2975 lines
		
	
	
		
			110 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2975 lines
		
	
	
		
			110 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- Writer.cpp ---------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "Writer.h"
 | 
						|
#include "AArch64ErrataFix.h"
 | 
						|
#include "ARMErrataFix.h"
 | 
						|
#include "CallGraphSort.h"
 | 
						|
#include "Config.h"
 | 
						|
#include "LinkerScript.h"
 | 
						|
#include "MapFile.h"
 | 
						|
#include "OutputSections.h"
 | 
						|
#include "Relocations.h"
 | 
						|
#include "SymbolTable.h"
 | 
						|
#include "Symbols.h"
 | 
						|
#include "SyntheticSections.h"
 | 
						|
#include "Target.h"
 | 
						|
#include "lld/Common/Arrays.h"
 | 
						|
#include "lld/Common/Filesystem.h"
 | 
						|
#include "lld/Common/Memory.h"
 | 
						|
#include "lld/Common/Strings.h"
 | 
						|
#include "llvm/ADT/StringMap.h"
 | 
						|
#include "llvm/ADT/StringSwitch.h"
 | 
						|
#include "llvm/Support/Parallel.h"
 | 
						|
#include "llvm/Support/RandomNumberGenerator.h"
 | 
						|
#include "llvm/Support/SHA1.h"
 | 
						|
#include "llvm/Support/TimeProfiler.h"
 | 
						|
#include "llvm/Support/xxhash.h"
 | 
						|
#include <climits>
 | 
						|
 | 
						|
#define DEBUG_TYPE "lld"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::ELF;
 | 
						|
using namespace llvm::object;
 | 
						|
using namespace llvm::support;
 | 
						|
using namespace llvm::support::endian;
 | 
						|
using namespace lld;
 | 
						|
using namespace lld::elf;
 | 
						|
 | 
						|
namespace {
 | 
						|
// The writer writes a SymbolTable result to a file.
 | 
						|
template <class ELFT> class Writer {
 | 
						|
public:
 | 
						|
  LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
 | 
						|
 | 
						|
  Writer() : buffer(errorHandler().outputBuffer) {}
 | 
						|
 | 
						|
  void run();
 | 
						|
 | 
						|
private:
 | 
						|
  void copyLocalSymbols();
 | 
						|
  void addSectionSymbols();
 | 
						|
  void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
 | 
						|
  void sortSections();
 | 
						|
  void resolveShfLinkOrder();
 | 
						|
  void finalizeAddressDependentContent();
 | 
						|
  void optimizeBasicBlockJumps();
 | 
						|
  void sortInputSections();
 | 
						|
  void finalizeSections();
 | 
						|
  void checkExecuteOnly();
 | 
						|
  void setReservedSymbolSections();
 | 
						|
 | 
						|
  std::vector<PhdrEntry *> createPhdrs(Partition &part);
 | 
						|
  void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
 | 
						|
                         unsigned pFlags);
 | 
						|
  void assignFileOffsets();
 | 
						|
  void assignFileOffsetsBinary();
 | 
						|
  void setPhdrs(Partition &part);
 | 
						|
  void checkSections();
 | 
						|
  void fixSectionAlignments();
 | 
						|
  void openFile();
 | 
						|
  void writeTrapInstr();
 | 
						|
  void writeHeader();
 | 
						|
  void writeSections();
 | 
						|
  void writeSectionsBinary();
 | 
						|
  void writeBuildId();
 | 
						|
 | 
						|
  std::unique_ptr<FileOutputBuffer> &buffer;
 | 
						|
 | 
						|
  void addRelIpltSymbols();
 | 
						|
  void addStartEndSymbols();
 | 
						|
  void addStartStopSymbols(OutputSection *sec);
 | 
						|
 | 
						|
  uint64_t fileSize;
 | 
						|
  uint64_t sectionHeaderOff;
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
static bool needsInterpSection() {
 | 
						|
  return !config->relocatable && !config->shared &&
 | 
						|
         !config->dynamicLinker.empty() && script->needsInterpSection();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void elf::writeResult() {
 | 
						|
  Writer<ELFT>().run();
 | 
						|
}
 | 
						|
 | 
						|
static void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
 | 
						|
  auto it = std::stable_partition(
 | 
						|
      phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) {
 | 
						|
        if (p->p_type != PT_LOAD)
 | 
						|
          return true;
 | 
						|
        if (!p->firstSec)
 | 
						|
          return false;
 | 
						|
        uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
 | 
						|
        return size != 0;
 | 
						|
      });
 | 
						|
 | 
						|
  // Clear OutputSection::ptLoad for sections contained in removed
 | 
						|
  // segments.
 | 
						|
  DenseSet<PhdrEntry *> removed(it, phdrs.end());
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    if (removed.count(sec->ptLoad))
 | 
						|
      sec->ptLoad = nullptr;
 | 
						|
  phdrs.erase(it, phdrs.end());
 | 
						|
}
 | 
						|
 | 
						|
void elf::copySectionsIntoPartitions() {
 | 
						|
  std::vector<InputSectionBase *> newSections;
 | 
						|
  for (unsigned part = 2; part != partitions.size() + 1; ++part) {
 | 
						|
    for (InputSectionBase *s : inputSections) {
 | 
						|
      if (!(s->flags & SHF_ALLOC) || !s->isLive())
 | 
						|
        continue;
 | 
						|
      InputSectionBase *copy;
 | 
						|
      if (s->type == SHT_NOTE)
 | 
						|
        copy = make<InputSection>(cast<InputSection>(*s));
 | 
						|
      else if (auto *es = dyn_cast<EhInputSection>(s))
 | 
						|
        copy = make<EhInputSection>(*es);
 | 
						|
      else
 | 
						|
        continue;
 | 
						|
      copy->partition = part;
 | 
						|
      newSections.push_back(copy);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  inputSections.insert(inputSections.end(), newSections.begin(),
 | 
						|
                       newSections.end());
 | 
						|
}
 | 
						|
 | 
						|
void elf::combineEhSections() {
 | 
						|
  llvm::TimeTraceScope timeScope("Combine EH sections");
 | 
						|
  for (InputSectionBase *&s : inputSections) {
 | 
						|
    // Ignore dead sections and the partition end marker (.part.end),
 | 
						|
    // whose partition number is out of bounds.
 | 
						|
    if (!s->isLive() || s->partition == 255)
 | 
						|
      continue;
 | 
						|
 | 
						|
    Partition &part = s->getPartition();
 | 
						|
    if (auto *es = dyn_cast<EhInputSection>(s)) {
 | 
						|
      part.ehFrame->addSection(es);
 | 
						|
      s = nullptr;
 | 
						|
    } else if (s->kind() == SectionBase::Regular && part.armExidx &&
 | 
						|
               part.armExidx->addSection(cast<InputSection>(s))) {
 | 
						|
      s = nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  llvm::erase_value(inputSections, nullptr);
 | 
						|
}
 | 
						|
 | 
						|
static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
 | 
						|
                                   uint64_t val, uint8_t stOther = STV_HIDDEN) {
 | 
						|
  Symbol *s = symtab->find(name);
 | 
						|
  if (!s || s->isDefined())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  s->resolve(Defined{/*file=*/nullptr, name, STB_GLOBAL, stOther, STT_NOTYPE,
 | 
						|
                     val,
 | 
						|
                     /*size=*/0, sec});
 | 
						|
  return cast<Defined>(s);
 | 
						|
}
 | 
						|
 | 
						|
static Defined *addAbsolute(StringRef name) {
 | 
						|
  Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
 | 
						|
                                          STT_NOTYPE, 0, 0, nullptr});
 | 
						|
  return cast<Defined>(sym);
 | 
						|
}
 | 
						|
 | 
						|
// The linker is expected to define some symbols depending on
 | 
						|
// the linking result. This function defines such symbols.
 | 
						|
void elf::addReservedSymbols() {
 | 
						|
  if (config->emachine == EM_MIPS) {
 | 
						|
    // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
 | 
						|
    // so that it points to an absolute address which by default is relative
 | 
						|
    // to GOT. Default offset is 0x7ff0.
 | 
						|
    // See "Global Data Symbols" in Chapter 6 in the following document:
 | 
						|
    // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
 | 
						|
    ElfSym::mipsGp = addAbsolute("_gp");
 | 
						|
 | 
						|
    // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
 | 
						|
    // start of function and 'gp' pointer into GOT.
 | 
						|
    if (symtab->find("_gp_disp"))
 | 
						|
      ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
 | 
						|
 | 
						|
    // The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
 | 
						|
    // pointer. This symbol is used in the code generated by .cpload pseudo-op
 | 
						|
    // in case of using -mno-shared option.
 | 
						|
    // https://sourceware.org/ml/binutils/2004-12/msg00094.html
 | 
						|
    if (symtab->find("__gnu_local_gp"))
 | 
						|
      ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
 | 
						|
  } else if (config->emachine == EM_PPC) {
 | 
						|
    // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
 | 
						|
    // support Small Data Area, define it arbitrarily as 0.
 | 
						|
    addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
 | 
						|
  } else if (config->emachine == EM_PPC64) {
 | 
						|
    addPPC64SaveRestore();
 | 
						|
  }
 | 
						|
 | 
						|
  // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
 | 
						|
  // combines the typical ELF GOT with the small data sections. It commonly
 | 
						|
  // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both
 | 
						|
  // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to
 | 
						|
  // represent the TOC base which is offset by 0x8000 bytes from the start of
 | 
						|
  // the .got section.
 | 
						|
  // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
 | 
						|
  // correctness of some relocations depends on its value.
 | 
						|
  StringRef gotSymName =
 | 
						|
      (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
 | 
						|
 | 
						|
  if (Symbol *s = symtab->find(gotSymName)) {
 | 
						|
    if (s->isDefined()) {
 | 
						|
      error(toString(s->file) + " cannot redefine linker defined symbol '" +
 | 
						|
            gotSymName + "'");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    uint64_t gotOff = 0;
 | 
						|
    if (config->emachine == EM_PPC64)
 | 
						|
      gotOff = 0x8000;
 | 
						|
 | 
						|
    s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
 | 
						|
                       STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
 | 
						|
    ElfSym::globalOffsetTable = cast<Defined>(s);
 | 
						|
  }
 | 
						|
 | 
						|
  // __ehdr_start is the location of ELF file headers. Note that we define
 | 
						|
  // this symbol unconditionally even when using a linker script, which
 | 
						|
  // differs from the behavior implemented by GNU linker which only define
 | 
						|
  // this symbol if ELF headers are in the memory mapped segment.
 | 
						|
  addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
 | 
						|
 | 
						|
  // __executable_start is not documented, but the expectation of at
 | 
						|
  // least the Android libc is that it points to the ELF header.
 | 
						|
  addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
 | 
						|
 | 
						|
  // __dso_handle symbol is passed to cxa_finalize as a marker to identify
 | 
						|
  // each DSO. The address of the symbol doesn't matter as long as they are
 | 
						|
  // different in different DSOs, so we chose the start address of the DSO.
 | 
						|
  addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
 | 
						|
 | 
						|
  // If linker script do layout we do not need to create any standard symbols.
 | 
						|
  if (script->hasSectionsCommand)
 | 
						|
    return;
 | 
						|
 | 
						|
  auto add = [](StringRef s, int64_t pos) {
 | 
						|
    return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
 | 
						|
  };
 | 
						|
 | 
						|
  ElfSym::bss = add("__bss_start", 0);
 | 
						|
  ElfSym::end1 = add("end", -1);
 | 
						|
  ElfSym::end2 = add("_end", -1);
 | 
						|
  ElfSym::etext1 = add("etext", -1);
 | 
						|
  ElfSym::etext2 = add("_etext", -1);
 | 
						|
  ElfSym::edata1 = add("edata", -1);
 | 
						|
  ElfSym::edata2 = add("_edata", -1);
 | 
						|
}
 | 
						|
 | 
						|
static OutputSection *findSection(StringRef name, unsigned partition = 1) {
 | 
						|
  for (SectionCommand *cmd : script->sectionCommands)
 | 
						|
    if (auto *sec = dyn_cast<OutputSection>(cmd))
 | 
						|
      if (sec->name == name && sec->partition == partition)
 | 
						|
        return sec;
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void elf::createSyntheticSections() {
 | 
						|
  // Initialize all pointers with NULL. This is needed because
 | 
						|
  // you can call lld::elf::main more than once as a library.
 | 
						|
  Out::tlsPhdr = nullptr;
 | 
						|
  Out::preinitArray = nullptr;
 | 
						|
  Out::initArray = nullptr;
 | 
						|
  Out::finiArray = nullptr;
 | 
						|
 | 
						|
  // Add the .interp section first because it is not a SyntheticSection.
 | 
						|
  // The removeUnusedSyntheticSections() function relies on the
 | 
						|
  // SyntheticSections coming last.
 | 
						|
  if (needsInterpSection()) {
 | 
						|
    for (size_t i = 1; i <= partitions.size(); ++i) {
 | 
						|
      InputSection *sec = createInterpSection();
 | 
						|
      sec->partition = i;
 | 
						|
      inputSections.push_back(sec);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto add = [](SyntheticSection &sec) { inputSections.push_back(&sec); };
 | 
						|
 | 
						|
  in.shStrTab = make<StringTableSection>(".shstrtab", false);
 | 
						|
 | 
						|
  Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
 | 
						|
  Out::programHeaders->alignment = config->wordsize;
 | 
						|
 | 
						|
  if (config->strip != StripPolicy::All) {
 | 
						|
    in.strTab = make<StringTableSection>(".strtab", false);
 | 
						|
    in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
 | 
						|
    in.symTabShndx = make<SymtabShndxSection>();
 | 
						|
  }
 | 
						|
 | 
						|
  in.bss = make<BssSection>(".bss", 0, 1);
 | 
						|
  add(*in.bss);
 | 
						|
 | 
						|
  // If there is a SECTIONS command and a .data.rel.ro section name use name
 | 
						|
  // .data.rel.ro.bss so that we match in the .data.rel.ro output section.
 | 
						|
  // This makes sure our relro is contiguous.
 | 
						|
  bool hasDataRelRo =
 | 
						|
      script->hasSectionsCommand && findSection(".data.rel.ro", 0);
 | 
						|
  in.bssRelRo =
 | 
						|
      make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
 | 
						|
  add(*in.bssRelRo);
 | 
						|
 | 
						|
  // Add MIPS-specific sections.
