573 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			573 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- ICF.cpp ------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// ICF is short for Identical Code Folding. This is a size optimization to
 | 
						|
// identify and merge two or more read-only sections (typically functions)
 | 
						|
// that happened to have the same contents. It usually reduces output size
 | 
						|
// by a few percent.
 | 
						|
//
 | 
						|
// In ICF, two sections are considered identical if they have the same
 | 
						|
// section flags, section data, and relocations. Relocations are tricky,
 | 
						|
// because two relocations are considered the same if they have the same
 | 
						|
// relocation types, values, and if they point to the same sections *in
 | 
						|
// terms of ICF*.
 | 
						|
//
 | 
						|
// Here is an example. If foo and bar defined below are compiled to the
 | 
						|
// same machine instructions, ICF can and should merge the two, although
 | 
						|
// their relocations point to each other.
 | 
						|
//
 | 
						|
//   void foo() { bar(); }
 | 
						|
//   void bar() { foo(); }
 | 
						|
//
 | 
						|
// If you merge the two, their relocations point to the same section and
 | 
						|
// thus you know they are mergeable, but how do you know they are
 | 
						|
// mergeable in the first place? This is not an easy problem to solve.
 | 
						|
//
 | 
						|
// What we are doing in LLD is to partition sections into equivalence
 | 
						|
// classes. Sections in the same equivalence class when the algorithm
 | 
						|
// terminates are considered identical. Here are details:
 | 
						|
//
 | 
						|
// 1. First, we partition sections using their hash values as keys. Hash
 | 
						|
//    values contain section types, section contents and numbers of
 | 
						|
//    relocations. During this step, relocation targets are not taken into
 | 
						|
//    account. We just put sections that apparently differ into different
 | 
						|
//    equivalence classes.
 | 
						|
//
 | 
						|
// 2. Next, for each equivalence class, we visit sections to compare
 | 
						|
//    relocation targets. Relocation targets are considered equivalent if
 | 
						|
//    their targets are in the same equivalence class. Sections with
 | 
						|
//    different relocation targets are put into different equivalence
 | 
						|
//    classes.
 | 
						|
//
 | 
						|
// 3. If we split an equivalence class in step 2, two relocations
 | 
						|
//    previously target the same equivalence class may now target
 | 
						|
//    different equivalence classes. Therefore, we repeat step 2 until a
 | 
						|
//    convergence is obtained.
 | 
						|
//
 | 
						|
// 4. For each equivalence class C, pick an arbitrary section in C, and
 | 
						|
//    merge all the other sections in C with it.
 | 
						|
//
 | 
						|
// For small programs, this algorithm needs 3-5 iterations. For large
 | 
						|
// programs such as Chromium, it takes more than 20 iterations.
 | 
						|
//
 | 
						|
// This algorithm was mentioned as an "optimistic algorithm" in [1],
 | 
						|
// though gold implements a different algorithm than this.
 | 
						|
//
 | 
						|
// We parallelize each step so that multiple threads can work on different
 | 
						|
// equivalence classes concurrently. That gave us a large performance
 | 
						|
// boost when applying ICF on large programs. For example, MSVC link.exe
 | 
						|
// or GNU gold takes 10-20 seconds to apply ICF on Chromium, whose output
 | 
						|
// size is about 1.5 GB, but LLD can finish it in less than 2 seconds on a
 | 
						|
// 2.8 GHz 40 core machine. Even without threading, LLD's ICF is still
 | 
						|
// faster than MSVC or gold though.
