591 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			591 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- FuzzerCorpus.h - Internal header for the Fuzzer ----------*- C++ -* ===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| // fuzzer::InputCorpus
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_FUZZER_CORPUS
 | |
| #define LLVM_FUZZER_CORPUS
 | |
| 
 | |
| #include "FuzzerDataFlowTrace.h"
 | |
| #include "FuzzerDefs.h"
 | |
| #include "FuzzerIO.h"
 | |
| #include "FuzzerRandom.h"
 | |
| #include "FuzzerSHA1.h"
 | |
| #include "FuzzerTracePC.h"
 | |
| #include <algorithm>
 | |
| #include <chrono>
 | |
| #include <numeric>
 | |
| #include <random>
 | |
| #include <unordered_set>
 | |
| 
 | |
| namespace fuzzer {
 | |
| 
 | |
| struct InputInfo {
 | |
|   Unit U;  // The actual input data.
 | |
|   std::chrono::microseconds TimeOfUnit;
 | |
|   uint8_t Sha1[kSHA1NumBytes];  // Checksum.
 | |
|   // Number of features that this input has and no smaller input has.
 | |
|   size_t NumFeatures = 0;
 | |
|   size_t Tmp = 0; // Used by ValidateFeatureSet.
 | |
|   // Stats.
 | |
|   size_t NumExecutedMutations = 0;
 | |
|   size_t NumSuccessfullMutations = 0;
 | |
|   bool NeverReduce = false;
 | |
|   bool MayDeleteFile = false;
 | |
|   bool Reduced = false;
 | |
|   bool HasFocusFunction = false;
 | |
|   std::vector<uint32_t> UniqFeatureSet;
 | |
|   std::vector<uint8_t> DataFlowTraceForFocusFunction;
 | |
|   // Power schedule.
 | |
|   bool NeedsEnergyUpdate = false;
 | |
|   double Energy = 0.0;
 | |
|   double SumIncidence = 0.0;
 | |
|   std::vector<std::pair<uint32_t, uint16_t>> FeatureFreqs;
 | |
| 
 | |
|   // Delete feature Idx and its frequency from FeatureFreqs.
 | |
|   bool DeleteFeatureFreq(uint32_t Idx) {
 | |
|     if (FeatureFreqs.empty())
 | |
|       return false;
 | |
| 
 | |
|     // Binary search over local feature frequencies sorted by index.
 | |
|     auto Lower = std::lower_bound(FeatureFreqs.begin(), FeatureFreqs.end(),
 | |
|                                   std::pair<uint32_t, uint16_t>(Idx, 0));
 | |
| 
 | |
|     if (Lower != FeatureFreqs.end() && Lower->first == Idx) {
 | |
|       FeatureFreqs.erase(Lower);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Assign more energy to a high-entropy seed, i.e., that reveals more
 | |
|   // information about the globally rare features in the neighborhood of the
 | |
|   // seed. Since we do not know the entropy of a seed that has never been
 | |
|   // executed we assign fresh seeds maximum entropy and let II->Energy approach
 | |
|   // the true entropy from above. If ScalePerExecTime is true, the computed
 | |
|   // entropy is scaled based on how fast this input executes compared to the
 | |
|   // average execution time of inputs. The faster an input executes, the more
 | |
|   // energy gets assigned to the input.
 | |
|   void UpdateEnergy(size_t GlobalNumberOfFeatures, bool ScalePerExecTime,
 | |
|                     std::chrono::microseconds AverageUnitExecutionTime) {
 | |
|     Energy = 0.0;
 | |
|     SumIncidence = 0.0;
 | |
| 
 | |
|     // Apply add-one smoothing to locally discovered features.
 | |
|     for (auto F : FeatureFreqs) {
 | |
|       double LocalIncidence = F.second + 1;
 | |
|       Energy -= LocalIncidence * log(LocalIncidence);
 | |
|       SumIncidence += LocalIncidence;
 | |
|     }
 | |
| 
 | |
|     // Apply add-one smoothing to locally undiscovered features.
 | |
|     //   PreciseEnergy -= 0; // since log(1.0) == 0)
 | |
|     SumIncidence +=
 | |
|         static_cast<double>(GlobalNumberOfFeatures - FeatureFreqs.size());
 | |
| 
 | |
|     // Add a single locally abundant feature apply add-one smoothing.
