | 
						|
      BranchInst *Term = cast<BranchInst>(P->getTerminator());
 | 
						|
      for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
 | 
						|
        BasicBlock *Succ = Term->getSuccessor(i);
 | 
						|
        if (Succ != BB)
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (Visited.count(P)) {
 | 
						|
          // Normal forward edge
 | 
						|
          if (Term->isConditional()) {
 | 
						|
            // Try to treat it like an ELSE block
 | 
						|
            BasicBlock *Other = Term->getSuccessor(!i);
 | 
						|
            if (Visited.count(Other) && !Loops.count(Other) &&
 | 
						|
                !Pred.count(Other) && !Pred.count(P)) {
 | 
						|
 | 
						|
              Pred[Other] = BoolFalse;
 | 
						|
              Pred[P] = BoolTrue;
 | 
						|
              continue;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          Pred[P] = buildCondition(Term, i, false);
 | 
						|
        } else {
 | 
						|
          // Back edge
 | 
						|
          LPred[P] = buildCondition(Term, i, true);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // It's an exit from a sub region
 | 
						|
      while (R->getParent() != ParentRegion)
 | 
						|
        R = R->getParent();
 | 
						|
 | 
						|
      // Edge from inside a subregion to its entry, ignore it
 | 
						|
      if (*R == *N)
 | 
						|
        continue;
 | 
						|
 | 
						|
      BasicBlock *Entry = R->getEntry();
 | 
						|
      if (Visited.count(Entry))
 | 
						|
        Pred[Entry] = BoolTrue;
 | 
						|
      else
 | 
						|
        LPred[Entry] = BoolFalse;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Collect various loop and predicate infos
 | 
						|
void StructurizeCFG::collectInfos() {
 | 
						|
  // Reset predicate
 | 
						|
  Predicates.clear();
 | 
						|
 | 
						|
  // and loop infos
 | 
						|
  Loops.clear();
 | 
						|
  LoopPreds.clear();
 | 
						|
 | 
						|
  // Reset the visited nodes
 | 
						|
  Visited.clear();
 | 
						|
 | 
						|
  for (RegionNode *RN : reverse(Order)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Visiting: "
 | 
						|
                      << (RN->isSubRegion() ? "SubRegion with entry: " : "")
 | 
						|
                      << RN->getEntry()->getName() << "\n");
 | 
						|
 | 
						|
    // Analyze all the conditions leading to a node
 | 
						|
    gatherPredicates(RN);
 | 
						|
 | 
						|
    // Remember that we've seen this node
 | 
						|
    Visited.insert(RN->getEntry());
 | 
						|
 | 
						|
    // Find the last back edges
 | 
						|
    analyzeLoops(RN);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Insert the missing branch conditions
 | 
						|
void StructurizeCFG::insertConditions(bool Loops) {
 | 
						|
  BranchVector &Conds = Loops ? LoopConds : Conditions;
 | 
						|
  Value *Default = Loops ? BoolTrue : BoolFalse;
 | 
						|
  SSAUpdater PhiInserter;
 | 
						|
 | 
						|
  for (BranchInst *Term : Conds) {
 | 
						|
    assert(Term->isConditional());
 | 
						|
 | 
						|
    BasicBlock *Parent = Term->getParent();
 | 
						|
    BasicBlock *SuccTrue = Term->getSuccessor(0);
 | 
						|
    BasicBlock *SuccFalse = Term->getSuccessor(1);
 | 
						|
 | 
						|
    PhiInserter.Initialize(Boolean, "");
 | 
						|
    PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
 | 
						|
    PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);
 | 
						|
 | 
						|
    BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];
 | 
						|
 | 
						|
    NearestCommonDominator Dominator(DT);
 | 
						|
    Dominator.addBlock(Parent);
 | 
						|
 | 
						|
    Value *ParentValue = nullptr;
 | 
						|
    for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
 | 
						|
      BasicBlock *BB = BBAndPred.first;
 | 
						|
      Value *Pred = BBAndPred.second;
 | 
						|
 | 
						|
      if (BB == Parent) {
 | 
						|