 | 
						|
//
 | 
						|
// [1] Safe ICF: Pointer Safe and Unwinding aware Identical Code Folding
 | 
						|
// in the Gold Linker
 | 
						|
// http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/36912.pdf
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "ICF.h"
 | 
						|
#include "Config.h"
 | 
						|
#include "EhFrame.h"
 | 
						|
#include "LinkerScript.h"
 | 
						|
#include "OutputSections.h"
 | 
						|
#include "SymbolTable.h"
 | 
						|
#include "Symbols.h"
 | 
						|
#include "SyntheticSections.h"
 | 
						|
#include "Writer.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/BinaryFormat/ELF.h"
 | 
						|
#include "llvm/Object/ELF.h"
 | 
						|
#include "llvm/Support/Parallel.h"
 | 
						|
#include "llvm/Support/TimeProfiler.h"
 | 
						|
#include "llvm/Support/xxhash.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <atomic>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::ELF;
 | 
						|
using namespace llvm::object;
 | 
						|
using namespace lld;
 | 
						|
using namespace lld::elf;
 | 
						|
 | 
						|
namespace {
 | 
						|
template <class ELFT> class ICF {
 | 
						|
public:
 | 
						|
  void run();
 | 
						|
 | 
						|
private:
 | 
						|
  void segregate(size_t begin, size_t end, uint32_t eqClassBase, bool constant);
 | 
						|
 | 
						|
  template <class RelTy>
 | 
						|
  bool constantEq(const InputSection *a, ArrayRef<RelTy> relsA,
 | 
						|
                  const InputSection *b, ArrayRef<RelTy> relsB);
 | 
						|
 | 
						|
  template <class RelTy>
 | 
						|
  bool variableEq(const InputSection *a, ArrayRef<RelTy> relsA,
 | 
						|
                  const InputSection *b, ArrayRef<RelTy> relsB);
 | 
						|
 | 
						|
  bool equalsConstant(const InputSection *a, const InputSection *b);
 | 
						|
  bool equalsVariable(const InputSection *a, const InputSection *b);
 | 
						|
 | 
						|
  size_t findBoundary(size_t begin, size_t end);
 | 
						|
 | 
						|
  void forEachClassRange(size_t begin, size_t end,
 | 
						|
                         llvm::function_ref<void(size_t, size_t)> fn);
 | 
						|
 | 
						|
  void forEachClass(llvm::function_ref<void(size_t, size_t)> fn);
 | 
						|
 | 
						|
  std::vector<InputSection *> sections;
 | 
						|
 | 
						|
  // We repeat the main loop while `Repeat` is true.
 | 
						|
  std::atomic<bool> repeat;
 | 
						|
 | 
						|
  // The main loop counter.
 | 
						|
  int cnt = 0;
 | 
						|
 | 
						|
  // We have two locations for equivalence classes. On the first iteration
 | 
						|
  // of the main loop, Class[0] has a valid value, and Class[1] contains
 | 
						|
  // garbage. We read equivalence classes from slot 0 and write to slot 1.
 | 
						|
  // So, Class[0] represents the current class, and Class[1] represents
 | 
						|
  // the next class. On each iteration, we switch their roles and use them
 | 
						|
  // alternately.
 | 
						|
  //
 | 
						|
  // Why are we doing this? Recall that other threads may be working on
 | 
						|
  // other equivalence classes in parallel. They may read sections that we
 | 
						|
  // are updating. We cannot update equivalence classes in place because
 | 
						|
  // it breaks the invariance that all possibly-identical sections must be
 | 
						|
  // in the same equivalence class at any moment. In other words, the for
 | 
						|
  // loop to update equivalence classes is not atomic, and that is
 | 
						|
  // observable from other threads. By writing new classes to other
 | 
						|
  // places, we can keep the invariance.
 | 
						|
  //
 | 
						|
  // Below, `Current` has the index of the current class, and `Next` has
 | 
						|
  // the index of the next class. If threading is enabled, they are either
 | 
						|
  // (0, 1) or (1, 0).
 | 
						|
  //
 | 
						|
  // Note on single-thread: if that's the case, they are always (0, 0)
 | 
						|
  // because we can safely read the next class without worrying about race
 | 
						|
  // conditions. Using the same location makes this algorithm converge
 | 
						|
  // faster because it uses results of the same iteration earlier.
 | 
						|
  int current = 0;
 | 
						|
  int next = 0;
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
// Returns true if section S is subject of ICF.
 | 
						|
static bool isEligible(InputSection *s) {
 | 
						|
  if (!s->isLive() || s->keepUnique || !(s->flags & SHF_ALLOC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't merge writable sections. .data.rel.ro sections are marked as writable
 | 
						|
  // but are semantically read-only.
