3774 lines
		
	
	
		
			143 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			3774 lines
		
	
	
		
			143 KiB
		
	
	
	
		
			C++
		
	
	
	
//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This provides C++ code generation targeting the Itanium C++ ABI.  The class
 | 
						|
// in this file generates structures that follow the Itanium C++ ABI, which is
 | 
						|
// documented at:
 | 
						|
//  http://www.codesourcery.com/public/cxx-abi/abi.html
 | 
						|
//  http://www.codesourcery.com/public/cxx-abi/abi-eh.html
 | 
						|
//
 | 
						|
// It also supports the closely-related ARM ABI, documented at:
 | 
						|
// http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CGCXXABI.h"
 | 
						|
#include "CGCleanup.h"
 | 
						|
#include "CGRecordLayout.h"
 | 
						|
#include "CGVTables.h"
 | 
						|
#include "CodeGenFunction.h"
 | 
						|
#include "CodeGenModule.h"
 | 
						|
#include "TargetInfo.h"
 | 
						|
#include "clang/AST/Mangle.h"
 | 
						|
#include "clang/AST/Type.h"
 | 
						|
#include "clang/AST/StmtCXX.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Intrinsics.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
 | 
						|
using namespace clang;
 | 
						|
using namespace CodeGen;
 | 
						|
 | 
						|
namespace {
 | 
						|
class ItaniumCXXABI : public CodeGen::CGCXXABI {
 | 
						|
  /// VTables - All the vtables which have been defined.
 | 
						|
  llvm::DenseMap<const CXXRecordDecl *, llvm::GlobalVariable *> VTables;
 | 
						|
 | 
						|
protected:
 | 
						|
  bool UseARMMethodPtrABI;
 | 
						|
  bool UseARMGuardVarABI;
 | 
						|
 | 
						|
  ItaniumMangleContext &getMangleContext() {
 | 
						|
    return cast<ItaniumMangleContext>(CodeGen::CGCXXABI::getMangleContext());
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  ItaniumCXXABI(CodeGen::CodeGenModule &CGM,
 | 
						|
                bool UseARMMethodPtrABI = false,
 | 
						|
                bool UseARMGuardVarABI = false) :
 | 
						|
    CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI),
 | 
						|
    UseARMGuardVarABI(UseARMGuardVarABI) { }
 | 
						|
 | 
						|
  bool classifyReturnType(CGFunctionInfo &FI) const override;
 | 
						|
 | 
						|
  RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override {
 | 
						|
    // Structures with either a non-trivial destructor or a non-trivial
 | 
						|
    // copy constructor are always indirect.
 | 
						|
    // FIXME: Use canCopyArgument() when it is fixed to handle lazily declared
 | 
						|
    // special members.
 | 
						|
    if (RD->hasNonTrivialDestructor() || RD->hasNonTrivialCopyConstructor())
 | 
						|
      return RAA_Indirect;
 | 
						|
    return RAA_Default;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isThisCompleteObject(GlobalDecl GD) const override {
 | 
						|
    // The Itanium ABI has separate complete-object vs.  base-object
 | 
						|
    // variants of both constructors and destructors.
 | 
						|
    if (isa<CXXDestructorDecl>(GD.getDecl())) {
 | 
						|
      switch (GD.getDtorType()) {
 | 
						|
      case Dtor_Complete:
 | 
						|
      case Dtor_Deleting:
 | 
						|
        return true;
 | 
						|
 | 
						|
      case Dtor_Base:
 | 
						|
        return false;
 | 
						|
 | 
						|
      case Dtor_Comdat:
 | 
						|
        llvm_unreachable("emitting dtor comdat as function?");
 | 
						|
      }
 | 
						|
      llvm_unreachable("bad dtor kind");
 | 
						|
    }
 | 
						|
    if (isa<CXXConstructorDecl>(GD.getDecl())) {
 | 
						|
      switch (GD.getCtorType()) {
 | 
						|
      case Ctor_Complete:
 | 
						|
        return true;
 | 
						|
 | 
						|
      case Ctor_Base:
 | 
						|
        return false;
 | 
						|
 | 
						|
      case Ctor_CopyingClosure:
 | 
						|
      case Ctor_DefaultClosure:
 | 
						|
        llvm_unreachable("closure ctors in Itanium ABI?");
 | 
						|
 | 
						|
      case Ctor_Comdat:
 | 
						|
        llvm_unreachable("emitting ctor comdat as function?");
 | 
						|
      }
 | 
						|
      llvm_unreachable("bad dtor kind");
 | 
						|
    }
 | 
						|
 | 
						|
    // No other kinds.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool isZeroInitializable(const MemberPointerType *MPT) override;
 | 
						|
 | 
						|
  llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
 | 
						|
 | 
						|
  llvm::Value *
 | 
						|
    EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF,
 | 
						|
                                    const Expr *E,
 | 
						|
                                    Address This,
 | 
						|
                                    llvm::Value *&ThisPtrForCall,
 | 
						|
                                    llvm::Value *MemFnPtr,
 | 
						|
                                    const MemberPointerType *MPT) override;
 | 
						|
 | 
						|
  llvm::Value *
 | 
						|
    EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
 | 
						|
                                 Address Base,
 | 
						|
                                 llvm::Value *MemPtr,
 | 
						|
                                 const MemberPointerType *MPT) override;
 | 
						|
 | 
						|
  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
 | 
						|
                                           const CastExpr *E,
 | 
						|
                                           llvm::Value *Src) override;
 | 
						|
  llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
 | 
						|
                                              llvm::Constant *Src) override;
 | 
						|
 | 
						|
  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
 | 
						|
 | 
						|
  llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
 | 
						|
  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
 | 
						|
                                        CharUnits offset) override;
 | 
						|
  llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
 | 
						|
  llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD,
 | 
						|
                                     CharUnits ThisAdjustment);
 | 
						|
 | 
						|
  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
 | 
						|
                                           llvm::Value *L, llvm::Value *R,
 | 
						|
                                           const MemberPointerType *MPT,
 | 
						|
                                           bool Inequality) override;
 | 
						|
 | 
						|
  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
 | 
						|
                                         llvm::Value *Addr,
 | 
						|
                                         const MemberPointerType *MPT) override;
 | 
						|
 | 
						|
  void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
 | 
						|
                               Address Ptr, QualType ElementType,
 | 
						|
                               const CXXDestructorDecl *Dtor) override;
 | 
						|
 | 
						|
  /// Itanium says that an _Unwind_Exception has to be "double-word"
 | 
						|
  /// aligned (and thus the end of it is also so-aligned), meaning 16
 | 
						|
  /// bytes.  Of course, that was written for the actual Itanium,
 | 
						|
  /// which is a 64-bit platform.  Classically, the ABI doesn't really
 | 
						|
  /// specify the alignment on other platforms, but in practice
 | 
						|
  /// libUnwind declares the struct with __attribute__((aligned)), so
 | 
						|
  /// we assume that alignment here.  (It's generally 16 bytes, but
 | 
						|
  /// some targets overwrite it.)
 | 
						|
  CharUnits getAlignmentOfExnObject() {
 | 
						|
    auto align = CGM.getContext().getTargetDefaultAlignForAttributeAligned();
 | 
						|
    return CGM.getContext().toCharUnitsFromBits(align);
 | 
						|
  }
 | 
						|
 | 
						|
  void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
 | 
						|
  void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
 | 
						|
 | 
						|
  void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
 | 
						|
 | 
						|
  llvm::CallInst *
 | 
						|
  emitTerminateForUnexpectedException(CodeGenFunction &CGF,
 | 
						|
                                      llvm::Value *Exn) override;
 | 
						|
 | 
						|
  void EmitFundamentalRTTIDescriptor(QualType Type);
 | 
						|
  void EmitFundamentalRTTIDescriptors();
 | 
						|
  llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
 | 
						|
  llvm::Constant *
 | 
						|
  getAddrOfCXXCatchHandlerType(QualType Ty,
 | 
						|
                               QualType CatchHandlerType) override {
 | 
						|
    return getAddrOfRTTIDescriptor(Ty);
 | 
						|
  }
 | 
						|
 | 
						|
  bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
 | 
						|
  void EmitBadTypeidCall(CodeGenFunction &CGF) override;
 | 
						|
  llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
 | 
						|
                          Address ThisPtr,
 | 
						|
                          llvm::Type *StdTypeInfoPtrTy) override;
 | 
						|
 | 
						|
  bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
 | 
						|
                                          QualType SrcRecordTy) override;
 | 
						|
 | 
						|
  llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value,
 | 
						|
                                   QualType SrcRecordTy, QualType DestTy,
 | 
						|
                                   QualType DestRecordTy,
 | 
						|
                                   llvm::BasicBlock *CastEnd) override;
 | 
						|
 | 
						|
  llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
 | 
						|
                                     QualType SrcRecordTy,
 | 
						|
                                     QualType DestTy) override;
 | 
						|
 | 
						|
  bool EmitBadCastCall(CodeGenFunction &CGF) override;
 | 
						|
 | 
						|
  llvm::Value *
 | 
						|
    GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
 | 
						|
                              const CXXRecordDecl *ClassDecl,
 | 
						|
                              const CXXRecordDecl *BaseClassDecl) override;
 | 
						|
 | 
						|
  void EmitCXXConstructors(const CXXConstructorDecl *D) override;
 | 
						|
 | 
						|
  void buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
 | 
						|
                              SmallVectorImpl<CanQualType> &ArgTys) override;
 | 
						|
 | 
						|
  bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
 | 
						|
                              CXXDtorType DT) const override {
 | 
						|
    // Itanium does not emit any destructor variant as an inline thunk.
 | 
						|
    // Delegating may occur as an optimization, but all variants are either
 | 
						|
    // emitted with external linkage or as linkonce if they are inline and used.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  void EmitCXXDestructors(const CXXDestructorDecl *D) override;
 | 
						|
 | 
						|
  void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
 | 
						|
                                 FunctionArgList &Params) override;
 | 
						|
 | 
						|
  void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
 | 
						|
 | 
						|
  unsigned addImplicitConstructorArgs(CodeGenFunction &CGF,
 | 
						|
                                      const CXXConstructorDecl *D,
 | 
						|
                                      CXXCtorType Type, bool ForVirtualBase,
 | 
						|
                                      bool Delegating,
 | 
						|
                                      CallArgList &Args) override;
 | 
						|
 | 
						|
  void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
 | 
						|
                          CXXDtorType Type, bool ForVirtualBase,
 | 
						|
                          bool Delegating, Address This) override;
 | 
						|
 | 
						|
  void emitVTableDefinitions(CodeGenVTables &CGVT,
 | 
						|
                             const CXXRecordDecl *RD) override;
 | 
						|
 | 
						|
  llvm::Value *getVTableAddressPointInStructor(
 | 
						|
      CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
 | 
						|
      BaseSubobject Base, const CXXRecordDecl *NearestVBase,
 | 
						|
      bool &NeedsVirtualOffset) override;
 | 
						|
 | 
						|
  llvm::Constant *
 | 
						|
  getVTableAddressPointForConstExpr(BaseSubobject Base,
 | 
						|
                                    const CXXRecordDecl *VTableClass) override;
 | 
						|
 | 
						|
  llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
 | 
						|
                                        CharUnits VPtrOffset) override;
 | 
						|
 | 
						|
  llvm::Value *getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
 | 
						|
                                         Address This, llvm::Type *Ty,
 | 
						|
                                         SourceLocation Loc) override;
 | 
						|
 | 
						|
  llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
 | 
						|
                                         const CXXDestructorDecl *Dtor,
 | 
						|
                                         CXXDtorType DtorType,
 | 
						|
                                         Address This,
 | 
						|
                                         const CXXMemberCallExpr *CE) override;
 | 
						|
 | 
						|
  void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
 | 
						|
 | 
						|
  bool canEmitAvailableExternallyVTable(const CXXRecordDecl *RD) const override;
 | 
						|
 | 
						|
  void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD,
 | 
						|
                       bool ReturnAdjustment) override {
 | 
						|
    // Allow inlining of thunks by emitting them with available_externally
 | 
						|
    // linkage together with vtables when needed.
 | 
						|
    if (ForVTable && !Thunk->hasLocalLinkage())
 | 
						|
      Thunk->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
 | 
						|
                                     const ThisAdjustment &TA) override;
 | 
						|
 | 
						|
  llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
 | 
						|
                                       const ReturnAdjustment &RA) override;
 | 
						|
 | 
						|
  size_t getSrcArgforCopyCtor(const CXXConstructorDecl *,
 | 
						|
                              FunctionArgList &Args) const override {
 | 
						|
    assert(!Args.empty() && "expected the arglist to not be empty!");
 | 
						|
    return Args.size() - 1;
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef GetPureVirtualCallName() override { return "__cxa_pure_virtual"; }
 | 
						|
  StringRef GetDeletedVirtualCallName() override
 | 
						|
    { return "__cxa_deleted_virtual"; }
 | 
						|
 | 
						|
  CharUnits getArrayCookieSizeImpl(QualType elementType) override;
 | 
						|
  Address InitializeArrayCookie(CodeGenFunction &CGF,
 | 
						|
                                Address NewPtr,
 | 
						|
                                llvm::Value *NumElements,
 | 
						|
                                const CXXNewExpr *expr,
 | 
						|
                                QualType ElementType) override;
 | 
						|
  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
 | 
						|
                                   Address allocPtr,
 | 
						|
                                   CharUnits cookieSize) override;
 | 
						|
 | 
						|
  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
 | 
						|
                       llvm::GlobalVariable *DeclPtr,
 | 
						|
                       bool PerformInit) override;
 | 
						|
  void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
 | 
						|
                          llvm::Constant *dtor, llvm::Constant *addr) override;
 | 
						|
 | 
						|
  llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD,
 | 
						|
                                                llvm::Value *Val);
 | 
						|
  void EmitThreadLocalInitFuncs(
 | 
						|
      CodeGenModule &CGM,
 | 
						|
      ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
 | 
						|
          CXXThreadLocals,
 | 
						|
      ArrayRef<llvm::Function *> CXXThreadLocalInits,
 | 
						|
      ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) override;
 | 
						|
 | 
						|
  bool usesThreadWrapperFunction() const override { return true; }
 | 
						|
  LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
 | 
						|
                                      QualType LValType) override;
 | 
						|
 | 
						|
  bool NeedsVTTParameter(GlobalDecl GD) override;
 | 
						|
 | 
						|
  /**************************** RTTI Uniqueness ******************************/
 | 
						|
 | 
						|
protected:
 | 
						|
  /// Returns true if the ABI requires RTTI type_info objects to be unique
 | 
						|
  /// across a program.
 | 
						|
  virtual bool shouldRTTIBeUnique() const { return true; }
 | 
						|
 | 
						|
public:
 | 
						|
  /// What sort of unique-RTTI behavior should we use?
 | 
						|
  enum RTTIUniquenessKind {
 | 
						|
    /// We are guaranteeing, or need to guarantee, that the RTTI string
 | 
						|
    /// is unique.
 | 
						|
    RUK_Unique,
 | 
						|
 | 
						|
    /// We are not guaranteeing uniqueness for the RTTI string, so we
 | 
						|
    /// can demote to hidden visibility but must use string comparisons.
 | 
						|
    RUK_NonUniqueHidden,
 | 
						|
 | 
						|
    /// We are not guaranteeing uniqueness for the RTTI string, so we
 | 
						|
    /// have to use string comparisons, but we also have to emit it with
 | 
						|
    /// non-hidden visibility.
 | 
						|
    RUK_NonUniqueVisible
 | 
						|
  };
 | 
						|
 | 
						|
  /// Return the required visibility status for the given type and linkage in
 | 
						|
  /// the current ABI.
 | 
						|
  RTTIUniquenessKind
 | 
						|
  classifyRTTIUniqueness(QualType CanTy,
 | 
						|
                         llvm::GlobalValue::LinkageTypes Linkage) const;
 | 
						|
  friend class ItaniumRTTIBuilder;
 | 
						|
 | 
						|
  void emitCXXStructor(const CXXMethodDecl *MD, StructorType Type) override;
 | 
						|
 | 
						|
 private:
 | 
						|
   bool hasAnyUsedVirtualInlineFunction(const CXXRecordDecl *RD) const {
 | 
						|
    const auto &VtableLayout =
 | 
						|
        CGM.getItaniumVTableContext().getVTableLayout(RD);
 | 
						|
 | 
						|
    for (const auto &VtableComponent : VtableLayout.vtable_components()) {
 | 
						|
      if (!VtableComponent.isUsedFunctionPointerKind())
 | 
						|
        continue;
 | 
						|
 | 
						|
      const CXXMethodDecl *Method = VtableComponent.getFunctionDecl();
 | 
						|
      if (Method->getCanonicalDecl()->isInlined())
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
class ARMCXXABI : public ItaniumCXXABI {
 | 
						|
public:
 | 
						|
  ARMCXXABI(CodeGen::CodeGenModule &CGM) :
 | 
						|
    ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
 | 
						|
                  /* UseARMGuardVarABI = */ true) {}
 | 
						|
 | 
						|
  bool HasThisReturn(GlobalDecl GD) const override {
 | 
						|
    return (isa<CXXConstructorDecl>(GD.getDecl()) || (
 | 
						|
              isa<CXXDestructorDecl>(GD.getDecl()) &&
 | 
						|
              GD.getDtorType() != Dtor_Deleting));
 | 
						|
  }
 | 
						|
 | 
						|
  void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV,
 | 
						|
                           QualType ResTy) override;
 | 
						|
 | 
						|
  CharUnits getArrayCookieSizeImpl(QualType elementType) override;
 | 
						|
  Address InitializeArrayCookie(CodeGenFunction &CGF,
 | 
						|
                                Address NewPtr,
 | 
						|
                                llvm::Value *NumElements,
 | 
						|
                                const CXXNewExpr *expr,
 | 
						|
                                QualType ElementType) override;
 | 
						|
  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr,
 | 
						|
                                   CharUnits cookieSize) override;
 | 
						|
};
 | 
						|
 | 
						|
class iOS64CXXABI : public ARMCXXABI {
 | 
						|
public:
 | 
						|
  iOS64CXXABI(CodeGen::CodeGenModule &CGM) : ARMCXXABI(CGM) {}
 | 
						|
 | 
						|
  // ARM64 libraries are prepared for non-unique RTTI.
 | 
						|
  bool shouldRTTIBeUnique() const override { return false; }
 | 
						|
};
 | 
						|
 | 
						|
class WebAssemblyCXXABI final : public ItaniumCXXABI {
 | 
						|
public:
 | 
						|
  explicit WebAssemblyCXXABI(CodeGen::CodeGenModule &CGM)
 | 
						|
      : ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true,
 | 
						|
                      /*UseARMGuardVarABI=*/true) {}
 | 
						|
 | 
						|
private:
 | 
						|
  bool HasThisReturn(GlobalDecl GD) const override {
 | 
						|
    return isa<CXXConstructorDecl>(GD.getDecl()) ||
 | 
						|
           (isa<CXXDestructorDecl>(GD.getDecl()) &&
 | 
						|
            GD.getDtorType() != Dtor_Deleting);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) {
 | 
						|
  switch (CGM.getTarget().getCXXABI().getKind()) {
 | 
						|
  // For IR-generation purposes, there's no significant difference
 | 
						|
  // between the ARM and iOS ABIs.
 | 
						|
  case TargetCXXABI::GenericARM:
 | 
						|
  case TargetCXXABI::iOS:
 | 
						|
    return new ARMCXXABI(CGM);
 | 
						|
 | 
						|
  case TargetCXXABI::iOS64:
 | 
						|
    return new iOS64CXXABI(CGM);
 | 
						|
 | 
						|
  // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't
 | 
						|
  // include the other 32-bit ARM oddities: constructor/destructor return values
 | 
						|
  // and array cookies.
 | 
						|
  case TargetCXXABI::GenericAArch64:
 | 
						|
    return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
 | 
						|
                             /* UseARMGuardVarABI = */ true);
 | 
						|
 | 
						|
  case TargetCXXABI::GenericMIPS:
 | 
						|
    return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true);
 | 
						|
 | 
						|
  case TargetCXXABI::WebAssembly:
 | 
						|
    return new WebAssemblyCXXABI(CGM);
 | 
						|
 | 
						|
  case TargetCXXABI::GenericItanium:
 | 
						|
    if (CGM.getContext().getTargetInfo().getTriple().getArch()
 | 
						|
        == llvm::Triple::le32) {
 | 
						|
      // For PNaCl, use ARM-style method pointers so that PNaCl code
 | 
						|
      // does not assume anything about the alignment of function
 | 
						|
      // pointers.
 | 
						|
      return new ItaniumCXXABI(CGM, /* UseARMMethodPtrABI = */ true,
 | 
						|
                               /* UseARMGuardVarABI = */ false);
 | 
						|
    }
 | 
						|
    return new ItaniumCXXABI(CGM);
 | 
						|
 | 
						|
  case TargetCXXABI::Microsoft:
 | 
						|
    llvm_unreachable("Microsoft ABI is not Itanium-based");
 | 
						|
  }
 | 
						|
  llvm_unreachable("bad ABI kind");
 | 
						|
}
 | 
						|
 | 
						|
llvm::Type *
 | 
						|
ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
 | 
						|
  if (MPT->isMemberDataPointer())
 | 
						|
    return CGM.PtrDiffTy;
 | 
						|
  return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
/// In the Itanium and ARM ABIs, method pointers have the form:
 | 
						|
///   struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr;
 | 
						|
///
 | 
						|
/// In the Itanium ABI:
 | 
						|
///  - method pointers are virtual if (memptr.ptr & 1) is nonzero
 | 
						|
///  - the this-adjustment is (memptr.adj)
 | 
						|
///  - the virtual offset is (memptr.ptr - 1)
 | 
						|
///
 | 
						|
/// In the ARM ABI:
 | 
						|
///  - method pointers are virtual if (memptr.adj & 1) is nonzero
 | 
						|
///  - the this-adjustment is (memptr.adj >> 1)
 | 
						|
///  - the virtual offset is (memptr.ptr)
 | 
						|
/// ARM uses 'adj' for the virtual flag because Thumb functions
 | 
						|
/// may be only single-byte aligned.
 | 
						|
///
 | 
						|
/// If the member is virtual, the adjusted 'this' pointer points
 | 
						|
/// to a vtable pointer from which the virtual offset is applied.
 | 
						|
///
 | 
						|
/// If the member is non-virtual, memptr.ptr is the address of
 | 
						|
/// the function to call.
 | 
						|
llvm::Value *ItaniumCXXABI::EmitLoadOfMemberFunctionPointer(
 | 
						|
    CodeGenFunction &CGF, const Expr *E, Address ThisAddr,
 | 
						|
    llvm::Value *&ThisPtrForCall,
 | 
						|
    llvm::Value *MemFnPtr, const MemberPointerType *MPT) {
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
 | 
						|
  const FunctionProtoType *FPT = 
 | 
						|
    MPT->getPointeeType()->getAs<FunctionProtoType>();
 | 
						|
  const CXXRecordDecl *RD = 
 | 
						|
    cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
 | 
						|
 | 
						|
  llvm::FunctionType *FTy = 
 | 
						|
    CGM.getTypes().GetFunctionType(
 | 
						|
      CGM.getTypes().arrangeCXXMethodType(RD, FPT));
 | 
						|
 | 
						|
  llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1);
 | 
						|
 | 
						|
  llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual");
 | 
						|
  llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual");
 | 
						|
  llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end");
 | 
						|
 | 
						|
  // Extract memptr.adj, which is in the second field.
 | 
						|
  llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj");
 | 
						|
 | 
						|
  // Compute the true adjustment.
 | 
						|
  llvm::Value *Adj = RawAdj;
 | 
						|
  if (UseARMMethodPtrABI)
 | 
						|
    Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted");
 | 
						|
 | 
						|
  // Apply the adjustment and cast back to the original struct type
 | 
						|
  // for consistency.
 | 
						|
  llvm::Value *This = ThisAddr.getPointer();
 | 
						|
  llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy());
 | 
						|
  Ptr = Builder.CreateInBoundsGEP(Ptr, Adj);
 | 
						|
  This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted");
 | 
						|
  ThisPtrForCall = This;
 | 
						|
  