        ParentValue = Pred;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      PhiInserter.AddAvailableValue(BB, Pred);
 | 
						|
      Dominator.addAndRememberBlock(BB);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ParentValue) {
 | 
						|
      Term->setCondition(ParentValue);
 | 
						|
    } else {
 | 
						|
      if (!Dominator.resultIsRememberedBlock())
 | 
						|
        PhiInserter.AddAvailableValue(Dominator.result(), Default);
 | 
						|
 | 
						|
      Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Remove all PHI values coming from "From" into "To" and remember
 | 
						|
/// them in DeletedPhis
 | 
						|
void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
 | 
						|
  PhiMap &Map = DeletedPhis[To];
 | 
						|
  for (PHINode &Phi : To->phis()) {
 | 
						|
    bool Recorded = false;
 | 
						|
    while (Phi.getBasicBlockIndex(From) != -1) {
 | 
						|
      Value *Deleted = Phi.removeIncomingValue(From, false);
 | 
						|
      Map[&Phi].push_back(std::make_pair(From, Deleted));
 | 
						|
      if (!Recorded) {
 | 
						|
        AffectedPhis.push_back(&Phi);
 | 
						|
        Recorded = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Add a dummy PHI value as soon as we knew the new predecessor
 | 
						|
void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
 | 
						|
  for (PHINode &Phi : To->phis()) {
 | 
						|
    Value *Undef = UndefValue::get(Phi.getType());
 | 
						|
    Phi.addIncoming(Undef, From);
 | 
						|
  }
 | 
						|
  AddedPhis[To].push_back(From);
 | 
						|
}
 | 
						|
 | 
						|
/// Add the real PHI value as soon as everything is set up
 | 
						|
void StructurizeCFG::setPhiValues() {
 | 
						|
  SmallVector<PHINode *, 8> InsertedPhis;
 | 
						|
  SSAUpdater Updater(&InsertedPhis);
 | 
						|
  for (const auto &AddedPhi : AddedPhis) {
 | 
						|
    BasicBlock *To = AddedPhi.first;
 | 
						|
    const BBVector &From = AddedPhi.second;
 | 
						|
 | 
						|
    if (!DeletedPhis.count(To))
 | 
						|
      continue;
 | 
						|
 | 
						|
    PhiMap &Map = DeletedPhis[To];
 | 
						|
    for (const auto &PI : Map) {
 | 
						|
      PHINode *Phi = PI.first;
 | 
						|
      Value *Undef = UndefValue::get(Phi->getType());
 | 
						|
      Updater.Initialize(Phi->getType(), "");
 | 
						|
      Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
 | 
						|
      Updater.AddAvailableValue(To, Undef);
 | 
						|
 | 
						|
      NearestCommonDominator Dominator(DT);
 | 
						|
      Dominator.addBlock(To);
 | 
						|
      for (const auto &VI : PI.second) {
 | 
						|
        Updater.AddAvailableValue(VI.first, VI.second);
 | 
						|
        Dominator.addAndRememberBlock(VI.first);
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Dominator.resultIsRememberedBlock())
 | 
						|
        Updater.AddAvailableValue(Dominator.result(), Undef);
 | 
						|
 | 
						|
      for (BasicBlock *FI : From)
 | 
						|
        Phi->setIncomingValueForBlock(FI, Updater.GetValueAtEndOfBlock(FI));
 | 
						|
      AffectedPhis.push_back(Phi);
 | 
						|
    }
 | 
						|
 | 
						|
    DeletedPhis.erase(To);
 | 
						|
  }
 | 
						|
  assert(DeletedPhis.empty());
 | 
						|
 | 
						|
  AffectedPhis.append(InsertedPhis.begin(), InsertedPhis.end());
 | 
						|
}
 | 
						|
 | 
						|
void StructurizeCFG::simplifyAffectedPhis() {
 | 
						|
  bool Changed;
 | 
						|
  do {
 | 
						|
    Changed = false;
 | 
						|
    SimplifyQuery Q(Func->getParent()->getDataLayout());
 | 
						|
    Q.DT = DT;
 | 
						|
    for (WeakVH VH : AffectedPhis) {
 | 
						|
      if (auto Phi = dyn_cast_or_null<PHINode>(VH)) {
 | 
						|
        if (auto NewValue = SimplifyInstruction(Phi, Q)) {
 | 
						|
          Phi->replaceAllUsesWith(NewValue);
 | 
						|
          Phi->eraseFromParent();
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (Changed);
 | 
						|
}
 | 
						|
 | 
						|
/// Remove phi values from all successors and then remove the terminator.