 | 
						|
  if ((s->flags & SHF_WRITE) && s->name != ".data.rel.ro" &&
 | 
						|
      !s->name.startswith(".data.rel.ro."))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // SHF_LINK_ORDER sections are ICF'd as a unit with their dependent sections,
 | 
						|
  // so we don't consider them for ICF individually.
 | 
						|
  if (s->flags & SHF_LINK_ORDER)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't merge synthetic sections as their Data member is not valid and empty.
 | 
						|
  // The Data member needs to be valid for ICF as it is used by ICF to determine
 | 
						|
  // the equality of section contents.
 | 
						|
  if (isa<SyntheticSection>(s))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // .init and .fini contains instructions that must be executed to initialize
 | 
						|
  // and finalize the process. They cannot and should not be merged.
 | 
						|
  if (s->name == ".init" || s->name == ".fini")
 | 
						|
    return false;
 | 
						|
 | 
						|
  // A user program may enumerate sections named with a C identifier using
 | 
						|
  // __start_* and __stop_* symbols. We cannot ICF any such sections because
 | 
						|
  // that could change program semantics.
 | 
						|
  if (isValidCIdentifier(s->name))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Split an equivalence class into smaller classes.
 | 
						|
template <class ELFT>
 | 
						|
void ICF<ELFT>::segregate(size_t begin, size_t end, uint32_t eqClassBase,
 | 
						|
                          bool constant) {
 | 
						|
  // This loop rearranges sections in [Begin, End) so that all sections
 | 
						|
  // that are equal in terms of equals{Constant,Variable} are contiguous
 | 
						|
  // in [Begin, End).
 | 
						|
  //
 | 
						|
  // The algorithm is quadratic in the worst case, but that is not an
 | 
						|
  // issue in practice because the number of the distinct sections in
 | 
						|
  // each range is usually very small.
 | 
						|
 | 
						|
  while (begin < end) {
 | 
						|
    // Divide [Begin, End) into two. Let Mid be the start index of the
 | 
						|
    // second group.
 | 
						|
    auto bound =
 | 
						|
        std::stable_partition(sections.begin() + begin + 1,
 | 
						|
                              sections.begin() + end, [&](InputSection *s) {
 | 
						|
                                if (constant)
 | 
						|
                                  return equalsConstant(sections[begin], s);
 | 
						|
                                return equalsVariable(sections[begin], s);
 | 
						|
                              });
 | 
						|
    size_t mid = bound - sections.begin();
 | 
						|
 | 
						|
    // Now we split [Begin, End) into [Begin, Mid) and [Mid, End) by
 | 
						|
    // updating the sections in [Begin, Mid). We use Mid as the basis for
 | 
						|
    // the equivalence class ID because every group ends with a unique index.
 | 
						|
    // Add this to eqClassBase to avoid equality with unique IDs.
 | 
						|
    for (size_t i = begin; i < mid; ++i)
 | 
						|
      sections[i]->eqClass[next] = eqClassBase + mid;
 | 
						|
 | 
						|
    // If we created a group, we need to iterate the main loop again.
 | 
						|
    if (mid != end)
 | 
						|
      repeat = true;
 | 
						|
 | 
						|
    begin = mid;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Compare two lists of relocations.
 | 
						|
template <class ELFT>
 | 
						|
template <class RelTy>
 | 
						|
bool ICF<ELFT>::constantEq(const InputSection *secA, ArrayRef<RelTy> ra,
 | 
						|
                           const InputSection *secB, ArrayRef<RelTy> rb) {
 | 
						|
  if (ra.size() != rb.size())
 | 
						|
    return false;
 | 
						|
  for (size_t i = 0; i < ra.size(); ++i) {
 | 
						|
    if (ra[i].r_offset != rb[i].r_offset ||
 | 
						|
        ra[i].getType(config->isMips64EL) != rb[i].getType(config->isMips64EL))
 | 
						|
      return false;
 | 
						|
 | 
						|
    uint64_t addA = getAddend<ELFT>(ra[i]);
 | 
						|
    uint64_t addB = getAddend<ELFT>(rb[i]);
 | 
						|
 | 
						|
    Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
 | 
						|
    Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
 | 
						|
    if (&sa == &sb) {
 | 
						|
      if (addA == addB)
 | 
						|
        continue;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    auto *da = dyn_cast<Defined>(&sa);
 | 
						|
    auto *db = dyn_cast<Defined>(&sb);
 | 
						|
 | 
						|
    // Placeholder symbols generated by linker scripts look the same now but
 | 
						|
    // may have different values later.