 | 
						|
  // Load the function pointer.
 | 
						|
  llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr");
 | 
						|
  
 | 
						|
  // If the LSB in the function pointer is 1, the function pointer points to
 | 
						|
  // a virtual function.
 | 
						|
  llvm::Value *IsVirtual;
 | 
						|
  if (UseARMMethodPtrABI)
 | 
						|
    IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1);
 | 
						|
  else
 | 
						|
    IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1);
 | 
						|
  IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual");
 | 
						|
  Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual);
 | 
						|
 | 
						|
  // In the virtual path, the adjustment left 'This' pointing to the
 | 
						|
  // vtable of the correct base subobject.  The "function pointer" is an
 | 
						|
  // offset within the vtable (+1 for the virtual flag on non-ARM).
 | 
						|
  CGF.EmitBlock(FnVirtual);
 | 
						|
 | 
						|
  // Cast the adjusted this to a pointer to vtable pointer and load.
 | 
						|
  llvm::Type *VTableTy = Builder.getInt8PtrTy();
 | 
						|
  CharUnits VTablePtrAlign =
 | 
						|
    CGF.CGM.getDynamicOffsetAlignment(ThisAddr.getAlignment(), RD,
 | 
						|
                                      CGF.getPointerAlign());
 | 
						|
  llvm::Value *VTable =
 | 
						|
    CGF.GetVTablePtr(Address(This, VTablePtrAlign), VTableTy);
 | 
						|
 | 
						|
  // Apply the offset.
 | 
						|
  llvm::Value *VTableOffset = FnAsInt;
 | 
						|
  if (!UseARMMethodPtrABI)
 | 
						|
    VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1);
 | 
						|
  VTable = Builder.CreateGEP(VTable, VTableOffset);
 | 
						|
 | 
						|
  // Load the virtual function to call.
 | 
						|
  VTable = Builder.CreateBitCast(VTable, FTy->getPointerTo()->getPointerTo());
 | 
						|
  llvm::Value *VirtualFn =
 | 
						|
    Builder.CreateAlignedLoad(VTable, CGF.getPointerAlign(),
 | 
						|
                              "memptr.virtualfn");
 | 
						|
  CGF.EmitBranch(FnEnd);
 | 
						|
 | 
						|
  // In the non-virtual path, the function pointer is actually a
 | 
						|
  // function pointer.
 | 
						|
  CGF.EmitBlock(FnNonVirtual);
 | 
						|
  llvm::Value *NonVirtualFn =
 | 
						|
    Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn");
 | 
						|
  
 | 
						|
  // We're done.
 | 
						|
  CGF.EmitBlock(FnEnd);
 | 
						|
  llvm::PHINode *Callee = Builder.CreatePHI(FTy->getPointerTo(), 2);
 | 
						|
  Callee->addIncoming(VirtualFn, FnVirtual);
 | 
						|
  Callee->addIncoming(NonVirtualFn, FnNonVirtual);
 | 
						|
  return Callee;
 | 
						|
}
 | 
						|
 | 
						|
/// Compute an l-value by applying the given pointer-to-member to a
 | 
						|
/// base object.
 | 
						|
llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress(
 | 
						|
    CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
 | 
						|
    const MemberPointerType *MPT) {
 | 
						|
  assert(MemPtr->getType() == CGM.PtrDiffTy);
 | 
						|
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
 | 
						|
  // Cast to char*.
 | 
						|
  Base = Builder.CreateElementBitCast(Base, CGF.Int8Ty);
 | 
						|
 | 
						|
  // Apply the offset, which we assume is non-null.
 | 
						|
  llvm::Value *Addr =
 | 
						|
    Builder.CreateInBoundsGEP(Base.getPointer(), MemPtr, "memptr.offset");
 | 
						|
 | 
						|
  // Cast the address to the appropriate pointer type, adopting the
 | 
						|
  // address space of the base pointer.
 | 
						|
  llvm::Type *PType = CGF.ConvertTypeForMem(MPT->getPointeeType())
 | 
						|
                            ->getPointerTo(Base.getAddressSpace());
 | 
						|
  return Builder.CreateBitCast(Addr, PType);
 | 
						|
}
 | 
						|
 | 
						|
/// Perform a bitcast, derived-to-base, or base-to-derived member pointer
 | 
						|
/// conversion.
 | 
						|
///
 | 
						|
/// Bitcast conversions are always a no-op under Itanium.
 | 
						|
///
 | 
						|
/// Obligatory offset/adjustment diagram:
 | 
						|
///         <-- offset -->          <-- adjustment -->
 | 
						|
///   |--------------------------|----------------------|--------------------|
 | 
						|
///   ^Derived address point     ^Base address point    ^Member address point
 | 
						|
///
 | 
						|
/// So when converting a base member pointer to a derived member pointer,
 | 
						|
/// we add the offset to the adjustment because the address point has
 | 
						|
/// decreased;  and conversely, when converting a derived MP to a base MP
 | 
						|
/// we subtract the offset from the adjustment because the address point
 | 
						|
/// has increased.
 | 
						|
///
 | 
						|
/// The standard forbids (at compile time) conversion to and from
 | 
						|
/// virtual bases, which is why we don't have to consider them here.
 | 
						|
///
 | 
						|
/// The standard forbids (at run time) casting a derived MP to a base
 | 
						|
/// MP when the derived MP does not point to a member of the base.
 | 
						|
/// This is why -1 is a reasonable choice for null data member
 | 
						|
/// pointers.
 | 
						|
llvm::Value *
 | 
						|
ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
 | 
						|
                                           const CastExpr *E,
 | 
						|
                                           llvm::Value *src) {
 | 
						|
  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
 | 
						|
         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
 | 
						|
         E->getCastKind() == CK_ReinterpretMemberPointer);
 | 
						|
 | 
						|
  // Under Itanium, reinterprets don't require any additional processing.
 | 
						|
  if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
 | 
						|
 | 
						|
  // Use constant emission if we can.
 | 
						|
  if (isa<llvm::Constant>(src))
 | 
						|
    return EmitMemberPointerConversion(E, cast<llvm::Constant>(src));
 | 
						|
 | 
						|
  llvm::Constant *adj = getMemberPointerAdjustment(E);
 | 
						|
  if (!adj) return src;
 | 
						|
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
  bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
 | 
						|
 | 
						|
  const MemberPointerType *destTy =
 | 
						|
    E->getType()->castAs<MemberPointerType>();
 | 
						|
 | 
						|
  // For member data pointers, this is just a matter of adding the
 | 
						|
  // offset if the source is non-null.
 | 
						|
  if (destTy->isMemberDataPointer()) {
 | 
						|
    llvm::Value *dst;
 | 
						|
    if (isDerivedToBase)
 | 
						|
      dst = Builder.CreateNSWSub(src, adj, "adj");
 | 
						|
    else
 | 
						|
      dst = Builder.CreateNSWAdd(src, adj, "adj");
 | 
						|
 | 
						|
    // Null check.
 | 
						|
    llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType());
 | 
						|
    llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull");
 | 
						|
    return Builder.CreateSelect(isNull, src, dst);
 | 
						|
  }
 | 
						|
 | 
						|
  // The this-adjustment is left-shifted by 1 on ARM.
 | 
						|
  if (UseARMMethodPtrABI) {
 | 
						|
    uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
 | 
						|
    offset <<= 1;
 | 
						|
    adj = llvm::ConstantInt::get(adj->getType(), offset);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj");
 | 
						|
  llvm::Value *dstAdj;
 | 
						|
  if (isDerivedToBase)
 | 
						|
    dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj");
 | 
						|
  else
 | 
						|
    dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj");
 | 
						|
 | 
						|
  return Builder.CreateInsertValue(src, dstAdj, 1);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E,
 | 
						|
                                           llvm::Constant *src) {
 | 
						|
  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
 | 
						|
         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
 | 
						|
         E->getCastKind() == CK_ReinterpretMemberPointer);
 | 
						|
 | 
						|
  // Under Itanium, reinterprets don't require any additional processing.
 | 
						|
  if (E->getCastKind() == CK_ReinterpretMemberPointer) return src;
 | 
						|
 | 
						|
  // If the adjustment is trivial, we don't need to do anything.
 | 
						|
  llvm::Constant *adj = getMemberPointerAdjustment(E);
 | 
						|
  if (!adj) return src;
 | 
						|
 | 
						|
  bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer);
 | 
						|
 | 
						|
  const MemberPointerType *destTy =
 | 
						|
    E->getType()->castAs<MemberPointerType>();
 | 
						|
 | 
						|
  // For member data pointers, this is just a matter of adding the
 | 
						|
  // offset if the source is non-null.
 | 
						|
  if (destTy->isMemberDataPointer()) {
 | 
						|
    // null maps to null.
 | 
						|
    if (src->isAllOnesValue()) return src;
 | 
						|
 | 
						|
    if (isDerivedToBase)
 | 
						|
      return llvm::ConstantExpr::getNSWSub(src, adj);
 | 
						|
    else
 | 
						|
      return llvm::ConstantExpr::getNSWAdd(src, adj);
 | 
						|
  }
 | 
						|
 | 
						|
  // The this-adjustment is left-shifted by 1 on ARM.
 | 
						|
  if (UseARMMethodPtrABI) {
 | 
						|
    uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue();
 | 
						|
    offset <<= 1;
 | 
						|
    adj = llvm::ConstantInt::get(adj->getType(), offset);
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1);
 | 
						|
  llvm::Constant *dstAdj;
 | 
						|
  if (isDerivedToBase)
 | 
						|
    dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj);
 | 
						|
  else
 | 
						|
    dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj);
 | 
						|
 | 
						|
  return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
 | 
						|
  // Itanium C++ ABI 2.3:
 | 
						|
  //   A NULL pointer is represented as -1.
 | 
						|
  if (MPT->isMemberDataPointer()) 
 | 
						|
    return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true);
 | 
						|
 | 
						|
  llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0);
 | 
						|
  llvm::Constant *Values[2] = { Zero, Zero };
 | 
						|
  return llvm::ConstantStruct::getAnon(Values);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
 | 
						|
                                     CharUnits offset) {
 | 
						|
  // Itanium C++ ABI 2.3:
 | 
						|
  //   A pointer to data member is an offset from the base address of
 | 
						|
  //   the class object containing it, represented as a ptrdiff_t
 | 
						|
  return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity());
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
ItaniumCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
 | 
						|
  return BuildMemberPointer(MD, CharUnits::Zero());
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD,
 | 
						|
                                                  CharUnits ThisAdjustment) {
 | 
						|
  assert(MD->isInstance() && "Member function must not be static!");
 | 
						|
  MD = MD->getCanonicalDecl();
 | 
						|
 | 
						|
  CodeGenTypes &Types = CGM.getTypes();
 | 
						|
 | 
						|
  // Get the function pointer (or index if this is a virtual function).
 | 
						|
  llvm::Constant *MemPtr[2];
 | 
						|
  if (MD->isVirtual()) {
 | 
						|
    uint64_t Index = CGM.getItaniumVTableContext().getMethodVTableIndex(MD);
 | 
						|
 | 
						|
    const ASTContext &Context = getContext();
 | 
						|
    CharUnits PointerWidth =
 | 
						|
      Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
 | 
						|
    uint64_t VTableOffset = (Index * PointerWidth.getQuantity());
 | 
						|
 | 
						|
    if (UseARMMethodPtrABI) {
 | 
						|
      // ARM C++ ABI 3.2.1:
 | 
						|
      //   This ABI specifies that adj contains twice the this
 | 
						|
      //   adjustment, plus 1 if the member function is virtual. The
 | 
						|
      //   least significant bit of adj then makes exactly the same
 | 
						|
      //   discrimination as the least significant bit of ptr does for
 | 
						|
      //   Itanium.
 | 
						|
      MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset);
 | 
						|
      MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
 | 
						|
                                         2 * ThisAdjustment.getQuantity() + 1);
 | 
						|
    } else {
 | 
						|
      // Itanium C++ ABI 2.3:
 | 
						|
      //   For a virtual function, [the pointer field] is 1 plus the
 | 
						|
      //   virtual table offset (in bytes) of the function,
 | 
						|
      //   represented as a ptrdiff_t.
 | 
						|
      MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1);
 | 
						|
      MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
 | 
						|
                                         ThisAdjustment.getQuantity());
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
 | 
						|
    llvm::Type *Ty;
 | 
						|
    // Check whether the function has a computable LLVM signature.
 | 
						|
    if (Types.isFuncTypeConvertible(FPT)) {
 | 
						|
      // The function has a computable LLVM signature; use the correct type.
 | 
						|
      Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
 | 
						|
    } else {
 | 
						|
      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
 | 
						|
      // function type is incomplete.
 | 
						|
      Ty = CGM.PtrDiffTy;
 | 
						|
    }
 | 
						|
    llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty);
 | 
						|
 | 
						|
    MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy);
 | 
						|
    MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy,
 | 
						|
                                       (UseARMMethodPtrABI ? 2 : 1) *
 | 
						|
                                       ThisAdjustment.getQuantity());
 | 
						|
  }
 | 
						|
  
 | 
						|
  return llvm::ConstantStruct::getAnon(MemPtr);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP,
 | 
						|
                                                 QualType MPType) {
 | 
						|
  const MemberPointerType *MPT = MPType->castAs<MemberPointerType>();
 | 
						|
  const ValueDecl *MPD = MP.getMemberPointerDecl();
 | 
						|
  if (!MPD)
 | 
						|
    return EmitNullMemberPointer(MPT);
 | 
						|
 | 
						|
  CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP);
 | 
						|
 | 
						|
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD))
 | 
						|
    return BuildMemberPointer(MD, ThisAdjustment);
 | 
						|
 | 
						|
  CharUnits FieldOffset =
 | 
						|
    getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD));
 | 
						|
  return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset);
 | 
						|
}
 | 
						|
 | 
						|
/// The comparison algorithm is pretty easy: the member pointers are
 | 
						|
/// the same if they're either bitwise identical *or* both null.
 | 
						|
///
 | 
						|
/// ARM is different here only because null-ness is more complicated.
 | 
						|
llvm::Value *
 | 
						|
ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
 | 
						|
                                           llvm::Value *L,
 | 
						|
                                           llvm::Value *R,
 | 
						|
                                           const MemberPointerType *MPT,
 | 
						|
                                           bool Inequality) {
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
 | 
						|
  llvm::ICmpInst::Predicate Eq;
 | 
						|
  llvm::Instruction::BinaryOps And, Or;
 | 
						|
  if (Inequality) {
 | 
						|
    Eq = llvm::ICmpInst::ICMP_NE;
 | 
						|
    And = llvm::Instruction::Or;
 | 
						|
    Or = llvm::Instruction::And;
 | 
						|
  } else {
 | 
						|
    Eq = llvm::ICmpInst::ICMP_EQ;
 | 
						|
    And = llvm::Instruction::And;
 | 
						|
    Or = llvm::Instruction::Or;
 | 
						|
  }
 | 
						|
 | 
						|
  // Member data pointers are easy because there's a unique null
 | 
						|
  // value, so it just comes down to bitwise equality.
 | 
						|
  if (MPT->isMemberDataPointer())
 | 
						|
    return Builder.CreateICmp(Eq, L, R);
 | 
						|
 | 
						|
  // For member function pointers, the tautologies are more complex.
 | 
						|
  // The Itanium tautology is:
 | 
						|
  //   (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj))
 | 
						|
  // The ARM tautology is:
 | 
						|
  //   (L == R) <==> (L.ptr == R.ptr &&
 | 
						|
  //                  (L.adj == R.adj ||
 | 
						|
  //                   (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0)))
 | 
						|
  // The inequality tautologies have exactly the same structure, except
 | 
						|
  // applying De Morgan's laws.
 | 
						|
  
 | 
						|
  llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr");
 | 
						|
  llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr");
 | 
						|
 | 
						|
  // This condition tests whether L.ptr == R.ptr.  This must always be
 | 
						|
  // true for equality to hold.
 | 
						|
  llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr");
 | 
						|
 | 
						|
  // This condition, together with the assumption that L.ptr == R.ptr,
 | 
						|
  // tests whether the pointers are both null.  ARM imposes an extra
 | 
						|
  // condition.
 | 
						|
  llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType());
 | 
						|
  llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null");
 | 
						|
 | 
						|
  // This condition tests whether L.adj == R.adj.  If this isn't
 | 
						|
  // true, the pointers are unequal unless they're both null.
 | 
						|
  llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj");
 | 
						|
  llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj");
 | 
						|
  llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj");
 | 
						|
 | 
						|
  // Null member function pointers on ARM clear the low bit of Adj,
 | 
						|
  // so the zero condition has to check that neither low bit is set.
 | 
						|
  if (UseARMMethodPtrABI) {
 | 
						|
    llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1);
 | 
						|
 | 
						|
    // Compute (l.adj | r.adj) & 1 and test it against zero.
 | 
						|
    llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj");
 | 
						|
    llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One);
 | 
						|
    llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero,
 | 
						|
                                                      "cmp.or.adj");
 | 
						|
    EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero);
 | 
						|
  }
 | 
						|
 | 
						|
  // Tie together all our conditions.
 | 
						|
  llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq);
 | 
						|
  Result = Builder.CreateBinOp(And, PtrEq, Result,
 | 
						|
                               Inequality ? "memptr.ne" : "memptr.eq");
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *
 | 
						|
ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
 | 
						|
                                          llvm::Value *MemPtr,
 | 
						|
                                          const MemberPointerType *MPT) {
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
 | 
						|
  /// For member data pointers, this is just a check against -1.
 | 
						|
  if (MPT->isMemberDataPointer()) {
 | 
						|
    assert(MemPtr->getType() == CGM.PtrDiffTy);
 | 
						|
    llvm::Value *NegativeOne =
 | 
						|
      llvm::Constant::getAllOnesValue(MemPtr->getType());
 | 
						|
    return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool");
 | 
						|
  }
 | 
						|
  