 | 
						|
void StructurizeCFG::killTerminator(BasicBlock *BB) {
 | 
						|
  Instruction *Term = BB->getTerminator();
 | 
						|
  if (!Term)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
 | 
						|
       SI != SE; ++SI)
 | 
						|
    delPhiValues(BB, *SI);
 | 
						|
 | 
						|
  if (DA)
 | 
						|
    DA->removeValue(Term);
 | 
						|
  Term->eraseFromParent();
 | 
						|
}
 | 
						|
 | 
						|
/// Let node exit(s) point to NewExit
 | 
						|
void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
 | 
						|
                                bool IncludeDominator) {
 | 
						|
  if (Node->isSubRegion()) {
 | 
						|
    Region *SubRegion = Node->getNodeAs<Region>();
 | 
						|
    BasicBlock *OldExit = SubRegion->getExit();
 | 
						|
    BasicBlock *Dominator = nullptr;
 | 
						|
 | 
						|
    // Find all the edges from the sub region to the exit
 | 
						|
    for (auto BBI = pred_begin(OldExit), E = pred_end(OldExit); BBI != E;) {
 | 
						|
      // Incrememt BBI before mucking with BB's terminator.
 | 
						|
      BasicBlock *BB = *BBI++;
 | 
						|
 | 
						|
      if (!SubRegion->contains(BB))
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Modify the edges to point to the new exit
 | 
						|
      delPhiValues(BB, OldExit);
 | 
						|
      BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
 | 
						|
      addPhiValues(BB, NewExit);
 | 
						|
 | 
						|
      // Find the new dominator (if requested)
 | 
						|
      if (IncludeDominator) {
 | 
						|
        if (!Dominator)
 | 
						|
          Dominator = BB;
 | 
						|
        else
 | 
						|
          Dominator = DT->findNearestCommonDominator(Dominator, BB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Change the dominator (if requested)
 | 
						|
    if (Dominator)
 | 
						|
      DT->changeImmediateDominator(NewExit, Dominator);
 | 
						|
 | 
						|
    // Update the region info
 | 
						|
    SubRegion->replaceExit(NewExit);
 | 
						|
  } else {
 | 
						|
    BasicBlock *BB = Node->getNodeAs<BasicBlock>();
 | 
						|
    killTerminator(BB);
 | 
						|
    BranchInst::Create(NewExit, BB);
 | 
						|
    addPhiValues(BB, NewExit);
 | 
						|
    if (IncludeDominator)
 | 
						|
      DT->changeImmediateDominator(NewExit, BB);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Create a new flow node and update dominator tree and region info
 | 
						|
BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
 | 
						|
  LLVMContext &Context = Func->getContext();
 | 
						|
  BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
 | 
						|
                       Order.back()->getEntry();
 | 
						|
  BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
 | 
						|
                                        Func, Insert);
 | 
						|
  DT->addNewBlock(Flow, Dominator);
 | 
						|
  ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
 | 
						|
  return Flow;
 | 
						|
}
 | 
						|
 | 
						|
/// Create a new or reuse the previous node as flow node
 | 
						|
BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
 | 
						|
  BasicBlock *Entry = PrevNode->getEntry();
 | 
						|
 | 
						|
  if (!PrevNode->isSubRegion()) {
 | 
						|
    killTerminator(Entry);
 | 
						|
    if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
 | 
						|
      return Entry;
 | 
						|
  }
 | 
						|
 | 
						|
  // create a new flow node
 | 
						|