 | 
						|
    if (!da || !db || da->scriptDefined || db->scriptDefined)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // When comparing a pair of relocations, if they refer to different symbols,
 | 
						|
    // and either symbol is preemptible, the containing sections should be
 | 
						|
    // considered different. This is because even if the sections are identical
 | 
						|
    // in this DSO, they may not be after preemption.
 | 
						|
    if (da->isPreemptible || db->isPreemptible)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Relocations referring to absolute symbols are constant-equal if their
 | 
						|
    // values are equal.
 | 
						|
    if (!da->section && !db->section && da->value + addA == db->value + addB)
 | 
						|
      continue;
 | 
						|
    if (!da->section || !db->section)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (da->section->kind() != db->section->kind())
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Relocations referring to InputSections are constant-equal if their
 | 
						|
    // section offsets are equal.
 | 
						|
    if (isa<InputSection>(da->section)) {
 | 
						|
      if (da->value + addA == db->value + addB)
 | 
						|
        continue;
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Relocations referring to MergeInputSections are constant-equal if their
 | 
						|
    // offsets in the output section are equal.
 | 
						|
    auto *x = dyn_cast<MergeInputSection>(da->section);
 | 
						|
    if (!x)
 | 
						|
      return false;
 | 
						|
    auto *y = cast<MergeInputSection>(db->section);
 | 
						|
    if (x->getParent() != y->getParent())
 | 
						|
      return false;
 | 
						|
 | 
						|
    uint64_t offsetA =
 | 
						|
        sa.isSection() ? x->getOffset(addA) : x->getOffset(da->value) + addA;
 | 
						|
    uint64_t offsetB =
 | 
						|
        sb.isSection() ? y->getOffset(addB) : y->getOffset(db->value) + addB;
 | 
						|
    if (offsetA != offsetB)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Compare "non-moving" part of two InputSections, namely everything
 | 
						|
// except relocation targets.
 | 
						|
template <class ELFT>
 | 
						|
bool ICF<ELFT>::equalsConstant(const InputSection *a, const InputSection *b) {
 | 
						|
  if (a->flags != b->flags || a->getSize() != b->getSize() ||
 | 
						|
      a->data() != b->data())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If two sections have different output sections, we cannot merge them.
 | 
						|
  assert(a->getParent() && b->getParent());
 | 
						|
  if (a->getParent() != b->getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
 | 
						|
  const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
 | 
						|
  return ra.areRelocsRel() ? constantEq(a, ra.rels, b, rb.rels)
 | 
						|
                           : constantEq(a, ra.relas, b, rb.relas);
 | 
						|
}
 | 
						|
 | 
						|
// Compare two lists of relocations. Returns true if all pairs of
 | 
						|
// relocations point to the same section in terms of ICF.
 | 
						|
template <class ELFT>
 | 
						|
template <class RelTy>
 | 
						|
bool ICF<ELFT>::variableEq(const InputSection *secA, ArrayRef<RelTy> ra,
 | 
						|
                           const InputSection *secB, ArrayRef<RelTy> rb) {
 | 
						|
  assert(ra.size() == rb.size());
 | 
						|
 | 
						|
  for (size_t i = 0; i < ra.size(); ++i) {
 | 
						|
    // The two sections must be identical.
 | 
						|
    Symbol &sa = secA->template getFile<ELFT>()->getRelocTargetSym(ra[i]);
 | 
						|
    Symbol &sb = secB->template getFile<ELFT>()->getRelocTargetSym(rb[i]);
 | 
						|
    if (&sa == &sb)
 | 
						|
      continue;
 | 
						|
 | 
						|
    auto *da = cast<Defined>(&sa);
 | 
						|
    auto *db = cast<Defined>(&sb);
 | 
						|
 | 
						|
    // We already dealt with absolute and non-InputSection symbols in
 | 
						|
    // constantEq, and for InputSections we have already checked everything
 | 
						|
    // except the equivalence class.