 | 
						|
  // In Itanium, a member function pointer is not null if 'ptr' is not null.
 | 
						|
  llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr");
 | 
						|
 | 
						|
  llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0);
 | 
						|
  llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool");
 | 
						|
 | 
						|
  // On ARM, a member function pointer is also non-null if the low bit of 'adj'
 | 
						|
  // (the virtual bit) is set.
 | 
						|
  if (UseARMMethodPtrABI) {
 | 
						|
    llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1);
 | 
						|
    llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj");
 | 
						|
    llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit");
 | 
						|
    llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero,
 | 
						|
                                                  "memptr.isvirtual");
 | 
						|
    Result = Builder.CreateOr(Result, IsVirtual);
 | 
						|
  }
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
 | 
						|
  const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
 | 
						|
  if (!RD)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Return indirectly if we have a non-trivial copy ctor or non-trivial dtor.
 | 
						|
  // FIXME: Use canCopyArgument() when it is fixed to handle lazily declared
 | 
						|
  // special members.
 | 
						|
  if (RD->hasNonTrivialDestructor() || RD->hasNonTrivialCopyConstructor()) {
 | 
						|
    auto Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
 | 
						|
    FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// The Itanium ABI requires non-zero initialization only for data
 | 
						|
/// member pointers, for which '0' is a valid offset.
 | 
						|
bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
 | 
						|
  return MPT->isMemberFunctionPointer();
 | 
						|
}
 | 
						|
 | 
						|
/// The Itanium ABI always places an offset to the complete object
 | 
						|
/// at entry -2 in the vtable.
 | 
						|
void ItaniumCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
 | 
						|
                                            const CXXDeleteExpr *DE,
 | 
						|
                                            Address Ptr,
 | 
						|
                                            QualType ElementType,
 | 
						|
                                            const CXXDestructorDecl *Dtor) {
 | 
						|
  bool UseGlobalDelete = DE->isGlobalDelete();
 | 
						|
  if (UseGlobalDelete) {
 | 
						|
    // Derive the complete-object pointer, which is what we need
 | 
						|
    // to pass to the deallocation function.
 | 
						|
 | 
						|
    // Grab the vtable pointer as an intptr_t*.
 | 
						|
    llvm::Value *VTable = CGF.GetVTablePtr(Ptr, CGF.IntPtrTy->getPointerTo());
 | 
						|
 | 
						|
    // Track back to entry -2 and pull out the offset there.
 | 
						|
    llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64(
 | 
						|
        VTable, -2, "complete-offset.ptr");
 | 
						|
    llvm::Value *Offset =
 | 
						|
      CGF.Builder.CreateAlignedLoad(OffsetPtr, CGF.getPointerAlign());
 | 
						|
 | 
						|
    // Apply the offset.
 | 
						|
    llvm::Value *CompletePtr =
 | 
						|
      CGF.Builder.CreateBitCast(Ptr.getPointer(), CGF.Int8PtrTy);
 | 
						|
    CompletePtr = CGF.Builder.CreateInBoundsGEP(CompletePtr, Offset);
 | 
						|
 | 
						|
    // If we're supposed to call the global delete, make sure we do so
 | 
						|
    // even if the destructor throws.
 | 
						|
    CGF.pushCallObjectDeleteCleanup(DE->getOperatorDelete(), CompletePtr,
 | 
						|
                                    ElementType);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Provide a source location here even though there's no
 | 
						|
  // CXXMemberCallExpr for dtor call.
 | 
						|
  CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
 | 
						|
  EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, /*CE=*/nullptr);
 | 
						|
 | 
						|
  if (UseGlobalDelete)
 | 
						|
    CGF.PopCleanupBlock();
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
 | 
						|
  // void __cxa_rethrow();
 | 
						|
 | 
						|
  llvm::FunctionType *FTy =
 | 
						|
    llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false);
 | 
						|
 | 
						|
  llvm::Constant *Fn = CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow");
 | 
						|
 | 
						|
  if (isNoReturn)
 | 
						|
    CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, None);
 | 
						|
  else
 | 
						|
    CGF.EmitRuntimeCallOrInvoke(Fn);
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *getAllocateExceptionFn(CodeGenModule &CGM) {
 | 
						|
  // void *__cxa_allocate_exception(size_t thrown_size);
 | 
						|
 | 
						|
  llvm::FunctionType *FTy =
 | 
						|
    llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*IsVarArgs=*/false);
 | 
						|
 | 
						|
  return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception");
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *getThrowFn(CodeGenModule &CGM) {
 | 
						|
  // void __cxa_throw(void *thrown_exception, std::type_info *tinfo,
 | 
						|
  //                  void (*dest) (void *));
 | 
						|
 | 
						|
  llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.Int8PtrTy, CGM.Int8PtrTy };
 | 
						|
  llvm::FunctionType *FTy =
 | 
						|
    llvm::FunctionType::get(CGM.VoidTy, Args, /*IsVarArgs=*/false);
 | 
						|
 | 
						|
  return CGM.CreateRuntimeFunction(FTy, "__cxa_throw");
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
 | 
						|
  QualType ThrowType = E->getSubExpr()->getType();
 | 
						|
  // Now allocate the exception object.
 | 
						|
  llvm::Type *SizeTy = CGF.ConvertType(getContext().getSizeType());
 | 
						|
  uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity();
 | 
						|
 | 
						|
  llvm::Constant *AllocExceptionFn = getAllocateExceptionFn(CGM);
 | 
						|
  llvm::CallInst *ExceptionPtr = CGF.EmitNounwindRuntimeCall(
 | 
						|
      AllocExceptionFn, llvm::ConstantInt::get(SizeTy, TypeSize), "exception");
 | 
						|
 | 
						|
  CharUnits ExnAlign = getAlignmentOfExnObject();
 | 
						|
  CGF.EmitAnyExprToExn(E->getSubExpr(), Address(ExceptionPtr, ExnAlign));
 | 
						|
 | 
						|
  // Now throw the exception.
 | 
						|
  llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType,
 | 
						|
                                                         /*ForEH=*/true);
 | 
						|
 | 
						|
  // The address of the destructor.  If the exception type has a
 | 
						|
  // trivial destructor (or isn't a record), we just pass null.
 | 
						|
  llvm::Constant *Dtor = nullptr;
 | 
						|
  if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) {
 | 
						|
    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
 | 
						|
    if (!Record->hasTrivialDestructor()) {
 | 
						|
      CXXDestructorDecl *DtorD = Record->getDestructor();
 | 
						|
      Dtor = CGM.getAddrOfCXXStructor(DtorD, StructorType::Complete);
 | 
						|
      Dtor = llvm::ConstantExpr::getBitCast(Dtor, CGM.Int8PtrTy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (!Dtor) Dtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
 | 
						|
 | 
						|
  llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor };
 | 
						|
  CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args);
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *getItaniumDynamicCastFn(CodeGenFunction &CGF) {
 | 
						|
  // void *__dynamic_cast(const void *sub,
 | 
						|
  //                      const abi::__class_type_info *src,
 | 
						|
  //                      const abi::__class_type_info *dst,
 | 
						|
  //                      std::ptrdiff_t src2dst_offset);
 | 
						|
  