  BasicBlock *Flow = getNextFlow(Entry);
 | 
						|
 | 
						|
  // and wire it up
 | 
						|
  changeExit(PrevNode, Flow, true);
 | 
						|
  PrevNode = ParentRegion->getBBNode(Flow);
 | 
						|
  return Flow;
 | 
						|
}
 | 
						|
 | 
						|
/// Returns the region exit if possible, otherwise just a new flow node
 | 
						|
BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
 | 
						|
                                        bool ExitUseAllowed) {
 | 
						|
  if (!Order.empty() || !ExitUseAllowed)
 | 
						|
    return getNextFlow(Flow);
 | 
						|
 | 
						|
  BasicBlock *Exit = ParentRegion->getExit();
 | 
						|
  DT->changeImmediateDominator(Exit, Flow);
 | 
						|
  addPhiValues(Flow, Exit);
 | 
						|
  return Exit;
 | 
						|
}
 | 
						|
 | 
						|
/// Set the previous node
 | 
						|
void StructurizeCFG::setPrevNode(BasicBlock *BB) {
 | 
						|
  PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
 | 
						|
                                        : nullptr;
 | 
						|
}
 | 
						|
 | 
						|
/// Does BB dominate all the predicates of Node?
 | 
						|
bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
 | 
						|
  BBPredicates &Preds = Predicates[Node->getEntry()];
 | 
						|
  return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
 | 
						|
    return DT->dominates(BB, Pred.first);
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
/// Can we predict that this node will always be called?
 | 
						|
bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
 | 
						|
  BBPredicates &Preds = Predicates[Node->getEntry()];
 | 
						|
  bool Dominated = false;
 | 
						|
 | 
						|
  // Regionentry is always true
 | 
						|
  if (!PrevNode)
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (std::pair<BasicBlock*, Value*> Pred : Preds) {
 | 
						|
    BasicBlock *BB = Pred.first;
 | 
						|
    Value *V = Pred.second;
 | 
						|
 | 
						|
    if (V != BoolTrue)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
 | 
						|
      Dominated = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: The dominator check is too strict
 | 
						|
  return Dominated;
 | 
						|
}
 | 
						|
 | 
						|
/// Take one node from the order vector and wire it up
 | 
						|
void StructurizeCFG::wireFlow(bool ExitUseAllowed,
 | 
						|
                              BasicBlock *LoopEnd) {
 | 
						|
  RegionNode *Node = Order.pop_back_val();
 | 
						|
  Visited.insert(Node->getEntry());
 | 
						|
 | 
						|
  if (isPredictableTrue(Node)) {
 | 
						|
    // Just a linear flow
 | 
						|
    if (PrevNode) {
 | 
						|
      changeExit(PrevNode, Node->getEntry(), true);
 | 
						|
    }
 | 
						|
    PrevNode = Node;
 | 
						|
  } else {
 | 
						|
    // Insert extra prefix node (or reuse last one)
 | 
						|
    BasicBlock *Flow = needPrefix(false);
 | 
						|
 | 
						|
    // Insert extra postfix node (or use exit instead)
 | 
						|
    BasicBlock *Entry = Node->getEntry();
 | 
						|
    BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);
 | 
						|
 | 
						|
    // let it point to entry and next block
 | 
						|
    Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow));
 | 
						|
    addPhiValues(Flow, Entry);
 | 
						|
    DT->changeImmediateDominator(Entry, Flow);
 | 
						|
 | 
						|
    PrevNode = Node;
 | 
						|
    while (!Order.empty() && !Visited.count(LoopEnd) &&
 | 
						|
           dominatesPredicates(Entry, Order.back())) {