 | 
						|
  if (config->emachine == EM_MIPS) {
 | 
						|
    if (!config->shared && config->hasDynSymTab) {
 | 
						|
      in.mipsRldMap = make<MipsRldMapSection>();
 | 
						|
      add(*in.mipsRldMap);
 | 
						|
    }
 | 
						|
    if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
 | 
						|
      add(*sec);
 | 
						|
    if (auto *sec = MipsOptionsSection<ELFT>::create())
 | 
						|
      add(*sec);
 | 
						|
    if (auto *sec = MipsReginfoSection<ELFT>::create())
 | 
						|
      add(*sec);
 | 
						|
  }
 | 
						|
 | 
						|
  StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn";
 | 
						|
 | 
						|
  for (Partition &part : partitions) {
 | 
						|
    auto add = [&](SyntheticSection &sec) {
 | 
						|
      sec.partition = part.getNumber();
 | 
						|
      inputSections.push_back(&sec);
 | 
						|
    };
 | 
						|
 | 
						|
    if (!part.name.empty()) {
 | 
						|
      part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
 | 
						|
      part.elfHeader->name = part.name;
 | 
						|
      add(*part.elfHeader);
 | 
						|
 | 
						|
      part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
 | 
						|
      add(*part.programHeaders);
 | 
						|
    }
 | 
						|
 | 
						|
    if (config->buildId != BuildIdKind::None) {
 | 
						|
      part.buildId = make<BuildIdSection>();
 | 
						|
      add(*part.buildId);
 | 
						|
    }
 | 
						|
 | 
						|
    part.dynStrTab = make<StringTableSection>(".dynstr", true);
 | 
						|
    part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
 | 
						|
    part.dynamic = make<DynamicSection<ELFT>>();
 | 
						|
    if (config->androidPackDynRelocs)
 | 
						|
      part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(relaDynName);
 | 
						|
    else
 | 
						|
      part.relaDyn =
 | 
						|
          make<RelocationSection<ELFT>>(relaDynName, config->zCombreloc);
 | 
						|
 | 
						|
    if (config->hasDynSymTab) {
 | 
						|
      add(*part.dynSymTab);
 | 
						|
 | 
						|
      part.verSym = make<VersionTableSection>();
 | 
						|
      add(*part.verSym);
 | 
						|
 | 
						|
      if (!namedVersionDefs().empty()) {
 | 
						|
        part.verDef = make<VersionDefinitionSection>();
 | 
						|
        add(*part.verDef);
 | 
						|
      }
 | 
						|
 | 
						|
      part.verNeed = make<VersionNeedSection<ELFT>>();
 | 
						|
      add(*part.verNeed);
 | 
						|
 | 
						|
      if (config->gnuHash) {
 | 
						|
        part.gnuHashTab = make<GnuHashTableSection>();
 | 
						|
        add(*part.gnuHashTab);
 | 
						|
      }
 | 
						|
 | 
						|
      if (config->sysvHash) {
 | 
						|
        part.hashTab = make<HashTableSection>();
 | 
						|
        add(*part.hashTab);
 | 
						|
      }
 | 
						|
 | 
						|
      add(*part.dynamic);
 | 
						|
      add(*part.dynStrTab);
 | 
						|
      add(*part.relaDyn);
 | 
						|
    }
 | 
						|
 | 
						|
    if (config->relrPackDynRelocs) {
 | 
						|
      part.relrDyn = make<RelrSection<ELFT>>();
 | 
						|
      add(*part.relrDyn);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!config->relocatable) {
 | 
						|
      if (config->ehFrameHdr) {
 | 
						|
        part.ehFrameHdr = make<EhFrameHeader>();
 | 
						|
        add(*part.ehFrameHdr);
 | 
						|
      }
 | 
						|
      part.ehFrame = make<EhFrameSection>();
 | 
						|
      add(*part.ehFrame);
 | 
						|
    }
 | 
						|
 | 
						|
    if (config->emachine == EM_ARM && !config->relocatable) {
 | 
						|
      // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
 | 
						|
      // InputSections.
 | 
						|
      part.armExidx = make<ARMExidxSyntheticSection>();
 | 
						|
      add(*part.armExidx);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (partitions.size() != 1) {
 | 
						|
    // Create the partition end marker. This needs to be in partition number 255
 | 
						|
    // so that it is sorted after all other partitions. It also has other
 | 
						|
    // special handling (see createPhdrs() and combineEhSections()).
 | 
						|
    in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
 | 
						|
    in.partEnd->partition = 255;
 | 
						|
    add(*in.partEnd);
 | 
						|
 | 
						|
    in.partIndex = make<PartitionIndexSection>();
 | 
						|
    addOptionalRegular("__part_index_begin", in.partIndex, 0);
 | 
						|
    addOptionalRegular("__part_index_end", in.partIndex,
 | 
						|
                       in.partIndex->getSize());
 | 
						|
    add(*in.partIndex);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add .got. MIPS' .got is so different from the other archs,
 | 
						|
  // it has its own class.
 | 
						|
  if (config->emachine == EM_MIPS) {
 | 
						|
    in.mipsGot = make<MipsGotSection>();
 | 
						|
    add(*in.mipsGot);
 | 
						|
  } else {
 | 
						|
    in.got = make<GotSection>();
 | 
						|
    add(*in.got);
 | 
						|
  }
 | 
						|
 | 
						|
  if (config->emachine == EM_PPC) {
 | 
						|
    in.ppc32Got2 = make<PPC32Got2Section>();
 | 
						|
    add(*in.ppc32Got2);
 | 
						|
  }
 | 
						|
 | 
						|
  if (config->emachine == EM_PPC64) {
 | 
						|
    in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
 | 
						|
    add(*in.ppc64LongBranchTarget);
 | 
						|
  }
 | 
						|
 | 
						|
  in.gotPlt = make<GotPltSection>();
 | 
						|
  add(*in.gotPlt);
 | 
						|
  in.igotPlt = make<IgotPltSection>();
 | 
						|
  add(*in.igotPlt);
 | 
						|
 | 
						|
  // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
 | 
						|
  // it as a relocation and ensure the referenced section is created.
 | 
						|
  if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
 | 
						|
    if (target->gotBaseSymInGotPlt)
 | 
						|
      in.gotPlt->hasGotPltOffRel = true;
 | 
						|
    else
 | 
						|
      in.got->hasGotOffRel = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (config->gdbIndex)
 | 
						|
    add(*GdbIndexSection::create<ELFT>());
 | 
						|
 | 
						|
  // We always need to add rel[a].plt to output if it has entries.
 | 
						|
  // Even for static linking it can contain R_[*]_IRELATIVE relocations.
 | 
						|
  in.relaPlt = make<RelocationSection<ELFT>>(
 | 
						|
      config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
 | 
						|
  add(*in.relaPlt);
 | 
						|
 | 
						|
  // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative
 | 
						|
  // relocations are processed last by the dynamic loader. We cannot place the
 | 
						|
  // iplt section in .rel.dyn when Android relocation packing is enabled because
 | 
						|
  // that would cause a section type mismatch. However, because the Android
 | 
						|
  // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired
 | 
						|
  // behaviour by placing the iplt section in .rel.plt.
 | 
						|
  in.relaIplt = make<RelocationSection<ELFT>>(
 | 
						|
      config->androidPackDynRelocs ? in.relaPlt->name : relaDynName,
 | 
						|
      /*sort=*/false);
 | 
						|
  add(*in.relaIplt);
 | 
						|
 | 
						|
  if ((config->emachine == EM_386 || config->emachine == EM_X86_64) &&
 | 
						|
      (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) {
 | 
						|
    in.ibtPlt = make<IBTPltSection>();
 | 
						|
    add(*in.ibtPlt);
 | 
						|
  }
 | 
						|
 | 
						|
  in.plt = config->emachine == EM_PPC ? make<PPC32GlinkSection>()
 | 
						|
                                      : make<PltSection>();
 | 
						|
  add(*in.plt);
 | 
						|
  in.iplt = make<IpltSection>();
 | 
						|
  add(*in.iplt);
 | 
						|
 | 
						|
  if (config->andFeatures)
 | 
						|
    add(*make<GnuPropertySection>());
 | 
						|
 | 
						|
  // .note.GNU-stack is always added when we are creating a re-linkable
 | 
						|
  // object file. Other linkers are using the presence of this marker
 | 
						|
  // section to control the executable-ness of the stack area, but that
 | 
						|
  // is irrelevant these days. Stack area should always be non-executable
 | 
						|
  // by default. So we emit this section unconditionally.
 | 
						|
  if (config->relocatable)
 | 
						|
    add(*make<GnuStackSection>());
 | 
						|
 | 
						|
  if (in.symTab)
 | 
						|
    add(*in.symTab);
 | 
						|
  if (in.symTabShndx)
 | 
						|
    add(*in.symTabShndx);
 | 
						|
  add(*in.shStrTab);
 | 
						|
  if (in.strTab)
 | 
						|
    add(*in.strTab);
 | 
						|
}
 | 
						|
 | 
						|
// The main function of the writer.
 | 
						|
template <class ELFT> void Writer<ELFT>::run() {
 | 
						|
  copyLocalSymbols();
 | 
						|
 | 
						|
  if (config->copyRelocs)
 | 
						|
    addSectionSymbols();
 | 
						|
 | 
						|
  // Now that we have a complete set of output sections. This function
 | 
						|
  // completes section contents. For example, we need to add strings
 | 
						|
  // to the string table, and add entries to .got and .plt.
 | 
						|
  // finalizeSections does that.
 | 
						|
  finalizeSections();
 | 
						|
  checkExecuteOnly();
 | 
						|
  if (errorCount())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If --compressed-debug-sections is specified, compress .debug_* sections.
 | 
						|
  // Do it right now because it changes the size of output sections.
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    sec->maybeCompress<ELFT>();
 | 
						|
 | 
						|
  if (script->hasSectionsCommand)
 | 
						|
    script->allocateHeaders(mainPart->phdrs);
 | 
						|
 | 
						|
  // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
 | 
						|
  // 0 sized region. This has to be done late since only after assignAddresses
 | 
						|
  // we know the size of the sections.
 | 
						|
  for (Partition &part : partitions)
 | 
						|
    removeEmptyPTLoad(part.phdrs);
 | 
						|
 | 
						|
  if (!config->oFormatBinary)
 | 
						|
    assignFileOffsets();
 | 
						|
  else
 | 
						|
    assignFileOffsetsBinary();
 | 
						|
 | 
						|
  for (Partition &part : partitions)
 | 
						|
    setPhdrs(part);
 | 
						|
 | 
						|
  if (config->relocatable)
 | 
						|
    for (OutputSection *sec : outputSections)
 | 
						|
      sec->addr = 0;
 | 
						|
 | 
						|
  // Handle --print-map(-M)/--Map, --why-extract=, --cref and
 | 
						|
  // --print-archive-stats=. Dump them before checkSections() because the files
 | 
						|
  // may be useful in case checkSections() or openFile() fails, for example, due
 | 
						|
  // to an erroneous file size.
 | 
						|
  writeMapAndCref();
 | 
						|
  writeWhyExtract();
 | 
						|
  writeArchiveStats();
 | 
						|
 | 
						|
  if (config->checkSections)
 | 
						|
    checkSections();
 | 
						|
 | 
						|
  // It does not make sense try to open the file if we have error already.
 | 
						|
  if (errorCount())
 | 
						|
    return;
 | 
						|
 | 
						|
  {
 | 
						|
    llvm::TimeTraceScope timeScope("Write output file");
 | 
						|
    // Write the result down to a file.
 | 
						|
    openFile();
 | 
						|
    if (errorCount())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (!config->oFormatBinary) {
 | 
						|
      if (config->zSeparate != SeparateSegmentKind::None)
 | 
						|
        writeTrapInstr();
 | 
						|
      writeHeader();
 | 
						|
      writeSections();
 | 
						|
    } else {
 | 
						|
      writeSectionsBinary();
 | 
						|
    }
 | 
						|
 | 
						|
    // Backfill .note.gnu.build-id section content. This is done at last
 | 
						|
    // because the content is usually a hash value of the entire output file.
 | 
						|
    writeBuildId();
 | 
						|
    if (errorCount())
 | 
						|
      return;
 | 
						|
 | 
						|
    if (auto e = buffer->commit())
 | 
						|
      error("failed to write to the output file: " + toString(std::move(e)));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT, class RelTy>
 | 
						|
static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file,
 | 
						|
                                     llvm::ArrayRef<RelTy> rels) {
 | 
						|
  for (const RelTy &rel : rels) {
 | 
						|
    Symbol &sym = file->getRelocTargetSym(rel);
 | 
						|
    if (sym.isLocal())
 | 
						|
      sym.used = true;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// The function ensures that the "used" field of local symbols reflects the fact
 | 
						|
// that the symbol is used in a relocation from a live section.
 | 
						|
template <class ELFT> static void markUsedLocalSymbols() {
 | 
						|
  // With --gc-sections, the field is already filled.
 | 
						|
  // See MarkLive<ELFT>::resolveReloc().
 | 
						|
  if (config->gcSections)
 | 
						|
    return;
 | 
						|
  // Without --gc-sections, the field is initialized with "true".
 | 
						|
  // Drop the flag first and then rise for symbols referenced in relocations.
 | 
						|
  for (ELFFileBase *file : objectFiles) {
 | 
						|
    ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
 | 
						|
    for (Symbol *b : f->getLocalSymbols())
 | 
						|
      b->used = false;
 | 
						|
    for (InputSectionBase *s : f->getSections()) {
 | 
						|
      InputSection *isec = dyn_cast_or_null<InputSection>(s);
 | 
						|
      if (!isec)
 | 
						|
        continue;
 | 
						|
      if (isec->type == SHT_REL)
 | 
						|
        markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>());
 | 
						|
      else if (isec->type == SHT_RELA)
 | 
						|
        markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool shouldKeepInSymtab(const Defined &sym) {
 | 
						|
  if (sym.isSection())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If --emit-reloc or -r is given, preserve symbols referenced by relocations
 | 
						|
  // from live sections.
 | 
						|
  if (config->copyRelocs && sym.used)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Exclude local symbols pointing to .ARM.exidx sections.
 | 
						|
  // They are probably mapping symbols "$d", which are optional for these
 | 
						|
  // sections. After merging the .ARM.exidx sections, some of these symbols
 | 
						|
  // may become dangling. The easiest way to avoid the issue is not to add
 | 
						|
  // them to the symbol table from the beginning.
 | 
						|
  if (config->emachine == EM_ARM && sym.section &&
 | 
						|
      sym.section->type == SHT_ARM_EXIDX)
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (config->discard == DiscardPolicy::None)
 | 
						|
    return true;
 | 
						|
  if (config->discard == DiscardPolicy::All)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // In ELF assembly .L symbols are normally discarded by the assembler.
 | 
						|
  // If the assembler fails to do so, the linker discards them if
 | 
						|
  // * --discard-locals is used.
 | 
						|
  // * The symbol is in a SHF_MERGE section, which is normally the reason for
 | 
						|
  //   the assembler keeping the .L symbol.
 | 
						|
  if (sym.getName().startswith(".L") &&
 | 
						|
      (config->discard == DiscardPolicy::Locals ||
 | 
						|
       (sym.section && (sym.section->flags & SHF_MERGE))))
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool includeInSymtab(const Symbol &b) {
 | 
						|
  if (auto *d = dyn_cast<Defined>(&b)) {
 | 
						|
    // Always include absolute symbols.
 | 
						|
    SectionBase *sec = d->section;
 | 
						|
    if (!sec)
 | 
						|
      return true;
 | 
						|
    sec = sec->repl;
 | 
						|
 | 
						|
    // Exclude symbols pointing to garbage-collected sections.
 | 
						|
    if (isa<InputSectionBase>(sec) && !sec->isLive())
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (auto *s = dyn_cast<MergeInputSection>(sec))
 | 
						|
      if (!s->getSectionPiece(d->value)->live)
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return b.used;
 | 
						|
}
 | 
						|
 | 
						|
// Local symbols are not in the linker's symbol table. This function scans
 | 
						|
// each object file's symbol table to copy local symbols to the output.