 | 
						|
    if (!da->section)
 | 
						|
      continue;
 | 
						|
    auto *x = dyn_cast<InputSection>(da->section);
 | 
						|
    if (!x)
 | 
						|
      continue;
 | 
						|
    auto *y = cast<InputSection>(db->section);
 | 
						|
 | 
						|
    // Sections that are in the special equivalence class 0, can never be the
 | 
						|
    // same in terms of the equivalence class.
 | 
						|
    if (x->eqClass[current] == 0)
 | 
						|
      return false;
 | 
						|
    if (x->eqClass[current] != y->eqClass[current])
 | 
						|
      return false;
 | 
						|
  };
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Compare "moving" part of two InputSections, namely relocation targets.
 | 
						|
template <class ELFT>
 | 
						|
bool ICF<ELFT>::equalsVariable(const InputSection *a, const InputSection *b) {
 | 
						|
  const RelsOrRelas<ELFT> ra = a->template relsOrRelas<ELFT>();
 | 
						|
  const RelsOrRelas<ELFT> rb = b->template relsOrRelas<ELFT>();
 | 
						|
  return ra.areRelocsRel() ? variableEq(a, ra.rels, b, rb.rels)
 | 
						|
                           : variableEq(a, ra.relas, b, rb.relas);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> size_t ICF<ELFT>::findBoundary(size_t begin, size_t end) {
 | 
						|
  uint32_t eqClass = sections[begin]->eqClass[current];
 | 
						|
  for (size_t i = begin + 1; i < end; ++i)
 | 
						|
    if (eqClass != sections[i]->eqClass[current])
 | 
						|
      return i;
 | 
						|
  return end;
 | 
						|
}
 | 
						|
 | 
						|
// Sections in the same equivalence class are contiguous in Sections
 | 
						|
// vector. Therefore, Sections vector can be considered as contiguous
 | 
						|
// groups of sections, grouped by the class.
 | 
						|
//
 | 
						|
// This function calls Fn on every group within [Begin, End).
 | 
						|
template <class ELFT>
 | 
						|
void ICF<ELFT>::forEachClassRange(size_t begin, size_t end,
 | 
						|
                                  llvm::function_ref<void(size_t, size_t)> fn) {
 | 
						|
  while (begin < end) {
 | 
						|
    size_t mid = findBoundary(begin, end);
 | 
						|
    fn(begin, mid);
 | 
						|
    begin = mid;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Call Fn on each equivalence class.
 | 
						|
template <class ELFT>
 | 
						|
void ICF<ELFT>::forEachClass(llvm::function_ref<void(size_t, size_t)> fn) {
 | 
						|
  // If threading is disabled or the number of sections are
 | 
						|
  // too small to use threading, call Fn sequentially.
 | 
						|
  if (parallel::strategy.ThreadsRequested == 1 || sections.size() < 1024) {
 | 
						|
    forEachClassRange(0, sections.size(), fn);
 | 
						|
    ++cnt;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  current = cnt % 2;
 | 
						|
  next = (cnt + 1) % 2;
 | 
						|
 | 
						|
  // Shard into non-overlapping intervals, and call Fn in parallel.
 | 
						|
  // The sharding must be completed before any calls to Fn are made
 | 
						|
  // so that Fn can modify the Chunks in its shard without causing data
 | 
						|
  // races.
 | 
						|
  const size_t numShards = 256;
 | 
						|
  size_t step = sections.size() / numShards;
 | 
						|
  size_t boundaries[numShards + 1];
 | 
						|
  boundaries[0] = 0;
 | 
						|
  boundaries[numShards] = sections.size();
 | 
						|
 | 
						|
  parallelForEachN(1, numShards, [&](size_t i) {
 | 
						|
    boundaries[i] = findBoundary((i - 1) * step, sections.size());
 | 
						|
  });
 | 
						|
 | 
						|
  parallelForEachN(1, numShards + 1, [&](size_t i) {
 | 
						|
    if (boundaries[i - 1] < boundaries[i])
 | 
						|
      forEachClassRange(boundaries[i - 1], boundaries[i], fn);
 | 
						|
  });
 | 
						|
  ++cnt;
 | 
						|
}
 | 
						|
 | 
						|
// Combine the hashes of the sections referenced by the given section into its
 | 
						|
// hash.