 | 
						|
      handleLoops(false, LoopEnd);
 | 
						|
    }
 | 
						|
 | 
						|
    changeExit(PrevNode, Next, false);
 | 
						|
    setPrevNode(Next);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void StructurizeCFG::handleLoops(bool ExitUseAllowed,
 | 
						|
                                 BasicBlock *LoopEnd) {
 | 
						|
  RegionNode *Node = Order.back();
 | 
						|
  BasicBlock *LoopStart = Node->getEntry();
 | 
						|
 | 
						|
  if (!Loops.count(LoopStart)) {
 | 
						|
    wireFlow(ExitUseAllowed, LoopEnd);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isPredictableTrue(Node))
 | 
						|
    LoopStart = needPrefix(true);
 | 
						|
 | 
						|
  LoopEnd = Loops[Node->getEntry()];
 | 
						|
  wireFlow(false, LoopEnd);
 | 
						|
  while (!Visited.count(LoopEnd)) {
 | 
						|
    handleLoops(false, LoopEnd);
 | 
						|
  }
 | 
						|
 | 
						|
  // If the start of the loop is the entry block, we can't branch to it so
 | 
						|
  // insert a new dummy entry block.
 | 
						|
  Function *LoopFunc = LoopStart->getParent();
 | 
						|
  if (LoopStart == &LoopFunc->getEntryBlock()) {
 | 
						|
    LoopStart->setName("entry.orig");
 | 
						|
 | 
						|
    BasicBlock *NewEntry =
 | 
						|
      BasicBlock::Create(LoopStart->getContext(),
 | 
						|
                         "entry",
 | 
						|
                         LoopFunc,
 | 
						|
                         LoopStart);
 | 
						|
    BranchInst::Create(LoopStart, NewEntry);
 | 
						|
    DT->setNewRoot(NewEntry);
 | 
						|
  }
 | 
						|
 | 
						|
  // Create an extra loop end node
 | 
						|
  LoopEnd = needPrefix(false);
 | 
						|
  BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
 | 
						|
  LoopConds.push_back(BranchInst::Create(Next, LoopStart,
 | 
						|
                                         BoolUndef, LoopEnd));
 | 
						|
  addPhiValues(LoopEnd, LoopStart);
 | 
						|
  setPrevNode(Next);
 | 
						|
}
 | 
						|
 | 
						|
/// After this function control flow looks like it should be, but
 | 
						|
/// branches and PHI nodes only have undefined conditions.
 | 
						|
void StructurizeCFG::createFlow() {
 | 
						|
  BasicBlock *Exit = ParentRegion->getExit();
 | 
						|
  bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
 | 
						|
 | 
						|
  AffectedPhis.clear();
 | 
						|
  DeletedPhis.clear();
 | 
						|
  AddedPhis.clear();
 | 
						|
  Conditions.clear();
 | 
						|
  LoopConds.clear();
 | 
						|
 | 
						|
  PrevNode = nullptr;
 | 
						|
  Visited.clear();
 | 
						|
 | 
						|
  while (!Order.empty()) {
 | 
						|
    handleLoops(EntryDominatesExit, nullptr);
 | 
						|
  }
 | 
						|
 | 
						|
  if (PrevNode)
 | 
						|
    changeExit(PrevNode, Exit, EntryDominatesExit);
 | 
						|
  else
 | 
						|
    assert(EntryDominatesExit);
 | 
						|
}
 | 
						|
 | 
						|
/// Handle a rare case where the disintegrated nodes instructions
 | 
						|
/// no longer dominate all their uses. Not sure if this is really necessary
 | 
						|
void StructurizeCFG::rebuildSSA() {
 | 
						|
  SSAUpdater Updater;
 | 
						|
  for (BasicBlock *BB : ParentRegion->blocks())
 | 
						|
    for (Instruction &I : *BB) {
 | 
						|
      bool Initialized = false;
 | 
						|
      // We may modify the use list as we iterate over it, so be careful to
 | 
						|
      // compute the next element in the use list at the top of the loop.