 | 
						|
  llvm::Type *Int8PtrTy = CGF.Int8PtrTy;
 | 
						|
  llvm::Type *PtrDiffTy = 
 | 
						|
    CGF.ConvertType(CGF.getContext().getPointerDiffType());
 | 
						|
 | 
						|
  llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy };
 | 
						|
 | 
						|
  llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false);
 | 
						|
 | 
						|
  // Mark the function as nounwind readonly.
 | 
						|
  llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind,
 | 
						|
                                            llvm::Attribute::ReadOnly };
 | 
						|
  llvm::AttributeSet Attrs = llvm::AttributeSet::get(
 | 
						|
      CGF.getLLVMContext(), llvm::AttributeSet::FunctionIndex, FuncAttrs);
 | 
						|
 | 
						|
  return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs);
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *getBadCastFn(CodeGenFunction &CGF) {
 | 
						|
  // void __cxa_bad_cast();
 | 
						|
  llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
 | 
						|
  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast");
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Compute the src2dst_offset hint as described in the
 | 
						|
/// Itanium C++ ABI [2.9.7]
 | 
						|
static CharUnits computeOffsetHint(ASTContext &Context,
 | 
						|
                                   const CXXRecordDecl *Src,
 | 
						|
                                   const CXXRecordDecl *Dst) {
 | 
						|
  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
 | 
						|
                     /*DetectVirtual=*/false);
 | 
						|
 | 
						|
  // If Dst is not derived from Src we can skip the whole computation below and
 | 
						|
  // return that Src is not a public base of Dst.  Record all inheritance paths.
 | 
						|
  if (!Dst->isDerivedFrom(Src, Paths))
 | 
						|
    return CharUnits::fromQuantity(-2ULL);
 | 
						|
 | 
						|
  unsigned NumPublicPaths = 0;
 | 
						|
  CharUnits Offset;
 | 
						|
 | 
						|
  // Now walk all possible inheritance paths.
 | 
						|
  for (const CXXBasePath &Path : Paths) {
 | 
						|
    if (Path.Access != AS_public)  // Ignore non-public inheritance.
 | 
						|
      continue;
 | 
						|
 | 
						|
    ++NumPublicPaths;
 | 
						|
 | 
						|
    for (const CXXBasePathElement &PathElement : Path) {
 | 
						|
      // If the path contains a virtual base class we can't give any hint.
 | 
						|
      // -1: no hint.
 | 
						|
      if (PathElement.Base->isVirtual())
 | 
						|
        return CharUnits::fromQuantity(-1ULL);
 | 
						|
 | 
						|
      if (NumPublicPaths > 1) // Won't use offsets, skip computation.
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Accumulate the base class offsets.
 | 
						|
      const ASTRecordLayout &L = Context.getASTRecordLayout(PathElement.Class);
 | 
						|
      Offset += L.getBaseClassOffset(
 | 
						|
          PathElement.Base->getType()->getAsCXXRecordDecl());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // -2: Src is not a public base of Dst.
 | 
						|
  if (NumPublicPaths == 0)
 | 
						|
    return CharUnits::fromQuantity(-2ULL);
 | 
						|
 | 
						|
  // -3: Src is a multiple public base type but never a virtual base type.
 | 
						|
  if (NumPublicPaths > 1)
 | 
						|
    return CharUnits::fromQuantity(-3ULL);
 | 
						|
 | 
						|
  // Otherwise, the Src type is a unique public nonvirtual base type of Dst.
 | 
						|
  // Return the offset of Src from the origin of Dst.
 | 
						|
  return Offset;
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *getBadTypeidFn(CodeGenFunction &CGF) {
 | 
						|
  // void __cxa_bad_typeid();
 | 
						|
  llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false);
 | 
						|
 | 
						|
  return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid");
 | 
						|
}
 | 
						|
 | 
						|
bool ItaniumCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
 | 
						|
                                              QualType SrcRecordTy) {
 | 
						|
  return IsDeref;
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
 | 
						|
  llvm::Value *Fn = getBadTypeidFn(CGF);
 | 
						|
  CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
 | 
						|
  CGF.Builder.CreateUnreachable();
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *ItaniumCXXABI::EmitTypeid(CodeGenFunction &CGF,
 | 
						|
                                       QualType SrcRecordTy,
 | 
						|
                                       Address ThisPtr,
 | 
						|
                                       llvm::Type *StdTypeInfoPtrTy) {
 | 
						|
  llvm::Value *Value =
 | 
						|
      CGF.GetVTablePtr(ThisPtr, StdTypeInfoPtrTy->getPointerTo());
 | 
						|
 | 
						|
  // Load the type info.
 | 
						|
  Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL);
 | 
						|
  return CGF.Builder.CreateAlignedLoad(Value, CGF.getPointerAlign());
 | 
						|
}
 | 
						|
 | 
						|
bool ItaniumCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
 | 
						|
                                                       QualType SrcRecordTy) {
 | 
						|
  return SrcIsPtr;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *ItaniumCXXABI::EmitDynamicCastCall(
 | 
						|
    CodeGenFunction &CGF, Address ThisAddr, QualType SrcRecordTy,
 | 
						|
    QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
 | 
						|
  llvm::Type *PtrDiffLTy =
 | 
						|
      CGF.ConvertType(CGF.getContext().getPointerDiffType());
 | 
						|
  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
 | 
						|
 | 
						|
  llvm::Value *SrcRTTI =
 | 
						|
      CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
 | 
						|
  llvm::Value *DestRTTI =
 | 
						|
      CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
 | 
						|
 | 
						|
  // Compute the offset hint.
 | 
						|
  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
 | 
						|
  const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl();
 | 
						|
  llvm::Value *OffsetHint = llvm::ConstantInt::get(
 | 
						|
      PtrDiffLTy,
 | 
						|
      computeOffsetHint(CGF.getContext(), SrcDecl, DestDecl).getQuantity());
 | 
						|
 | 
						|
  // Emit the call to __dynamic_cast.
 | 
						|
  llvm::Value *Value = ThisAddr.getPointer();
 | 
						|
  Value = CGF.EmitCastToVoidPtr(Value);
 | 
						|
 | 
						|
  llvm::Value *args[] = {Value, SrcRTTI, DestRTTI, OffsetHint};
 | 
						|
  Value = CGF.EmitNounwindRuntimeCall(getItaniumDynamicCastFn(CGF), args);
 | 
						|
  Value = CGF.Builder.CreateBitCast(Value, DestLTy);
 | 
						|
 | 
						|
  /// C++ [expr.dynamic.cast]p9:
 | 
						|
  ///   A failed cast to reference type throws std::bad_cast
 | 
						|
  if (DestTy->isReferenceType()) {
 | 
						|
    llvm::BasicBlock *BadCastBlock =
 | 
						|
        CGF.createBasicBlock("dynamic_cast.bad_cast");
 | 
						|
 | 
						|
    llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value);
 | 
						|
    CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd);
 | 
						|
 | 
						|
    CGF.EmitBlock(BadCastBlock);
 | 
						|
    EmitBadCastCall(CGF);
 | 
						|
  }
 | 
						|
 | 
						|
  return Value;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *ItaniumCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF,
 | 
						|
                                                  Address ThisAddr,
 | 
						|
                                                  QualType SrcRecordTy,
 | 
						|
                                                  QualType DestTy) {
 | 
						|
  llvm::Type *PtrDiffLTy =
 | 
						|
      CGF.ConvertType(CGF.getContext().getPointerDiffType());
 | 
						|
  llvm::Type *DestLTy = CGF.ConvertType(DestTy);
 | 
						|
 | 
						|
  // Get the vtable pointer.
 | 
						|
  llvm::Value *VTable = CGF.GetVTablePtr(ThisAddr, PtrDiffLTy->getPointerTo());
 | 
						|
 | 
						|
  // Get the offset-to-top from the vtable.
 | 
						|
  llvm::Value *OffsetToTop =
 | 
						|
      CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL);
 | 
						|
  OffsetToTop =
 | 
						|
    CGF.Builder.CreateAlignedLoad(OffsetToTop, CGF.getPointerAlign(),
 | 
						|
                                  "offset.to.top");
 | 
						|
 | 
						|
  // Finally, add the offset to the pointer.
 | 
						|
  llvm::Value *Value = ThisAddr.getPointer();
 | 
						|
  Value = CGF.EmitCastToVoidPtr(Value);
 | 
						|
  Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop);
 | 
						|
 | 
						|
  return CGF.Builder.CreateBitCast(Value, DestLTy);
 | 
						|
}
 | 
						|
 | 
						|
bool ItaniumCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
 | 
						|
  llvm::Value *Fn = getBadCastFn(CGF);
 | 
						|
  CGF.EmitRuntimeCallOrInvoke(Fn).setDoesNotReturn();
 | 
						|
  CGF.Builder.CreateUnreachable();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *
 | 
						|
ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF,
 | 
						|
                                         Address This,
 | 
						|
                                         const CXXRecordDecl *ClassDecl,
 | 
						|
                                         const CXXRecordDecl *BaseClassDecl) {
 | 
						|
  llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy);
 | 
						|
  CharUnits VBaseOffsetOffset =
 | 
						|
      CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl,
 | 
						|
                                                               BaseClassDecl);
 | 
						|
 | 
						|
  llvm::Value *VBaseOffsetPtr =
 | 
						|
    CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(),
 | 
						|
                                   "vbase.offset.ptr");
 | 
						|
  VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr,
 | 
						|
                                             CGM.PtrDiffTy->getPointerTo());
 | 
						|
 | 
						|
  llvm::Value *VBaseOffset =
 | 
						|
    CGF.Builder.CreateAlignedLoad(VBaseOffsetPtr, CGF.getPointerAlign(),
 | 
						|
                                  "vbase.offset");
 | 
						|
 | 
						|
  return VBaseOffset;
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
 | 
						|
  // Just make sure we're in sync with TargetCXXABI.
 | 
						|
  assert(CGM.getTarget().getCXXABI().hasConstructorVariants());
 | 
						|
 | 
						|
  // The constructor used for constructing this as a base class;
 | 
						|
  // ignores virtual bases.
 | 
						|
  CGM.EmitGlobal(GlobalDecl(D, Ctor_Base));
 | 
						|
 | 
						|
  // The constructor used for constructing this as a complete class;
 | 
						|
  // constructs the virtual bases, then calls the base constructor.
 | 
						|
  if (!D->getParent()->isAbstract()) {
 | 
						|
    // We don't need to emit the complete ctor if the class is abstract.
 | 
						|
    CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
ItaniumCXXABI::buildStructorSignature(const CXXMethodDecl *MD, StructorType T,
 | 
						|
                                      SmallVectorImpl<CanQualType> &ArgTys) {
 | 
						|
  ASTContext &Context = getContext();
 | 
						|
 | 
						|
  // All parameters are already in place except VTT, which goes after 'this'.
 | 
						|
  // These are Clang types, so we don't need to worry about sret yet.
 | 
						|
 | 
						|
  // Check if we need to add a VTT parameter (which has type void **).
 | 
						|
  if (T == StructorType::Base && MD->getParent()->getNumVBases() != 0)
 | 
						|
    ArgTys.insert(ArgTys.begin() + 1,
 | 
						|
                  Context.getPointerType(Context.VoidPtrTy));
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
 | 
						|
  // The destructor used for destructing this as a base class; ignores
 | 
						|
  // virtual bases.
 | 
						|
  CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
 | 
						|
 | 
						|
  // The destructor used for destructing this as a most-derived class;
 | 
						|
  // call the base destructor and then destructs any virtual bases.
 | 
						|
  CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
 | 
						|
 | 
						|
  // The destructor in a virtual table is always a 'deleting'
 | 
						|
  // destructor, which calls the complete destructor and then uses the
 | 
						|
  // appropriate operator delete.
 | 
						|
  if (D->isVirtual())
 | 
						|
    CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting));
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
 | 
						|
                                              QualType &ResTy,
 | 
						|
                                              FunctionArgList &Params) {
 | 
						|
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
 | 
						|
  assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
 | 
						|
 | 
						|
  // Check if we need a VTT parameter as well.
 | 
						|
  if (NeedsVTTParameter(CGF.CurGD)) {
 | 
						|
    ASTContext &Context = getContext();
 | 
						|
 | 
						|
    // FIXME: avoid the fake decl
 | 
						|
    QualType T = Context.getPointerType(Context.VoidPtrTy);
 | 
						|
    ImplicitParamDecl *VTTDecl
 | 
						|
      = ImplicitParamDecl::Create(Context, nullptr, MD->getLocation(),
 | 
						|
                                  &Context.Idents.get("vtt"), T);
 | 
						|
    Params.insert(Params.begin() + 1, VTTDecl);
 | 
						|
    getStructorImplicitParamDecl(CGF) = VTTDecl;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
 | 
						|
  /// Initialize the 'this' slot.
 | 
						|
  EmitThisParam(CGF);
 | 
						|
 | 
						|
  /// Initialize the 'vtt' slot if needed.
 | 
						|
  if (getStructorImplicitParamDecl(CGF)) {
 | 
						|
    getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad(
 | 
						|
        CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "vtt");
 | 
						|
  }
 | 
						|
 | 
						|
  /// If this is a function that the ABI specifies returns 'this', initialize
 | 
						|
  /// the return slot to 'this' at the start of the function.
 | 
						|
  ///
 | 
						|
  /// Unlike the setting of return types, this is done within the ABI
 | 
						|
  /// implementation instead of by clients of CGCXXABI because:
 | 
						|
  /// 1) getThisValue is currently protected
 | 
						|
  /// 2) in theory, an ABI could implement 'this' returns some other way;
 | 
						|
  ///    HasThisReturn only specifies a contract, not the implementation
 | 
						|
  if (HasThisReturn(CGF.CurGD))
 | 
						|
    CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
 | 
						|
}
 | 
						|
 | 
						|
unsigned ItaniumCXXABI::addImplicitConstructorArgs(
 | 
						|
    CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
 | 
						|
    bool ForVirtualBase, bool Delegating, CallArgList &Args) {
 | 
						|
  if (!NeedsVTTParameter(GlobalDecl(D, Type)))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  // Insert the implicit 'vtt' argument as the second argument.
 | 
						|
  llvm::Value *VTT =
 | 
						|
      CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, Delegating);
 | 
						|
  QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
 | 
						|
  Args.insert(Args.begin() + 1,
 | 
						|
              CallArg(RValue::get(VTT), VTTTy, /*needscopy=*/false));
 | 
						|
  return 1;  // Added one arg.
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
 | 
						|
                                       const CXXDestructorDecl *DD,
 | 
						|
                                       CXXDtorType Type, bool ForVirtualBase,
 | 
						|
                                       bool Delegating, Address This) {
 | 
						|
  GlobalDecl GD(DD, Type);
 | 
						|
  llvm::Value *VTT = CGF.GetVTTParameter(GD, ForVirtualBase, Delegating);
 | 
						|
  QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy);
 | 
						|
 | 
						|
  llvm::Value *Callee = nullptr;
 | 
						|
  if (getContext().getLangOpts().AppleKext)
 | 
						|
    Callee = CGF.BuildAppleKextVirtualDestructorCall(DD, Type, DD->getParent());
 | 
						|
 | 
						|
  if (!Callee)
 | 
						|
    Callee = CGM.getAddrOfCXXStructor(DD, getFromDtorType(Type));
 | 
						|
 | 
						|
  CGF.EmitCXXMemberOrOperatorCall(DD, Callee, ReturnValueSlot(),
 | 
						|
                                  This.getPointer(), VTT, VTTTy, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
 | 
						|
                                          const CXXRecordDecl *RD) {
 | 
						|
  llvm::GlobalVariable *VTable = getAddrOfVTable(RD, CharUnits());
 | 
						|
  if (VTable->hasInitializer())
 | 
						|
    return;
 | 
						|
 | 
						|
  ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext();
 | 
						|
  const VTableLayout &VTLayout = VTContext.getVTableLayout(RD);
 | 
						|
  llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
 | 
						|
  llvm::Constant *RTTI =
 | 
						|
      CGM.GetAddrOfRTTIDescriptor(CGM.getContext().getTagDeclType(RD));
 | 
						|
 | 
						|
  // Create and set the initializer.
 | 
						|
  llvm::Constant *Init = CGVT.CreateVTableInitializer(
 | 
						|
      RD, VTLayout.vtable_component_begin(), VTLayout.getNumVTableComponents(),
 | 
						|
      VTLayout.vtable_thunk_begin(), VTLayout.getNumVTableThunks(), RTTI);
 | 
						|
  VTable->setInitializer(Init);
 | 
						|
 | 
						|
  // Set the correct linkage.
 | 
						|
  VTable->setLinkage(Linkage);
 | 
						|
 | 
						|
  if (CGM.supportsCOMDAT() && VTable->isWeakForLinker())
 | 
						|
    VTable->setComdat(CGM.getModule().getOrInsertComdat(VTable->getName()));
 | 
						|
 | 
						|
  // Set the right visibility.
 | 
						|
  CGM.setGlobalVisibility(VTable, RD);
 | 
						|
 | 
						|
  // Use pointer alignment for the vtable. Otherwise we would align them based
 | 
						|
  // on the size of the initializer which doesn't make sense as only single
 | 
						|
  // values are read.
 | 
						|
  unsigned PAlign = CGM.getTarget().getPointerAlign(0);
 | 
						|
  VTable->setAlignment(getContext().toCharUnitsFromBits(PAlign).getQuantity());
 | 
						|
 | 
						|
  // If this is the magic class __cxxabiv1::__fundamental_type_info,
 | 
						|
  // we will emit the typeinfo for the fundamental types. This is the
 | 
						|
  // same behaviour as GCC.
 | 
						|
  const DeclContext *DC = RD->getDeclContext();
 | 
						|
  if (RD->getIdentifier() &&
 | 
						|
      RD->getIdentifier()->isStr("__fundamental_type_info") &&
 | 
						|
      isa<NamespaceDecl>(DC) && cast<NamespaceDecl>(DC)->getIdentifier() &&
 | 
						|
      cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") &&
 | 
						|
      DC->getParent()->isTranslationUnit())
 | 
						|
    EmitFundamentalRTTIDescriptors();
 | 
						|
 | 
						|
  CGM.EmitVTableBitSetEntries(VTable, VTLayout);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor(
 | 
						|
    CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
 | 
						|
    const CXXRecordDecl *NearestVBase, bool &NeedsVirtualOffset) {
 | 
						|
  bool NeedsVTTParam = CGM.getCXXABI().NeedsVTTParameter(CGF.CurGD);
 | 
						|
  NeedsVirtualOffset = (NeedsVTTParam && NearestVBase);
 | 
						|
 | 
						|
  llvm::Value *VTableAddressPoint;
 | 
						|
  if (NeedsVTTParam && (Base.getBase()->getNumVBases() || NearestVBase)) {
 | 
						|
    // Get the secondary vpointer index.
 | 
						|
    uint64_t VirtualPointerIndex =
 | 
						|
        CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base);
 | 
						|
 | 
						|
    /// Load the VTT.
 | 
						|
    llvm::Value *VTT = CGF.LoadCXXVTT();
 | 
						|
    if (VirtualPointerIndex)
 | 
						|
      VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex);
 | 
						|
 | 
						|
    // And load the address point from the VTT.
 | 
						|
    VTableAddressPoint = CGF.Builder.CreateAlignedLoad(VTT, CGF.getPointerAlign());
 | 
						|
  } else {
 | 
						|
    llvm::Constant *VTable =
 | 
						|
        CGM.getCXXABI().getAddrOfVTable(VTableClass, CharUnits());
 | 
						|
    uint64_t AddressPoint = CGM.getItaniumVTableContext()
 | 
						|
                                .getVTableLayout(VTableClass)
 | 
						|
                                .getAddressPoint(Base);
 | 
						|
    VTableAddressPoint =
 | 
						|
        CGF.Builder.CreateConstInBoundsGEP2_64(VTable, 0, AddressPoint);
 | 
						|
  }
 | 
						|
 | 
						|
  return VTableAddressPoint;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ItaniumCXXABI::getVTableAddressPointForConstExpr(
 | 
						|
    BaseSubobject Base, const CXXRecordDecl *VTableClass) {
 | 
						|
  auto *VTable = getAddrOfVTable(VTableClass, CharUnits());
 | 
						|
 | 
						|
  // Find the appropriate vtable within the vtable group.
 | 
						|
  uint64_t AddressPoint = CGM.getItaniumVTableContext()
 | 
						|
                              .getVTableLayout(VTableClass)
 | 
						|
                              .getAddressPoint(Base);
 | 
						|
  llvm::Value *Indices[] = {
 | 
						|
    llvm::ConstantInt::get(CGM.Int64Ty, 0),
 | 
						|
    llvm::ConstantInt::get(CGM.Int64Ty, AddressPoint)
 | 
						|
  };
 | 
						|
 | 
						|
  return llvm::ConstantExpr::getInBoundsGetElementPtr(VTable->getValueType(),
 | 
						|
                                                      VTable, Indices);
 | 
						|
}
 | 
						|
 | 
						|
llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
 | 
						|
                                                     CharUnits VPtrOffset) {
 | 
						|
  assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets");
 | 
						|
 | 
						|
  llvm::GlobalVariable *&VTable = VTables[RD];
 | 
						|
  if (VTable)
 | 
						|
    return VTable;
 | 
						|
 | 
						|
  // Queue up this v-table for possible deferred emission.
 | 
						|
  CGM.addDeferredVTable(RD);
 | 
						|
 | 
						|
  SmallString<256> Name;
 | 
						|
  llvm::raw_svector_ostream Out(Name);
 | 
						|
  getMangleContext().mangleCXXVTable(RD, Out);
 | 
						|
 | 
						|
  ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext();
 | 
						|
  llvm::ArrayType *ArrayType = llvm::ArrayType::get(
 | 
						|
      CGM.Int8PtrTy, VTContext.getVTableLayout(RD).getNumVTableComponents());
 | 
						|
 | 
						|
  VTable = CGM.CreateOrReplaceCXXRuntimeVariable(
 | 
						|
      Name, ArrayType, llvm::GlobalValue::ExternalLinkage);
 | 
						|
  VTable->setUnnamedAddr(true);
 | 
						|
 | 
						|
  if (RD->hasAttr<DLLImportAttr>())
 | 
						|
    VTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
 | 
						|
  else if (RD->hasAttr<DLLExportAttr>())
 | 
						|
    VTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
 | 
						|
 | 
						|
  return VTable;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
 | 
						|
                                                      GlobalDecl GD,
 | 
						|
                                                      Address This,
 | 
						|
                                                      llvm::Type *Ty,
 | 
						|
                                                      SourceLocation Loc) {
 | 
						|
  GD = GD.getCanonicalDecl();
 | 
						|
  Ty = Ty->getPointerTo()->getPointerTo();
 | 
						|
  llvm::Value *VTable = CGF.GetVTablePtr(This, Ty);
 | 
						|
 | 
						|
  if (CGF.SanOpts.has(SanitizerKind::CFIVCall))
 | 
						|
    CGF.EmitVTablePtrCheckForCall(cast<CXXMethodDecl>(GD.getDecl()), VTable,
 | 
						|
                                  CodeGenFunction::CFITCK_VCall, Loc);
 | 
						|
 | 
						|
  uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD);
 | 
						|
  llvm::Value *VFuncPtr =
 | 
						|
      CGF.Builder.CreateConstInBoundsGEP1_64(VTable, VTableIndex, "vfn");
 | 
						|
  return CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign());
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *ItaniumCXXABI::EmitVirtualDestructorCall(
 | 