 | 
						|
template <class ELFT, class RelTy>
 | 
						|
static void combineRelocHashes(unsigned cnt, InputSection *isec,
 | 
						|
                               ArrayRef<RelTy> rels) {
 | 
						|
  uint32_t hash = isec->eqClass[cnt % 2];
 | 
						|
  for (RelTy rel : rels) {
 | 
						|
    Symbol &s = isec->template getFile<ELFT>()->getRelocTargetSym(rel);
 | 
						|
    if (auto *d = dyn_cast<Defined>(&s))
 | 
						|
      if (auto *relSec = dyn_cast_or_null<InputSection>(d->section))
 | 
						|
        hash += relSec->eqClass[cnt % 2];
 | 
						|
  }
 | 
						|
  // Set MSB to 1 to avoid collisions with unique IDs.
 | 
						|
  isec->eqClass[(cnt + 1) % 2] = hash | (1U << 31);
 | 
						|
}
 | 
						|
 | 
						|
static void print(const Twine &s) {
 | 
						|
  if (config->printIcfSections)
 | 
						|
    message(s);
 | 
						|
}
 | 
						|
 | 
						|
// The main function of ICF.
 | 
						|
template <class ELFT> void ICF<ELFT>::run() {
 | 
						|
  // Compute isPreemptible early. We may add more symbols later, so this loop
 | 
						|
  // cannot be merged with the later computeIsPreemptible() pass which is used
 | 
						|
  // by scanRelocations().
 | 
						|
  for (Symbol *sym : symtab->symbols())
 | 
						|
    sym->isPreemptible = computeIsPreemptible(*sym);
 | 
						|
 | 
						|
  // Two text sections may have identical content and relocations but different
 | 
						|
  // LSDA, e.g. the two functions may have catch blocks of different types. If a
 | 
						|
  // text section is referenced by a .eh_frame FDE with LSDA, it is not
 | 
						|
  // eligible. This is implemented by iterating over CIE/FDE and setting
 | 
						|
  // eqClass[0] to the referenced text section from a live FDE.
 | 
						|
  //
 | 
						|
  // If two .gcc_except_table have identical semantics (usually identical
 | 
						|
  // content with PC-relative encoding), we will lose folding opportunity.
 | 
						|
  uint32_t uniqueId = 0;
 | 
						|
  for (Partition &part : partitions)
 | 
						|
    part.ehFrame->iterateFDEWithLSDA<ELFT>(
 | 
						|
        [&](InputSection &s) { s.eqClass[0] = s.eqClass[1] = ++uniqueId; });
 | 
						|
 | 
						|
  // Collect sections to merge.
 | 
						|
  for (InputSectionBase *sec : inputSections) {
 | 
						|
    auto *s = cast<InputSection>(sec);
 | 
						|
    if (s->eqClass[0] == 0) {
 | 
						|
      if (isEligible(s))
 | 
						|
        sections.push_back(s);
 | 
						|
      else
 | 
						|
        // Ineligible sections are assigned unique IDs, i.e. each section
 | 
						|
        // belongs to an equivalence class of its own.
 | 
						|
        s->eqClass[0] = s->eqClass[1] = ++uniqueId;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Initially, we use hash values to partition sections.
 | 
						|
  parallelForEach(sections, [&](InputSection *s) {
 | 
						|
    // Set MSB to 1 to avoid collisions with unique IDs.
 | 
						|
    s->eqClass[0] = xxHash64(s->data()) | (1U << 31);
 | 
						|
  });
 | 
						|
 | 
						|
  // Perform 2 rounds of relocation hash propagation. 2 is an empirical value to
 | 
						|
  // reduce the average sizes of equivalence classes, i.e. segregate() which has
 | 
						|
  // a large time complexity will have less work to do.