 | 
						|
template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
 | 
						|
  if (!in.symTab)
 | 
						|
    return;
 | 
						|
  llvm::TimeTraceScope timeScope("Add local symbols");
 | 
						|
  if (config->copyRelocs && config->discard != DiscardPolicy::None)
 | 
						|
    markUsedLocalSymbols<ELFT>();
 | 
						|
  for (ELFFileBase *file : objectFiles) {
 | 
						|
    for (Symbol *b : file->getLocalSymbols()) {
 | 
						|
      assert(b->isLocal() && "should have been caught in initializeSymbols()");
 | 
						|
      auto *dr = dyn_cast<Defined>(b);
 | 
						|
 | 
						|
      // No reason to keep local undefined symbol in symtab.
 | 
						|
      if (!dr)
 | 
						|
        continue;
 | 
						|
      if (includeInSymtab(*b) && shouldKeepInSymtab(*dr))
 | 
						|
        in.symTab->addSymbol(b);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Create a section symbol for each output section so that we can represent
 | 
						|
// relocations that point to the section. If we know that no relocation is
 | 
						|
// referring to a section (that happens if the section is a synthetic one), we
 | 
						|
// don't create a section symbol for that section.
 | 
						|
template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
 | 
						|
  for (SectionCommand *cmd : script->sectionCommands) {
 | 
						|
    auto *sec = dyn_cast<OutputSection>(cmd);
 | 
						|
    if (!sec)
 | 
						|
      continue;
 | 
						|
    auto i = llvm::find_if(sec->commands, [](SectionCommand *cmd) {
 | 
						|
      if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
 | 
						|
        return !isd->sections.empty();
 | 
						|
      return false;
 | 
						|
    });
 | 
						|
    if (i == sec->commands.end())
 | 
						|
      continue;
 | 
						|
    InputSectionBase *isec = cast<InputSectionDescription>(*i)->sections[0];
 | 
						|
 | 
						|
    // Relocations are not using REL[A] section symbols.
 | 
						|
    if (isec->type == SHT_REL || isec->type == SHT_RELA)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Unlike other synthetic sections, mergeable output sections contain data
 | 
						|
    // copied from input sections, and there may be a relocation pointing to its
 | 
						|
    // contents if -r or --emit-reloc is given.
 | 
						|
    if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Set the symbol to be relative to the output section so that its st_value
 | 
						|
    // equals the output section address. Note, there may be a gap between the
 | 
						|
    // start of the output section and isec.
 | 
						|
    in.symTab->addSymbol(
 | 
						|
        makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
 | 
						|
                    /*value=*/0, /*size=*/0, isec->getOutputSection()));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Today's loaders have a feature to make segments read-only after
 | 
						|
// processing dynamic relocations to enhance security. PT_GNU_RELRO
 | 
						|
// is defined for that.
 | 
						|
//
 | 
						|
// This function returns true if a section needs to be put into a
 | 
						|
// PT_GNU_RELRO segment.
 | 
						|
static bool isRelroSection(const OutputSection *sec) {
 | 
						|
  if (!config->zRelro)
 | 
						|
    return false;
 | 
						|
 | 
						|
  uint64_t flags = sec->flags;
 | 
						|
 | 
						|
  // Non-allocatable or non-writable sections don't need RELRO because
 | 
						|
  // they are not writable or not even mapped to memory in the first place.
 | 
						|
  // RELRO is for sections that are essentially read-only but need to
 | 
						|
  // be writable only at process startup to allow dynamic linker to
 | 
						|
  // apply relocations.
 | 
						|
  if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Once initialized, TLS data segments are used as data templates
 | 
						|
  // for a thread-local storage. For each new thread, runtime
 | 
						|
  // allocates memory for a TLS and copy templates there. No thread
 | 
						|
  // are supposed to use templates directly. Thus, it can be in RELRO.
 | 
						|
  if (flags & SHF_TLS)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // .init_array, .preinit_array and .fini_array contain pointers to
 | 
						|
  // functions that are executed on process startup or exit. These
 | 
						|
  // pointers are set by the static linker, and they are not expected
 | 
						|
  // to change at runtime. But if you are an attacker, you could do
 | 
						|
  // interesting things by manipulating pointers in .fini_array, for
 | 
						|
  // example. So they are put into RELRO.
 | 
						|
  uint32_t type = sec->type;
 | 
						|
  if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
 | 
						|
      type == SHT_PREINIT_ARRAY)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // .got contains pointers to external symbols. They are resolved by
 | 
						|
  // the dynamic linker when a module is loaded into memory, and after
 | 
						|
  // that they are not expected to change. So, it can be in RELRO.
 | 
						|
  if (in.got && sec == in.got->getParent())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // .toc is a GOT-ish section for PowerPC64. Their contents are accessed
 | 
						|
  // through r2 register, which is reserved for that purpose. Since r2 is used
 | 
						|
  // for accessing .got as well, .got and .toc need to be close enough in the
 | 
						|
  // virtual address space. Usually, .toc comes just after .got. Since we place
 | 
						|
  // .got into RELRO, .toc needs to be placed into RELRO too.
 | 
						|
  if (sec->name.equals(".toc"))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // .got.plt contains pointers to external function symbols. They are
 | 
						|
  // by default resolved lazily, so we usually cannot put it into RELRO.
 | 
						|
  // However, if "-z now" is given, the lazy symbol resolution is
 | 
						|
  // disabled, which enables us to put it into RELRO.
 | 
						|
  if (sec == in.gotPlt->getParent())
 | 
						|
    return config->zNow;
 | 
						|
 | 
						|
  // .dynamic section contains data for the dynamic linker, and
 | 
						|
  // there's no need to write to it at runtime, so it's better to put
 | 
						|
  // it into RELRO.
 | 
						|
  if (sec->name == ".dynamic")
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Sections with some special names are put into RELRO. This is a
 | 
						|
  // bit unfortunate because section names shouldn't be significant in
 | 
						|
  // ELF in spirit. But in reality many linker features depend on
 | 
						|
  // magic section names.
 | 
						|
  StringRef s = sec->name;
 | 
						|
  return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
 | 
						|
         s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
 | 
						|
         s == ".fini_array" || s == ".init_array" ||
 | 
						|
         s == ".openbsd.randomdata" || s == ".preinit_array";
 | 
						|
}
 | 
						|
 | 
						|
// We compute a rank for each section. The rank indicates where the
 | 
						|
// section should be placed in the file.  Instead of using simple
 | 
						|
// numbers (0,1,2...), we use a series of flags. One for each decision
 | 
						|
// point when placing the section.
 | 
						|
// Using flags has two key properties:
 | 
						|
// * It is easy to check if a give branch was taken.
 | 
						|
// * It is easy two see how similar two ranks are (see getRankProximity).
 | 
						|
enum RankFlags {
 | 
						|
  RF_NOT_ADDR_SET = 1 << 27,
 | 
						|
  RF_NOT_ALLOC = 1 << 26,
 | 
						|
  RF_PARTITION = 1 << 18, // Partition number (8 bits)
 | 
						|
  RF_NOT_PART_EHDR = 1 << 17,
 | 
						|
  RF_NOT_PART_PHDR = 1 << 16,
 | 
						|
  RF_NOT_INTERP = 1 << 15,
 | 
						|
  RF_NOT_NOTE = 1 << 14,
 | 
						|
  RF_WRITE = 1 << 13,
 | 
						|
  RF_EXEC_WRITE = 1 << 12,
 | 
						|
  RF_EXEC = 1 << 11,
 | 
						|
  RF_RODATA = 1 << 10,
 | 
						|
  RF_NOT_RELRO = 1 << 9,
 | 
						|
  RF_NOT_TLS = 1 << 8,
 | 
						|
  RF_BSS = 1 << 7,
 | 
						|
  RF_PPC_NOT_TOCBSS = 1 << 6,
 | 
						|
  RF_PPC_TOCL = 1 << 5,
 | 
						|
  RF_PPC_TOC = 1 << 4,
 | 
						|
  RF_PPC_GOT = 1 << 3,
 | 
						|
  RF_PPC_BRANCH_LT = 1 << 2,
 | 
						|
  RF_MIPS_GPREL = 1 << 1,
 | 
						|
  RF_MIPS_NOT_GOT = 1 << 0
 | 
						|
};
 | 
						|
 | 
						|
static unsigned getSectionRank(const OutputSection *sec) {
 | 
						|
  unsigned rank = sec->partition * RF_PARTITION;
 | 
						|
 | 
						|
  // We want to put section specified by -T option first, so we
 | 
						|
  // can start assigning VA starting from them later.
 | 
						|
  if (config->sectionStartMap.count(sec->name))
 | 
						|
    return rank;
 | 
						|
  rank |= RF_NOT_ADDR_SET;
 | 
						|
 | 
						|
  // Allocatable sections go first to reduce the total PT_LOAD size and
 | 
						|
  // so debug info doesn't change addresses in actual code.
 | 
						|
  if (!(sec->flags & SHF_ALLOC))
 | 
						|
    return rank | RF_NOT_ALLOC;
 | 
						|
 | 
						|
  if (sec->type == SHT_LLVM_PART_EHDR)
 | 
						|
    return rank;
 | 
						|
  rank |= RF_NOT_PART_EHDR;
 | 
						|
 | 
						|
  if (sec->type == SHT_LLVM_PART_PHDR)
 | 
						|
    return rank;
 | 
						|
  rank |= RF_NOT_PART_PHDR;
 | 
						|
 | 
						|
  // Put .interp first because some loaders want to see that section
 | 
						|
  // on the first page of the executable file when loaded into memory.
 | 
						|
  if (sec->name == ".interp")
 | 
						|
    return rank;
 | 
						|
  rank |= RF_NOT_INTERP;
 | 
						|
 | 
						|
  // Put .note sections (which make up one PT_NOTE) at the beginning so that
 | 
						|
  // they are likely to be included in a core file even if core file size is
 | 
						|
  // limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
 | 
						|
  // included in a core to match core files with executables.
 | 
						|
  if (sec->type == SHT_NOTE)
 | 
						|
    return rank;
 | 
						|
  rank |= RF_NOT_NOTE;
 | 
						|
 | 
						|
  // Sort sections based on their access permission in the following
 | 
						|
  // order: R, RX, RWX, RW.  This order is based on the following
 | 
						|
  // considerations:
 | 
						|
  // * Read-only sections come first such that they go in the
 | 
						|
  //   PT_LOAD covering the program headers at the start of the file.
 | 
						|
  // * Read-only, executable sections come next.
 | 
						|
  // * Writable, executable sections follow such that .plt on
 | 
						|
  //   architectures where it needs to be writable will be placed
 | 
						|
  //   between .text and .data.
 | 
						|
  // * Writable sections come last, such that .bss lands at the very
 | 
						|
  //   end of the last PT_LOAD.
 | 
						|
  bool isExec = sec->flags & SHF_EXECINSTR;
 | 
						|
  bool isWrite = sec->flags & SHF_WRITE;
 | 
						|
 | 
						|
  if (isExec) {
 | 
						|
    if (isWrite)
 | 
						|
      rank |= RF_EXEC_WRITE;
 | 
						|
    else
 | 
						|
      rank |= RF_EXEC;
 | 
						|
  } else if (isWrite) {
 | 
						|
    rank |= RF_WRITE;
 | 
						|
  } else if (sec->type == SHT_PROGBITS) {
 | 
						|
    // Make non-executable and non-writable PROGBITS sections (e.g .rodata
 | 
						|
    // .eh_frame) closer to .text. They likely contain PC or GOT relative
 | 
						|
    // relocations and there could be relocation overflow if other huge sections
 | 
						|
    // (.dynstr .dynsym) were placed in between.
 | 
						|
    rank |= RF_RODATA;
 | 
						|
  }
 | 
						|
 | 
						|
  // Place RelRo sections first. After considering SHT_NOBITS below, the
 | 
						|
  // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
 | 
						|
  // where | marks where page alignment happens. An alternative ordering is
 | 
						|
  // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
 | 
						|
  // waste more bytes due to 2 alignment places.
 | 
						|
  if (!isRelroSection(sec))
 | 
						|
    rank |= RF_NOT_RELRO;
 | 
						|
 | 
						|
  // If we got here we know that both A and B are in the same PT_LOAD.
 | 
						|
 | 
						|
  // The TLS initialization block needs to be a single contiguous block in a R/W
 | 
						|
  // PT_LOAD, so stick TLS sections directly before the other RelRo R/W
 | 
						|
  // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
 | 
						|
  // after PROGBITS.
 | 
						|
  if (!(sec->flags & SHF_TLS))
 | 
						|
    rank |= RF_NOT_TLS;
 | 
						|
 | 
						|
  // Within TLS sections, or within other RelRo sections, or within non-RelRo
 | 
						|
  // sections, place non-NOBITS sections first.
 | 
						|
  if (sec->type == SHT_NOBITS)
 | 
						|
    rank |= RF_BSS;
 | 
						|
 | 
						|
  // Some architectures have additional ordering restrictions for sections
 | 
						|
  // within the same PT_LOAD.
 | 
						|
  if (config->emachine == EM_PPC64) {
 | 
						|
    // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
 | 
						|
    // that we would like to make sure appear is a specific order to maximize
 | 
						|
    // their coverage by a single signed 16-bit offset from the TOC base
 | 
						|
    // pointer. Conversely, the special .tocbss section should be first among
 | 
						|
    // all SHT_NOBITS sections. This will put it next to the loaded special
 | 
						|
    // PPC64 sections (and, thus, within reach of the TOC base pointer).
 | 
						|
    StringRef name = sec->name;
 | 
						|
    if (name != ".tocbss")
 | 
						|
      rank |= RF_PPC_NOT_TOCBSS;
 | 
						|
 | 
						|
    if (name == ".toc1")
 | 
						|
      rank |= RF_PPC_TOCL;
 | 
						|
 | 
						|
    if (name == ".toc")
 | 
						|
      rank |= RF_PPC_TOC;
 | 
						|
 | 
						|
    if (name == ".got")
 | 
						|
      rank |= RF_PPC_GOT;
 | 
						|
 | 
						|
    if (name == ".branch_lt")
 | 
						|
      rank |= RF_PPC_BRANCH_LT;
 | 
						|
  }
 | 
						|
 | 
						|
  if (config->emachine == EM_MIPS) {
 | 
						|
    // All sections with SHF_MIPS_GPREL flag should be grouped together
 | 
						|
    // because data in these sections is addressable with a gp relative address.