						|
    CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
 | 
						|
    Address This, const CXXMemberCallExpr *CE) {
 | 
						|
  assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
 | 
						|
  assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
 | 
						|
 | 
						|
  const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
 | 
						|
      Dtor, getFromDtorType(DtorType));
 | 
						|
  llvm::Type *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
 | 
						|
  llvm::Value *Callee =
 | 
						|
      getVirtualFunctionPointer(CGF, GlobalDecl(Dtor, DtorType), This, Ty,
 | 
						|
                                CE ? CE->getLocStart() : SourceLocation());
 | 
						|
 | 
						|
  CGF.EmitCXXMemberOrOperatorCall(Dtor, Callee, ReturnValueSlot(),
 | 
						|
                                  This.getPointer(), /*ImplicitParam=*/nullptr,
 | 
						|
                                  QualType(), CE);
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
 | 
						|
  CodeGenVTables &VTables = CGM.getVTables();
 | 
						|
  llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD);
 | 
						|
  VTables.EmitVTTDefinition(VTT, CGM.getVTableLinkage(RD), RD);
 | 
						|
}
 | 
						|
 | 
						|
bool ItaniumCXXABI::canEmitAvailableExternallyVTable(
 | 
						|
    const CXXRecordDecl *RD) const {
 | 
						|
  // We don't emit available_externally vtables if we are in -fapple-kext mode
 | 
						|
  // because kext mode does not permit devirtualization.
 | 
						|
  if (CGM.getLangOpts().AppleKext)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we don't have any inline virtual functions,
 | 
						|
  // then we are safe to emit available_externally copy of vtable.
 | 
						|
  // FIXME we can still emit a copy of the vtable if we
 | 
						|
  // can emit definition of the inline functions.
 | 
						|
  return !hasAnyUsedVirtualInlineFunction(RD);
 | 
						|
}
 | 
						|
static llvm::Value *performTypeAdjustment(CodeGenFunction &CGF,
 | 
						|
                                          Address InitialPtr,
 | 
						|
                                          int64_t NonVirtualAdjustment,
 | 
						|
                                          int64_t VirtualAdjustment,
 | 
						|
                                          bool IsReturnAdjustment) {
 | 
						|
  if (!NonVirtualAdjustment && !VirtualAdjustment)
 | 
						|
    return InitialPtr.getPointer();
 | 
						|
 | 
						|
  Address V = CGF.Builder.CreateElementBitCast(InitialPtr, CGF.Int8Ty);
 | 
						|
 | 
						|
  // In a base-to-derived cast, the non-virtual adjustment is applied first.
 | 
						|
  if (NonVirtualAdjustment && !IsReturnAdjustment) {
 | 
						|
    V = CGF.Builder.CreateConstInBoundsByteGEP(V,
 | 
						|
                              CharUnits::fromQuantity(NonVirtualAdjustment));
 | 
						|
  }
 | 
						|
 | 
						|
  // Perform the virtual adjustment if we have one.
 | 
						|
  llvm::Value *ResultPtr;
 | 
						|
  if (VirtualAdjustment) {
 | 
						|
    llvm::Type *PtrDiffTy =
 | 
						|
        CGF.ConvertType(CGF.getContext().getPointerDiffType());
 | 
						|
 | 
						|
    Address VTablePtrPtr = CGF.Builder.CreateElementBitCast(V, CGF.Int8PtrTy);
 | 
						|
    llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr);
 | 
						|
 | 
						|
    llvm::Value *OffsetPtr =
 | 
						|
        CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment);
 | 
						|
 | 
						|
    OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo());
 | 
						|
 | 
						|
    // Load the adjustment offset from the vtable.
 | 
						|
    llvm::Value *Offset =
 | 
						|
      CGF.Builder.CreateAlignedLoad(OffsetPtr, CGF.getPointerAlign());
 | 
						|
 | 
						|
    // Adjust our pointer.
 | 
						|
    ResultPtr = CGF.Builder.CreateInBoundsGEP(V.getPointer(), Offset);
 | 
						|
  } else {
 | 
						|
    ResultPtr = V.getPointer();
 | 
						|
  }
 | 
						|
 | 
						|
  // In a derived-to-base conversion, the non-virtual adjustment is
 | 
						|
  // applied second.
 | 
						|
  if (NonVirtualAdjustment && IsReturnAdjustment) {
 | 
						|
    ResultPtr = CGF.Builder.CreateConstInBoundsGEP1_64(ResultPtr,
 | 
						|
                                                       NonVirtualAdjustment);
 | 
						|
  }
 | 
						|
 | 
						|
  // Cast back to the original type.
 | 
						|
  return CGF.Builder.CreateBitCast(ResultPtr, InitialPtr.getType());
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *ItaniumCXXABI::performThisAdjustment(CodeGenFunction &CGF,
 | 
						|
                                                  Address This,
 | 
						|
                                                  const ThisAdjustment &TA) {
 | 
						|
  return performTypeAdjustment(CGF, This, TA.NonVirtual,
 | 
						|
                               TA.Virtual.Itanium.VCallOffsetOffset,
 | 
						|
                               /*IsReturnAdjustment=*/false);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *
 | 
						|
ItaniumCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
 | 
						|
                                       const ReturnAdjustment &RA) {
 | 
						|
  return performTypeAdjustment(CGF, Ret, RA.NonVirtual,
 | 
						|
                               RA.Virtual.Itanium.VBaseOffsetOffset,
 | 
						|
                               /*IsReturnAdjustment=*/true);
 | 
						|
}
 | 
						|
 | 
						|
void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF,
 | 
						|
                                    RValue RV, QualType ResultType) {
 | 
						|
  if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl()))
 | 
						|
    return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType);
 | 
						|
 | 
						|
  // Destructor thunks in the ARM ABI have indeterminate results.
 | 
						|
  llvm::Type *T = CGF.ReturnValue.getElementType();
 | 
						|
  RValue Undef = RValue::get(llvm::UndefValue::get(T));
 | 
						|
  return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType);
 | 
						|
}
 | 
						|
 | 
						|
/************************** Array allocation cookies **************************/
 | 
						|
 | 
						|
CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) {
 | 
						|
  // The array cookie is a size_t; pad that up to the element alignment.
 | 
						|
  // The cookie is actually right-justified in that space.
 | 
						|
  return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes),
 | 
						|
                  CGM.getContext().getTypeAlignInChars(elementType));
 | 
						|
}
 | 
						|
 | 
						|
Address ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
 | 
						|
                                             Address NewPtr,
 | 
						|
                                             llvm::Value *NumElements,
 | 
						|
                                             const CXXNewExpr *expr,
 | 
						|
                                             QualType ElementType) {
 | 
						|
  assert(requiresArrayCookie(expr));
 | 
						|
 | 
						|
  unsigned AS = NewPtr.getAddressSpace();
 | 
						|
 | 
						|
  ASTContext &Ctx = getContext();
 | 
						|
  CharUnits SizeSize = CGF.getSizeSize();
 | 
						|
 | 
						|
  // The size of the cookie.
 | 
						|
  CharUnits CookieSize =
 | 
						|
    std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType));
 | 
						|
  assert(CookieSize == getArrayCookieSizeImpl(ElementType));
 | 
						|
 | 
						|
  // Compute an offset to the cookie.
 | 
						|
  Address CookiePtr = NewPtr;
 | 
						|
  CharUnits CookieOffset = CookieSize - SizeSize;
 | 
						|
  if (!CookieOffset.isZero())
 | 
						|
    CookiePtr = CGF.Builder.CreateConstInBoundsByteGEP(CookiePtr, CookieOffset);
 | 
						|
 | 
						|
  // Write the number of elements into the appropriate slot.
 | 
						|
  Address NumElementsPtr =
 | 
						|
      CGF.Builder.CreateElementBitCast(CookiePtr, CGF.SizeTy);
 | 
						|
  llvm::Instruction *SI = CGF.Builder.CreateStore(NumElements, NumElementsPtr);
 | 
						|
 | 
						|
  // Handle the array cookie specially in ASan.
 | 
						|
  if (CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) && AS == 0 &&
 | 
						|
      expr->getOperatorNew()->isReplaceableGlobalAllocationFunction()) {
 | 
						|
    // The store to the CookiePtr does not need to be instrumented.
 | 
						|
    CGM.getSanitizerMetadata()->disableSanitizerForInstruction(SI);
 | 
						|
    llvm::FunctionType *FTy =
 | 
						|
        llvm::FunctionType::get(CGM.VoidTy, NumElementsPtr.getType(), false);
 | 
						|
    llvm::Constant *F =
 | 
						|
        CGM.CreateRuntimeFunction(FTy, "__asan_poison_cxx_array_cookie");
 | 
						|
    CGF.Builder.CreateCall(F, NumElementsPtr.getPointer());
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, compute a pointer to the actual data buffer by skipping
 | 
						|
  // over the cookie completely.
 | 
						|
  return CGF.Builder.CreateConstInBoundsByteGEP(NewPtr, CookieSize);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
 | 
						|
                                                Address allocPtr,
 | 
						|
                                                CharUnits cookieSize) {
 | 
						|
  // The element size is right-justified in the cookie.
 | 
						|
  Address numElementsPtr = allocPtr;
 | 
						|
  CharUnits numElementsOffset = cookieSize - CGF.getSizeSize();
 | 
						|
  if (!numElementsOffset.isZero())
 | 
						|
    numElementsPtr =
 | 
						|
      CGF.Builder.CreateConstInBoundsByteGEP(numElementsPtr, numElementsOffset);
 | 
						|
 | 
						|
  unsigned AS = allocPtr.getAddressSpace();
 | 
						|
  numElementsPtr = CGF.Builder.CreateElementBitCast(numElementsPtr, CGF.SizeTy);
 | 
						|
  if (!CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) || AS != 0)
 | 
						|
    return CGF.Builder.CreateLoad(numElementsPtr);
 | 
						|
  // In asan mode emit a function call instead of a regular load and let the
 | 
						|
  // run-time deal with it: if the shadow is properly poisoned return the
 | 
						|
  // cookie, otherwise return 0 to avoid an infinite loop calling DTORs.
 | 
						|
  // We can't simply ignore this load using nosanitize metadata because
 | 
						|
  // the metadata may be lost.
 | 
						|
  llvm::FunctionType *FTy =
 | 
						|
      llvm::FunctionType::get(CGF.SizeTy, CGF.SizeTy->getPointerTo(0), false);
 | 
						|
  llvm::Constant *F =
 | 
						|
      CGM.CreateRuntimeFunction(FTy, "__asan_load_cxx_array_cookie");
 | 
						|
  return CGF.Builder.CreateCall(F, numElementsPtr.getPointer());
 | 
						|
}
 | 
						|
 | 
						|
CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) {
 | 
						|
  // ARM says that the cookie is always:
 | 
						|
  //   struct array_cookie {
 | 
						|
  //     std::size_t element_size; // element_size != 0
 | 
						|
  //     std::size_t element_count;
 | 
						|
  //   };
 | 
						|
  // But the base ABI doesn't give anything an alignment greater than
 | 
						|
  // 8, so we can dismiss this as typical ABI-author blindness to
 | 
						|
  // actual language complexity and round up to the element alignment.
 | 
						|
  return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes),
 | 
						|
                  CGM.getContext().getTypeAlignInChars(elementType));
 | 
						|
}
 | 
						|
 | 
						|
Address ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
 | 
						|
                                         Address newPtr,
 | 
						|
                                         llvm::Value *numElements,
 | 
						|
                                         const CXXNewExpr *expr,
 | 
						|
                                         QualType elementType) {
 | 
						|
  assert(requiresArrayCookie(expr));
 | 
						|
 | 
						|
  // The cookie is always at the start of the buffer.
 | 
						|
  Address cookie = newPtr;
 | 
						|
 | 
						|
  // The first element is the element size.
 | 
						|
  cookie = CGF.Builder.CreateElementBitCast(cookie, CGF.SizeTy);
 | 
						|
  llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy,
 | 
						|
                 getContext().getTypeSizeInChars(elementType).getQuantity());
 | 
						|
  CGF.Builder.CreateStore(elementSize, cookie);
 | 
						|
 | 
						|
  // The second element is the element count.
 | 
						|
  cookie = CGF.Builder.CreateConstInBoundsGEP(cookie, 1, CGF.getSizeSize());
 | 
						|
  CGF.Builder.CreateStore(numElements, cookie);
 | 
						|
 | 
						|
  // Finally, compute a pointer to the actual data buffer by skipping
 | 
						|
  // over the cookie completely.
 | 
						|
  CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType);
 | 
						|
  return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
 | 
						|
}
 | 
						|
 | 
						|
llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
 | 
						|
                                            Address allocPtr,
 | 
						|
                                            CharUnits cookieSize) {
 | 
						|
  // The number of elements is at offset sizeof(size_t) relative to
 | 
						|
  // the allocated pointer.
 | 
						|
  Address numElementsPtr
 | 
						|
    = CGF.Builder.CreateConstInBoundsByteGEP(allocPtr, CGF.getSizeSize());
 | 
						|
 | 
						|
  numElementsPtr = CGF.Builder.CreateElementBitCast(numElementsPtr, CGF.SizeTy);
 | 
						|
  return CGF.Builder.CreateLoad(numElementsPtr);
 | 
						|
}
 | 
						|
 | 
						|
/*********************** Static local initialization **************************/
 | 
						|
 | 
						|
static llvm::Constant *getGuardAcquireFn(CodeGenModule &CGM,
 | 
						|
                                         llvm::PointerType *GuardPtrTy) {
 | 
						|
  // int __cxa_guard_acquire(__guard *guard_object);
 | 
						|
  llvm::FunctionType *FTy =
 | 
						|
    llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy),
 | 
						|
                            GuardPtrTy, /*isVarArg=*/false);
 | 
						|
  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_acquire",
 | 
						|
                                   llvm::AttributeSet::get(CGM.getLLVMContext(),
 | 
						|
                                              llvm::AttributeSet::FunctionIndex,
 | 
						|
                                                 llvm::Attribute::NoUnwind));
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *getGuardReleaseFn(CodeGenModule &CGM,
 | 
						|
                                         llvm::PointerType *GuardPtrTy) {
 | 
						|
  // void __cxa_guard_release(__guard *guard_object);
 | 
						|
  llvm::FunctionType *FTy =
 | 
						|
    llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
 | 
						|
  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_release",
 | 
						|
                                   llvm::AttributeSet::get(CGM.getLLVMContext(),
 | 
						|
                                              llvm::AttributeSet::FunctionIndex,
 | 
						|
                                                 llvm::Attribute::NoUnwind));
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *getGuardAbortFn(CodeGenModule &CGM,
 | 
						|
                                       llvm::PointerType *GuardPtrTy) {
 | 
						|
  // void __cxa_guard_abort(__guard *guard_object);
 | 
						|
  llvm::FunctionType *FTy =
 | 
						|
    llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false);
 | 
						|
  return CGM.CreateRuntimeFunction(FTy, "__cxa_guard_abort",
 | 
						|
                                   llvm::AttributeSet::get(CGM.getLLVMContext(),
 | 
						|
                                              llvm::AttributeSet::FunctionIndex,
 | 
						|
                                                 llvm::Attribute::NoUnwind));
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct CallGuardAbort final : EHScopeStack::Cleanup {
 | 
						|
    llvm::GlobalVariable *Guard;
 | 
						|
    CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {}
 | 
						|
 | 
						|
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						|
      CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()),
 | 
						|
                                  Guard);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// The ARM code here follows the Itanium code closely enough that we
 | 
						|
/// just special-case it at particular places.
 | 
						|
void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF,
 | 
						|
                                    const VarDecl &D,
 | 
						|
                                    llvm::GlobalVariable *var,
 | 
						|
                                    bool shouldPerformInit) {
 | 
						|
  CGBuilderTy &Builder = CGF.Builder;
 | 
						|
 | 
						|
  // We only need to use thread-safe statics for local non-TLS variables;
 | 
						|
  // global initialization is always single-threaded.
 | 
						|
  bool threadsafe = getContext().getLangOpts().ThreadsafeStatics &&
 | 
						|
                    D.isLocalVarDecl() && !D.getTLSKind();
 | 
						|
 | 
						|
  // If we have a global variable with internal linkage and thread-safe statics
 | 
						|
  // are disabled, we can just let the guard variable be of type i8.
 | 
						|
  bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage();
 | 
						|
 | 
						|
  llvm::IntegerType *guardTy;
 | 
						|
  CharUnits guardAlignment;
 | 
						|
  if (useInt8GuardVariable) {
 | 
						|
    guardTy = CGF.Int8Ty;
 | 
						|
    guardAlignment = CharUnits::One();
 | 
						|
  } else {
 | 
						|
    // Guard variables are 64 bits in the generic ABI and size width on ARM
 | 
						|
    // (i.e. 32-bit on AArch32, 64-bit on AArch64).
 | 
						|
    if (UseARMGuardVarABI) {
 | 
						|
      guardTy = CGF.SizeTy;
 | 
						|
      guardAlignment = CGF.getSizeAlign();
 | 
						|
    } else {
 | 
						|
      guardTy = CGF.Int64Ty;
 | 
						|
      guardAlignment = CharUnits::fromQuantity(
 | 
						|
                             CGM.getDataLayout().getABITypeAlignment(guardTy));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  llvm::PointerType *guardPtrTy = guardTy->getPointerTo();
 | 
						|
 | 
						|
  // Create the guard variable if we don't already have it (as we
 | 
						|
  // might if we're double-emitting this function body).
 | 
						|
  llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D);
 | 
						|
  if (!guard) {
 | 
						|
    // Mangle the name for the guard.
 | 
						|
    SmallString<256> guardName;
 | 
						|
    {
 | 
						|
      llvm::raw_svector_ostream out(guardName);
 | 
						|
      getMangleContext().mangleStaticGuardVariable(&D, out);
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the guard variable with a zero-initializer.
 | 
						|
    // Just absorb linkage and visibility from the guarded variable.
 | 
						|
    guard = new llvm::GlobalVariable(CGM.getModule(), guardTy,
 | 
						|
                                     false, var->getLinkage(),
 | 
						|
                                     llvm::ConstantInt::get(guardTy, 0),
 | 
						|
                                     guardName.str());
 | 
						|
    guard->setVisibility(var->getVisibility());
 | 
						|
    // If the variable is thread-local, so is its guard variable.
 | 
						|
    guard->setThreadLocalMode(var->getThreadLocalMode());
 | 
						|
    guard->setAlignment(guardAlignment.getQuantity());
 | 
						|
 | 
						|
    // The ABI says: "It is suggested that it be emitted in the same COMDAT
 | 
						|
    // group as the associated data object." In practice, this doesn't work for
 | 
						|
    // non-ELF object formats, so only do it for ELF.
 | 
						|
    llvm::Comdat *C = var->getComdat();
 | 
						|
    if (!D.isLocalVarDecl() && C &&
 | 
						|
        CGM.getTarget().getTriple().isOSBinFormatELF()) {
 | 
						|
      guard->setComdat(C);
 | 
						|
      CGF.CurFn->setComdat(C);
 | 
						|
    } else if (CGM.supportsCOMDAT() && guard->isWeakForLinker()) {
 | 
						|
      guard->setComdat(CGM.getModule().getOrInsertComdat(guard->getName()));
 | 
						|
    }
 | 
						|
 | 
						|
    CGM.setStaticLocalDeclGuardAddress(&D, guard);
 | 
						|
  }
 | 
						|
 | 
						|
  Address guardAddr = Address(guard, guardAlignment);
 | 
						|
 | 
						|
  // Test whether the variable has completed initialization.
 | 
						|
  //
 | 
						|
  // Itanium C++ ABI 3.3.2:
 | 
						|
  //   The following is pseudo-code showing how these functions can be used:
 | 
						|
  //     if (obj_guard.first_byte == 0) {
 | 
						|
  //       if ( __cxa_guard_acquire (&obj_guard) ) {
 | 
						|
  //         try {
 | 
						|
  //           ... initialize the object ...;
 | 
						|
  //         } catch (...) {
 | 
						|
  //            __cxa_guard_abort (&obj_guard);
 | 
						|
  //            throw;
 | 
						|
  //         }
 | 
						|
  //         ... queue object destructor with __cxa_atexit() ...;
 | 
						|
  //         __cxa_guard_release (&obj_guard);
 | 
						|
  //       }
 | 
						|
  //     }
 | 
						|
 | 
						|
  // Load the first byte of the guard variable.
 | 
						|
  llvm::LoadInst *LI =
 | 
						|
      Builder.CreateLoad(Builder.CreateElementBitCast(guardAddr, CGM.Int8Ty));
 | 
						|
 | 
						|
  // Itanium ABI:
 | 
						|
  //   An implementation supporting thread-safety on multiprocessor
 | 
						|
  //   systems must also guarantee that references to the initialized
 | 
						|
  //   object do not occur before the load of the initialization flag.
 | 
						|
  //
 | 
						|
  // In LLVM, we do this by marking the load Acquire.
 | 
						|
  if (threadsafe)
 | 
						|
    LI->setAtomic(llvm::Acquire);
 | 
						|
 | 
						|
  // For ARM, we should only check the first bit, rather than the entire byte:
 | 
						|
  //
 | 
						|
  // ARM C++ ABI 3.2.3.1:
 | 
						|
  //   To support the potential use of initialization guard variables
 | 
						|
  //   as semaphores that are the target of ARM SWP and LDREX/STREX
 | 
						|
  //   synchronizing instructions we define a static initialization
 | 
						|
  //   guard variable to be a 4-byte aligned, 4-byte word with the
 | 
						|
  //   following inline access protocol.
 | 
						|
  //     #define INITIALIZED 1
 | 
						|
  //     if ((obj_guard & INITIALIZED) != INITIALIZED) {
 | 
						|
  //       if (__cxa_guard_acquire(&obj_guard))
 | 
						|
  //         ...
 | 
						|
  //     }
 | 
						|
  //
 | 
						|
  // and similarly for ARM64:
 | 
						|
  //
 | 
						|
  // ARM64 C++ ABI 3.2.2:
 | 
						|
  //   This ABI instead only specifies the value bit 0 of the static guard
 | 
						|
  //   variable; all other bits are platform defined. Bit 0 shall be 0 when the
 | 
						|
  //   variable is not initialized and 1 when it is.
 | 
						|
  llvm::Value *V =
 | 
						|
      (UseARMGuardVarABI && !useInt8GuardVariable)
 | 
						|
          ? Builder.CreateAnd(LI, llvm::ConstantInt::get(CGM.Int8Ty, 1))
 | 
						|
          : LI;
 | 
						|
  llvm::Value *isInitialized = Builder.CreateIsNull(V, "guard.uninitialized");
 | 
						|
 | 
						|
  llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check");
 | 
						|
  llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
 | 
						|
 | 
						|
  // Check if the first byte of the guard variable is zero.
 | 
						|
  Builder.CreateCondBr(isInitialized, InitCheckBlock, EndBlock);
 | 
						|
 | 
						|
  CGF.EmitBlock(InitCheckBlock);
 | 
						|
 | 
						|
  // Variables used when coping with thread-safe statics and exceptions.
 | 
						|
  if (threadsafe) {    
 | 
						|
    // Call __cxa_guard_acquire.
 | 
						|
    llvm::Value *V
 | 
						|
      = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard);
 | 
						|
               