 | 
						|
      for (auto UI = I.use_begin(), E = I.use_end(); UI != E;) {
 | 
						|
        Use &U = *UI++;
 | 
						|
        Instruction *User = cast<Instruction>(U.getUser());
 | 
						|
        if (User->getParent() == BB) {
 | 
						|
          continue;
 | 
						|
        } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
 | 
						|
          if (UserPN->getIncomingBlock(U) == BB)
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (DT->dominates(&I, User))
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (!Initialized) {
 | 
						|
          Value *Undef = UndefValue::get(I.getType());
 | 
						|
          Updater.Initialize(I.getType(), "");
 | 
						|
          Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
 | 
						|
          Updater.AddAvailableValue(BB, &I);
 | 
						|
          Initialized = true;
 | 
						|
        }
 | 
						|
        Updater.RewriteUseAfterInsertions(U);
 | 
						|
      }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
 | 
						|
                                   const LegacyDivergenceAnalysis &DA) {
 | 
						|
  // Bool for if all sub-regions are uniform.
 | 
						|
  bool SubRegionsAreUniform = true;
 | 
						|
  // Count of how many direct children are conditional.
 | 
						|
  unsigned ConditionalDirectChildren = 0;
 | 
						|
 | 
						|
  for (auto E : R->elements()) {
 | 
						|
    if (!E->isSubRegion()) {
 | 
						|
      auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
 | 
						|
      if (!Br || !Br->isConditional())
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (!DA.isUniform(Br))
 | 
						|
        return false;
 | 
						|
 | 
						|
      // One of our direct children is conditional.
 | 
						|
      ConditionalDirectChildren++;
 | 
						|
 | 
						|
      LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
 | 
						|
                        << " has uniform terminator\n");
 | 
						|
    } else {
 | 
						|
      // Explicitly refuse to treat regions as uniform if they have non-uniform
 | 
						|
      // subregions. We cannot rely on DivergenceAnalysis for branches in
 | 
						|
      // subregions because those branches may have been removed and re-created,
 | 
						|
      // so we look for our metadata instead.
 | 
						|
      //
 | 
						|
      // Warning: It would be nice to treat regions as uniform based only on
 | 
						|
      // their direct child basic blocks' terminators, regardless of whether
 | 
						|
      // subregions are uniform or not. However, this requires a very careful
 | 
						|
      // look at SIAnnotateControlFlow to make sure nothing breaks there.
 | 
						|
      for (auto BB : E->getNodeAs<Region>()->blocks()) {
 | 
						|
        auto Br = dyn_cast<BranchInst>(BB->getTerminator());
 | 
						|
        if (!Br || !Br->isConditional())
 | 
						|
          continue;
 | 
						|
 | 
						|
        if (!Br->getMetadata(UniformMDKindID)) {
 | 
						|
          // Early exit if we cannot have relaxed uniform regions.
 | 
						|
          if (!RelaxedUniformRegions)
 | 
						|
            return false;
 | 
						|
 | 
						|
          SubRegionsAreUniform = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Our region is uniform if:
 | 
						|
  // 1. All conditional branches that are direct children are uniform (checked
 | 
						|
  // above).
 | 
						|
  // 2. And either:
 | 
						|
  //   a. All sub-regions are uniform.
 | 
						|
  //   b. There is one or less conditional branches among the direct children.