 | |
|     double AbdIncidence = static_cast<double>(NumExecutedMutations + 1);
 | |
|     Energy -= AbdIncidence * log(AbdIncidence);
 | |
|     SumIncidence += AbdIncidence;
 | |
| 
 | |
|     // Normalize.
 | |
|     if (SumIncidence != 0)
 | |
|       Energy = Energy / SumIncidence + log(SumIncidence);
 | |
| 
 | |
|     if (ScalePerExecTime) {
 | |
|       // Scaling to favor inputs with lower execution time.
 | |
|       uint32_t PerfScore = 100;
 | |
|       if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 10)
 | |
|         PerfScore = 10;
 | |
|       else if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 4)
 | |
|         PerfScore = 25;
 | |
|       else if (TimeOfUnit.count() > AverageUnitExecutionTime.count() * 2)
 | |
|         PerfScore = 50;
 | |
|       else if (TimeOfUnit.count() * 3 > AverageUnitExecutionTime.count() * 4)
 | |
|         PerfScore = 75;
 | |
|       else if (TimeOfUnit.count() * 4 < AverageUnitExecutionTime.count())
 | |
|         PerfScore = 300;
 | |
|       else if (TimeOfUnit.count() * 3 < AverageUnitExecutionTime.count())
 | |
|         PerfScore = 200;
 | |
|       else if (TimeOfUnit.count() * 2 < AverageUnitExecutionTime.count())
 | |
|         PerfScore = 150;
 | |
| 
 | |
|       Energy *= PerfScore;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Increment the frequency of the feature Idx.
 | |
|   void UpdateFeatureFrequency(uint32_t Idx) {
 | |
|     NeedsEnergyUpdate = true;
 | |
| 
 | |
|     // The local feature frequencies is an ordered vector of pairs.
 | |
|     // If there are no local feature frequencies, push_back preserves order.
 | |
|     // Set the feature frequency for feature Idx32 to 1.
 | |
|     if (FeatureFreqs.empty()) {
 | |
|       FeatureFreqs.push_back(std::pair<uint32_t, uint16_t>(Idx, 1));
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     // Binary search over local feature frequencies sorted by index.
 | |
|     auto Lower = std::lower_bound(FeatureFreqs.begin(), FeatureFreqs.end(),
 | |
|                                   std::pair<uint32_t, uint16_t>(Idx, 0));
 | |
| 
 | |
|     // If feature Idx32 already exists, increment its frequency.
 | |
|     // Otherwise, insert a new pair right after the next lower index.
 | |
|     if (Lower != FeatureFreqs.end() && Lower->first == Idx) {
 | |
|       Lower->second++;
 | |
|     } else {
 | |
|       FeatureFreqs.insert(Lower, std::pair<uint32_t, uint16_t>(Idx, 1));
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| struct EntropicOptions {
 | |
|   bool Enabled;
 | |
|   size_t NumberOfRarestFeatures;
 | |
|   size_t FeatureFrequencyThreshold;
 | |
|   bool ScalePerExecTime;
 | |
| };
 | |
| 
 | |
| class InputCorpus {
 | |
|   static const uint32_t kFeatureSetSize = 1 << 21;
 | |
|   static const uint8_t kMaxMutationFactor = 20;
 | |
|   static const size_t kSparseEnergyUpdates = 100;
 | |
| 
 | |
|   size_t NumExecutedMutations = 0;
 | |
| 
 | |
|   EntropicOptions Entropic;
 | |
| 
 | |
| public:
 | |
|   InputCorpus(const std::string &OutputCorpus, EntropicOptions Entropic)
 | |
|       : Entropic(Entropic), OutputCorpus(OutputCorpus) {
 | |
|     memset(InputSizesPerFeature, 0, sizeof(InputSizesPerFeature));
 | |