 | 
						|
    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
 | 
						|
  
 | 
						|
    Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"),
 | 
						|
                         InitBlock, EndBlock);
 | 
						|
  
 | 
						|
    // Call __cxa_guard_abort along the exceptional edge.
 | 
						|
    CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard);
 | 
						|
    
 | 
						|
    CGF.EmitBlock(InitBlock);
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the initializer and add a global destructor if appropriate.
 | 
						|
  CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit);
 | 
						|
 | 
						|
  if (threadsafe) {
 | 
						|
    // Pop the guard-abort cleanup if we pushed one.
 | 
						|
    CGF.PopCleanupBlock();
 | 
						|
 | 
						|
    // Call __cxa_guard_release.  This cannot throw.
 | 
						|
    CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy),
 | 
						|
                                guardAddr.getPointer());
 | 
						|
  } else {
 | 
						|
    Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guardAddr);
 | 
						|
  }
 | 
						|
 | 
						|
  CGF.EmitBlock(EndBlock);
 | 
						|
}
 | 
						|
 | 
						|
/// Register a global destructor using __cxa_atexit.
 | 
						|
static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF,
 | 
						|
                                        llvm::Constant *dtor,
 | 
						|
                                        llvm::Constant *addr,
 | 
						|
                                        bool TLS) {
 | 
						|
  const char *Name = "__cxa_atexit";
 | 
						|
  if (TLS) {
 | 
						|
    const llvm::Triple &T = CGF.getTarget().getTriple();
 | 
						|
    Name = T.isMacOSX() ?  "_tlv_atexit" : "__cxa_thread_atexit";
 | 
						|
  }
 | 
						|
 | 
						|
  // We're assuming that the destructor function is something we can
 | 
						|
  // reasonably call with the default CC.  Go ahead and cast it to the
 | 
						|
  // right prototype.
 | 
						|
  llvm::Type *dtorTy =
 | 
						|
    llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo();
 | 
						|
 | 
						|
  // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d);
 | 
						|
  llvm::Type *paramTys[] = { dtorTy, CGF.Int8PtrTy, CGF.Int8PtrTy };
 | 
						|
  llvm::FunctionType *atexitTy =
 | 
						|
    llvm::FunctionType::get(CGF.IntTy, paramTys, false);
 | 
						|
 | 
						|
  // Fetch the actual function.
 | 
						|
  llvm::Constant *atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name);
 | 
						|
  if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit))
 | 
						|
    fn->setDoesNotThrow();
 | 
						|
 | 
						|
  // Create a variable that binds the atexit to this shared object.
 | 
						|
  llvm::Constant *handle =
 | 
						|
    CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle");
 | 
						|
 | 
						|
  llvm::Value *args[] = {
 | 
						|
    llvm::ConstantExpr::getBitCast(dtor, dtorTy),
 | 
						|
    llvm::ConstantExpr::getBitCast(addr, CGF.Int8PtrTy),
 | 
						|
    handle
 | 
						|
  };
 | 
						|
  CGF.EmitNounwindRuntimeCall(atexit, args);
 | 
						|
}
 | 
						|
 | 
						|
/// Register a global destructor as best as we know how.
 | 
						|
void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF,
 | 
						|
                                       const VarDecl &D,
 | 
						|
                                       llvm::Constant *dtor,
 | 
						|
                                       llvm::Constant *addr) {
 | 
						|
  // Use __cxa_atexit if available.
 | 
						|
  if (CGM.getCodeGenOpts().CXAAtExit)
 | 
						|
    return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind());
 | 
						|
 | 
						|
  if (D.getTLSKind())
 | 
						|
    CGM.ErrorUnsupported(&D, "non-trivial TLS destruction");
 | 
						|
 | 
						|
  // In Apple kexts, we want to add a global destructor entry.
 | 
						|
  // FIXME: shouldn't this be guarded by some variable?
 | 
						|
  if (CGM.getLangOpts().AppleKext) {
 | 
						|
    // Generate a global destructor entry.
 | 
						|
    return CGM.AddCXXDtorEntry(dtor, addr);
 | 
						|
  }
 | 
						|
 | 
						|
  CGF.registerGlobalDtorWithAtExit(D, dtor, addr);
 | 
						|
}
 | 
						|
 | 
						|
static bool isThreadWrapperReplaceable(const VarDecl *VD,
 | 
						|
                                       CodeGen::CodeGenModule &CGM) {
 | 
						|
  assert(!VD->isStaticLocal() && "static local VarDecls don't need wrappers!");
 | 
						|
  // OS X prefers to have references to thread local variables to go through
 | 
						|
  // the thread wrapper instead of directly referencing the backing variable.
 | 
						|
  return VD->getTLSKind() == VarDecl::TLS_Dynamic &&
 | 
						|
         CGM.getTarget().getTriple().isMacOSX();
 | 
						|
}
 | 
						|
 | 
						|
/// Get the appropriate linkage for the wrapper function. This is essentially
 | 
						|
/// the weak form of the variable's linkage; every translation unit which needs
 | 
						|
/// the wrapper emits a copy, and we want the linker to merge them.
 | 
						|
static llvm::GlobalValue::LinkageTypes
 | 
						|
getThreadLocalWrapperLinkage(const VarDecl *VD, CodeGen::CodeGenModule &CGM) {
 | 
						|
  llvm::GlobalValue::LinkageTypes VarLinkage =
 | 
						|
      CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false);
 | 
						|
 | 
						|
  // For internal linkage variables, we don't need an external or weak wrapper.
 | 
						|
  if (llvm::GlobalValue::isLocalLinkage(VarLinkage))
 | 
						|
    return VarLinkage;
 | 
						|
 | 
						|
  // If the thread wrapper is replaceable, give it appropriate linkage.
 | 
						|
  if (isThreadWrapperReplaceable(VD, CGM)) {
 | 
						|
    if (llvm::GlobalVariable::isLinkOnceLinkage(VarLinkage) ||
 | 
						|
        llvm::GlobalVariable::isWeakODRLinkage(VarLinkage))
 | 
						|
      return llvm::GlobalVariable::WeakAnyLinkage;
 | 
						|
    return VarLinkage;
 | 
						|
  }
 | 
						|
  return llvm::GlobalValue::WeakODRLinkage;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Function *
 | 
						|
ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD,
 | 
						|
                                             llvm::Value *Val) {
 | 
						|
  // Mangle the name for the thread_local wrapper function.
 | 
						|
  SmallString<256> WrapperName;
 | 
						|
  {
 | 
						|
    llvm::raw_svector_ostream Out(WrapperName);
 | 
						|
    getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out);
 | 
						|
  }
 | 
						|
 | 
						|
  if (llvm::Value *V = CGM.getModule().getNamedValue(WrapperName))
 | 
						|
    return cast<llvm::Function>(V);
 | 
						|
 | 
						|
  llvm::Type *RetTy = Val->getType();
 | 
						|
  if (VD->getType()->isReferenceType())
 | 
						|
    RetTy = RetTy->getPointerElementType();
 | 
						|
 | 
						|
  llvm::FunctionType *FnTy = llvm::FunctionType::get(RetTy, false);
 | 
						|
  llvm::Function *Wrapper =
 | 
						|
      llvm::Function::Create(FnTy, getThreadLocalWrapperLinkage(VD, CGM),
 | 
						|
                             WrapperName.str(), &CGM.getModule());
 | 
						|
  // Always resolve references to the wrapper at link time.
 | 
						|
  if (!Wrapper->hasLocalLinkage() && !isThreadWrapperReplaceable(VD, CGM))
 | 
						|
    Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility);
 | 
						|
  return Wrapper;
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::EmitThreadLocalInitFuncs(
 | 
						|
    CodeGenModule &CGM,
 | 
						|
    ArrayRef<std::pair<const VarDecl *, llvm::GlobalVariable *>>
 | 
						|
        CXXThreadLocals, ArrayRef<llvm::Function *> CXXThreadLocalInits,
 | 
						|
    ArrayRef<llvm::GlobalVariable *> CXXThreadLocalInitVars) {
 | 
						|
  llvm::Function *InitFunc = nullptr;
 | 
						|
  if (!CXXThreadLocalInits.empty()) {
 | 
						|
    // Generate a guarded initialization function.
 | 
						|
    llvm::FunctionType *FTy =
 | 
						|
        llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
 | 
						|
    InitFunc = CGM.CreateGlobalInitOrDestructFunction(FTy, "__tls_init",
 | 
						|
                                                      SourceLocation(),
 | 
						|
                                                      /*TLS=*/true);
 | 
						|
    llvm::GlobalVariable *Guard = new llvm::GlobalVariable(
 | 
						|
        CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false,
 | 
						|
        llvm::GlobalVariable::InternalLinkage,
 | 
						|
        llvm::ConstantInt::get(CGM.Int8Ty, 0), "__tls_guard");
 | 
						|
    Guard->setThreadLocal(true);
 | 
						|
 | 
						|
    CharUnits GuardAlign = CharUnits::One();
 | 
						|
    Guard->setAlignment(GuardAlign.getQuantity());
 | 
						|
 | 
						|
    CodeGenFunction(CGM)
 | 
						|
        .GenerateCXXGlobalInitFunc(InitFunc, CXXThreadLocalInits,
 | 
						|
                                   Address(Guard, GuardAlign));
 | 
						|
  }
 | 
						|
  for (auto &I : CXXThreadLocals) {
 | 
						|
    const VarDecl *VD = I.first;
 | 
						|
    llvm::GlobalVariable *Var = I.second;
 | 
						|
 | 
						|
    // Some targets require that all access to thread local variables go through
 | 
						|
    // the thread wrapper.  This means that we cannot attempt to create a thread
 | 
						|
    // wrapper or a thread helper.
 | 
						|
    if (isThreadWrapperReplaceable(VD, CGM) && !VD->hasDefinition())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Mangle the name for the thread_local initialization function.
 | 
						|
    SmallString<256> InitFnName;
 | 
						|
    {
 | 
						|
      llvm::raw_svector_ostream Out(InitFnName);
 | 
						|
      getMangleContext().mangleItaniumThreadLocalInit(VD, Out);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have a definition for the variable, emit the initialization
 | 
						|
    // function as an alias to the global Init function (if any). Otherwise,
 | 
						|
    // produce a declaration of the initialization function.
 | 
						|
    llvm::GlobalValue *Init = nullptr;
 | 
						|
    bool InitIsInitFunc = false;
 | 
						|
    if (VD->hasDefinition()) {
 | 
						|
      InitIsInitFunc = true;
 | 
						|
      if (InitFunc)
 | 
						|
        Init = llvm::GlobalAlias::create(Var->getLinkage(), InitFnName.str(),
 | 
						|
                                         InitFunc);
 | 
						|
    } else {
 | 
						|
      // Emit a weak global function referring to the initialization function.
 | 
						|
      // This function will not exist if the TU defining the thread_local
 | 
						|
      // variable in question does not need any dynamic initialization for
 | 
						|
      // its thread_local variables.
 | 
						|
      llvm::FunctionType *FnTy = llvm::FunctionType::get(CGM.VoidTy, false);
 | 
						|
      Init = llvm::Function::Create(
 | 
						|
          FnTy, llvm::GlobalVariable::ExternalWeakLinkage, InitFnName.str(),
 | 
						|
          &CGM.getModule());
 | 
						|
    }
 | 
						|
 | 
						|
    if (Init)
 | 
						|
      Init->setVisibility(Var->getVisibility());
 | 
						|
 | 
						|
    llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Var);
 | 
						|
    llvm::LLVMContext &Context = CGM.getModule().getContext();
 | 
						|
    llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper);
 | 
						|
    CGBuilderTy Builder(CGM, Entry);
 | 
						|
    if (InitIsInitFunc) {
 | 
						|
      if (Init)
 | 
						|
        Builder.CreateCall(Init);
 | 
						|
    } else {
 | 
						|
      // Don't know whether we have an init function. Call it if it exists.
 | 
						|
      llvm::Value *Have = Builder.CreateIsNotNull(Init);
 | 
						|
      llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
 | 
						|
      llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper);
 | 
						|
      Builder.CreateCondBr(Have, InitBB, ExitBB);
 | 
						|
 | 
						|
      Builder.SetInsertPoint(InitBB);
 | 
						|
      Builder.CreateCall(Init);
 | 
						|
      Builder.CreateBr(ExitBB);
 | 
						|
 | 
						|
      Builder.SetInsertPoint(ExitBB);
 | 
						|
    }
 | 
						|
 | 
						|
    // For a reference, the result of the wrapper function is a pointer to
 | 
						|
    // the referenced object.
 | 
						|
    llvm::Value *Val = Var;
 | 
						|
    if (VD->getType()->isReferenceType()) {
 | 
						|
      CharUnits Align = CGM.getContext().getDeclAlign(VD);
 | 
						|
      Val = Builder.CreateAlignedLoad(Val, Align);
 | 
						|
    }
 | 
						|
    if (Val->getType() != Wrapper->getReturnType())
 | 
						|
      Val = Builder.CreatePointerBitCastOrAddrSpaceCast(
 | 
						|
          Val, Wrapper->getReturnType(), "");
 | 
						|
    Builder.CreateRet(Val);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LValue ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
 | 
						|
                                                   const VarDecl *VD,
 | 
						|
                                                   QualType LValType) {
 | 
						|
  QualType T = VD->getType();
 | 
						|
  llvm::Type *Ty = CGF.getTypes().ConvertTypeForMem(T);
 | 
						|
  llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD, Ty);
 | 
						|
  llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Val);
 | 
						|
 | 
						|
  Val = CGF.Builder.CreateCall(Wrapper);
 | 
						|
 | 
						|
  LValue LV;
 | 
						|
  if (VD->getType()->isReferenceType())
 | 
						|
    LV = CGF.MakeNaturalAlignAddrLValue(Val, LValType);
 | 
						|
  else
 | 
						|
    LV = CGF.MakeAddrLValue(Val, LValType, CGF.getContext().getDeclAlign(VD));
 | 
						|
  // FIXME: need setObjCGCLValueClass?
 | 
						|
  return LV;
 | 
						|
}
 | 
						|
 | 
						|
/// Return whether the given global decl needs a VTT parameter, which it does
 | 
						|
/// if it's a base constructor or destructor with virtual bases.
 | 
						|
bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) {
 | 
						|
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
 | 
						|
  
 | 
						|
  // We don't have any virtual bases, just return early.
 | 
						|
  if (!MD->getParent()->getNumVBases())
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Check if we have a base constructor.
 | 
						|
  if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Check if we have a base destructor.
 | 
						|
  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
 | 
						|
    return true;
 | 
						|
  