 | 
						|
    if (sec->flags & SHF_MIPS_GPREL)
 | 
						|
      rank |= RF_MIPS_GPREL;
 | 
						|
 | 
						|
    if (sec->name != ".got")
 | 
						|
      rank |= RF_MIPS_NOT_GOT;
 | 
						|
  }
 | 
						|
 | 
						|
  return rank;
 | 
						|
}
 | 
						|
 | 
						|
static bool compareSections(const SectionCommand *aCmd,
 | 
						|
                            const SectionCommand *bCmd) {
 | 
						|
  const OutputSection *a = cast<OutputSection>(aCmd);
 | 
						|
  const OutputSection *b = cast<OutputSection>(bCmd);
 | 
						|
 | 
						|
  if (a->sortRank != b->sortRank)
 | 
						|
    return a->sortRank < b->sortRank;
 | 
						|
 | 
						|
  if (!(a->sortRank & RF_NOT_ADDR_SET))
 | 
						|
    return config->sectionStartMap.lookup(a->name) <
 | 
						|
           config->sectionStartMap.lookup(b->name);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void PhdrEntry::add(OutputSection *sec) {
 | 
						|
  lastSec = sec;
 | 
						|
  if (!firstSec)
 | 
						|
    firstSec = sec;
 | 
						|
  p_align = std::max(p_align, sec->alignment);
 | 
						|
  if (p_type == PT_LOAD)
 | 
						|
    sec->ptLoad = this;
 | 
						|
}
 | 
						|
 | 
						|
// The beginning and the ending of .rel[a].plt section are marked
 | 
						|
// with __rel[a]_iplt_{start,end} symbols if it is a statically linked
 | 
						|
// executable. The runtime needs these symbols in order to resolve
 | 
						|
// all IRELATIVE relocs on startup. For dynamic executables, we don't
 | 
						|
// need these symbols, since IRELATIVE relocs are resolved through GOT
 | 
						|
// and PLT. For details, see http://www.airs.com/blog/archives/403.
 | 
						|
template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
 | 
						|
  if (config->relocatable || config->isPic)
 | 
						|
    return;
 | 
						|
 | 
						|
  // By default, __rela_iplt_{start,end} belong to a dummy section 0
 | 
						|
  // because .rela.plt might be empty and thus removed from output.
 | 
						|
  // We'll override Out::elfHeader with In.relaIplt later when we are
 | 
						|
  // sure that .rela.plt exists in output.
 | 
						|
  ElfSym::relaIpltStart = addOptionalRegular(
 | 
						|
      config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
 | 
						|
      Out::elfHeader, 0, STV_HIDDEN);
 | 
						|
 | 
						|
  ElfSym::relaIpltEnd = addOptionalRegular(
 | 
						|
      config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
 | 
						|
      Out::elfHeader, 0, STV_HIDDEN);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void Writer<ELFT>::forEachRelSec(
 | 
						|
    llvm::function_ref<void(InputSectionBase &)> fn) {
 | 
						|
  // Scan all relocations. Each relocation goes through a series
 | 
						|
  // of tests to determine if it needs special treatment, such as
 | 
						|
  // creating GOT, PLT, copy relocations, etc.
 | 
						|
  // Note that relocations for non-alloc sections are directly
 | 
						|
  // processed by InputSection::relocateNonAlloc.
 | 
						|
  for (InputSectionBase *isec : inputSections)
 | 
						|
    if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
 | 
						|
      fn(*isec);
 | 
						|
  for (Partition &part : partitions) {
 | 
						|
    for (EhInputSection *es : part.ehFrame->sections)
 | 
						|
      fn(*es);
 | 
						|
    if (part.armExidx && part.armExidx->isLive())
 | 
						|
      for (InputSection *ex : part.armExidx->exidxSections)
 | 
						|
        fn(*ex);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// This function generates assignments for predefined symbols (e.g. _end or
 | 
						|
// _etext) and inserts them into the commands sequence to be processed at the
 | 
						|
// appropriate time. This ensures that the value is going to be correct by the
 | 
						|
// time any references to these symbols are processed and is equivalent to
 | 
						|
// defining these symbols explicitly in the linker script.
 | 
						|
template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
 | 
						|
  if (ElfSym::globalOffsetTable) {
 | 
						|
    // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
 | 
						|
    // to the start of the .got or .got.plt section.
 | 
						|
    InputSection *gotSection = in.gotPlt;
 | 
						|
    if (!target->gotBaseSymInGotPlt)
 | 
						|
      gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
 | 
						|
                              : cast<InputSection>(in.got);
 | 
						|
    ElfSym::globalOffsetTable->section = gotSection;
 | 
						|
  }
 | 
						|
 | 
						|
  // .rela_iplt_{start,end} mark the start and the end of in.relaIplt.
 | 
						|
  if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
 | 
						|
    ElfSym::relaIpltStart->section = in.relaIplt;
 | 
						|
    ElfSym::relaIpltEnd->section = in.relaIplt;
 | 
						|
    ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
 | 
						|
  }
 | 
						|
 | 
						|
  PhdrEntry *last = nullptr;
 | 
						|
  PhdrEntry *lastRO = nullptr;
 | 
						|
 | 
						|
  for (Partition &part : partitions) {
 | 
						|
    for (PhdrEntry *p : part.phdrs) {
 | 
						|
      if (p->p_type != PT_LOAD)
 | 
						|
        continue;
 | 
						|
      last = p;
 | 
						|
      if (!(p->p_flags & PF_W))
 | 
						|
        lastRO = p;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (lastRO) {
 | 
						|
    // _etext is the first location after the last read-only loadable segment.
 | 
						|
    if (ElfSym::etext1)
 | 
						|
      ElfSym::etext1->section = lastRO->lastSec;
 | 
						|
    if (ElfSym::etext2)
 | 
						|
      ElfSym::etext2->section = lastRO->lastSec;
 | 
						|
  }
 | 
						|
 | 
						|
  if (last) {
 | 
						|
    // _edata points to the end of the last mapped initialized section.
 | 
						|
    OutputSection *edata = nullptr;
 | 
						|
    for (OutputSection *os : outputSections) {
 | 
						|
      if (os->type != SHT_NOBITS)
 | 
						|
        edata = os;
 | 
						|
      if (os == last->lastSec)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ElfSym::edata1)
 | 
						|
      ElfSym::edata1->section = edata;
 | 
						|
    if (ElfSym::edata2)
 | 
						|
      ElfSym::edata2->section = edata;
 | 
						|
 | 
						|
    // _end is the first location after the uninitialized data region.
 | 
						|
    if (ElfSym::end1)
 | 
						|
      ElfSym::end1->section = last->lastSec;
 | 
						|
    if (ElfSym::end2)
 | 
						|
      ElfSym::end2->section = last->lastSec;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ElfSym::bss)
 | 
						|
    ElfSym::bss->section = findSection(".bss");
 | 
						|
 | 
						|
  // Setup MIPS _gp_disp/__gnu_local_gp symbols which should
 | 
						|
  // be equal to the _gp symbol's value.
 | 
						|
  if (ElfSym::mipsGp) {
 | 
						|
    // Find GP-relative section with the lowest address
 | 
						|
    // and use this address to calculate default _gp value.
 | 
						|
    for (OutputSection *os : outputSections) {
 | 
						|
      if (os->flags & SHF_MIPS_GPREL) {
 | 
						|
        ElfSym::mipsGp->section = os;
 | 
						|
        ElfSym::mipsGp->value = 0x7ff0;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// We want to find how similar two ranks are.
 | 
						|
// The more branches in getSectionRank that match, the more similar they are.
 | 
						|
// Since each branch corresponds to a bit flag, we can just use
 | 
						|
// countLeadingZeros.
 | 
						|
static int getRankProximityAux(OutputSection *a, OutputSection *b) {
 | 
						|
  return countLeadingZeros(a->sortRank ^ b->sortRank);
 | 
						|
}
 | 
						|
 | 
						|
static int getRankProximity(OutputSection *a, SectionCommand *b) {
 | 
						|
  auto *sec = dyn_cast<OutputSection>(b);
 | 
						|
  return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
 | 
						|
}
 | 
						|
 | 
						|
// When placing orphan sections, we want to place them after symbol assignments
 | 
						|
// so that an orphan after
 | 
						|
//   begin_foo = .;
 | 
						|
//   foo : { *(foo) }
 | 
						|
//   end_foo = .;
 | 
						|
// doesn't break the intended meaning of the begin/end symbols.
 | 
						|
// We don't want to go over sections since findOrphanPos is the
 | 
						|
// one in charge of deciding the order of the sections.
 | 
						|
// We don't want to go over changes to '.', since doing so in
 | 
						|
//  rx_sec : { *(rx_sec) }
 | 
						|
//  . = ALIGN(0x1000);
 | 
						|
//  /* The RW PT_LOAD starts here*/
 | 
						|
//  rw_sec : { *(rw_sec) }
 | 
						|
// would mean that the RW PT_LOAD would become unaligned.
 | 
						|
static bool shouldSkip(SectionCommand *cmd) {
 | 
						|
  if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
 | 
						|
    return assign->name != ".";
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// We want to place orphan sections so that they share as much
 | 
						|
// characteristics with their neighbors as possible. For example, if
 | 
						|
// both are rw, or both are tls.
 | 
						|
static std::vector<SectionCommand *>::iterator
 | 
						|
findOrphanPos(std::vector<SectionCommand *>::iterator b,
 | 
						|
              std::vector<SectionCommand *>::iterator e) {
 | 
						|
  OutputSection *sec = cast<OutputSection>(*e);
 | 
						|
 | 
						|
  // Find the first element that has as close a rank as possible.
 | 
						|
  auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) {
 | 
						|
    return getRankProximity(sec, a) < getRankProximity(sec, b);
 | 
						|
  });
 | 
						|
  if (i == e)
 | 
						|
    return e;
 | 
						|
  auto foundSec = dyn_cast<OutputSection>(*i);
 | 
						|
  if (!foundSec)
 | 
						|
    return e;
 | 
						|
 | 
						|
  // Consider all existing sections with the same proximity.
 | 
						|
  int proximity = getRankProximity(sec, *i);
 | 
						|
  unsigned sortRank = sec->sortRank;
 | 
						|
  if (script->hasPhdrsCommands() || !script->memoryRegions.empty())
 | 
						|
    // Prevent the orphan section to be placed before the found section. If
 | 
						|
    // custom program headers are defined, that helps to avoid adding it to a
 | 
						|
    // previous segment and changing flags of that segment, for example, making
 | 
						|
    // a read-only segment writable. If memory regions are defined, an orphan
 | 
						|
    // section should continue the same region as the found section to better
 | 
						|
    // resemble the behavior of GNU ld.
 | 
						|
    sortRank = std::max(sortRank, foundSec->sortRank);
 | 
						|
  for (; i != e; ++i) {
 | 
						|
    auto *curSec = dyn_cast<OutputSection>(*i);
 | 
						|
    if (!curSec || !curSec->hasInputSections)
 | 
						|
      continue;
 | 
						|
    if (getRankProximity(sec, curSec) != proximity ||
 | 
						|
        sortRank < curSec->sortRank)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
 | 
						|
  auto isOutputSecWithInputSections = [](SectionCommand *cmd) {
 | 
						|
    auto *os = dyn_cast<OutputSection>(cmd);
 | 
						|
    return os && os->hasInputSections;
 | 
						|
  };
 | 
						|
  auto j = std::find_if(llvm::make_reverse_iterator(i),
 | 
						|
                        llvm::make_reverse_iterator(b),
 | 
						|
                        isOutputSecWithInputSections);
 | 
						|
  i = j.base();
 | 
						|
 | 
						|
  // As a special case, if the orphan section is the last section, put
 | 
						|
  // it at the very end, past any other commands.
 | 
						|
  // This matches bfd's behavior and is convenient when the linker script fully
 | 
						|
  // specifies the start of the file, but doesn't care about the end (the non
 | 
						|
  // alloc sections for example).
 | 
						|
  auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
 | 
						|
  if (nextSec == e)
 | 
						|
    return e;
 | 
						|
 | 
						|
  while (i != e && shouldSkip(*i))
 | 
						|
    ++i;
 | 
						|
  return i;
 | 
						|
}
 | 
						|
 | 
						|
// Adds random priorities to sections not already in the map.
 | 
						|
static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) {
 | 
						|
  if (config->shuffleSections.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  SmallVector<InputSectionBase *, 0> matched, sections = inputSections;
 | 
						|
  matched.reserve(sections.size());
 | 
						|
  for (const auto &patAndSeed : config->shuffleSections) {
 | 
						|
    matched.clear();
 | 
						|
    for (InputSectionBase *sec : sections)
 | 
						|
      if (patAndSeed.first.match(sec->name))
 | 
						|
        matched.push_back(sec);
 | 
						|
    const uint32_t seed = patAndSeed.second;
 | 
						|
    if (seed == UINT32_MAX) {
 | 
						|
      // If --shuffle-sections <section-glob>=-1, reverse the section order. The
 | 
						|
      // section order is stable even if the number of sections changes. This is
 | 
						|
      // useful to catch issues like static initialization order fiasco
 | 
						|
      // reliably.
 | 
						|
      std::reverse(matched.begin(), matched.end());
 | 
						|
    } else {
 | 
						|
      std::mt19937 g(seed ? seed : std::random_device()());
 | 
						|
      llvm::shuffle(matched.begin(), matched.end(), g);
 | 
						|
    }
 | 
						|
    size_t i = 0;
 | 
						|
    for (InputSectionBase *&sec : sections)
 | 
						|
      if (patAndSeed.first.match(sec->name))
 | 
						|
        sec = matched[i++];
 | 
						|
  }
 | 
						|
 | 
						|
  // Existing priorities are < 0, so use priorities >= 0 for the missing
 | 
						|
  // sections.
 | 
						|
  int prio = 0;
 | 
						|
  for (InputSectionBase *sec : sections) {
 | 
						|
    if (order.try_emplace(sec, prio).second)
 | 
						|
      ++prio;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Builds section order for handling --symbol-ordering-file.
 | 
						|
static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
 | 
						|
  DenseMap<const InputSectionBase *, int> sectionOrder;
 | 
						|
  // Use the rarely used option --call-graph-ordering-file to sort sections.
 | 
						|
  if (!config->callGraphProfile.empty())
 | 
						|
    return computeCallGraphProfileOrder();
 | 
						|
 | 
						|
  if (config->symbolOrderingFile.empty())
 | 
						|
    return sectionOrder;
 | 
						|
 | 
						|
  struct SymbolOrderEntry {
 | 
						|
    int priority;
 | 
						|
    bool present;
 | 
						|
  };
 | 
						|
 | 
						|
  // Build a map from symbols to their priorities. Symbols that didn't
 | 
						|
  // appear in the symbol ordering file have the lowest priority 0.
 | 
						|
  // All explicitly mentioned symbols have negative (higher) priorities.
 | 
						|
  DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
 | 
						|
  int priority = -config->symbolOrderingFile.size();
 | 
						|
  for (StringRef s : config->symbolOrderingFile)
 | 
						|
    symbolOrder.insert({s, {priority++, false}});
 | 
						|
 | 
						|
  // Build a map from sections to their priorities.
 | 
						|
  auto addSym = [&](Symbol &sym) {
 | 
						|
    auto it = symbolOrder.find(sym.getName());
 | 
						|
    if (it == symbolOrder.end())
 | 
						|
      return;
 | 
						|
    SymbolOrderEntry &ent = it->second;
 | 
						|
    ent.present = true;
 | 
						|
 | 
						|
    maybeWarnUnorderableSymbol(&sym);
 | 
						|
 | 
						|
    if (auto *d = dyn_cast<Defined>(&sym)) {
 | 
						|
      if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
 | 
						|
        int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
 | 
						|
        priority = std::min(priority, ent.priority);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  // We want both global and local symbols. We get the global ones from the
 | 
						|
  // symbol table and iterate the object files for the local ones.