|     memset(SmallestElementPerFeature, 0, sizeof(SmallestElementPerFeature));
 | |
|   }
 | |
|   ~InputCorpus() {
 | |
|     for (auto II : Inputs)
 | |
|       delete II;
 | |
|   }
 | |
|   size_t size() const { return Inputs.size(); }
 | |
|   size_t SizeInBytes() const {
 | |
|     size_t Res = 0;
 | |
|     for (auto II : Inputs)
 | |
|       Res += II->U.size();
 | |
|     return Res;
 | |
|   }
 | |
|   size_t NumActiveUnits() const {
 | |
|     size_t Res = 0;
 | |
|     for (auto II : Inputs)
 | |
|       Res += !II->U.empty();
 | |
|     return Res;
 | |
|   }
 | |
|   size_t MaxInputSize() const {
 | |
|     size_t Res = 0;
 | |
|     for (auto II : Inputs)
 | |
|         Res = std::max(Res, II->U.size());
 | |
|     return Res;
 | |
|   }
 | |
|   void IncrementNumExecutedMutations() { NumExecutedMutations++; }
 | |
| 
 | |
|   size_t NumInputsThatTouchFocusFunction() {
 | |
|     return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) {
 | |
|       return II->HasFocusFunction;
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   size_t NumInputsWithDataFlowTrace() {
 | |
|     return std::count_if(Inputs.begin(), Inputs.end(), [](const InputInfo *II) {
 | |
|       return !II->DataFlowTraceForFocusFunction.empty();
 | |
|     });
 | |
|   }
 | |
| 
 | |
|   bool empty() const { return Inputs.empty(); }
 | |
|   const Unit &operator[] (size_t Idx) const { return Inputs[Idx]->U; }
 | |
|   InputInfo *AddToCorpus(const Unit &U, size_t NumFeatures, bool MayDeleteFile,
 | |
|                          bool HasFocusFunction, bool NeverReduce,
 | |
|                          std::chrono::microseconds TimeOfUnit,
 | |
|                          const std::vector<uint32_t> &FeatureSet,
 | |
|                          const DataFlowTrace &DFT, const InputInfo *BaseII) {
 | |
|     assert(!U.empty());
 | |
|     if (FeatureDebug)
 | |
|       Printf("ADD_TO_CORPUS %zd NF %zd\n", Inputs.size(), NumFeatures);
 | |
|     // Inputs.size() is cast to uint32_t below.
 | |
|     assert(Inputs.size() < std::numeric_limits<uint32_t>::max());
 | |
|     Inputs.push_back(new InputInfo());
 | |
|     InputInfo &II = *Inputs.back();
 | |
|     II.U = U;
 | |
|     II.NumFeatures = NumFeatures;
 | |
|     II.NeverReduce = NeverReduce;
 | |
|     II.TimeOfUnit = TimeOfUnit;
 | |
|     II.MayDeleteFile = MayDeleteFile;
 | |
|     II.UniqFeatureSet = FeatureSet;
 | |
|     II.HasFocusFunction = HasFocusFunction;
 | |
|     // Assign maximal energy to the new seed.
 | |
|     II.Energy = RareFeatures.empty() ? 1.0 : log(RareFeatures.size());
 | |
|     II.SumIncidence = static_cast<double>(RareFeatures.size());
 | |
|     II.NeedsEnergyUpdate = false;
 | |
|     std::sort(II.UniqFeatureSet.begin(), II.UniqFeatureSet.end());
 | |
|     ComputeSHA1(U.data(), U.size(), II.Sha1);
 | |
|     auto Sha1Str = Sha1ToString(II.Sha1);
 | |
|     Hashes.insert(Sha1Str);
 | |
|     if (HasFocusFunction)
 | |
|       if (auto V = DFT.Get(Sha1Str))
 | |
|         II.DataFlowTraceForFocusFunction = *V;
 | |
|     // This is a gross heuristic.
 | |
|     // Ideally, when we add an element to a corpus we need to know its DFT.
 | |
|     // But if we don't, we'll use the DFT of its base input.