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class ItaniumRTTIBuilder {
 | 
						|
  CodeGenModule &CGM;  // Per-module state.
 | 
						|
  llvm::LLVMContext &VMContext;
 | 
						|
  const ItaniumCXXABI &CXXABI;  // Per-module state.
 | 
						|
 | 
						|
  /// Fields - The fields of the RTTI descriptor currently being built.
 | 
						|
  SmallVector<llvm::Constant *, 16> Fields;
 | 
						|
 | 
						|
  /// GetAddrOfTypeName - Returns the mangled type name of the given type.
 | 
						|
  llvm::GlobalVariable *
 | 
						|
  GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage);
 | 
						|
 | 
						|
  /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI
 | 
						|
  /// descriptor of the given type.
 | 
						|
  llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty);
 | 
						|
 | 
						|
  /// BuildVTablePointer - Build the vtable pointer for the given type.
 | 
						|
  void BuildVTablePointer(const Type *Ty);
 | 
						|
 | 
						|
  /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
 | 
						|
  /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b.
 | 
						|
  void BuildSIClassTypeInfo(const CXXRecordDecl *RD);
 | 
						|
 | 
						|
  /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
 | 
						|
  /// classes with bases that do not satisfy the abi::__si_class_type_info
 | 
						|
  /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
 | 
						|
  void BuildVMIClassTypeInfo(const CXXRecordDecl *RD);
 | 
						|
 | 
						|
  /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used
 | 
						|
  /// for pointer types.
 | 
						|
  void BuildPointerTypeInfo(QualType PointeeTy);
 | 
						|
 | 
						|
  /// BuildObjCObjectTypeInfo - Build the appropriate kind of
 | 
						|
  /// type_info for an object type.
 | 
						|
  void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty);
 | 
						|
 | 
						|
  /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
 | 
						|
  /// struct, used for member pointer types.
 | 
						|
  void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty);
 | 
						|
 | 
						|
public:
 | 
						|
  ItaniumRTTIBuilder(const ItaniumCXXABI &ABI)
 | 
						|
      : CGM(ABI.CGM), VMContext(CGM.getModule().getContext()), CXXABI(ABI) {}
 | 
						|
 | 
						|
  // Pointer type info flags.
 | 
						|
  enum {
 | 
						|
    /// PTI_Const - Type has const qualifier.
 | 
						|
    PTI_Const = 0x1,
 | 
						|
 | 
						|
    /// PTI_Volatile - Type has volatile qualifier.
 | 
						|
    PTI_Volatile = 0x2,
 | 
						|
 | 
						|
    /// PTI_Restrict - Type has restrict qualifier.
 | 
						|
    PTI_Restrict = 0x4,
 | 
						|
 | 
						|
    /// PTI_Incomplete - Type is incomplete.
 | 
						|
    PTI_Incomplete = 0x8,
 | 
						|
 | 
						|
    /// PTI_ContainingClassIncomplete - Containing class is incomplete.
 | 
						|
    /// (in pointer to member).
 | 
						|
    PTI_ContainingClassIncomplete = 0x10
 | 
						|
  };
 | 
						|
 | 
						|
  // VMI type info flags.
 | 
						|
  enum {
 | 
						|
    /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance.
 | 
						|
    VMI_NonDiamondRepeat = 0x1,
 | 
						|
 | 
						|
    /// VMI_DiamondShaped - Class is diamond shaped.
 | 
						|
    VMI_DiamondShaped = 0x2
 | 
						|
  };
 | 
						|
 | 
						|
  // Base class type info flags.
 | 
						|
  enum {
 | 
						|
    /// BCTI_Virtual - Base class is virtual.
 | 
						|
    BCTI_Virtual = 0x1,
 | 
						|
 | 
						|
    /// BCTI_Public - Base class is public.
 | 
						|
    BCTI_Public = 0x2
 | 
						|
  };
 | 
						|
 | 
						|
  /// BuildTypeInfo - Build the RTTI type info struct for the given type.
 | 
						|
  ///
 | 
						|
  /// \param Force - true to force the creation of this RTTI value
 | 
						|
  llvm::Constant *BuildTypeInfo(QualType Ty, bool Force = false);
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
llvm::GlobalVariable *ItaniumRTTIBuilder::GetAddrOfTypeName(
 | 
						|
    QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage) {
 | 
						|
  SmallString<256> Name;
 | 
						|
  llvm::raw_svector_ostream Out(Name);
 | 
						|
  CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out);
 | 
						|
 | 
						|
  // We know that the mangled name of the type starts at index 4 of the
 | 
						|
  // mangled name of the typename, so we can just index into it in order to
 | 
						|
  // get the mangled name of the type.
 | 
						|
  llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext,
 | 
						|
                                                            Name.substr(4));
 | 
						|
 | 
						|
  llvm::GlobalVariable *GV =
 | 
						|
    CGM.CreateOrReplaceCXXRuntimeVariable(Name, Init->getType(), Linkage);
 | 
						|
 | 
						|
  GV->setInitializer(Init);
 | 
						|
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *
 | 
						|
ItaniumRTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) {
 | 
						|
  // Mangle the RTTI name.
 | 
						|
  SmallString<256> Name;
 | 
						|
  llvm::raw_svector_ostream Out(Name);
 | 
						|
  CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
 | 
						|
 | 
						|
  // Look for an existing global.
 | 
						|
  llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name);
 | 
						|
 | 
						|
  if (!GV) {
 | 
						|
    // Create a new global variable.
 | 
						|
    GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
 | 
						|
                                  /*Constant=*/true,
 | 
						|
                                  llvm::GlobalValue::ExternalLinkage, nullptr,
 | 
						|
                                  Name);
 | 
						|
    if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
 | 
						|
      const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
 | 
						|
      if (RD->hasAttr<DLLImportAttr>())
 | 
						|
        GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
 | 
						|
}
 | 
						|
 | 
						|
/// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type
 | 
						|
/// info for that type is defined in the standard library.
 | 
						|
static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) {
 | 
						|
  // Itanium C++ ABI 2.9.2:
 | 
						|
  //   Basic type information (e.g. for "int", "bool", etc.) will be kept in
 | 
						|
  //   the run-time support library. Specifically, the run-time support
 | 
						|
  //   library should contain type_info objects for the types X, X* and
 | 
						|
  //   X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char,
 | 
						|
  //   unsigned char, signed char, short, unsigned short, int, unsigned int,
 | 
						|
  //   long, unsigned long, long long, unsigned long long, float, double,
 | 
						|
  //   long double, char16_t, char32_t, and the IEEE 754r decimal and
 | 
						|
  //   half-precision floating point types.
 | 
						|
  switch (Ty->getKind()) {
 | 
						|
    case BuiltinType::Void:
 | 
						|
    case BuiltinType::NullPtr:
 | 
						|
    case BuiltinType::Bool:
 | 
						|
    case BuiltinType::WChar_S:
 | 
						|
    case BuiltinType::WChar_U:
 | 
						|
    case BuiltinType::Char_U:
 | 
						|
    case BuiltinType::Char_S:
 | 
						|
    case BuiltinType::UChar:
 | 
						|
    case BuiltinType::SChar:
 | 
						|
    case BuiltinType::Short:
 | 
						|
    case BuiltinType::UShort:
 | 
						|
    case BuiltinType::Int:
 | 
						|
    case BuiltinType::UInt:
 | 
						|
    case BuiltinType::Long:
 | 
						|
    case BuiltinType::ULong:
 | 
						|
    case BuiltinType::LongLong:
 | 
						|
    case BuiltinType::ULongLong:
 | 
						|
    case BuiltinType::Half:
 | 
						|
    case BuiltinType::Float:
 | 
						|
    case BuiltinType::Double:
 | 
						|
    case BuiltinType::LongDouble:
 | 
						|
    case BuiltinType::Char16:
 | 
						|
    case BuiltinType::Char32:
 | 
						|
    case BuiltinType::Int128:
 | 
						|
    case BuiltinType::UInt128:
 | 
						|
    case BuiltinType::OCLImage1d:
 | 
						|
    case BuiltinType::OCLImage1dArray:
 | 
						|
    case BuiltinType::OCLImage1dBuffer:
 | 
						|
    case BuiltinType::OCLImage2d:
 | 
						|
    case BuiltinType::OCLImage2dArray:
 | 
						|
    case BuiltinType::OCLImage3d:
 | 
						|
    case BuiltinType::OCLSampler:
 | 
						|
    case BuiltinType::OCLEvent:
 | 
						|
      return true;
 | 
						|
 | 
						|
    case BuiltinType::Dependent:
 | 
						|
#define BUILTIN_TYPE(Id, SingletonId)
 | 
						|
#define PLACEHOLDER_TYPE(Id, SingletonId) \
 | 
						|
    case BuiltinType::Id:
 | 
						|
#include "clang/AST/BuiltinTypes.def"
 | 
						|
      llvm_unreachable("asking for RRTI for a placeholder type!");
 | 
						|
 | 
						|
    case BuiltinType::ObjCId:
 | 
						|
    case BuiltinType::ObjCClass:
 | 
						|
    case BuiltinType::ObjCSel:
 | 
						|
      llvm_unreachable("FIXME: Objective-C types are unsupported!");
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid BuiltinType Kind!");
 | 
						|
}
 | 
						|
 | 
						|
static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) {
 | 
						|
  QualType PointeeTy = PointerTy->getPointeeType();
 | 
						|
  const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy);
 | 
						|
  if (!BuiltinTy)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check the qualifiers.
 | 
						|
  Qualifiers Quals = PointeeTy.getQualifiers();
 | 
						|
  Quals.removeConst();
 | 
						|
 | 
						|
  if (!Quals.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return TypeInfoIsInStandardLibrary(BuiltinTy);
 | 
						|
}
 | 
						|
 | 
						|
/// IsStandardLibraryRTTIDescriptor - Returns whether the type
 | 
						|
/// information for the given type exists in the standard library.
 | 
						|
static bool IsStandardLibraryRTTIDescriptor(QualType Ty) {
 | 
						|
  // Type info for builtin types is defined in the standard library.
 | 
						|
  if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty))
 | 
						|
    return TypeInfoIsInStandardLibrary(BuiltinTy);
 | 
						|
 | 
						|
  // Type info for some pointer types to builtin types is defined in the
 | 
						|
  // standard library.
 | 
						|
  if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
 | 
						|
    return TypeInfoIsInStandardLibrary(PointerTy);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// ShouldUseExternalRTTIDescriptor - Returns whether the type information for
 | 
						|
/// the given type exists somewhere else, and that we should not emit the type
 | 
						|
/// information in this translation unit.  Assumes that it is not a
 | 
						|
/// standard-library type.
 | 
						|
static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM,
 | 
						|
                                            QualType Ty) {
 | 
						|
  ASTContext &Context = CGM.getContext();
 | 
						|
 | 
						|
  // If RTTI is disabled, assume it might be disabled in the
 | 
						|
  // translation unit that defines any potential key function, too.
 | 
						|
  if (!Context.getLangOpts().RTTI) return false;
 | 
						|
 | 
						|
  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
 | 
						|
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
 | 
						|
    if (!RD->hasDefinition())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (!RD->isDynamicClass())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // FIXME: this may need to be reconsidered if the key function
 | 
						|
    // changes.
 | 
						|
    // N.B. We must always emit the RTTI data ourselves if there exists a key
 | 
						|
    // function.
 | 
						|
    bool IsDLLImport = RD->hasAttr<DLLImportAttr>();
 | 
						|
    if (CGM.getVTables().isVTableExternal(RD))
 | 
						|
      return IsDLLImport ? false : true;
 | 
						|
 | 
						|
    if (IsDLLImport)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// IsIncompleteClassType - Returns whether the given record type is incomplete.
 | 
						|
static bool IsIncompleteClassType(const RecordType *RecordTy) {
 | 
						|
  return !RecordTy->getDecl()->isCompleteDefinition();
 | 
						|
}
 | 
						|
 | 
						|
/// ContainsIncompleteClassType - Returns whether the given type contains an
 | 
						|
/// incomplete class type. This is true if
 | 
						|
///
 | 
						|
///   * The given type is an incomplete class type.
 | 
						|
///   * The given type is a pointer type whose pointee type contains an
 | 
						|
///     incomplete class type.
 | 
						|
///   * The given type is a member pointer type whose class is an incomplete
 | 
						|
///     class type.
 | 
						|
///   * The given type is a member pointer type whoise pointee type contains an
 | 
						|
///     incomplete class type.
 | 
						|
/// is an indirect or direct pointer to an incomplete class type.
 | 
						|
static bool ContainsIncompleteClassType(QualType Ty) {
 | 
						|
  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
 | 
						|
    if (IsIncompleteClassType(RecordTy))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty))
 | 
						|
    return ContainsIncompleteClassType(PointerTy->getPointeeType());
 | 
						|
 | 
						|
  if (const MemberPointerType *MemberPointerTy =
 | 
						|
      dyn_cast<MemberPointerType>(Ty)) {
 | 
						|
    // Check if the class type is incomplete.
 | 
						|
    const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass());
 | 
						|
    if (IsIncompleteClassType(ClassType))
 | 
						|
      return true;
 | 
						|
 | 
						|
    return ContainsIncompleteClassType(MemberPointerTy->getPointeeType());
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// CanUseSingleInheritance - Return whether the given record decl has a "single,
 | 
						|
// public, non-virtual base at offset zero (i.e. the derived class is dynamic
 | 
						|
// iff the base is)", according to Itanium C++ ABI, 2.95p6b.
 | 
						|
static bool CanUseSingleInheritance(const CXXRecordDecl *RD) {
 | 
						|
  // Check the number of bases.
 | 
						|
  if (RD->getNumBases() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the base.
 | 
						|
  CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin();
 | 
						|
 | 
						|
  // Check that the base is not virtual.
 | 
						|
  if (Base->isVirtual())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the base is public.
 | 
						|
  if (Base->getAccessSpecifier() != AS_public)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the class is dynamic iff the base is.
 | 
						|
  const CXXRecordDecl *BaseDecl =
 | 
						|
    cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | 
						|
  if (!BaseDecl->isEmpty() &&
 | 
						|
      BaseDecl->isDynamicClass() != RD->isDynamicClass())
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumRTTIBuilder::BuildVTablePointer(const Type *Ty) {
 | 
						|
  // abi::__class_type_info.
 | 
						|
  static const char * const ClassTypeInfo =
 | 
						|
    "_ZTVN10__cxxabiv117__class_type_infoE";
 | 
						|
  // abi::__si_class_type_info.
 | 
						|
  static const char * const SIClassTypeInfo =
 | 
						|
    "_ZTVN10__cxxabiv120__si_class_type_infoE";
 | 
						|
  // abi::__vmi_class_type_info.
 | 
						|
  static const char * const VMIClassTypeInfo =
 | 
						|
    "_ZTVN10__cxxabiv121__vmi_class_type_infoE";
 | 
						|
 | 
						|
  const char *VTableName = nullptr;
 | 
						|
 | 
						|
  switch (Ty->getTypeClass()) {
 | 
						|
#define TYPE(Class, Base)
 | 
						|
#define ABSTRACT_TYPE(Class, Base)
 | 
						|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
 | 
						|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | 
						|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
 | 
						|
 | 
						|
  case Type::LValueReference:
 | 
						|
  case Type::RValueReference:
 | 
						|
    llvm_unreachable("References shouldn't get here");
 | 
						|
 | 
						|
  case Type::Auto:
 | 
						|
    llvm_unreachable("Undeduced auto type shouldn't get here");
 | 
						|
 | 
						|
  case Type::Builtin:
 | 
						|
  // GCC treats vector and complex types as fundamental types.
 | 
						|
  case Type::Vector:
 | 
						|
  case Type::ExtVector:
 | 
						|
  case Type::Complex:
 | 
						|
  case Type::Atomic:
 | 
						|
  // FIXME: GCC treats block pointers as fundamental types?!
 | 
						|
  case Type::BlockPointer:
 | 
						|
    // abi::__fundamental_type_info.
 | 
						|
    VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE";
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::ConstantArray:
 | 
						|
  case Type::IncompleteArray:
 | 
						|
  case Type::VariableArray:
 | 
						|
    // abi::__array_type_info.
 | 
						|
    VTableName = "_ZTVN10__cxxabiv117__array_type_infoE";
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::FunctionNoProto:
 | 
						|
  case Type::FunctionProto:
 | 
						|
    // abi::__function_type_info.
 | 
						|
    VTableName = "_ZTVN10__cxxabiv120__function_type_infoE";
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::Enum:
 | 
						|
    // abi::__enum_type_info.
 | 
						|
    VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE";
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::Record: {
 | 
						|
    const CXXRecordDecl *RD =
 | 
						|
      cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
 | 
						|
 | 
						|
    if (!RD->hasDefinition() || !RD->getNumBases()) {
 | 
						|
      VTableName = ClassTypeInfo;
 | 
						|
    } else if (CanUseSingleInheritance(RD)) {
 | 
						|
      VTableName = SIClassTypeInfo;
 | 
						|
    } else {
 | 
						|
      VTableName = VMIClassTypeInfo;
 | 
						|
    }
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ObjCObject:
 | 
						|
    // Ignore protocol qualifiers.
 | 
						|
    Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr();
 | 
						|
 | 
						|
    // Handle id and Class.
 | 
						|
    if (isa<BuiltinType>(Ty)) {
 | 
						|
      VTableName = ClassTypeInfo;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(isa<ObjCInterfaceType>(Ty));
 | 
						|
    // Fall through.
 | 
						|
 | 
						|
  case Type::ObjCInterface:
 | 
						|
    if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) {
 | 
						|
      VTableName = SIClassTypeInfo;
 | 
						|
    } else {
 | 
						|
      VTableName = ClassTypeInfo;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::ObjCObjectPointer:
 | 
						|
  case Type::Pointer:
 | 
						|
    // abi::__pointer_type_info.
 | 
						|
    VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE";
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::MemberPointer:
 | 
						|
    // abi::__pointer_to_member_type_info.
 | 
						|
    VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *VTable =
 | 
						|
    CGM.getModule().getOrInsertGlobal(VTableName, CGM.Int8PtrTy);
 | 
						|
 | 
						|
  llvm::Type *PtrDiffTy =
 | 
						|
    CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType());
 | 
						|
 | 
						|
  // The vtable address point is 2.
 | 
						|
  llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2);
 | 
						|
  VTable =
 | 
						|
      llvm::ConstantExpr::getInBoundsGetElementPtr(CGM.Int8PtrTy, VTable, Two);
 | 
						|
  VTable = llvm::ConstantExpr::getBitCast(VTable, CGM.Int8PtrTy);
 | 
						|
 | 
						|
  Fields.push_back(VTable);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Return the linkage that the type info and type info name constants
 | 
						|
/// should have for the given type.
 | 
						|
static llvm::GlobalVariable::LinkageTypes getTypeInfoLinkage(CodeGenModule &CGM,
 | 
						|
                                                             QualType Ty) {
 | 
						|
  // Itanium C++ ABI 2.9.5p7:
 | 
						|
  //   In addition, it and all of the intermediate abi::__pointer_type_info
 | 
						|
  //   structs in the chain down to the abi::__class_type_info for the
 | 
						|
  //   incomplete class type must be prevented from resolving to the
 | 
						|
  //   corresponding type_info structs for the complete class type, possibly
 | 
						|
  //   by making them local static objects. Finally, a dummy class RTTI is
 | 
						|
  //   generated for the incomplete type that will not resolve to the final
 | 
						|
  //   complete class RTTI (because the latter need not exist), possibly by
 | 
						|
  //   making it a local static object.
 | 
						|
  if (ContainsIncompleteClassType(Ty))
 | 
						|
    return llvm::GlobalValue::InternalLinkage;
 | 
						|
 | 
						|
  switch (Ty->getLinkage()) {
 | 
						|
  case NoLinkage:
 | 
						|
  case InternalLinkage:
 | 
						|
  case UniqueExternalLinkage:
 | 
						|
    return llvm::GlobalValue::InternalLinkage;
 | 
						|
 | 
						|
  case VisibleNoLinkage:
 | 
						|
  case ExternalLinkage:
 | 
						|
    if (!CGM.getLangOpts().RTTI) {
 | 
						|
      // RTTI is not enabled, which means that this type info struct is going
 | 
						|
      // to be used for exception handling. Give it linkonce_odr linkage.
 | 
						|
      return llvm::GlobalValue::LinkOnceODRLinkage;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const RecordType *Record = dyn_cast<RecordType>(Ty)) {
 | 
						|
      const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
 | 
						|
      if (RD->hasAttr<WeakAttr>())
 | 
						|
        return llvm::GlobalValue::WeakODRLinkage;
 | 
						|
      if (RD->isDynamicClass()) {
 | 
						|
        llvm::GlobalValue::LinkageTypes LT = CGM.getVTableLinkage(RD);
 | 
						|
        // MinGW won't export the RTTI information when there is a key function.
 | 
						|
        // Make sure we emit our own copy instead of attempting to dllimport it.
 | 
						|
        if (RD->hasAttr<DLLImportAttr>() &&
 | 
						|
            llvm::GlobalValue::isAvailableExternallyLinkage(LT))
 | 
						|
          LT = llvm::GlobalValue::LinkOnceODRLinkage;
 | 
						|
        return LT;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    return llvm::GlobalValue::LinkOnceODRLinkage;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm_unreachable("Invalid linkage!");
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo(QualType Ty, bool Force) {
 | 
						|
  // We want to operate on the canonical type.
 | 
						|
  Ty = CGM.getContext().getCanonicalType(Ty);
 | 
						|
 | 
						|
  // Check if we've already emitted an RTTI descriptor for this type.
 | 
						|
  SmallString<256> Name;
 | 
						|
  llvm::raw_svector_ostream Out(Name);
 | 
						|
  CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out);
 | 
						|
 | 
						|
  llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name);
 | 
						|
  if (OldGV && !OldGV->isDeclaration()) {
 | 
						|
    assert(!OldGV->hasAvailableExternallyLinkage() &&
 | 
						|
           "available_externally typeinfos not yet implemented");
 | 
						|
 | 
						|
    return llvm::ConstantExpr::getBitCast(OldGV, CGM.Int8PtrTy);
 | 
						|
  }
 | 
						|
 | 
						|
  // Check if there is already an external RTTI descriptor for this type.
 | 
						|
  bool IsStdLib = IsStandardLibraryRTTIDescriptor(Ty);
 | 
						|
  if (!Force && (IsStdLib || ShouldUseExternalRTTIDescriptor(CGM, Ty)))
 | 
						|
    return GetAddrOfExternalRTTIDescriptor(Ty);
 | 
						|
 | 
						|
  // Emit the standard library with external linkage.
 | 
						|
  llvm::GlobalVariable::LinkageTypes Linkage;
 | 
						|
  if (IsStdLib)
 | 
						|
    Linkage = llvm::GlobalValue::ExternalLinkage;
 | 
						|
  else
 | 
						|
    Linkage = getTypeInfoLinkage(CGM, Ty);
 | 
						|
 | 
						|
  // Add the vtable pointer.
 | 
						|
  BuildVTablePointer(cast<Type>(Ty));
 | 
						|
 | 
						|
  // And the name.
 | 
						|
  llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage);
 | 
						|
  llvm::Constant *TypeNameField;
 | 
						|
 | 
						|
  // If we're supposed to demote the visibility, be sure to set a flag
 | 
						|
  // to use a string comparison for type_info comparisons.
 | 
						|
  ItaniumCXXABI::RTTIUniquenessKind RTTIUniqueness =
 | 
						|
      CXXABI.classifyRTTIUniqueness(Ty, Linkage);
 | 
						|
  if (RTTIUniqueness != ItaniumCXXABI::RUK_Unique) {
 | 
						|
    // The flag is the sign bit, which on ARM64 is defined to be clear
 | 
						|
    // for global pointers.  This is very ARM64-specific.
 | 
						|
    TypeNameField = llvm::ConstantExpr::getPtrToInt(TypeName, CGM.Int64Ty);
 | 
						|
    llvm::Constant *flag =
 | 
						|
        llvm::ConstantInt::get(CGM.Int64Ty, ((uint64_t)1) << 63);
 | 
						|
    TypeNameField = llvm::ConstantExpr::getAdd(TypeNameField, flag);
 | 
						|
    TypeNameField =
 | 
						|
        llvm::ConstantExpr::getIntToPtr(TypeNameField, CGM.Int8PtrTy);
 | 
						|
  } else {
 | 
						|
    TypeNameField = llvm::ConstantExpr::getBitCast(TypeName, CGM.Int8PtrTy);
 | 
						|
  }
 | 
						|
  Fields.push_back(TypeNameField);
 | 
						|
 | 
						|
  switch (Ty->getTypeClass()) {
 | 
						|
#define TYPE(Class, Base)
 | 
						|
#define ABSTRACT_TYPE(Class, Base)
 | 
						|
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
 | 
						|
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
 | 
						|
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
 | 
						|
#include "clang/AST/TypeNodes.def"
 | 
						|
    llvm_unreachable("Non-canonical and dependent types shouldn't get here");
 | 
						|
 | 
						|
  // GCC treats vector types as fundamental types.
 | 
						|
  case Type::Builtin:
 | 
						|
  case Type::Vector:
 | 
						|
  case Type::ExtVector:
 | 
						|
  case Type::Complex:
 | 
						|
  case Type::BlockPointer:
 | 
						|
    // Itanium C++ ABI 2.9.5p4:
 | 
						|
    // abi::__fundamental_type_info adds no data members to std::type_info.
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::LValueReference:
 | 
						|
  case Type::RValueReference:
 | 
						|
    llvm_unreachable("References shouldn't get here");
 | 
						|
 | 
						|
  case Type::Auto:
 | 
						|
    llvm_unreachable("Undeduced auto type shouldn't get here");
 | 
						|
 | 
						|
  case Type::ConstantArray:
 | 
						|
  case Type::IncompleteArray:
 | 
						|
  case Type::VariableArray:
 | 
						|
    // Itanium C++ ABI 2.9.5p5:
 | 
						|
    // abi::__array_type_info adds no data members to std::type_info.
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::FunctionNoProto:
 | 
						|
  case Type::FunctionProto:
 | 
						|
    // Itanium C++ ABI 2.9.5p5:
 | 
						|
    // abi::__function_type_info adds no data members to std::type_info.
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::Enum:
 | 
						|
    // Itanium C++ ABI 2.9.5p5:
 | 
						|
    // abi::__enum_type_info adds no data members to std::type_info.
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::Record: {
 | 
						|
    const CXXRecordDecl *RD =
 | 
						|
      cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl());
 | 
						|
    if (!RD->hasDefinition() || !RD->getNumBases()) {
 | 
						|
      // We don't need to emit any fields.
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CanUseSingleInheritance(RD))
 | 
						|
      BuildSIClassTypeInfo(RD);
 | 
						|
    else
 | 
						|
      BuildVMIClassTypeInfo(RD);
 | 
						|
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Type::ObjCObject:
 | 
						|
  case Type::ObjCInterface:
 | 
						|
    BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::ObjCObjectPointer:
 | 
						|
    BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::Pointer:
 | 
						|
    BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType());
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::MemberPointer:
 | 
						|
    BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty));
 | 
						|
    break;
 | 
						|
 | 
						|
  case Type::Atomic:
 | 
						|
    // No fields, at least for the moment.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields);
 | 
						|
 | 
						|
  llvm::Module &M = CGM.getModule();
 | 
						|
  llvm::GlobalVariable *GV =
 | 
						|
      new llvm::GlobalVariable(M, Init->getType(),
 | 
						|
                               /*Constant=*/true, Linkage, Init, Name);
 | 
						|
 | 
						|
  // If there's already an old global variable, replace it with the new one.
 | 
						|
  if (OldGV) {
 | 
						|
    GV->takeName(OldGV);
 | 
						|
    llvm::Constant *NewPtr =
 | 
						|
      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
 | 
						|
    OldGV->replaceAllUsesWith(NewPtr);
 | 
						|
    OldGV->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  if (CGM.supportsCOMDAT() && GV->isWeakForLinker())
 | 
						|
    GV->setComdat(M.getOrInsertComdat(GV->getName()));
 | 
						|
 | 
						|
  // The Itanium ABI specifies that type_info objects must be globally
 | 
						|
  // unique, with one exception: if the type is an incomplete class
 | 
						|
  // type or a (possibly indirect) pointer to one.  That exception
 | 
						|
  // affects the general case of comparing type_info objects produced
 | 
						|
  // by the typeid operator, which is why the comparison operators on
 | 
						|
  // std::type_info generally use the type_info name pointers instead
 | 
						|
  // of the object addresses.  However, the language's built-in uses
 | 
						|
  // of RTTI generally require class types to be complete, even when
 | 
						|
  // manipulating pointers to those class types.  This allows the
 | 
						|
  // implementation of dynamic_cast to rely on address equality tests,
 | 
						|
  // which is much faster.
 | 
						|
 | 
						|
  // All of this is to say that it's important that both the type_info
 | 
						|
  // object and the type_info name be uniqued when weakly emitted.
 | 
						|
 | 
						|
  // Give the type_info object and name the formal visibility of the
 | 
						|
  // type itself.
 | 
						|
  llvm::GlobalValue::VisibilityTypes llvmVisibility;
 | 
						|
  if (llvm::GlobalValue::isLocalLinkage(Linkage))
 | 
						|
    // If the linkage is local, only default visibility makes sense.
 | 
						|
    llvmVisibility = llvm::GlobalValue::DefaultVisibility;
 | 
						|
  else if (RTTIUniqueness == ItaniumCXXABI::RUK_NonUniqueHidden)
 | 
						|
    llvmVisibility = llvm::GlobalValue::HiddenVisibility;
 | 
						|
  else
 | 
						|
    llvmVisibility = CodeGenModule::GetLLVMVisibility(Ty->getVisibility());
 | 
						|
  TypeName->setVisibility(llvmVisibility);
 | 
						|
  GV->setVisibility(llvmVisibility);
 | 
						|
 | 
						|
  return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy);
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeQualifierFlags - Compute the pointer type info flags from the
 | 
						|
/// given qualifier.
 | 
						|
static unsigned ComputeQualifierFlags(Qualifiers Quals) {
 | 
						|
  unsigned Flags = 0;
 | 
						|
 | 
						|
  if (Quals.hasConst())
 | 
						|
    Flags |= ItaniumRTTIBuilder::PTI_Const;
 | 
						|
  if (Quals.hasVolatile())
 | 
						|
    Flags |= ItaniumRTTIBuilder::PTI_Volatile;
 | 
						|
  if (Quals.hasRestrict())
 | 
						|
    Flags |= ItaniumRTTIBuilder::PTI_Restrict;
 | 
						|
 | 
						|
  return Flags;
 | 
						|
}
 | 
						|
 | 
						|
/// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info
 | 
						|
/// for the given Objective-C object type.
 | 
						|
void ItaniumRTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) {
 | 
						|
  // Drop qualifiers.
 | 
						|
  const Type *T = OT->getBaseType().getTypePtr();
 | 
						|
  assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T));
 | 
						|
 | 
						|
  // The builtin types are abi::__class_type_infos and don't require
 | 
						|
  // extra fields.
 | 
						|
  if (isa<BuiltinType>(T)) return;
 | 
						|
 | 
						|
  ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl();
 | 
						|
  ObjCInterfaceDecl *Super = Class->getSuperClass();
 | 
						|
 | 
						|
  // Root classes are also __class_type_info.
 | 
						|
  if (!Super) return;
 | 
						|
 | 
						|
  QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super);
 | 
						|
 | 
						|
  // Everything else is single inheritance.
 | 
						|
  llvm::Constant *BaseTypeInfo =
 | 
						|
      ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(SuperTy);
 | 
						|
  Fields.push_back(BaseTypeInfo);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single
 | 
						|
/// inheritance, according to the Itanium C++ ABI, 2.95p6b.
 | 
						|
void ItaniumRTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) {
 | 
						|
  // Itanium C++ ABI 2.9.5p6b:
 | 
						|
  // It adds to abi::__class_type_info a single member pointing to the
 | 
						|
  // type_info structure for the base type,
 | 
						|
  llvm::Constant *BaseTypeInfo =
 | 
						|
    ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(RD->bases_begin()->getType());
 | 
						|
  Fields.push_back(BaseTypeInfo);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// SeenBases - Contains virtual and non-virtual bases seen when traversing
 | 
						|
  /// a class hierarchy.
 | 
						|
  struct SeenBases {
 | 
						|
    llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases;
 | 
						|
    llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases;
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in
 | 
						|
/// abi::__vmi_class_type_info.
 | 
						|
///
 | 
						|
static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base,
 | 
						|
                                             SeenBases &Bases) {
 | 
						|
 | 
						|
  unsigned Flags = 0;
 | 
						|
 | 
						|
  const CXXRecordDecl *BaseDecl =
 | 
						|
    cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
 | 
						|
 | 
						|
  if (Base->isVirtual()) {
 | 
						|
    // Mark the virtual base as seen.
 | 
						|
    if (!Bases.VirtualBases.insert(BaseDecl).second) {
 | 
						|
      // If this virtual base has been seen before, then the class is diamond
 | 
						|
      // shaped.
 | 
						|
      Flags |= ItaniumRTTIBuilder::VMI_DiamondShaped;
 | 
						|
    } else {
 | 
						|
      if (Bases.NonVirtualBases.count(BaseDecl))
 | 
						|
        Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Mark the non-virtual base as seen.
 | 
						|
    if (!Bases.NonVirtualBases.insert(BaseDecl).second) {
 | 
						|
      // If this non-virtual base has been seen before, then the class has non-
 | 
						|
      // diamond shaped repeated inheritance.
 | 
						|
      Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat;
 | 
						|
    } else {
 | 
						|
      if (Bases.VirtualBases.count(BaseDecl))
 | 
						|
        Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk all bases.
 | 
						|
  for (const auto &I : BaseDecl->bases())
 | 
						|
    Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases);
 | 
						|
 | 
						|
  return Flags;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) {
 | 
						|
  unsigned Flags = 0;
 | 
						|
  SeenBases Bases;
 | 
						|
 | 
						|
  // Walk all bases.
 | 
						|
  for (const auto &I : RD->bases())
 | 
						|
    Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases);
 | 
						|
 | 
						|
  return Flags;
 | 
						|
}
 | 
						|
 | 
						|
/// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for
 | 
						|
/// classes with bases that do not satisfy the abi::__si_class_type_info
 | 
						|
/// constraints, according ti the Itanium C++ ABI, 2.9.5p5c.
 | 
						|
void ItaniumRTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) {
 | 
						|
  llvm::Type *UnsignedIntLTy =
 | 
						|
    CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
 | 
						|
 | 
						|
  // Itanium C++ ABI 2.9.5p6c:
 | 
						|
  //   __flags is a word with flags describing details about the class
 | 
						|
  //   structure, which may be referenced by using the __flags_masks
 | 
						|
  //   enumeration. These flags refer to both direct and indirect bases.
 | 
						|
  unsigned Flags = ComputeVMIClassTypeInfoFlags(RD);
 | 
						|
  Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
 | 
						|
 | 
						|
  // Itanium C++ ABI 2.9.5p6c:
 | 
						|
  //   __base_count is a word with the number of direct proper base class
 | 
						|
  //   descriptions that follow.
 | 
						|
  Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases()));
 | 
						|
 | 
						|
  if (!RD->getNumBases())
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::Type *LongLTy =
 | 
						|
    CGM.getTypes().ConvertType(CGM.getContext().LongTy);
 | 
						|
 | 
						|
  // Now add the base class descriptions.
 | 
						|
 | 
						|
  // Itanium C++ ABI 2.9.5p6c:
 | 
						|
  //   __base_info[] is an array of base class descriptions -- one for every
 | 
						|
  //   direct proper base. Each description is of the type:
 | 
						|
  //
 | 
						|
  //   struct abi::__base_class_type_info {
 | 
						|
  //   public:
 | 
						|
  //     const __class_type_info *__base_type;
 | 
						|
  //     long __offset_flags;
 | 
						|
  //
 | 
						|
  //     enum __offset_flags_masks {
 | 
						|
  //       __virtual_mask = 0x1,
 | 
						|
  //       __public_mask = 0x2,
 | 
						|
  //       __offset_shift = 8
 | 
						|
  //     };
 | 
						|
  //   };
 | 
						|
  for (const auto &Base : RD->bases()) {
 | 
						|
    // The __base_type member points to the RTTI for the base type.
 | 
						|
    Fields.push_back(ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Base.getType()));
 | 
						|
 | 
						|
    const CXXRecordDecl *BaseDecl =
 | 
						|
      cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
 | 
						|
 | 
						|
    int64_t OffsetFlags = 0;
 | 
						|
 | 
						|
    // All but the lower 8 bits of __offset_flags are a signed offset.
 | 
						|
    // For a non-virtual base, this is the offset in the object of the base
 | 
						|
    // subobject. For a virtual base, this is the offset in the virtual table of
 | 
						|
    // the virtual base offset for the virtual base referenced (negative).
 | 
						|
    CharUnits Offset;
 | 
						|
    if (Base.isVirtual())
 | 
						|
      Offset =
 | 
						|
        CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl);
 | 
						|
    else {
 | 
						|
      const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
 | 
						|
      Offset = Layout.getBaseClassOffset(BaseDecl);
 | 
						|
    };
 | 
						|
 | 
						|
    OffsetFlags = uint64_t(Offset.getQuantity()) << 8;
 | 
						|
 | 
						|
    // The low-order byte of __offset_flags contains flags, as given by the
 | 
						|
    // masks from the enumeration __offset_flags_masks.
 | 
						|
    if (Base.isVirtual())
 | 
						|
      OffsetFlags |= BCTI_Virtual;
 | 
						|
    if (Base.getAccessSpecifier() == AS_public)
 | 
						|
      OffsetFlags |= BCTI_Public;
 | 
						|
 | 
						|
    Fields.push_back(llvm::ConstantInt::get(LongLTy, OffsetFlags));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct,
 | 
						|
/// used for pointer types.
 | 
						|
void ItaniumRTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) {
 | 
						|
  Qualifiers Quals;
 | 
						|
  QualType UnqualifiedPointeeTy =
 | 
						|
    CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
 | 
						|
 | 
						|
  // Itanium C++ ABI 2.9.5p7:
 | 
						|
  //   __flags is a flag word describing the cv-qualification and other
 | 
						|
  //   attributes of the type pointed to
 | 
						|
  unsigned Flags = ComputeQualifierFlags(Quals);
 | 
						|
 | 
						|
  // Itanium C++ ABI 2.9.5p7:
 | 
						|
  //   When the abi::__pbase_type_info is for a direct or indirect pointer to an
 | 
						|
  //   incomplete class type, the incomplete target type flag is set.
 | 
						|
  if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
 | 
						|
    Flags |= PTI_Incomplete;
 | 
						|
 | 
						|
  llvm::Type *UnsignedIntLTy =
 | 
						|
    CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
 | 
						|
  Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
 | 
						|
 | 
						|
  // Itanium C++ ABI 2.9.5p7:
 | 
						|
  //  __pointee is a pointer to the std::type_info derivation for the
 | 
						|
  //  unqualified type being pointed to.
 | 
						|
  llvm::Constant *PointeeTypeInfo =
 | 
						|
    ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(UnqualifiedPointeeTy);
 | 
						|
  Fields.push_back(PointeeTypeInfo);
 | 
						|
}
 | 
						|
 | 
						|
/// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info
 | 
						|
/// struct, used for member pointer types.
 | 
						|
void
 | 
						|
ItaniumRTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) {
 | 
						|
  QualType PointeeTy = Ty->getPointeeType();
 | 
						|
 | 
						|
  Qualifiers Quals;
 | 
						|
  QualType UnqualifiedPointeeTy =
 | 
						|
    CGM.getContext().getUnqualifiedArrayType(PointeeTy, Quals);
 | 
						|
 | 
						|
  // Itanium C++ ABI 2.9.5p7:
 | 
						|
  //   __flags is a flag word describing the cv-qualification and other
 | 
						|
  //   attributes of the type pointed to.
 | 
						|
  unsigned Flags = ComputeQualifierFlags(Quals);
 | 
						|
 | 
						|
  const RecordType *ClassType = cast<RecordType>(Ty->getClass());
 | 
						|
 | 
						|
  // Itanium C++ ABI 2.9.5p7:
 | 
						|
  //   When the abi::__pbase_type_info is for a direct or indirect pointer to an
 | 
						|
  //   incomplete class type, the incomplete target type flag is set.
 | 
						|
  if (ContainsIncompleteClassType(UnqualifiedPointeeTy))
 | 
						|
    Flags |= PTI_Incomplete;
 | 
						|
 | 
						|
  if (IsIncompleteClassType(ClassType))
 | 
						|
    Flags |= PTI_ContainingClassIncomplete;
 | 
						|
 | 
						|
  llvm::Type *UnsignedIntLTy =
 | 
						|
    CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy);
 | 
						|
  Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags));
 | 
						|
 | 
						|
  // Itanium C++ ABI 2.9.5p7:
 | 
						|
  //   __pointee is a pointer to the std::type_info derivation for the
 | 
						|
  //   unqualified type being pointed to.
 | 
						|
  llvm::Constant *PointeeTypeInfo =
 | 
						|
    ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(UnqualifiedPointeeTy);
 | 
						|
  Fields.push_back(PointeeTypeInfo);
 | 
						|
 | 
						|
  // Itanium C++ ABI 2.9.5p9:
 | 
						|
  //   __context is a pointer to an abi::__class_type_info corresponding to the
 | 
						|
  //   class type containing the member pointed to
 | 
						|
  //   (e.g., the "A" in "int A::*").
 | 
						|
  Fields.push_back(
 | 
						|
      ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(QualType(ClassType, 0)));
 | 
						|
}
 | 
						|
 | 
						|
llvm::Constant *ItaniumCXXABI::getAddrOfRTTIDescriptor(QualType Ty) {
 | 
						|
  return ItaniumRTTIBuilder(*this).BuildTypeInfo(Ty);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::EmitFundamentalRTTIDescriptor(QualType Type) {
 | 
						|
  QualType PointerType = getContext().getPointerType(Type);
 | 
						|
  QualType PointerTypeConst = getContext().getPointerType(Type.withConst());
 | 
						|
  ItaniumRTTIBuilder(*this).BuildTypeInfo(Type, true);
 | 
						|
  ItaniumRTTIBuilder(*this).BuildTypeInfo(PointerType, true);
 | 
						|
  ItaniumRTTIBuilder(*this).BuildTypeInfo(PointerTypeConst, true);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::EmitFundamentalRTTIDescriptors() {
 | 
						|
  QualType FundamentalTypes[] = {
 | 
						|
      getContext().VoidTy,             getContext().NullPtrTy,
 | 
						|
      getContext().BoolTy,             getContext().WCharTy,
 | 
						|
      getContext().CharTy,             getContext().UnsignedCharTy,
 | 
						|
      getContext().SignedCharTy,       getContext().ShortTy,
 | 
						|
      getContext().UnsignedShortTy,    getContext().IntTy,
 | 
						|
      getContext().UnsignedIntTy,      getContext().LongTy,
 | 
						|
      getContext().UnsignedLongTy,     getContext().LongLongTy,
 | 
						|
      getContext().UnsignedLongLongTy, getContext().HalfTy,
 | 
						|
      getContext().FloatTy,            getContext().DoubleTy,
 | 
						|
      getContext().LongDoubleTy,       getContext().Char16Ty,
 | 
						|
      getContext().Char32Ty,
 | 
						|
  };
 | 
						|
  for (const QualType &FundamentalType : FundamentalTypes)
 | 
						|
    EmitFundamentalRTTIDescriptor(FundamentalType);
 | 
						|
}
 | 
						|
 | 
						|
/// What sort of uniqueness rules should we use for the RTTI for the
 | 
						|
/// given type?
 | 
						|
ItaniumCXXABI::RTTIUniquenessKind ItaniumCXXABI::classifyRTTIUniqueness(
 | 
						|
    QualType CanTy, llvm::GlobalValue::LinkageTypes Linkage) const {
 | 
						|
  if (shouldRTTIBeUnique())
 | 
						|
    return RUK_Unique;
 | 
						|
 | 
						|
  // It's only necessary for linkonce_odr or weak_odr linkage.
 | 
						|
  if (Linkage != llvm::GlobalValue::LinkOnceODRLinkage &&
 | 
						|
      Linkage != llvm::GlobalValue::WeakODRLinkage)
 | 
						|
    return RUK_Unique;
 | 
						|
 | 
						|
  // It's only necessary with default visibility.
 | 
						|
  if (CanTy->getVisibility() != DefaultVisibility)
 | 
						|
    return RUK_Unique;
 | 
						|
 | 
						|
  // If we're not required to publish this symbol, hide it.
 | 
						|
  if (Linkage == llvm::GlobalValue::LinkOnceODRLinkage)
 | 
						|
    return RUK_NonUniqueHidden;
 | 
						|
 | 
						|
  // If we're required to publish this symbol, as we might be under an
 | 
						|
  // explicit instantiation, leave it with default visibility but
 | 
						|
  // enable string-comparisons.
 | 
						|
  assert(Linkage == llvm::GlobalValue::WeakODRLinkage);
 | 
						|
  return RUK_NonUniqueVisible;
 | 
						|
}
 | 
						|
 | 
						|
// Find out how to codegen the complete destructor and constructor
 | 
						|
namespace {
 | 
						|
enum class StructorCodegen { Emit, RAUW, Alias, COMDAT };
 | 
						|
}
 | 
						|
static StructorCodegen getCodegenToUse(CodeGenModule &CGM,
 | 
						|
                                       const CXXMethodDecl *MD) {
 | 
						|
  if (!CGM.getCodeGenOpts().CXXCtorDtorAliases)
 | 
						|
    return StructorCodegen::Emit;
 | 
						|
 | 
						|
  // The complete and base structors are not equivalent if there are any virtual
 | 
						|
  // bases, so emit separate functions.
 | 
						|
  if (MD->getParent()->getNumVBases())
 | 
						|
    return StructorCodegen::Emit;
 | 
						|
 | 
						|
  GlobalDecl AliasDecl;
 | 
						|
  if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
 | 
						|
    AliasDecl = GlobalDecl(DD, Dtor_Complete);
 | 
						|
  } else {
 | 
						|
    const auto *CD = cast<CXXConstructorDecl>(MD);
 | 
						|
    AliasDecl = GlobalDecl(CD, Ctor_Complete);
 | 
						|
  }
 | 
						|
  llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl);
 | 
						|
 | 
						|
  if (llvm::GlobalValue::isDiscardableIfUnused(Linkage))
 | 
						|
    return StructorCodegen::RAUW;
 | 
						|
 | 
						|
  // FIXME: Should we allow available_externally aliases?
 | 
						|
  if (!llvm::GlobalAlias::isValidLinkage(Linkage))
 | 
						|
    return StructorCodegen::RAUW;
 | 
						|
 | 
						|
  if (llvm::GlobalValue::isWeakForLinker(Linkage)) {
 | 
						|
    // Only ELF supports COMDATs with arbitrary names (C5/D5).
 | 
						|
    if (CGM.getTarget().getTriple().isOSBinFormatELF())
 | 
						|
      return StructorCodegen::COMDAT;
 | 
						|
    return StructorCodegen::Emit;
 | 
						|
  }
 | 
						|
 | 
						|
  return StructorCodegen::Alias;
 | 
						|
}
 | 
						|
 | 
						|
static void emitConstructorDestructorAlias(CodeGenModule &CGM,
 | 
						|
                                           GlobalDecl AliasDecl,
 | 
						|
                                           GlobalDecl TargetDecl) {
 | 
						|
  llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl);
 | 
						|
 | 
						|
  StringRef MangledName = CGM.getMangledName(AliasDecl);
 | 
						|
  llvm::GlobalValue *Entry = CGM.GetGlobalValue(MangledName);
 | 
						|
  if (Entry && !Entry->isDeclaration())
 | 
						|
    return;
 | 
						|
 | 
						|
  auto *Aliasee = cast<llvm::GlobalValue>(CGM.GetAddrOfGlobal(TargetDecl));
 | 
						|
  llvm::PointerType *AliasType = Aliasee->getType();
 | 
						|
 | 
						|
  // Create the alias with no name.
 | 
						|
  auto *Alias = llvm::GlobalAlias::create(AliasType, Linkage, "", Aliasee,
 | 
						|
                                          &CGM.getModule());
 | 
						|
 | 
						|
  // Switch any previous uses to the alias.
 | 
						|
  if (Entry) {
 | 
						|
    assert(Entry->getType() == AliasType &&
 | 
						|
           "declaration exists with different type");
 | 
						|
    Alias->takeName(Entry);
 | 
						|
    Entry->replaceAllUsesWith(Alias);
 | 
						|
    Entry->eraseFromParent();
 | 
						|
  } else {
 | 
						|
    Alias->setName(MangledName);
 | 
						|
  }
 | 
						|
 | 
						|
  // Finally, set up the alias with its proper name and attributes.
 | 
						|
  CGM.setAliasAttributes(cast<NamedDecl>(AliasDecl.getDecl()), Alias);
 | 
						|
}
 | 
						|
 | 
						|
void ItaniumCXXABI::emitCXXStructor(const CXXMethodDecl *MD,
 | 
						|
                                    StructorType Type) {
 | 
						|
  auto *CD = dyn_cast<CXXConstructorDecl>(MD);
 | 
						|
  const CXXDestructorDecl *DD = CD ? nullptr : cast<CXXDestructorDecl>(MD);
 | 
						|
 | 
						|
  StructorCodegen CGType = getCodegenToUse(CGM, MD);
 | 
						|
 | 
						|
  if (Type == StructorType::Complete) {
 | 
						|
    GlobalDecl CompleteDecl;
 | 
						|
    GlobalDecl BaseDecl;
 | 
						|
    if (CD) {
 | 
						|
      CompleteDecl = GlobalDecl(CD, Ctor_Complete);
 | 
						|
      BaseDecl = GlobalDecl(CD, Ctor_Base);
 | 
						|
    } else {
 | 
						|
      CompleteDecl = GlobalDecl(DD, Dtor_Complete);
 | 
						|
      BaseDecl = GlobalDecl(DD, Dtor_Base);
 | 
						|
    }
 | 
						|
 | 
						|
    if (CGType == StructorCodegen::Alias || CGType == StructorCodegen::COMDAT) {
 | 
						|
      emitConstructorDestructorAlias(CGM, CompleteDecl, BaseDecl);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (CGType == StructorCodegen::RAUW) {
 | 
						|
      StringRef MangledName = CGM.getMangledName(CompleteDecl);
 | 
						|
      auto *Aliasee = CGM.GetAddrOfGlobal(BaseDecl);
 | 
						|
      CGM.addReplacement(MangledName, Aliasee);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The base destructor is equivalent to the base destructor of its
 | 
						|
  // base class if there is exactly one non-virtual base class with a
 | 
						|
  // non-trivial destructor, there are no fields with a non-trivial
 | 
						|
  // destructor, and the body of the destructor is trivial.
 | 
						|
  if (DD && Type == StructorType::Base && CGType != StructorCodegen::COMDAT &&
 | 
						|
      !CGM.TryEmitBaseDestructorAsAlias(DD))
 | 
						|
    return;
 | 
						|
 | 
						|
  llvm::Function *Fn = CGM.codegenCXXStructor(MD, Type);
 | 
						|
 | 
						|
  if (CGType == StructorCodegen::COMDAT) {
 | 
						|
    SmallString<256> Buffer;
 | 
						|
    llvm::raw_svector_ostream Out(Buffer);
 | 
						|
    if (DD)
 | 
						|
      getMangleContext().mangleCXXDtorComdat(DD, Out);
 | 
						|
    else
 | 
						|
      getMangleContext().mangleCXXCtorComdat(CD, Out);
 | 
						|
    llvm::Comdat *C = CGM.getModule().getOrInsertComdat(Out.str());
 | 
						|
    Fn->setComdat(C);
 | 
						|
  } else {
 | 
						|
    CGM.maybeSetTrivialComdat(*MD, *Fn);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *getBeginCatchFn(CodeGenModule &CGM) {
 | 
						|
  // void *__cxa_begin_catch(void*);
 | 
						|
  llvm::FunctionType *FTy = llvm::FunctionType::get(
 | 
						|
      CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
 | 
						|
 | 
						|
  return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch");
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *getEndCatchFn(CodeGenModule &CGM) {
 | 
						|
  // void __cxa_end_catch();
 | 
						|
  llvm::FunctionType *FTy =
 | 
						|
      llvm::FunctionType::get(CGM.VoidTy, /*IsVarArgs=*/false);
 | 
						|
 | 
						|
  return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch");
 | 
						|
}
 | 
						|
 | 
						|
static llvm::Constant *getGetExceptionPtrFn(CodeGenModule &CGM) {
 | 
						|
  // void *__cxa_get_exception_ptr(void*);
 | 
						|
  llvm::FunctionType *FTy = llvm::FunctionType::get(
 | 
						|
      CGM.Int8PtrTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
 | 
						|
 | 
						|
  return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr");
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// A cleanup to call __cxa_end_catch.  In many cases, the caught
 | 
						|
  /// exception type lets us state definitively that the thrown exception
 | 
						|
  /// type does not have a destructor.  In particular:
 | 
						|
  ///   - Catch-alls tell us nothing, so we have to conservatively
 | 
						|
  ///     assume that the thrown exception might have a destructor.
 | 
						|
  ///   - Catches by reference behave according to their base types.
 | 
						|
  ///   - Catches of non-record types will only trigger for exceptions
 | 
						|
  ///     of non-record types, which never have destructors.
 | 
						|
  ///   - Catches of record types can trigger for arbitrary subclasses
 | 
						|
  ///     of the caught type, so we have to assume the actual thrown
 | 
						|
  ///     exception type might have a throwing destructor, even if the
 | 
						|
  ///     caught type's destructor is trivial or nothrow.
 | 
						|
  struct CallEndCatch final : EHScopeStack::Cleanup {
 | 
						|
    CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {}
 | 
						|
    bool MightThrow;
 | 
						|
 | 
						|
    void Emit(CodeGenFunction &CGF, Flags flags) override {
 | 
						|
      if (!MightThrow) {
 | 
						|
        CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM));
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM));
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// Emits a call to __cxa_begin_catch and enters a cleanup to call
 | 
						|
/// __cxa_end_catch.
 | 
						|
///
 | 
						|
/// \param EndMightThrow - true if __cxa_end_catch might throw
 | 
						|
static llvm::Value *CallBeginCatch(CodeGenFunction &CGF,
 | 
						|
                                   llvm::Value *Exn,
 | 
						|
                                   bool EndMightThrow) {
 | 
						|
  llvm::CallInst *call =
 | 
						|
    CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn);
 | 
						|
 | 
						|
  CGF.EHStack.pushCleanup<CallEndCatch>(NormalAndEHCleanup, EndMightThrow);
 | 
						|
 | 
						|
  return call;
 | 
						|
}
 | 
						|
 | 
						|
/// A "special initializer" callback for initializing a catch
 | 
						|
/// parameter during catch initialization.
 | 
						|
static void InitCatchParam(CodeGenFunction &CGF,
 | 
						|
                           const VarDecl &CatchParam,
 | 
						|
                           Address ParamAddr,
 | 
						|
                           SourceLocation Loc) {
 | 
						|
  // Load the exception from where the landing pad saved it.
 | 
						|
  llvm::Value *Exn = CGF.getExceptionFromSlot();
 | 
						|
 | 
						|
  CanQualType CatchType =
 | 
						|
    CGF.CGM.getContext().getCanonicalType(CatchParam.getType());
 | 
						|
  llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType);
 | 
						|
 | 
						|
  // If we're catching by reference, we can just cast the object
 | 
						|
  // pointer to the appropriate pointer.
 | 
						|
  if (isa<ReferenceType>(CatchType)) {
 | 
						|
    QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType();
 | 
						|
    bool EndCatchMightThrow = CaughtType->isRecordType();
 | 
						|
 | 
						|
    // __cxa_begin_catch returns the adjusted object pointer.
 | 
						|
    llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow);
 | 
						|
 | 
						|
    // We have no way to tell the personality function that we're
 | 
						|
    // catching by reference, so if we're catching a pointer,
 | 
						|
    // __cxa_begin_catch will actually return that pointer by value.
 | 
						|
    if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) {
 | 
						|
      QualType PointeeType = PT->getPointeeType();
 | 
						|
 | 
						|
      // When catching by reference, generally we should just ignore
 | 
						|
      // this by-value pointer and use the exception object instead.
 | 
						|
      if (!PointeeType->isRecordType()) {
 | 
						|
 | 
						|
        // Exn points to the struct _Unwind_Exception header, which
 | 
						|
        // we have to skip past in order to reach the exception data.
 | 
						|
        unsigned HeaderSize =
 | 
						|
          CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException();
 | 
						|
        AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize);
 | 
						|
 | 
						|
      // However, if we're catching a pointer-to-record type that won't
 | 
						|
      // work, because the personality function might have adjusted
 | 
						|
      // the pointer.  There's actually no way for us to fully satisfy
 | 
						|
      // the language/ABI contract here:  we can't use Exn because it
 | 
						|
      // might have the wrong adjustment, but we can't use the by-value
 | 
						|
      // pointer because it's off by a level of abstraction.
 | 
						|
      //
 | 
						|
      // The current solution is to dump the adjusted pointer into an
 | 
						|
      // alloca, which breaks language semantics (because changing the
 | 
						|
      // pointer doesn't change the exception) but at least works.
 | 
						|
      // The better solution would be to filter out non-exact matches
 | 
						|
      // and rethrow them, but this is tricky because the rethrow
 | 
						|
      // really needs to be catchable by other sites at this landing
 | 
						|
      // pad.  The best solution is to fix the personality function.
 | 
						|
      } else {
 | 
						|
        // Pull the pointer for the reference type off.
 | 
						|
        llvm::Type *PtrTy =
 | 
						|
          cast<llvm::PointerType>(LLVMCatchTy)->getElementType();
 | 
						|
 | 
						|
        // Create the temporary and write the adjusted pointer into it.
 | 
						|
        Address ExnPtrTmp =
 | 
						|
          CGF.CreateTempAlloca(PtrTy, CGF.getPointerAlign(), "exn.byref.tmp");
 | 
						|
        llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
 | 
						|
        CGF.Builder.CreateStore(Casted, ExnPtrTmp);
 | 
						|
 | 
						|
        // Bind the reference to the temporary.
 | 
						|
        AdjustedExn = ExnPtrTmp.getPointer();
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    llvm::Value *ExnCast =
 | 
						|
      CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref");
 | 
						|
    CGF.Builder.CreateStore(ExnCast, ParamAddr);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Scalars and complexes.
 | 
						|
  TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType);
 | 
						|
  if (TEK != TEK_Aggregate) {
 | 
						|
    llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false);
 | 
						|
 | 
						|
    // If the catch type is a pointer type, __cxa_begin_catch returns
 | 
						|
    // the pointer by value.
 | 
						|
    if (CatchType->hasPointerRepresentation()) {
 | 
						|
      llvm::Value *CastExn =
 | 
						|
        CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted");
 | 
						|
 | 
						|
      switch (CatchType.getQualifiers().getObjCLifetime()) {
 | 
						|
      case Qualifiers::OCL_Strong:
 | 
						|
        CastExn = CGF.EmitARCRetainNonBlock(CastExn);
 | 
						|
        // fallthrough
 | 
						|
 | 
						|
      case Qualifiers::OCL_None:
 | 
						|
      case Qualifiers::OCL_ExplicitNone:
 | 
						|
      case Qualifiers::OCL_Autoreleasing:
 | 
						|
        CGF.Builder.CreateStore(CastExn, ParamAddr);
 | 
						|
        return;
 | 
						|
 | 
						|
      case Qualifiers::OCL_Weak:
 | 
						|
        CGF.EmitARCInitWeak(ParamAddr, CastExn);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
      llvm_unreachable("bad ownership qualifier!");
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, it returns a pointer into the exception object.
 | 
						|
 | 
						|
    llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
 | 
						|
    llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy);
 | 
						|
 | 
						|
    LValue srcLV = CGF.MakeNaturalAlignAddrLValue(Cast, CatchType);
 | 
						|
    LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType);
 | 
						|
    switch (TEK) {
 | 
						|
    case TEK_Complex:
 | 
						|
      CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV, Loc), destLV,
 | 
						|
                             /*init*/ true);
 | 
						|
      return;
 | 
						|
    case TEK_Scalar: {
 | 
						|
      llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV, Loc);
 | 
						|
      CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    case TEK_Aggregate:
 | 
						|
      llvm_unreachable("evaluation kind filtered out!");
 | 
						|
    }
 | 
						|
    llvm_unreachable("bad evaluation kind");
 | 
						|
  }
 | 
						|
 | 
						|
  assert(isa<RecordType>(CatchType) && "unexpected catch type!");
 | 
						|
  auto catchRD = CatchType->getAsCXXRecordDecl();
 | 
						|
  CharUnits caughtExnAlignment = CGF.CGM.getClassPointerAlignment(catchRD);
 | 
						|
 | 
						|
  llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok
 | 
						|
 | 
						|
  // Check for a copy expression.  If we don't have a copy expression,
 | 
						|
  // that means a trivial copy is okay.
 | 
						|
  const Expr *copyExpr = CatchParam.getInit();
 | 
						|
  if (!copyExpr) {
 | 
						|
    llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true);
 | 
						|
    Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy),
 | 
						|
                        caughtExnAlignment);
 | 
						|
    CGF.EmitAggregateCopy(ParamAddr, adjustedExn, CatchType);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // We have to call __cxa_get_exception_ptr to get the adjusted
 | 
						|
  // pointer before copying.
 | 
						|
  llvm::CallInst *rawAdjustedExn =
 | 
						|
    CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn);
 | 
						|
 | 
						|
  // Cast that to the appropriate type.
 | 
						|
  Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy),
 | 
						|
                      caughtExnAlignment);
 | 
						|
 | 
						|
  // The copy expression is defined in terms of an OpaqueValueExpr.
 | 
						|
  // Find it and map it to the adjusted expression.
 | 
						|
  CodeGenFunction::OpaqueValueMapping
 | 
						|
    opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr),
 | 
						|
           CGF.MakeAddrLValue(adjustedExn, CatchParam.getType()));
 | 
						|
 | 
						|
  // Call the copy ctor in a terminate scope.
 | 
						|
  CGF.EHStack.pushTerminate();
 | 
						|
 | 
						|
  // Perform the copy construction.
 | 
						|
  CGF.EmitAggExpr(copyExpr,
 | 
						|
                  AggValueSlot::forAddr(ParamAddr, Qualifiers(),
 | 
						|
                                        AggValueSlot::IsNotDestructed,
 | 
						|
                                        AggValueSlot::DoesNotNeedGCBarriers,
 | 
						|
                                        AggValueSlot::IsNotAliased));
 | 
						|
 | 
						|
  // Leave the terminate scope.
 | 
						|
  CGF.EHStack.popTerminate();
 | 
						|
 | 
						|
  // Undo the opaque value mapping.
 | 
						|
  opaque.pop();
 | 
						|
 | 
						|
  // Finally we can call __cxa_begin_catch.
 | 
						|
  CallBeginCatch(CGF, Exn, true);
 | 
						|
}
 | 
						|
 | 
						|
/// Begins a catch statement by initializing the catch variable and
 | 
						|
/// calling __cxa_begin_catch.
 | 
						|
void ItaniumCXXABI::emitBeginCatch(CodeGenFunction &CGF,
 | 
						|
                                   const CXXCatchStmt *S) {
 | 
						|
  // We have to be very careful with the ordering of cleanups here:
 | 
						|
  //   C++ [except.throw]p4:
 | 
						|
  //     The destruction [of the exception temporary] occurs
 | 
						|
  //     immediately after the destruction of the object declared in
 | 
						|
  //     the exception-declaration in the handler.
 | 
						|
  //
 | 
						|
  // So the precise ordering is:
 | 
						|
  //   1.  Construct catch variable.
 | 
						|
  //   2.  __cxa_begin_catch
 | 
						|
  //   3.  Enter __cxa_end_catch cleanup
 | 
						|
  //   4.  Enter dtor cleanup
 | 
						|
  //
 | 
						|
  // We do this by using a slightly abnormal initialization process.
 | 
						|
  // Delegation sequence:
 | 
						|
  //   - ExitCXXTryStmt opens a RunCleanupsScope
 | 
						|
  //     - EmitAutoVarAlloca creates the variable and debug info
 | 
						|
  //       - InitCatchParam initializes the variable from the exception
 | 
						|
  //       - CallBeginCatch calls __cxa_begin_catch
 | 
						|
  //       - CallBeginCatch enters the __cxa_end_catch cleanup
 | 
						|
  //     - EmitAutoVarCleanups enters the variable destructor cleanup
 | 
						|
  //   - EmitCXXTryStmt emits the code for the catch body
 | 
						|
  //   - EmitCXXTryStmt close the RunCleanupsScope
 | 
						|
 | 
						|
  VarDecl *CatchParam = S->getExceptionDecl();
 | 
						|
  if (!CatchParam) {
 | 
						|
    llvm::Value *Exn = CGF.getExceptionFromSlot();
 | 
						|
    CallBeginCatch(CGF, Exn, true);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Emit the local.
 | 
						|
  CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
 | 
						|
  InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF), S->getLocStart());
 | 
						|
  CGF.EmitAutoVarCleanups(var);
 | 
						|
}
 | 
						|
 | 
						|
/// Get or define the following function:
 | 
						|
///   void @__clang_call_terminate(i8* %exn) nounwind noreturn
 | 
						|
/// This code is used only in C++.
 | 
						|
static llvm::Constant *getClangCallTerminateFn(CodeGenModule &CGM) {
 | 
						|
  llvm::FunctionType *fnTy =
 | 
						|
    llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*IsVarArgs=*/false);
 | 
						|
  llvm::Constant *fnRef =
 | 
						|
    CGM.CreateRuntimeFunction(fnTy, "__clang_call_terminate");
 | 
						|
 | 
						|
  llvm::Function *fn = dyn_cast<llvm::Function>(fnRef);
 | 
						|
  if (fn && fn->empty()) {
 | 
						|
    fn->setDoesNotThrow();
 | 
						|
    fn->setDoesNotReturn();
 | 
						|
 | 
						|
    // What we really want is to massively penalize inlining without
 | 
						|
    // forbidding it completely.  The difference between that and
 | 
						|
    // 'noinline' is negligible.
 | 
						|
    fn->addFnAttr(llvm::Attribute::NoInline);
 | 
						|
 | 
						|
    // Allow this function to be shared across translation units, but
 | 
						|
    // we don't want it to turn into an exported symbol.
 | 
						|
    fn->setLinkage(llvm::Function::LinkOnceODRLinkage);
 | 
						|
    fn->setVisibility(llvm::Function::HiddenVisibility);
 | 
						|
    if (CGM.supportsCOMDAT())
 | 
						|
      fn->setComdat(CGM.getModule().getOrInsertComdat(fn->getName()));
 | 
						|
 | 
						|
    // Set up the function.
 | 
						|
    llvm::BasicBlock *entry =
 | 
						|
      llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn);
 | 
						|
    CGBuilderTy builder(CGM, entry);
 | 
						|
 | 
						|
    // Pull the exception pointer out of the parameter list.
 | 
						|
    llvm::Value *exn = &*fn->arg_begin();
 | 
						|
 | 
						|
    // Call __cxa_begin_catch(exn).
 | 
						|
    llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn);
 | 
						|
    catchCall->setDoesNotThrow();
 | 
						|
    catchCall->setCallingConv(CGM.getRuntimeCC());
 | 
						|
 | 
						|
    // Call std::terminate().
 | 
						|
    llvm::CallInst *termCall = builder.CreateCall(CGM.getTerminateFn());
 | 
						|
    termCall->setDoesNotThrow();
 | 
						|
    termCall->setDoesNotReturn();
 | 
						|
    termCall->setCallingConv(CGM.getRuntimeCC());
 | 
						|
 | 
						|
    // std::terminate cannot return.
 | 
						|
    builder.CreateUnreachable();
 | 
						|
  }
 | 
						|
 | 
						|
  return fnRef;
 | 
						|
}
 | 
						|
 | 
						|
llvm::CallInst *
 | 
						|
ItaniumCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF,
 | 
						|
                                                   llvm::Value *Exn) {
 | 
						|
  // In C++, we want to call __cxa_begin_catch() before terminating.
 | 
						|
  if (Exn) {
 | 
						|
    assert(CGF.CGM.getLangOpts().CPlusPlus);
 | 
						|
    return CGF.EmitNounwindRuntimeCall(getClangCallTerminateFn(CGF.CGM), Exn);
 | 
						|
  }
 | 
						|
  return CGF.EmitNounwindRuntimeCall(CGF.CGM.getTerminateFn());
 | 
						|
}
 |