 | 
						|
  for (Symbol *sym : symtab->symbols())
 | 
						|
    if (!sym->isLazy())
 | 
						|
      addSym(*sym);
 | 
						|
 | 
						|
  for (ELFFileBase *file : objectFiles)
 | 
						|
    for (Symbol *sym : file->getSymbols()) {
 | 
						|
      if (!sym->isLocal())
 | 
						|
        break;
 | 
						|
      addSym(*sym);
 | 
						|
    }
 | 
						|
 | 
						|
  if (config->warnSymbolOrdering)
 | 
						|
    for (auto orderEntry : symbolOrder)
 | 
						|
      if (!orderEntry.second.present)
 | 
						|
        warn("symbol ordering file: no such symbol: " + orderEntry.first);
 | 
						|
 | 
						|
  return sectionOrder;
 | 
						|
}
 | 
						|
 | 
						|
// Sorts the sections in ISD according to the provided section order.
 | 
						|
static void
 | 
						|
sortISDBySectionOrder(InputSectionDescription *isd,
 | 
						|
                      const DenseMap<const InputSectionBase *, int> &order) {
 | 
						|
  std::vector<InputSection *> unorderedSections;
 | 
						|
  std::vector<std::pair<InputSection *, int>> orderedSections;
 | 
						|
  uint64_t unorderedSize = 0;
 | 
						|
 | 
						|
  for (InputSection *isec : isd->sections) {
 | 
						|
    auto i = order.find(isec);
 | 
						|
    if (i == order.end()) {
 | 
						|
      unorderedSections.push_back(isec);
 | 
						|
      unorderedSize += isec->getSize();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    orderedSections.push_back({isec, i->second});
 | 
						|
  }
 | 
						|
  llvm::sort(orderedSections, llvm::less_second());
 | 
						|
 | 
						|
  // Find an insertion point for the ordered section list in the unordered
 | 
						|
  // section list. On targets with limited-range branches, this is the mid-point
 | 
						|
  // of the unordered section list. This decreases the likelihood that a range
 | 
						|
  // extension thunk will be needed to enter or exit the ordered region. If the
 | 
						|
  // ordered section list is a list of hot functions, we can generally expect
 | 
						|
  // the ordered functions to be called more often than the unordered functions,
 | 
						|
  // making it more likely that any particular call will be within range, and
 | 
						|
  // therefore reducing the number of thunks required.
 | 
						|
  //
 | 
						|
  // For example, imagine that you have 8MB of hot code and 32MB of cold code.
 | 
						|
  // If the layout is:
 | 
						|
  //
 | 
						|
  // 8MB hot
 | 
						|
  // 32MB cold
 | 
						|
  //
 | 
						|
  // only the first 8-16MB of the cold code (depending on which hot function it
 | 
						|
  // is actually calling) can call the hot code without a range extension thunk.
 | 
						|
  // However, if we use this layout:
 | 
						|
  //
 | 
						|
  // 16MB cold
 | 
						|
  // 8MB hot
 | 
						|
  // 16MB cold
 | 
						|
  //
 | 
						|
  // both the last 8-16MB of the first block of cold code and the first 8-16MB
 | 
						|
  // of the second block of cold code can call the hot code without a thunk. So
 | 
						|
  // we effectively double the amount of code that could potentially call into
 | 
						|
  // the hot code without a thunk.
 | 
						|
  size_t insPt = 0;
 | 
						|
  if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
 | 
						|
    uint64_t unorderedPos = 0;
 | 
						|
    for (; insPt != unorderedSections.size(); ++insPt) {
 | 
						|
      unorderedPos += unorderedSections[insPt]->getSize();
 | 
						|
      if (unorderedPos > unorderedSize / 2)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  isd->sections.clear();
 | 
						|
  for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
 | 
						|
    isd->sections.push_back(isec);
 | 
						|
  for (std::pair<InputSection *, int> p : orderedSections)
 | 
						|
    isd->sections.push_back(p.first);
 | 
						|
  for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
 | 
						|
    isd->sections.push_back(isec);
 | 
						|
}
 | 
						|
 | 
						|
static void sortSection(OutputSection *sec,
 | 
						|
                        const DenseMap<const InputSectionBase *, int> &order) {
 | 
						|
  StringRef name = sec->name;
 | 
						|
 | 
						|
  // Never sort these.
 | 
						|
  if (name == ".init" || name == ".fini")
 | 
						|
    return;
 | 
						|
 | 
						|
  // IRelative relocations that usually live in the .rel[a].dyn section should
 | 
						|
  // be processed last by the dynamic loader. To achieve that we add synthetic
 | 
						|
  // sections in the required order from the beginning so that the in.relaIplt
 | 
						|
  // section is placed last in an output section. Here we just do not apply
 | 
						|
  // sorting for an output section which holds the in.relaIplt section.
 | 
						|
  if (in.relaIplt->getParent() == sec)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Sort input sections by priority using the list provided by
 | 
						|
  // --symbol-ordering-file or --shuffle-sections=. This is a least significant
 | 
						|
  // digit radix sort. The sections may be sorted stably again by a more
 | 
						|
  // significant key.
 | 
						|
  if (!order.empty())
 | 
						|
    for (SectionCommand *b : sec->commands)
 | 
						|
      if (auto *isd = dyn_cast<InputSectionDescription>(b))
 | 
						|
        sortISDBySectionOrder(isd, order);
 | 
						|
 | 
						|
  if (script->hasSectionsCommand)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (name == ".init_array" || name == ".fini_array") {
 | 
						|
    sec->sortInitFini();
 | 
						|
  } else if (name == ".ctors" || name == ".dtors") {
 | 
						|
    sec->sortCtorsDtors();
 | 
						|
  } else if (config->emachine == EM_PPC64 && name == ".toc") {
 | 
						|
    // .toc is allocated just after .got and is accessed using GOT-relative
 | 
						|
    // relocations. Object files compiled with small code model have an
 | 
						|
    // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
 | 
						|
    // To reduce the risk of relocation overflow, .toc contents are sorted so
 | 
						|
    // that sections having smaller relocation offsets are at beginning of .toc
 | 
						|
    assert(sec->commands.size() == 1);
 | 
						|
    auto *isd = cast<InputSectionDescription>(sec->commands[0]);
 | 
						|
    llvm::stable_sort(isd->sections,
 | 
						|
                      [](const InputSection *a, const InputSection *b) -> bool {
 | 
						|
                        return a->file->ppc64SmallCodeModelTocRelocs &&
 | 
						|
                               !b->file->ppc64SmallCodeModelTocRelocs;
 | 
						|
                      });
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// If no layout was provided by linker script, we want to apply default
 | 
						|
// sorting for special input sections. This also handles --symbol-ordering-file.
 | 
						|
template <class ELFT> void Writer<ELFT>::sortInputSections() {
 | 
						|
  // Build the order once since it is expensive.
 | 
						|
  DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
 | 
						|
  maybeShuffle(order);
 | 
						|
  for (SectionCommand *cmd : script->sectionCommands)
 | 
						|
    if (auto *sec = dyn_cast<OutputSection>(cmd))
 | 
						|
      sortSection(sec, order);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void Writer<ELFT>::sortSections() {
 | 
						|
  llvm::TimeTraceScope timeScope("Sort sections");
 | 
						|
  script->adjustSectionsBeforeSorting();
 | 
						|
 | 
						|
  // Don't sort if using -r. It is not necessary and we want to preserve the
 | 
						|
  // relative order for SHF_LINK_ORDER sections.
 | 
						|
  if (config->relocatable)
 | 
						|
    return;
 | 
						|
 | 
						|
  sortInputSections();
 | 
						|
 | 
						|
  for (SectionCommand *cmd : script->sectionCommands) {
 | 
						|
    auto *os = dyn_cast<OutputSection>(cmd);
 | 
						|
    if (!os)
 | 
						|
      continue;
 | 
						|
    os->sortRank = getSectionRank(os);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!script->hasSectionsCommand) {
 | 
						|
    // We know that all the OutputSections are contiguous in this case.
 | 
						|
    auto isSection = [](SectionCommand *cmd) {
 | 
						|
      return isa<OutputSection>(cmd);
 | 
						|
    };
 | 
						|
    std::stable_sort(
 | 
						|
        llvm::find_if(script->sectionCommands, isSection),
 | 
						|
        llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
 | 
						|
        compareSections);
 | 
						|
 | 
						|
    // Process INSERT commands. From this point onwards the order of
 | 
						|
    // script->sectionCommands is fixed.
 | 
						|
    script->processInsertCommands();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  script->processInsertCommands();
 | 
						|
 | 
						|
  // Orphan sections are sections present in the input files which are
 | 
						|
  // not explicitly placed into the output file by the linker script.
 | 
						|
  //
 | 
						|
  // The sections in the linker script are already in the correct
 | 
						|
  // order. We have to figuere out where to insert the orphan
 | 
						|
  // sections.
 | 
						|
  //
 | 
						|
  // The order of the sections in the script is arbitrary and may not agree with
 | 
						|
  // compareSections. This means that we cannot easily define a strict weak
 | 
						|
  // ordering. To see why, consider a comparison of a section in the script and
 | 
						|
  // one not in the script. We have a two simple options:
 | 
						|
  // * Make them equivalent (a is not less than b, and b is not less than a).
 | 
						|
  //   The problem is then that equivalence has to be transitive and we can
 | 
						|
  //   have sections a, b and c with only b in a script and a less than c
 | 
						|
  //   which breaks this property.
 | 
						|
  // * Use compareSectionsNonScript. Given that the script order doesn't have
 | 
						|
  //   to match, we can end up with sections a, b, c, d where b and c are in the
 | 
						|
  //   script and c is compareSectionsNonScript less than b. In which case d
 | 
						|
  //   can be equivalent to c, a to b and d < a. As a concrete example:
 | 
						|
  //   .a (rx) # not in script
 | 
						|
  //   .b (rx) # in script
 | 
						|
  //   .c (ro) # in script
 | 
						|
  //   .d (ro) # not in script
 | 
						|
  //
 | 
						|
  // The way we define an order then is:
 | 
						|
  // *  Sort only the orphan sections. They are in the end right now.
 | 
						|
  // *  Move each orphan section to its preferred position. We try
 | 
						|
  //    to put each section in the last position where it can share
 | 
						|
  //    a PT_LOAD.
 | 
						|
  //
 | 
						|
  // There is some ambiguity as to where exactly a new entry should be
 | 
						|
  // inserted, because Commands contains not only output section
 | 
						|
  // commands but also other types of commands such as symbol assignment
 | 
						|
  // expressions. There's no correct answer here due to the lack of the
 | 
						|
  // formal specification of the linker script. We use heuristics to
 | 
						|
  // determine whether a new output command should be added before or
 | 
						|
  // after another commands. For the details, look at shouldSkip
 | 
						|
  // function.
 | 
						|
 | 
						|
  auto i = script->sectionCommands.begin();
 | 
						|
  auto e = script->sectionCommands.end();
 | 
						|
  auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) {
 | 
						|
    if (auto *sec = dyn_cast<OutputSection>(cmd))
 | 
						|
      return sec->sectionIndex == UINT32_MAX;
 | 
						|
    return false;
 | 
						|
  });
 | 
						|
 | 
						|
  // Sort the orphan sections.
 | 
						|
  std::stable_sort(nonScriptI, e, compareSections);
 | 
						|
 | 
						|
  // As a horrible special case, skip the first . assignment if it is before any
 | 
						|
  // section. We do this because it is common to set a load address by starting
 | 
						|
  // the script with ". = 0xabcd" and the expectation is that every section is
 | 
						|
  // after that.
 | 
						|
  auto firstSectionOrDotAssignment =
 | 
						|
      std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); });
 | 
						|
  if (firstSectionOrDotAssignment != e &&
 | 
						|
      isa<SymbolAssignment>(**firstSectionOrDotAssignment))
 | 
						|
    ++firstSectionOrDotAssignment;
 | 
						|
  i = firstSectionOrDotAssignment;
 | 
						|
 | 
						|
  while (nonScriptI != e) {
 | 
						|
    auto pos = findOrphanPos(i, nonScriptI);
 | 
						|
    OutputSection *orphan = cast<OutputSection>(*nonScriptI);
 | 
						|
 | 
						|
    // As an optimization, find all sections with the same sort rank
 | 
						|
    // and insert them with one rotate.
 | 
						|
    unsigned rank = orphan->sortRank;
 | 
						|
    auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) {
 | 
						|
      return cast<OutputSection>(cmd)->sortRank != rank;
 | 
						|
    });
 | 
						|
    std::rotate(pos, nonScriptI, end);
 | 
						|
    nonScriptI = end;
 | 
						|
  }
 | 
						|
 | 
						|
  script->adjustSectionsAfterSorting();
 | 
						|
}
 | 
						|
 | 
						|
static bool compareByFilePosition(InputSection *a, InputSection *b) {
 | 
						|
  InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr;
 | 
						|
  InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr;
 | 
						|
  // SHF_LINK_ORDER sections with non-zero sh_link are ordered before
 | 
						|
  // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link.
 | 
						|
  if (!la || !lb)
 | 
						|
    return la && !lb;
 | 
						|
  OutputSection *aOut = la->getParent();
 | 
						|
  OutputSection *bOut = lb->getParent();
 | 
						|
 | 
						|
  if (aOut != bOut)
 | 
						|
    return aOut->addr < bOut->addr;
 | 
						|
  return la->outSecOff < lb->outSecOff;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
 | 
						|
  llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER");
 | 
						|
  for (OutputSection *sec : outputSections) {
 | 
						|
    if (!(sec->flags & SHF_LINK_ORDER))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
 | 
						|
    // this processing inside the ARMExidxsyntheticsection::finalizeContents().
 | 
						|
    if (!config->relocatable && config->emachine == EM_ARM &&
 | 
						|
        sec->type == SHT_ARM_EXIDX)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Link order may be distributed across several InputSectionDescriptions.
 | 
						|
    // Sorting is performed separately.
 | 
						|
    std::vector<InputSection **> scriptSections;
 | 
						|
    std::vector<InputSection *> sections;
 | 
						|
    for (SectionCommand *cmd : sec->commands) {
 | 
						|
      auto *isd = dyn_cast<InputSectionDescription>(cmd);
 | 
						|
      if (!isd)
 | 
						|
        continue;
 | 
						|
      bool hasLinkOrder = false;
 | 
						|
      scriptSections.clear();
 | 
						|
      sections.clear();
 | 
						|
      for (InputSection *&isec : isd->sections) {
 | 
						|
        if (isec->flags & SHF_LINK_ORDER) {
 | 
						|
          InputSection *link = isec->getLinkOrderDep();
 | 
						|
          if (link && !link->getParent())
 | 
						|
            error(toString(isec) + ": sh_link points to discarded section " +
 | 
						|
                  toString(link));
 | 
						|
          hasLinkOrder = true;
 | 
						|
        }
 | 
						|
        scriptSections.push_back(&isec);
 | 
						|
        sections.push_back(isec);
 | 
						|
      }
 | 
						|
      if (hasLinkOrder && errorCount() == 0) {
 | 
						|
        llvm::stable_sort(sections, compareByFilePosition);
 | 
						|
        for (int i = 0, n = sections.size(); i != n; ++i)
 | 
						|
          *scriptSections[i] = sections[i];
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void finalizeSynthetic(SyntheticSection *sec) {
 | 
						|
  if (sec && sec->isNeeded() && sec->getParent()) {
 | 
						|
    llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name);
 | 
						|
    sec->finalizeContents();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// We need to generate and finalize the content that depends on the address of
 | 
						|
// InputSections. As the generation of the content may also alter InputSection
 | 
						|
// addresses we must converge to a fixed point. We do that here. See the comment
 | 
						|
// in Writer<ELFT>::finalizeSections().