 | |
|     if (II.DataFlowTraceForFocusFunction.empty() && BaseII)
 | |
|       II.DataFlowTraceForFocusFunction = BaseII->DataFlowTraceForFocusFunction;
 | |
|     DistributionNeedsUpdate = true;
 | |
|     PrintCorpus();
 | |
|     // ValidateFeatureSet();
 | |
|     return &II;
 | |
|   }
 | |
| 
 | |
|   // Debug-only
 | |
|   void PrintUnit(const Unit &U) {
 | |
|     if (!FeatureDebug) return;
 | |
|     for (uint8_t C : U) {
 | |
|       if (C != 'F' && C != 'U' && C != 'Z')
 | |
|         C = '.';
 | |
|       Printf("%c", C);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Debug-only
 | |
|   void PrintFeatureSet(const std::vector<uint32_t> &FeatureSet) {
 | |
|     if (!FeatureDebug) return;
 | |
|     Printf("{");
 | |
|     for (uint32_t Feature: FeatureSet)
 | |
|       Printf("%u,", Feature);
 | |
|     Printf("}");
 | |
|   }
 | |
| 
 | |
|   // Debug-only
 | |
|   void PrintCorpus() {
 | |
|     if (!FeatureDebug) return;
 | |
|     Printf("======= CORPUS:\n");
 | |
|     int i = 0;
 | |
|     for (auto II : Inputs) {
 | |
|       if (std::find(II->U.begin(), II->U.end(), 'F') != II->U.end()) {
 | |
|         Printf("[%2d] ", i);
 | |
|         Printf("%s sz=%zd ", Sha1ToString(II->Sha1).c_str(), II->U.size());
 | |
|         PrintUnit(II->U);
 | |
|         Printf(" ");
 | |
|         PrintFeatureSet(II->UniqFeatureSet);
 | |
|         Printf("\n");
 | |
|       }
 | |
|       i++;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void Replace(InputInfo *II, const Unit &U,
 | |
|                std::chrono::microseconds TimeOfUnit) {
 | |
|     assert(II->U.size() > U.size());
 | |
|     Hashes.erase(Sha1ToString(II->Sha1));
 | |
|     DeleteFile(*II);
 | |
|     ComputeSHA1(U.data(), U.size(), II->Sha1);
 | |
|     Hashes.insert(Sha1ToString(II->Sha1));
 | |
|     II->U = U;
 | |
|     II->Reduced = true;
 | |
|     II->TimeOfUnit = TimeOfUnit;
 | |
|     DistributionNeedsUpdate = true;
 | |
|   }
 | |
| 
 | |
|   bool HasUnit(const Unit &U) { return Hashes.count(Hash(U)); }
 | |
|   bool HasUnit(const std::string &H) { return Hashes.count(H); }
 | |
|   InputInfo &ChooseUnitToMutate(Random &Rand) {
 | |
|     InputInfo &II = *Inputs[ChooseUnitIdxToMutate(Rand)];
 | |
|     assert(!II.U.empty());
 | |
|     return II;
 | |
|   }
 | |
| 
 | |
|   InputInfo &ChooseUnitToCrossOverWith(Random &Rand, bool UniformDist) {
 | |
|     if (!UniformDist) {
 | |
|       return ChooseUnitToMutate(Rand);
 | |
|     }
 | |
|     InputInfo &II = *Inputs[Rand(Inputs.size())];
 | |
|     assert(!II.U.empty());
 | |
|     return II;
 | |
|   }
 | |
| 
 | |
|   // Returns an index of random unit from the corpus to mutate.