 | 
						|
  return SubRegionsAreUniform || (ConditionalDirectChildren <= 1);
 | 
						|
}
 | 
						|
 | 
						|
void StructurizeCFG::init(Region *R) {
 | 
						|
  LLVMContext &Context = R->getEntry()->getContext();
 | 
						|
 | 
						|
  Boolean = Type::getInt1Ty(Context);
 | 
						|
  BoolTrue = ConstantInt::getTrue(Context);
 | 
						|
  BoolFalse = ConstantInt::getFalse(Context);
 | 
						|
  BoolUndef = UndefValue::get(Boolean);
 | 
						|
 | 
						|
  this->DA = nullptr;
 | 
						|
}
 | 
						|
 | 
						|
bool StructurizeCFG::makeUniformRegion(Region *R,
 | 
						|
                                       LegacyDivergenceAnalysis *DA) {
 | 
						|
  if (R->isTopLevelRegion())
 | 
						|
    return false;
 | 
						|
 | 
						|
  this->DA = DA;
 | 
						|
  // TODO: We could probably be smarter here with how we handle sub-regions.
 | 
						|
  // We currently rely on the fact that metadata is set by earlier invocations
 | 
						|
  // of the pass on sub-regions, and that this metadata doesn't get lost --
 | 
						|
  // but we shouldn't rely on metadata for correctness!
 | 
						|
  unsigned UniformMDKindID =
 | 
						|
      R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
 | 
						|
 | 
						|
  if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
 | 
						|
                      << '\n');
 | 
						|
 | 
						|
    // Mark all direct child block terminators as having been treated as
 | 
						|
    // uniform. To account for a possible future in which non-uniform
 | 
						|
    // sub-regions are treated more cleverly, indirect children are not
 | 
						|
    // marked as uniform.
 | 
						|
    MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
 | 
						|
    for (RegionNode *E : R->elements()) {
 | 
						|
      if (E->isSubRegion())
 | 
						|
        continue;
 | 
						|
 | 
						|
      if (Instruction *Term = E->getEntry()->getTerminator())
 | 
						|
        Term->setMetadata(UniformMDKindID, MD);
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Run the transformation for each region found
 | 
						|
bool StructurizeCFG::run(Region *R, DominatorTree *DT) {
 | 
						|
  if (R->isTopLevelRegion())
 | 
						|
    return false;
 | 
						|
 | 
						|
  this->DT = DT;
 | 
						|
 | 
						|
  Func = R->getEntry()->getParent();
 | 
						|
  ParentRegion = R;
 | 
						|
 | 
						|
  orderNodes();
 | 
						|
  collectInfos();
 | 
						|
  createFlow();
 | 
						|
  insertConditions(false);
 | 
						|
  insertConditions(true);
 | 
						|
  setPhiValues();
 | 
						|
  simplifyAffectedPhis();
 | 
						|
  rebuildSSA();
 | 
						|
 | 
						|
  // Cleanup
 | 
						|
  Order.clear();
 | 
						|
  Visited.clear();
 | 
						|
  DeletedPhis.clear();
 | 
						|
  AddedPhis.clear();
 | 
						|
  Predicates.clear();
 | 
						|
  Conditions.clear();
 | 
						|
  Loops.clear();
 | 
						|
  LoopPreds.clear();
 | 
						|
  LoopConds.clear();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
 | 
						|
  return new StructurizeCFGLegacyPass(SkipUniformRegions);
 | 
						|
}
 | 
						|
 | 
						|
static void addRegionIntoQueue(Region &R, std::vector<Region *> &Regions) {
 | 
						|
  Regions.push_back(&R);
 | 
						|
  for (const auto &E : R)
 | 
						|
    addRegionIntoQueue(*E, Regions);
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses StructurizeCFGPass::run(Function &F,
 | 
						|
                                          FunctionAnalysisManager &AM) {
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto &RI = AM.getResult<RegionInfoAnalysis>(F);
 | 
						|
  std::vector<Region *> Regions;
 | 
						|
  addRegionIntoQueue(*RI.getTopLevelRegion(), Regions);
 | 
						|
  while (!Regions.empty()) {
 | 
						|
    Region *R = Regions.back();
 | 
						|
    StructurizeCFG SCFG;
 | 
						|
    SCFG.init(R);
 | 
						|
    Changed |= SCFG.run(R, DT);
 | 
						|
    Regions.pop_back();
 | 
						|
  }
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<DominatorTreeAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 |