 | 
						|
template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
 | 
						|
  llvm::TimeTraceScope timeScope("Finalize address dependent content");
 | 
						|
  ThunkCreator tc;
 | 
						|
  AArch64Err843419Patcher a64p;
 | 
						|
  ARMErr657417Patcher a32p;
 | 
						|
  script->assignAddresses();
 | 
						|
  // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they
 | 
						|
  // do require the relative addresses of OutputSections because linker scripts
 | 
						|
  // can assign Virtual Addresses to OutputSections that are not monotonically
 | 
						|
  // increasing.
 | 
						|
  for (Partition &part : partitions)
 | 
						|
    finalizeSynthetic(part.armExidx);
 | 
						|
  resolveShfLinkOrder();
 | 
						|
 | 
						|
  // Converts call x@GDPLT to call __tls_get_addr
 | 
						|
  if (config->emachine == EM_HEXAGON)
 | 
						|
    hexagonTLSSymbolUpdate(outputSections);
 | 
						|
 | 
						|
  int assignPasses = 0;
 | 
						|
  for (;;) {
 | 
						|
    bool changed = target->needsThunks && tc.createThunks(outputSections);
 | 
						|
 | 
						|
    // With Thunk Size much smaller than branch range we expect to
 | 
						|
    // converge quickly; if we get to 15 something has gone wrong.
 | 
						|
    if (changed && tc.pass >= 15) {
 | 
						|
      error("thunk creation not converged");
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (config->fixCortexA53Errata843419) {
 | 
						|
      if (changed)
 | 
						|
        script->assignAddresses();
 | 
						|
      changed |= a64p.createFixes();
 | 
						|
    }
 | 
						|
    if (config->fixCortexA8) {
 | 
						|
      if (changed)
 | 
						|
        script->assignAddresses();
 | 
						|
      changed |= a32p.createFixes();
 | 
						|
    }
 | 
						|
 | 
						|
    if (in.mipsGot)
 | 
						|
      in.mipsGot->updateAllocSize();
 | 
						|
 | 
						|
    for (Partition &part : partitions) {
 | 
						|
      changed |= part.relaDyn->updateAllocSize();
 | 
						|
      if (part.relrDyn)
 | 
						|
        changed |= part.relrDyn->updateAllocSize();
 | 
						|
    }
 | 
						|
 | 
						|
    const Defined *changedSym = script->assignAddresses();
 | 
						|
    if (!changed) {
 | 
						|
      // Some symbols may be dependent on section addresses. When we break the
 | 
						|
      // loop, the symbol values are finalized because a previous
 | 
						|
      // assignAddresses() finalized section addresses.
 | 
						|
      if (!changedSym)
 | 
						|
        break;
 | 
						|
      if (++assignPasses == 5) {
 | 
						|
        errorOrWarn("assignment to symbol " + toString(*changedSym) +
 | 
						|
                    " does not converge");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If addrExpr is set, the address may not be a multiple of the alignment.
 | 
						|
  // Warn because this is error-prone.
 | 
						|
  for (SectionCommand *cmd : script->sectionCommands)
 | 
						|
    if (auto *os = dyn_cast<OutputSection>(cmd))
 | 
						|
      if (os->addr % os->alignment != 0)
 | 
						|
        warn("address (0x" + Twine::utohexstr(os->addr) + ") of section " +
 | 
						|
             os->name + " is not a multiple of alignment (" +
 | 
						|
             Twine(os->alignment) + ")");
 | 
						|
}
 | 
						|
 | 
						|
// If Input Sections have been shrunk (basic block sections) then
 | 
						|
// update symbol values and sizes associated with these sections.  With basic
 | 
						|
// block sections, input sections can shrink when the jump instructions at
 | 
						|
// the end of the section are relaxed.
 | 
						|
static void fixSymbolsAfterShrinking() {
 | 
						|
  for (InputFile *File : objectFiles) {
 | 
						|
    parallelForEach(File->getSymbols(), [&](Symbol *Sym) {
 | 
						|
      auto *def = dyn_cast<Defined>(Sym);
 | 
						|
      if (!def)
 | 
						|
        return;
 | 
						|
 | 
						|
      const SectionBase *sec = def->section;
 | 
						|
      if (!sec)
 | 
						|
        return;
 | 
						|
 | 
						|
      const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec->repl);
 | 
						|
      if (!inputSec || !inputSec->bytesDropped)
 | 
						|
        return;
 | 
						|
 | 
						|
      const size_t OldSize = inputSec->data().size();
 | 
						|
      const size_t NewSize = OldSize - inputSec->bytesDropped;
 | 
						|
 | 
						|
      if (def->value > NewSize && def->value <= OldSize) {
 | 
						|
        LLVM_DEBUG(llvm::dbgs()
 | 
						|
                   << "Moving symbol " << Sym->getName() << " from "
 | 
						|
                   << def->value << " to "
 | 
						|
                   << def->value - inputSec->bytesDropped << " bytes\n");
 | 
						|
        def->value -= inputSec->bytesDropped;
 | 
						|
        return;
 | 
						|
      }
 | 
						|
 | 
						|
      if (def->value + def->size > NewSize && def->value <= OldSize &&
 | 
						|
          def->value + def->size <= OldSize) {
 | 
						|
        LLVM_DEBUG(llvm::dbgs()
 | 
						|
                   << "Shrinking symbol " << Sym->getName() << " from "
 | 
						|
                   << def->size << " to " << def->size - inputSec->bytesDropped
 | 
						|
                   << " bytes\n");
 | 
						|
        def->size -= inputSec->bytesDropped;
 | 
						|
      }
 | 
						|
    });
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// If basic block sections exist, there are opportunities to delete fall thru
 | 
						|
// jumps and shrink jump instructions after basic block reordering.  This
 | 
						|
// relaxation pass does that.  It is only enabled when --optimize-bb-jumps
 | 
						|
// option is used.
 | 
						|
template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() {
 | 
						|
  assert(config->optimizeBBJumps);
 | 
						|
 | 
						|
  script->assignAddresses();
 | 
						|
  // For every output section that has executable input sections, this
 | 
						|
  // does the following:
 | 
						|
  //   1. Deletes all direct jump instructions in input sections that
 | 
						|
  //      jump to the following section as it is not required.
 | 
						|
  //   2. If there are two consecutive jump instructions, it checks
 | 
						|
  //      if they can be flipped and one can be deleted.
 | 
						|
  for (OutputSection *os : outputSections) {
 | 
						|
    if (!(os->flags & SHF_EXECINSTR))
 | 
						|
      continue;
 | 
						|
    std::vector<InputSection *> sections = getInputSections(os);
 | 
						|
    std::vector<unsigned> result(sections.size());
 | 
						|
    // Delete all fall through jump instructions.  Also, check if two
 | 
						|
    // consecutive jump instructions can be flipped so that a fall
 | 
						|
    // through jmp instruction can be deleted.
 | 
						|
    parallelForEachN(0, sections.size(), [&](size_t i) {
 | 
						|
      InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr;
 | 
						|
      InputSection &is = *sections[i];
 | 
						|
      result[i] =
 | 
						|
          target->deleteFallThruJmpInsn(is, is.getFile<ELFT>(), next) ? 1 : 0;
 | 
						|
    });
 | 
						|
    size_t numDeleted = std::count(result.begin(), result.end(), 1);
 | 
						|
    if (numDeleted > 0) {
 | 
						|
      script->assignAddresses();
 | 
						|
      LLVM_DEBUG(llvm::dbgs()
 | 
						|
                 << "Removing " << numDeleted << " fall through jumps\n");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  fixSymbolsAfterShrinking();
 | 
						|
 | 
						|
  for (OutputSection *os : outputSections) {
 | 
						|
    std::vector<InputSection *> sections = getInputSections(os);
 | 
						|
    for (InputSection *is : sections)
 | 
						|
      is->trim();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// In order to allow users to manipulate linker-synthesized sections,
 | 
						|
// we had to add synthetic sections to the input section list early,
 | 
						|
// even before we make decisions whether they are needed. This allows
 | 
						|
// users to write scripts like this: ".mygot : { .got }".
 | 
						|
//
 | 
						|
// Doing it has an unintended side effects. If it turns out that we
 | 
						|
// don't need a .got (for example) at all because there's no
 | 
						|
// relocation that needs a .got, we don't want to emit .got.
 | 
						|
//
 | 
						|
// To deal with the above problem, this function is called after
 | 
						|
// scanRelocations is called to remove synthetic sections that turn
 | 
						|
// out to be empty.
 | 
						|
static void removeUnusedSyntheticSections() {
 | 
						|
  // All input synthetic sections that can be empty are placed after
 | 
						|
  // all regular ones. Reverse iterate to find the first synthetic section
 | 
						|
  // after a non-synthetic one which will be our starting point.
 | 
						|
  auto start = std::find_if(inputSections.rbegin(), inputSections.rend(),
 | 
						|
                            [](InputSectionBase *s) {
 | 
						|
                              return !isa<SyntheticSection>(s);
 | 
						|
                            })
 | 
						|
                   .base();
 | 
						|
 | 
						|
  // Remove unused synthetic sections from inputSections;
 | 
						|
  DenseSet<InputSectionBase *> unused;
 | 
						|
  auto end =
 | 
						|
      std::remove_if(start, inputSections.end(), [&](InputSectionBase *s) {
 | 
						|
        auto *sec = cast<SyntheticSection>(s);
 | 
						|
        if (sec->getParent() && sec->isNeeded())
 | 
						|
          return false;
 | 
						|
        unused.insert(sec);
 | 
						|
        return true;
 | 
						|
      });
 | 
						|
  inputSections.erase(end, inputSections.end());
 | 
						|
 | 
						|
  // Remove unused synthetic sections from the corresponding input section
 | 
						|
  // description and orphanSections.
 | 
						|
  for (auto *sec : unused)
 | 
						|
    if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent())
 | 
						|
      for (SectionCommand *cmd : osec->commands)
 | 
						|
        if (auto *isd = dyn_cast<InputSectionDescription>(cmd))
 | 
						|
          llvm::erase_if(isd->sections, [&](InputSection *isec) {
 | 
						|
            return unused.count(isec);
 | 
						|
          });
 | 
						|
  llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) {
 | 
						|
    return unused.count(sec);
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
// Create output section objects and add them to OutputSections.
 | 
						|
template <class ELFT> void Writer<ELFT>::finalizeSections() {
 | 
						|
  Out::preinitArray = findSection(".preinit_array");
 | 
						|
  Out::initArray = findSection(".init_array");
 | 
						|
  Out::finiArray = findSection(".fini_array");
 | 
						|
 | 
						|
  // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
 | 
						|
  // symbols for sections, so that the runtime can get the start and end
 | 
						|
  // addresses of each section by section name. Add such symbols.
 | 
						|
  if (!config->relocatable) {
 | 
						|
    addStartEndSymbols();
 | 
						|
    for (SectionCommand *cmd : script->sectionCommands)
 | 
						|
      if (auto *sec = dyn_cast<OutputSection>(cmd))
 | 
						|
        addStartStopSymbols(sec);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
 | 
						|
  // It should be okay as no one seems to care about the type.
 | 
						|
  // Even the author of gold doesn't remember why gold behaves that way.
 | 
						|
  // https://sourceware.org/ml/binutils/2002-03/msg00360.html
 | 
						|
  if (mainPart->dynamic->parent)
 | 
						|
    symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
 | 
						|
                              STV_HIDDEN, STT_NOTYPE,
 | 
						|
                              /*value=*/0, /*size=*/0, mainPart->dynamic});
 | 
						|
 | 
						|
  // Define __rel[a]_iplt_{start,end} symbols if needed.
 | 
						|
  addRelIpltSymbols();
 | 
						|
 | 
						|
  // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol
 | 
						|
  // should only be defined in an executable. If .sdata does not exist, its
 | 
						|
  // value/section does not matter but it has to be relative, so set its
 | 
						|
  // st_shndx arbitrarily to 1 (Out::elfHeader).
 | 
						|
  if (config->emachine == EM_RISCV && !config->shared) {
 | 
						|
    OutputSection *sec = findSection(".sdata");
 | 
						|
    ElfSym::riscvGlobalPointer =
 | 
						|
        addOptionalRegular("__global_pointer$", sec ? sec : Out::elfHeader,
 | 
						|
                           0x800, STV_DEFAULT);
 | 
						|
  }
 | 
						|
 | 
						|
  if (config->emachine == EM_386 || config->emachine == EM_X86_64) {
 | 
						|
    // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
 | 
						|
    // way that:
 | 
						|
    //
 | 
						|
    // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
 | 
						|
    // computes 0.
 | 
						|
    // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
 | 
						|
    // the TLS block).
 | 
						|
    //
 | 
						|
    // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
 | 
						|
    // an absolute symbol of zero. This is different from GNU linkers which
 | 
						|
    // define _TLS_MODULE_BASE_ relative to the first TLS section.
 | 
						|
    Symbol *s = symtab->find("_TLS_MODULE_BASE_");
 | 
						|
    if (s && s->isUndefined()) {
 | 
						|
      s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
 | 
						|
                         STT_TLS, /*value=*/0, 0,
 | 
						|
                         /*section=*/nullptr});
 | 
						|
      ElfSym::tlsModuleBase = cast<Defined>(s);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    llvm::TimeTraceScope timeScope("Finalize .eh_frame");
 | 
						|
    // This responsible for splitting up .eh_frame section into
 | 
						|
    // pieces. The relocation scan uses those pieces, so this has to be
 | 
						|
    // earlier.
 | 
						|
    for (Partition &part : partitions)
 | 
						|
      finalizeSynthetic(part.ehFrame);
 | 
						|
  }
 | 
						|
 | 
						|
  for (Symbol *sym : symtab->symbols())
 | 
						|
    sym->isPreemptible = computeIsPreemptible(*sym);
 | 
						|
 | 
						|
  // Change values of linker-script-defined symbols from placeholders (assigned
 | 
						|
  // by declareSymbols) to actual definitions.
 | 
						|
  script->processSymbolAssignments();
 | 
						|
 | 
						|
  {
 | 
						|
    llvm::TimeTraceScope timeScope("Scan relocations");
 | 
						|
    // Scan relocations. This must be done after every symbol is declared so
 | 
						|
    // that we can correctly decide if a dynamic relocation is needed. This is
 | 
						|
    // called after processSymbolAssignments() because it needs to know whether
 | 
						|
    // a linker-script-defined symbol is absolute.