 | |
|   size_t ChooseUnitIdxToMutate(Random &Rand) {
 | |
|     UpdateCorpusDistribution(Rand);
 | |
|     size_t Idx = static_cast<size_t>(CorpusDistribution(Rand));
 | |
|     assert(Idx < Inputs.size());
 | |
|     return Idx;
 | |
|   }
 | |
| 
 | |
|   void PrintStats() {
 | |
|     for (size_t i = 0; i < Inputs.size(); i++) {
 | |
|       const auto &II = *Inputs[i];
 | |
|       Printf("  [% 3zd %s] sz: % 5zd runs: % 5zd succ: % 5zd focus: %d\n", i,
 | |
|              Sha1ToString(II.Sha1).c_str(), II.U.size(),
 | |
|              II.NumExecutedMutations, II.NumSuccessfullMutations,
 | |
|              II.HasFocusFunction);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void PrintFeatureSet() {
 | |
|     for (size_t i = 0; i < kFeatureSetSize; i++) {
 | |
|       if(size_t Sz = GetFeature(i))
 | |
|         Printf("[%zd: id %zd sz%zd] ", i, SmallestElementPerFeature[i], Sz);
 | |
|     }
 | |
|     Printf("\n\t");
 | |
|     for (size_t i = 0; i < Inputs.size(); i++)
 | |
|       if (size_t N = Inputs[i]->NumFeatures)
 | |
|         Printf(" %zd=>%zd ", i, N);
 | |
|     Printf("\n");
 | |
|   }
 | |
| 
 | |
|   void DeleteFile(const InputInfo &II) {
 | |
|     if (!OutputCorpus.empty() && II.MayDeleteFile)
 | |
|       RemoveFile(DirPlusFile(OutputCorpus, Sha1ToString(II.Sha1)));
 | |
|   }
 | |
| 
 | |
|   void DeleteInput(size_t Idx) {
 | |
|     InputInfo &II = *Inputs[Idx];
 | |
|     DeleteFile(II);
 | |
|     Unit().swap(II.U);
 | |
|     II.Energy = 0.0;
 | |
|     II.NeedsEnergyUpdate = false;
 | |
|     DistributionNeedsUpdate = true;
 | |
|     if (FeatureDebug)
 | |
|       Printf("EVICTED %zd\n", Idx);
 | |
|   }
 | |
| 
 | |
|   void AddRareFeature(uint32_t Idx) {
 | |
|     // Maintain *at least* TopXRarestFeatures many rare features
 | |
|     // and all features with a frequency below ConsideredRare.
 | |
|     // Remove all other features.
 | |
|     while (RareFeatures.size() > Entropic.NumberOfRarestFeatures &&
 | |
|            FreqOfMostAbundantRareFeature > Entropic.FeatureFrequencyThreshold) {
 | |
| 
 | |
|       // Find most and second most abbundant feature.
 | |
|       uint32_t MostAbundantRareFeatureIndices[2] = {RareFeatures[0],
 | |
|                                                     RareFeatures[0]};
 | |
|       size_t Delete = 0;
 | |
|       for (size_t i = 0; i < RareFeatures.size(); i++) {
 | |
|         uint32_t Idx2 = RareFeatures[i];
 | |
|         if (GlobalFeatureFreqs[Idx2] >=
 | |
|             GlobalFeatureFreqs[MostAbundantRareFeatureIndices[0]]) {
 | |
|           MostAbundantRareFeatureIndices[1] = MostAbundantRareFeatureIndices[0];
 | |
|           MostAbundantRareFeatureIndices[0] = Idx2;
 | |
|           Delete = i;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Remove most abundant rare feature.
 | |
|       RareFeatures[Delete] = RareFeatures.back();
 | |
|       RareFeatures.pop_back();
 | |
| 
 | |
|       for (auto II : Inputs) {
 | |
|         if (II->DeleteFeatureFreq(MostAbundantRareFeatureIndices[0]))
 | |
|           II->NeedsEnergyUpdate = true;
 | |
|       }
 | |
| 
 | |
|       // Set 2nd most abundant as the new most abundant feature count.
 | |
|       FreqOfMostAbundantRareFeature =
 | |
|           GlobalFeatureFreqs[MostAbundantRareFeatureIndices[1]];
 | |
|     }
 | |
| 
 | |
|     // Add rare feature, handle collisions, and update energy.
 | |
|     RareFeatures.push_back(Idx);
 | |
|     GlobalFeatureFreqs[Idx] = 0;
 | |
|     for (auto II : Inputs) {
 | |
|       II->DeleteFeatureFreq(Idx);
 | |
| 
 | |
|       // Apply add-one smoothing to this locally undiscovered feature.
 | |
|       // Zero energy seeds will never be fuzzed and remain zero energy.