 | 
						|
  for (unsigned cnt = 0; cnt != 2; ++cnt) {
 | 
						|
    parallelForEach(sections, [&](InputSection *s) {
 | 
						|
      const RelsOrRelas<ELFT> rels = s->template relsOrRelas<ELFT>();
 | 
						|
      if (rels.areRelocsRel())
 | 
						|
        combineRelocHashes<ELFT>(cnt, s, rels.rels);
 | 
						|
      else
 | 
						|
        combineRelocHashes<ELFT>(cnt, s, rels.relas);
 | 
						|
    });
 | 
						|
  }
 | 
						|
 | 
						|
  // From now on, sections in Sections vector are ordered so that sections
 | 
						|
  // in the same equivalence class are consecutive in the vector.
 | 
						|
  llvm::stable_sort(sections, [](const InputSection *a, const InputSection *b) {
 | 
						|
    return a->eqClass[0] < b->eqClass[0];
 | 
						|
  });
 | 
						|
 | 
						|
  // Compare static contents and assign unique equivalence class IDs for each
 | 
						|
  // static content. Use a base offset for these IDs to ensure no overlap with
 | 
						|
  // the unique IDs already assigned.
 | 
						|
  uint32_t eqClassBase = ++uniqueId;
 | 
						|
  forEachClass([&](size_t begin, size_t end) {
 | 
						|
    segregate(begin, end, eqClassBase, true);
 | 
						|
  });
 | 
						|
 | 
						|
  // Split groups by comparing relocations until convergence is obtained.
 | 
						|
  do {
 | 
						|
    repeat = false;
 | 
						|
    forEachClass([&](size_t begin, size_t end) {
 | 
						|
      segregate(begin, end, eqClassBase, false);
 | 
						|
    });
 | 
						|
  } while (repeat);
 | 
						|
 | 
						|
  log("ICF needed " + Twine(cnt) + " iterations");
 | 
						|
 | 
						|
  // Merge sections by the equivalence class.
 | 
						|
  forEachClassRange(0, sections.size(), [&](size_t begin, size_t end) {
 | 
						|
    if (end - begin == 1)
 | 
						|
      return;
 | 
						|
    print("selected section " + toString(sections[begin]));
 | 
						|
    for (size_t i = begin + 1; i < end; ++i) {
 | 
						|
      print("  removing identical section " + toString(sections[i]));
 | 
						|
      sections[begin]->replace(sections[i]);
 | 
						|
 | 
						|
      // At this point we know sections merged are fully identical and hence
 | 
						|
      // we want to remove duplicate implicit dependencies such as link order
 | 
						|
      // and relocation sections.
 | 
						|
      for (InputSection *isec : sections[i]->dependentSections)
 | 
						|
        isec->markDead();
 | 
						|
    }
 | 
						|
  });
 | 
						|
 | 
						|
  // InputSectionDescription::sections is populated by processSectionCommands().
 | 
						|
  // ICF may fold some input sections assigned to output sections. Remove them.
 | 
						|
  for (SectionCommand *cmd : script->sectionCommands)
 | 
						|
    if (auto *sec = dyn_cast<OutputSection>(cmd))
 | 
						|
      for (SectionCommand *subCmd : sec->commands)
 | 
						|
        if (auto *isd = dyn_cast<InputSectionDescription>(subCmd))
 | 
						|
          llvm::erase_if(isd->sections,
 | 
						|
                         [](InputSection *isec) { return !isec->isLive(); });
 | 
						|
}
 | 
						|
 | 
						|
// ICF entry point function.
 | 
						|
template <class ELFT> void elf::doIcf() {
 | 
						|
  llvm::TimeTraceScope timeScope("ICF");
 | 
						|
  ICF<ELFT>().run();
 | 
						|
}
 | 
						|
 | 
						|
template void elf::doIcf<ELF32LE>();
 | 
						|
template void elf::doIcf<ELF32BE>();
 | 
						|
template void elf::doIcf<ELF64LE>();
 | 
						|
template void elf::doIcf<ELF64BE>();
 |