 | 
						|
    ppc64noTocRelax.clear();
 | 
						|
    if (!config->relocatable) {
 | 
						|
      forEachRelSec(scanRelocations<ELFT>);
 | 
						|
      reportUndefinedSymbols<ELFT>();
 | 
						|
      postScanRelocations();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (in.plt && in.plt->isNeeded())
 | 
						|
    in.plt->addSymbols();
 | 
						|
  if (in.iplt && in.iplt->isNeeded())
 | 
						|
    in.iplt->addSymbols();
 | 
						|
 | 
						|
  if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) {
 | 
						|
    auto diagnose =
 | 
						|
        config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError
 | 
						|
            ? errorOrWarn
 | 
						|
            : warn;
 | 
						|
    // Error on undefined symbols in a shared object, if all of its DT_NEEDED
 | 
						|
    // entries are seen. These cases would otherwise lead to runtime errors
 | 
						|
    // reported by the dynamic linker.
 | 
						|
    //
 | 
						|
    // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
 | 
						|
    // catch more cases. That is too much for us. Our approach resembles the one
 | 
						|
    // used in ld.gold, achieves a good balance to be useful but not too smart.
 | 
						|
    for (SharedFile *file : sharedFiles) {
 | 
						|
      bool allNeededIsKnown =
 | 
						|
          llvm::all_of(file->dtNeeded, [&](StringRef needed) {
 | 
						|
            return symtab->soNames.count(needed);
 | 
						|
          });
 | 
						|
      if (!allNeededIsKnown)
 | 
						|
        continue;
 | 
						|
      for (Symbol *sym : file->requiredSymbols)
 | 
						|
        if (sym->isUndefined() && !sym->isWeak())
 | 
						|
          diagnose(toString(file) + ": undefined reference to " +
 | 
						|
                   toString(*sym) + " [--no-allow-shlib-undefined]");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    llvm::TimeTraceScope timeScope("Add symbols to symtabs");
 | 
						|
    // Now that we have defined all possible global symbols including linker-
 | 
						|
    // synthesized ones. Visit all symbols to give the finishing touches.
 | 
						|
    for (Symbol *sym : symtab->symbols()) {
 | 
						|
      if (!sym->isUsedInRegularObj || !includeInSymtab(*sym))
 | 
						|
        continue;
 | 
						|
      if (in.symTab)
 | 
						|
        in.symTab->addSymbol(sym);
 | 
						|
 | 
						|
      if (sym->includeInDynsym()) {
 | 
						|
        partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
 | 
						|
        if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
 | 
						|
          if (file->isNeeded && !sym->isUndefined())
 | 
						|
            addVerneed(sym);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // We also need to scan the dynamic relocation tables of the other
 | 
						|
    // partitions and add any referenced symbols to the partition's dynsym.
 | 
						|
    for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
 | 
						|
      DenseSet<Symbol *> syms;
 | 
						|
      for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
 | 
						|
        syms.insert(e.sym);
 | 
						|
      for (DynamicReloc &reloc : part.relaDyn->relocs)
 | 
						|
        if (reloc.sym && reloc.needsDynSymIndex() &&
 | 
						|
            syms.insert(reloc.sym).second)
 | 
						|
          part.dynSymTab->addSymbol(reloc.sym);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Do not proceed if there was an undefined symbol.
 | 
						|
  if (errorCount())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (in.mipsGot)
 | 
						|
    in.mipsGot->build();
 | 
						|
 | 
						|
  removeUnusedSyntheticSections();
 | 
						|
  script->diagnoseOrphanHandling();
 | 
						|
 | 
						|
  sortSections();
 | 
						|
 | 
						|
  // Create a list of OutputSections, assign sectionIndex, and populate
 | 
						|
  // in.shStrTab.
 | 
						|
  for (SectionCommand *cmd : script->sectionCommands)
 | 
						|
    if (auto *osec = dyn_cast<OutputSection>(cmd)) {
 | 
						|
      outputSections.push_back(osec);
 | 
						|
      osec->sectionIndex = outputSections.size();
 | 
						|
      osec->shName = in.shStrTab->addString(osec->name);
 | 
						|
    }
 | 
						|
 | 
						|
  // Prefer command line supplied address over other constraints.
 | 
						|
  for (OutputSection *sec : outputSections) {
 | 
						|
    auto i = config->sectionStartMap.find(sec->name);
 | 
						|
    if (i != config->sectionStartMap.end())
 | 
						|
      sec->addrExpr = [=] { return i->second; };
 | 
						|
  }
 | 
						|
 | 
						|
  // With the outputSections available check for GDPLT relocations
 | 
						|
  // and add __tls_get_addr symbol if needed.
 | 
						|
  if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) {
 | 
						|
    Symbol *sym = symtab->addSymbol(Undefined{
 | 
						|
        nullptr, "__tls_get_addr", STB_GLOBAL, STV_DEFAULT, STT_NOTYPE});
 | 
						|
    sym->isPreemptible = true;
 | 
						|
    partitions[0].dynSymTab->addSymbol(sym);
 | 
						|
  }
 | 
						|
 | 
						|
  // This is a bit of a hack. A value of 0 means undef, so we set it
 | 
						|
  // to 1 to make __ehdr_start defined. The section number is not
 | 
						|
  // particularly relevant.
 | 
						|
  Out::elfHeader->sectionIndex = 1;
 | 
						|
  Out::elfHeader->size = sizeof(typename ELFT::Ehdr);
 | 
						|
 | 
						|
  // Binary and relocatable output does not have PHDRS.
 | 
						|
  // The headers have to be created before finalize as that can influence the
 | 
						|
  // image base and the dynamic section on mips includes the image base.
 | 
						|
  if (!config->relocatable && !config->oFormatBinary) {
 | 
						|
    for (Partition &part : partitions) {
 | 
						|
      part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
 | 
						|
                                              : createPhdrs(part);
 | 
						|
      if (config->emachine == EM_ARM) {
 | 
						|
        // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
 | 
						|
        addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
 | 
						|
      }
 | 
						|
      if (config->emachine == EM_MIPS) {
 | 
						|
        // Add separate segments for MIPS-specific sections.
 | 
						|
        addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
 | 
						|
        addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
 | 
						|
        addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
 | 
						|
 | 
						|
    // Find the TLS segment. This happens before the section layout loop so that
 | 
						|
    // Android relocation packing can look up TLS symbol addresses. We only need
 | 
						|
    // to care about the main partition here because all TLS symbols were moved
 | 
						|
    // to the main partition (see MarkLive.cpp).
 | 
						|
    for (PhdrEntry *p : mainPart->phdrs)
 | 
						|
      if (p->p_type == PT_TLS)
 | 
						|
        Out::tlsPhdr = p;
 | 
						|
  }
 | 
						|
 | 
						|
  // Some symbols are defined in term of program headers. Now that we
 | 
						|
  // have the headers, we can find out which sections they point to.
 | 
						|
  setReservedSymbolSections();
 | 
						|
 | 
						|
  {
 | 
						|
    llvm::TimeTraceScope timeScope("Finalize synthetic sections");
 | 
						|
 | 
						|
    finalizeSynthetic(in.bss);
 | 
						|
    finalizeSynthetic(in.bssRelRo);
 | 
						|
    finalizeSynthetic(in.symTabShndx);
 | 
						|
    finalizeSynthetic(in.shStrTab);
 | 
						|
    finalizeSynthetic(in.strTab);
 | 
						|
    finalizeSynthetic(in.got);
 | 
						|
    finalizeSynthetic(in.mipsGot);
 | 
						|
    finalizeSynthetic(in.igotPlt);
 | 
						|
    finalizeSynthetic(in.gotPlt);
 | 
						|
    finalizeSynthetic(in.relaIplt);
 | 
						|
    finalizeSynthetic(in.relaPlt);
 | 
						|
    finalizeSynthetic(in.plt);
 | 
						|
    finalizeSynthetic(in.iplt);
 | 
						|
    finalizeSynthetic(in.ppc32Got2);
 | 
						|
    finalizeSynthetic(in.partIndex);
 | 
						|
 | 
						|
    // Dynamic section must be the last one in this list and dynamic
 | 
						|
    // symbol table section (dynSymTab) must be the first one.
 | 
						|
    for (Partition &part : partitions) {
 | 
						|
      finalizeSynthetic(part.dynSymTab);
 | 
						|
      finalizeSynthetic(part.gnuHashTab);
 | 
						|
      finalizeSynthetic(part.hashTab);
 | 
						|
      finalizeSynthetic(part.verDef);
 | 
						|
      finalizeSynthetic(part.relaDyn);
 | 
						|
      finalizeSynthetic(part.relrDyn);
 | 
						|
      finalizeSynthetic(part.ehFrameHdr);
 | 
						|
      finalizeSynthetic(part.verSym);
 | 
						|
      finalizeSynthetic(part.verNeed);
 | 
						|
      finalizeSynthetic(part.dynamic);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!script->hasSectionsCommand && !config->relocatable)
 | 
						|
    fixSectionAlignments();
 | 
						|
 | 
						|
  // This is used to:
 | 
						|
  // 1) Create "thunks":
 | 
						|
  //    Jump instructions in many ISAs have small displacements, and therefore
 | 
						|
  //    they cannot jump to arbitrary addresses in memory. For example, RISC-V
 | 
						|
  //    JAL instruction can target only +-1 MiB from PC. It is a linker's
 | 
						|
  //    responsibility to create and insert small pieces of code between
 | 
						|
  //    sections to extend the ranges if jump targets are out of range. Such
 | 
						|
  //    code pieces are called "thunks".
 | 
						|
  //
 | 
						|
  //    We add thunks at this stage. We couldn't do this before this point
 | 
						|
  //    because this is the earliest point where we know sizes of sections and
 | 
						|
  //    their layouts (that are needed to determine if jump targets are in
 | 
						|
  //    range).
 | 
						|
  //
 | 
						|
  // 2) Update the sections. We need to generate content that depends on the
 | 
						|
  //    address of InputSections. For example, MIPS GOT section content or
 | 
						|
  //    android packed relocations sections content.
 | 
						|
  //
 | 
						|
  // 3) Assign the final values for the linker script symbols. Linker scripts
 | 
						|
  //    sometimes using forward symbol declarations. We want to set the correct
 | 
						|
  //    values. They also might change after adding the thunks.
 | 
						|
  finalizeAddressDependentContent();
 | 
						|
  if (errorCount())
 | 
						|
    return;
 | 
						|
 | 
						|
  {
 | 
						|
    llvm::TimeTraceScope timeScope("Finalize synthetic sections");
 | 
						|
    // finalizeAddressDependentContent may have added local symbols to the
 | 
						|
    // static symbol table.
 | 
						|
    finalizeSynthetic(in.symTab);
 | 
						|
    finalizeSynthetic(in.ppc64LongBranchTarget);
 | 
						|
  }
 | 
						|
 | 
						|
  // Relaxation to delete inter-basic block jumps created by basic block
 | 
						|
  // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps
 | 
						|
  // can relax jump instructions based on symbol offset.
 | 
						|
  if (config->optimizeBBJumps)
 | 
						|
    optimizeBasicBlockJumps();
 | 
						|
 | 
						|
  // Fill other section headers. The dynamic table is finalized
 | 
						|
  // at the end because some tags like RELSZ depend on result
 | 
						|
  // of finalizing other sections.
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    sec->finalize();
 | 
						|
}
 | 
						|
 | 
						|
// Ensure data sections are not mixed with executable sections when
 | 
						|
// --execute-only is used. --execute-only make pages executable but not
 | 
						|
// readable.
 | 
						|
template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
 | 
						|
  if (!config->executeOnly)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (OutputSection *os : outputSections)
 | 
						|
    if (os->flags & SHF_EXECINSTR)
 | 
						|
      for (InputSection *isec : getInputSections(os))
 | 
						|
        if (!(isec->flags & SHF_EXECINSTR))
 | 
						|
          error("cannot place " + toString(isec) + " into " + toString(os->name) +
 | 
						|
                ": -execute-only does not support intermingling data and code");
 | 
						|
}
 | 
						|
 | 
						|
// The linker is expected to define SECNAME_start and SECNAME_end
 | 
						|
// symbols for a few sections. This function defines them.
 | 
						|
template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
 | 
						|
  // If a section does not exist, there's ambiguity as to how we
 | 
						|
  // define _start and _end symbols for an init/fini section. Since
 | 
						|
  // the loader assume that the symbols are always defined, we need to
 | 
						|
  // always define them. But what value? The loader iterates over all
 | 
						|
  // pointers between _start and _end to run global ctors/dtors, so if
 | 
						|
  // the section is empty, their symbol values don't actually matter
 | 
						|
  // as long as _start and _end point to the same location.
 | 
						|
  //
 | 
						|
  // That said, we don't want to set the symbols to 0 (which is
 | 
						|
  // probably the simplest value) because that could cause some
 | 
						|
  // program to fail to link due to relocation overflow, if their
 | 
						|
  // program text is above 2 GiB. We use the address of the .text
 | 
						|
  // section instead to prevent that failure.
 | 
						|
  //
 | 
						|
  // In rare situations, the .text section may not exist. If that's the
 | 
						|
  // case, use the image base address as a last resort.
 | 
						|
  OutputSection *Default = findSection(".text");
 | 
						|
  if (!Default)
 | 
						|
    Default = Out::elfHeader;
 | 
						|
 | 
						|
  auto define = [=](StringRef start, StringRef end, OutputSection *os) {
 | 
						|
    if (os && !script->isDiscarded(os)) {
 | 
						|
      addOptionalRegular(start, os, 0);
 | 
						|
      addOptionalRegular(end, os, -1);
 | 
						|
    } else {
 | 
						|
      addOptionalRegular(start, Default, 0);
 | 
						|
      addOptionalRegular(end, Default, 0);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
 | 
						|
  define("__init_array_start", "__init_array_end", Out::initArray);
 | 
						|
  define("__fini_array_start", "__fini_array_end", Out::finiArray);
 | 
						|
 | 
						|
  if (OutputSection *sec = findSection(".ARM.exidx"))
 | 
						|
    define("__exidx_start", "__exidx_end", sec);
 | 
						|
}
 | 
						|
 | 
						|
// If a section name is valid as a C identifier (which is rare because of
 | 
						|
// the leading '.'), linkers are expected to define __start_<secname> and
 | 
						|
// __stop_<secname> symbols. They are at beginning and end of the section,
 | 
						|
// respectively. This is not requested by the ELF standard, but GNU ld and
 | 
						|
// gold provide the feature, and used by many programs.
 | 
						|
template <class ELFT>
 | 
						|
void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
 | 
						|
  StringRef s = sec->name;
 | 
						|
  if (!isValidCIdentifier(s))
 | 
						|
    return;
 | 
						|
  addOptionalRegular(saver.save("__start_" + s), sec, 0,
 | 
						|
                     config->zStartStopVisibility);
 | 
						|
  addOptionalRegular(saver.save("__stop_" + s), sec, -1,
 | 
						|
                     config->zStartStopVisibility);
 | 
						|
}
 | 
						|
 | 
						|
static bool needsPtLoad(OutputSection *sec) {
 | 
						|
  if (!(sec->flags & SHF_ALLOC))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
 | 
						|
  // responsible for allocating space for them, not the PT_LOAD that
 | 
						|
  // contains the TLS initialization image.
 | 
						|
  if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Linker scripts are responsible for aligning addresses. Unfortunately, most
 | 
						|
// linker scripts are designed for creating two PT_LOADs only, one RX and one
 | 
						|
// RW. This means that there is no alignment in the RO to RX transition and we
 | 
						|
// cannot create a PT_LOAD there.