 | |
|       if (II->Energy > 0.0) {
 | |
|         II->SumIncidence += 1;
 | |
|         II->Energy += log(II->SumIncidence) / II->SumIncidence;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     DistributionNeedsUpdate = true;
 | |
|   }
 | |
| 
 | |
|   bool AddFeature(size_t Idx, uint32_t NewSize, bool Shrink) {
 | |
|     assert(NewSize);
 | |
|     Idx = Idx % kFeatureSetSize;
 | |
|     uint32_t OldSize = GetFeature(Idx);
 | |
|     if (OldSize == 0 || (Shrink && OldSize > NewSize)) {
 | |
|       if (OldSize > 0) {
 | |
|         size_t OldIdx = SmallestElementPerFeature[Idx];
 | |
|         InputInfo &II = *Inputs[OldIdx];
 | |
|         assert(II.NumFeatures > 0);
 | |
|         II.NumFeatures--;
 | |
|         if (II.NumFeatures == 0)
 | |
|           DeleteInput(OldIdx);
 | |
|       } else {
 | |
|         NumAddedFeatures++;
 | |
|         if (Entropic.Enabled)
 | |
|           AddRareFeature((uint32_t)Idx);
 | |
|       }
 | |
|       NumUpdatedFeatures++;
 | |
|       if (FeatureDebug)
 | |
|         Printf("ADD FEATURE %zd sz %d\n", Idx, NewSize);
 | |
|       // Inputs.size() is guaranteed to be less than UINT32_MAX by AddToCorpus.
 | |
|       SmallestElementPerFeature[Idx] = static_cast<uint32_t>(Inputs.size());
 | |
|       InputSizesPerFeature[Idx] = NewSize;
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Increment frequency of feature Idx globally and locally.
 | |
|   void UpdateFeatureFrequency(InputInfo *II, size_t Idx) {
 | |
|     uint32_t Idx32 = Idx % kFeatureSetSize;
 | |
| 
 | |
|     // Saturated increment.
 | |
|     if (GlobalFeatureFreqs[Idx32] == 0xFFFF)
 | |
|       return;
 | |
|     uint16_t Freq = GlobalFeatureFreqs[Idx32]++;
 | |
| 
 | |
|     // Skip if abundant.
 | |
|     if (Freq > FreqOfMostAbundantRareFeature ||
 | |
|         std::find(RareFeatures.begin(), RareFeatures.end(), Idx32) ==
 | |
|             RareFeatures.end())
 | |
|       return;
 | |
| 
 | |
|     // Update global frequencies.
 | |
|     if (Freq == FreqOfMostAbundantRareFeature)
 | |
|       FreqOfMostAbundantRareFeature++;
 | |
| 
 | |
|     // Update local frequencies.
 | |
|     if (II)
 | |
|       II->UpdateFeatureFrequency(Idx32);
 | |
|   }
 | |
| 
 | |
|   size_t NumFeatures() const { return NumAddedFeatures; }
 | |
|   size_t NumFeatureUpdates() const { return NumUpdatedFeatures; }
 | |
| 
 | |
| private:
 | |
| 
 | |
|   static const bool FeatureDebug = false;
 | |
| 
 | |
|   uint32_t GetFeature(size_t Idx) const { return InputSizesPerFeature[Idx]; }
 | |
| 
 | |
|   void ValidateFeatureSet() {
 | |
|     if (FeatureDebug)
 | |
|       PrintFeatureSet();
 | |
|     for (size_t Idx = 0; Idx < kFeatureSetSize; Idx++)
 | |
|       if (GetFeature(Idx))
 | |
|         Inputs[SmallestElementPerFeature[Idx]]->Tmp++;
 | |
|     for (auto II: Inputs) {
 | |
|       if (II->Tmp != II->NumFeatures)
 | |
|         Printf("ZZZ %zd %zd\n", II->Tmp, II->NumFeatures);
 | |
|       assert(II->Tmp == II->NumFeatures);
 | |
|       II->Tmp = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Updates the probability distribution for the units in the corpus.
 | |
|   // Must be called whenever the corpus or unit weights are changed.
 | |
|   //
 | |
|   // Hypothesis: inputs that maximize information about globally rare features
 | |
|   // are interesting.
 | |
|   void UpdateCorpusDistribution(Random &Rand) {
 | |
|     // Skip update if no seeds or rare features were added/deleted.
 | |
|     // Sparse updates for local change of feature frequencies,
 | |
|     // i.e., randomly do not skip.
 | |
|     if (!DistributionNeedsUpdate &&
 | |
|         (!Entropic.Enabled || Rand(kSparseEnergyUpdates)))
 | |
|       return;
 | |
| 
 | |
|     DistributionNeedsUpdate = false;
 | |
| 
 | |
|     size_t N = Inputs.size();
 | |
|     assert(N);
 | |
|     Intervals.resize(N + 1);
 | |
|     Weights.resize(N);
 | |
|     std::iota(Intervals.begin(), Intervals.end(), 0);
 | |
| 
 | |
|     std::chrono::microseconds AverageUnitExecutionTime(0);
 | |
|     for (auto II : Inputs) {
 | |
|       AverageUnitExecutionTime += II->TimeOfUnit;
 | |
|     }
 | |
|     AverageUnitExecutionTime /= N;
 | |
| 
 | |
|     bool VanillaSchedule = true;
 | |
|     if (Entropic.Enabled) {
 | |
|       for (auto II : Inputs) {
 | |
|         if (II->NeedsEnergyUpdate && II->Energy != 0.0) {
 | |
|           II->NeedsEnergyUpdate = false;
 | |
|           II->UpdateEnergy(RareFeatures.size(), Entropic.ScalePerExecTime,
 | |
|                            AverageUnitExecutionTime);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       for (size_t i = 0; i < N; i++) {
 | |
| 
 | |
|         if (Inputs[i]->NumFeatures == 0) {
 | |
|           // If the seed doesn't represent any features, assign zero energy.
 | |
|           Weights[i] = 0.;
 | |
|         } else if (Inputs[i]->NumExecutedMutations / kMaxMutationFactor >
 | |
|                    NumExecutedMutations / Inputs.size()) {
 | |
|           // If the seed was fuzzed a lot more than average, assign zero energy.
 | |
|           Weights[i] = 0.;
 | |
|         } else {
 | |
|           // Otherwise, simply assign the computed energy.
 | |
|           Weights[i] = Inputs[i]->Energy;
 | |
|         }
 | |
| 
 | |
|         // If energy for all seeds is zero, fall back to vanilla schedule.
 | |
|         if (Weights[i] > 0.0)
 | |
|           VanillaSchedule = false;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (VanillaSchedule) {
 | |
|       for (size_t i = 0; i < N; i++)
 | |
|         Weights[i] =
 | |
|             Inputs[i]->NumFeatures
 | |
|                 ? static_cast<double>((i + 1) *
 | |
|                                       (Inputs[i]->HasFocusFunction ? 1000 : 1))
 | |
|                 : 0.;
 | |
|     }
 | |
| 
 | |
|     if (FeatureDebug) {
 | |
|       for (size_t i = 0; i < N; i++)
 | |
|         Printf("%zd ", Inputs[i]->NumFeatures);
 | |
|       Printf("SCORE\n");
 | |
|       for (size_t i = 0; i < N; i++)
 | |
|         Printf("%f ", Weights[i]);
 | |
|       Printf("Weights\n");
 | |
|     }
 | |
|     CorpusDistribution = std::piecewise_constant_distribution<double>(
 | |
|         Intervals.begin(), Intervals.end(), Weights.begin());
 | |
|   }
 | |
|   std::piecewise_constant_distribution<double> CorpusDistribution;
 | |
| 
 | |
|   std::vector<double> Intervals;
 | |
|   std::vector<double> Weights;
 | |
| 
 | |
|   std::unordered_set<std::string> Hashes;
 | |
|   std::vector<InputInfo *> Inputs;
 | |
| 
 | |
|   size_t NumAddedFeatures = 0;
 | |
|   size_t NumUpdatedFeatures = 0;
 | |
|   uint32_t InputSizesPerFeature[kFeatureSetSize];
 | |
|   uint32_t SmallestElementPerFeature[kFeatureSetSize];
 | |
| 
 | |
|   bool DistributionNeedsUpdate = true;
 | |
|   uint16_t FreqOfMostAbundantRareFeature = 0;
 | |
|   uint16_t GlobalFeatureFreqs[kFeatureSetSize] = {};
 | |
|   std::vector<uint32_t> RareFeatures;
 | |
| 
 | |
|   std::string OutputCorpus;
 | |
| };
 | |
| 
 | |
| }  // namespace fuzzer
 | |
| 
 | |
| #endif  // LLVM_FUZZER_CORPUS
 |