 | 
						|
static uint64_t computeFlags(uint64_t flags) {
 | 
						|
  if (config->omagic)
 | 
						|
    return PF_R | PF_W | PF_X;
 | 
						|
  if (config->executeOnly && (flags & PF_X))
 | 
						|
    return flags & ~PF_R;
 | 
						|
  if (config->singleRoRx && !(flags & PF_W))
 | 
						|
    return flags | PF_X;
 | 
						|
  return flags;
 | 
						|
}
 | 
						|
 | 
						|
// Decide which program headers to create and which sections to include in each
 | 
						|
// one.
 | 
						|
template <class ELFT>
 | 
						|
std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
 | 
						|
  std::vector<PhdrEntry *> ret;
 | 
						|
  auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
 | 
						|
    ret.push_back(make<PhdrEntry>(type, flags));
 | 
						|
    return ret.back();
 | 
						|
  };
 | 
						|
 | 
						|
  unsigned partNo = part.getNumber();
 | 
						|
  bool isMain = partNo == 1;
 | 
						|
 | 
						|
  // Add the first PT_LOAD segment for regular output sections.
 | 
						|
  uint64_t flags = computeFlags(PF_R);
 | 
						|
  PhdrEntry *load = nullptr;
 | 
						|
 | 
						|
  // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly
 | 
						|
  // PT_LOAD.
 | 
						|
  if (!config->nmagic && !config->omagic) {
 | 
						|
    // The first phdr entry is PT_PHDR which describes the program header
 | 
						|
    // itself.
 | 
						|
    if (isMain)
 | 
						|
      addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
 | 
						|
    else
 | 
						|
      addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
 | 
						|
 | 
						|
    // PT_INTERP must be the second entry if exists.
 | 
						|
    if (OutputSection *cmd = findSection(".interp", partNo))
 | 
						|
      addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
 | 
						|
 | 
						|
    // Add the headers. We will remove them if they don't fit.
 | 
						|
    // In the other partitions the headers are ordinary sections, so they don't
 | 
						|
    // need to be added here.
 | 
						|
    if (isMain) {
 | 
						|
      load = addHdr(PT_LOAD, flags);
 | 
						|
      load->add(Out::elfHeader);
 | 
						|
      load->add(Out::programHeaders);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // PT_GNU_RELRO includes all sections that should be marked as
 | 
						|
  // read-only by dynamic linker after processing relocations.
 | 
						|
  // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
 | 
						|
  // an error message if more than one PT_GNU_RELRO PHDR is required.
 | 
						|
  PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
 | 
						|
  bool inRelroPhdr = false;
 | 
						|
  OutputSection *relroEnd = nullptr;
 | 
						|
  for (OutputSection *sec : outputSections) {
 | 
						|
    if (sec->partition != partNo || !needsPtLoad(sec))
 | 
						|
      continue;
 | 
						|
    if (isRelroSection(sec)) {
 | 
						|
      inRelroPhdr = true;
 | 
						|
      if (!relroEnd)
 | 
						|
        relRo->add(sec);
 | 
						|
      else
 | 
						|
        error("section: " + sec->name + " is not contiguous with other relro" +
 | 
						|
              " sections");
 | 
						|
    } else if (inRelroPhdr) {
 | 
						|
      inRelroPhdr = false;
 | 
						|
      relroEnd = sec;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (OutputSection *sec : outputSections) {
 | 
						|
    if (!needsPtLoad(sec))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Normally, sections in partitions other than the current partition are
 | 
						|
    // ignored. But partition number 255 is a special case: it contains the
 | 
						|
    // partition end marker (.part.end). It needs to be added to the main
 | 
						|
    // partition so that a segment is created for it in the main partition,
 | 
						|
    // which will cause the dynamic loader to reserve space for the other
 | 
						|
    // partitions.
 | 
						|
    if (sec->partition != partNo) {
 | 
						|
      if (isMain && sec->partition == 255)
 | 
						|
        addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Segments are contiguous memory regions that has the same attributes
 | 
						|
    // (e.g. executable or writable). There is one phdr for each segment.
 | 
						|
    // Therefore, we need to create a new phdr when the next section has
 | 
						|
    // different flags or is loaded at a discontiguous address or memory
 | 
						|
    // region using AT or AT> linker script command, respectively. At the same
 | 
						|
    // time, we don't want to create a separate load segment for the headers,
 | 
						|
    // even if the first output section has an AT or AT> attribute.
 | 
						|
    uint64_t newFlags = computeFlags(sec->getPhdrFlags());
 | 
						|
    bool sameLMARegion =
 | 
						|
        load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion;
 | 
						|
    if (!(load && newFlags == flags && sec != relroEnd &&
 | 
						|
          sec->memRegion == load->firstSec->memRegion &&
 | 
						|
          (sameLMARegion || load->lastSec == Out::programHeaders))) {
 | 
						|
      load = addHdr(PT_LOAD, newFlags);
 | 
						|
      flags = newFlags;
 | 
						|
    }
 | 
						|
 | 
						|
    load->add(sec);
 | 
						|
  }
 | 
						|
 | 
						|
  // Add a TLS segment if any.
 | 
						|
  PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    if (sec->partition == partNo && sec->flags & SHF_TLS)
 | 
						|
      tlsHdr->add(sec);
 | 
						|
  if (tlsHdr->firstSec)
 | 
						|
    ret.push_back(tlsHdr);
 | 
						|
 | 
						|
  // Add an entry for .dynamic.
 | 
						|
  if (OutputSection *sec = part.dynamic->getParent())
 | 
						|
    addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
 | 
						|
 | 
						|
  if (relRo->firstSec)
 | 
						|
    ret.push_back(relRo);
 | 
						|
 | 
						|
  // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
 | 
						|
  if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
 | 
						|
      part.ehFrame->getParent() && part.ehFrameHdr->getParent())
 | 
						|
    addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
 | 
						|
        ->add(part.ehFrameHdr->getParent());
 | 
						|
 | 
						|
  // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
 | 
						|
  // the dynamic linker fill the segment with random data.
 | 
						|
  if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
 | 
						|
    addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
 | 
						|
 | 
						|
  if (config->zGnustack != GnuStackKind::None) {
 | 
						|
    // PT_GNU_STACK is a special section to tell the loader to make the
 | 
						|
    // pages for the stack non-executable. If you really want an executable
 | 
						|
    // stack, you can pass -z execstack, but that's not recommended for
 | 
						|
    // security reasons.
 | 
						|
    unsigned perm = PF_R | PF_W;
 | 
						|
    if (config->zGnustack == GnuStackKind::Exec)
 | 
						|
      perm |= PF_X;
 | 
						|
    addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
 | 
						|
  }
 | 
						|
 | 
						|
  // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
 | 
						|
  // is expected to perform W^X violations, such as calling mprotect(2) or
 | 
						|
  // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
 | 
						|
  // OpenBSD.
 | 
						|
  if (config->zWxneeded)
 | 
						|
    addHdr(PT_OPENBSD_WXNEEDED, PF_X);
 | 
						|
 | 
						|
  if (OutputSection *cmd = findSection(".note.gnu.property", partNo))
 | 
						|
    addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd);
 | 
						|
 | 
						|
  // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
 | 
						|
  // same alignment.
 | 
						|
  PhdrEntry *note = nullptr;
 | 
						|
  for (OutputSection *sec : outputSections) {
 | 
						|
    if (sec->partition != partNo)
 | 
						|
      continue;
 | 
						|
    if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
 | 
						|
      if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
 | 
						|
        note = addHdr(PT_NOTE, PF_R);
 | 
						|
      note->add(sec);
 | 
						|
    } else {
 | 
						|
      note = nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return ret;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT>
 | 
						|
void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
 | 
						|
                                     unsigned pType, unsigned pFlags) {
 | 
						|
  unsigned partNo = part.getNumber();
 | 
						|
  auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
 | 
						|
    return cmd->partition == partNo && cmd->type == shType;
 | 
						|
  });
 | 
						|
  if (i == outputSections.end())
 | 
						|
    return;
 | 
						|
 | 
						|
  PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
 | 
						|
  entry->add(*i);
 | 
						|
  part.phdrs.push_back(entry);
 | 
						|
}
 | 
						|
 | 
						|
// Place the first section of each PT_LOAD to a different page (of maxPageSize).
 | 
						|
// This is achieved by assigning an alignment expression to addrExpr of each
 | 
						|
// such section.
 | 
						|
template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
 | 
						|
  const PhdrEntry *prev;
 | 
						|
  auto pageAlign = [&](const PhdrEntry *p) {
 | 
						|
    OutputSection *cmd = p->firstSec;
 | 
						|
    if (!cmd)
 | 
						|
      return;
 | 
						|
    cmd->alignExpr = [align = cmd->alignment]() { return align; };
 | 
						|
    if (!cmd->addrExpr) {
 | 
						|
      // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid
 | 
						|
      // padding in the file contents.
 | 
						|
      //
 | 
						|
      // When -z separate-code is used we must not have any overlap in pages
 | 
						|
      // between an executable segment and a non-executable segment. We align to
 | 
						|
      // the next maximum page size boundary on transitions between executable
 | 
						|
      // and non-executable segments.
 | 
						|
      //
 | 
						|
      // SHT_LLVM_PART_EHDR marks the start of a partition. The partition
 | 
						|
      // sections will be extracted to a separate file. Align to the next
 | 
						|
      // maximum page size boundary so that we can find the ELF header at the
 | 
						|
      // start. We cannot benefit from overlapping p_offset ranges with the
 | 
						|
      // previous segment anyway.
 | 
						|
      if (config->zSeparate == SeparateSegmentKind::Loadable ||
 | 
						|
          (config->zSeparate == SeparateSegmentKind::Code && prev &&
 | 
						|
           (prev->p_flags & PF_X) != (p->p_flags & PF_X)) ||
 | 
						|
          cmd->type == SHT_LLVM_PART_EHDR)
 | 
						|
        cmd->addrExpr = [] {
 | 
						|
          return alignTo(script->getDot(), config->maxPageSize);
 | 
						|
        };
 | 
						|
      // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS,
 | 
						|
      // it must be the RW. Align to p_align(PT_TLS) to make sure
 | 
						|
      // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if
 | 
						|
      // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS)
 | 
						|
      // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not
 | 
						|
      // be congruent to 0 modulo p_align(PT_TLS).
 | 
						|
      //
 | 
						|
      // Technically this is not required, but as of 2019, some dynamic loaders
 | 
						|
      // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and
 | 
						|
      // x86-64) doesn't make runtime address congruent to p_vaddr modulo
 | 
						|
      // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same
 | 
						|
      // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS
 | 
						|
      // blocks correctly. We need to keep the workaround for a while.
 | 
						|
      else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec)
 | 
						|
        cmd->addrExpr = [] {
 | 
						|
          return alignTo(script->getDot(), config->maxPageSize) +
 | 
						|
                 alignTo(script->getDot() % config->maxPageSize,
 | 
						|
                         Out::tlsPhdr->p_align);
 | 
						|
        };
 | 
						|
      else
 | 
						|
        cmd->addrExpr = [] {
 | 
						|
          return alignTo(script->getDot(), config->maxPageSize) +
 | 
						|
                 script->getDot() % config->maxPageSize;
 | 
						|
        };
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  for (Partition &part : partitions) {
 | 
						|
    prev = nullptr;
 | 
						|
    for (const PhdrEntry *p : part.phdrs)
 | 
						|
      if (p->p_type == PT_LOAD && p->firstSec) {
 | 
						|
        pageAlign(p);
 | 
						|
        prev = p;
 | 
						|
      }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Compute an in-file position for a given section. The file offset must be the
 | 
						|
// same with its virtual address modulo the page size, so that the loader can
 | 
						|
// load executables without any address adjustment.
 | 
						|
static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
 | 
						|
  // The first section in a PT_LOAD has to have congruent offset and address
 | 
						|
  // modulo the maximum page size.
 | 
						|
  if (os->ptLoad && os->ptLoad->firstSec == os)
 | 
						|
    return alignTo(off, os->ptLoad->p_align, os->addr);
 | 
						|
 | 
						|
  // File offsets are not significant for .bss sections other than the first one
 | 
						|
  // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically
 | 
						|
  // increasing rather than setting to zero.
 | 
						|
  if (os->type == SHT_NOBITS &&
 | 
						|
      (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os))
 | 
						|
     return off;
 | 
						|
 | 
						|
  // If the section is not in a PT_LOAD, we just have to align it.
 | 
						|
  if (!os->ptLoad)
 | 
						|
    return alignTo(off, os->alignment);
 | 
						|
 | 
						|
  // If two sections share the same PT_LOAD the file offset is calculated
 | 
						|
  // using this formula: Off2 = Off1 + (VA2 - VA1).
 | 
						|
  OutputSection *first = os->ptLoad->firstSec;
 | 
						|
  return first->offset + os->addr - first->addr;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
 | 
						|
  // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr.
 | 
						|
  auto needsOffset = [](OutputSection &sec) {
 | 
						|
    return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0;
 | 
						|
  };
 | 
						|
  uint64_t minAddr = UINT64_MAX;
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    if (needsOffset(*sec)) {
 | 
						|
      sec->offset = sec->getLMA();
 | 
						|
      minAddr = std::min(minAddr, sec->offset);
 | 
						|
    }
 | 
						|
 | 
						|
  // Sections are laid out at LMA minus minAddr.
 | 
						|
  fileSize = 0;
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    if (needsOffset(*sec)) {
 | 
						|
      sec->offset -= minAddr;
 | 
						|
      fileSize = std::max(fileSize, sec->offset + sec->size);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static std::string rangeToString(uint64_t addr, uint64_t len) {
 | 
						|
  return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
 | 
						|
}
 | 
						|
 | 
						|
// Assign file offsets to output sections.
 | 
						|
template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
 | 
						|
  Out::programHeaders->offset = Out::elfHeader->size;
 | 
						|
  uint64_t off = Out::elfHeader->size + Out::programHeaders->size;
 | 
						|
 | 
						|
  PhdrEntry *lastRX = nullptr;
 | 
						|
  for (Partition &part : partitions)
 | 
						|
    for (PhdrEntry *p : part.phdrs)
 | 
						|
      if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
 | 
						|
        lastRX = p;
 | 
						|
 | 
						|
  // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC
 | 
						|
  // will not occupy file offsets contained by a PT_LOAD.
 | 
						|
  for (OutputSection *sec : outputSections) {
 | 
						|
    if (!(sec->flags & SHF_ALLOC))
 | 
						|
      continue;
 | 
						|
    off = computeFileOffset(sec, off);
 | 
						|
    sec->offset = off;
 | 
						|
    if (sec->type != SHT_NOBITS)
 | 
						|
      off += sec->size;
 | 
						|
 | 
						|
    // If this is a last section of the last executable segment and that
 | 
						|
    // segment is the last loadable segment, align the offset of the
 | 
						|
    // following section to avoid loading non-segments parts of the file.
 | 
						|
    if (config->zSeparate != SeparateSegmentKind::None && lastRX &&
 | 
						|
        lastRX->lastSec == sec)
 | 
						|
      off = alignTo(off, config->maxPageSize);
 | 
						|
  }
 | 
						|
  for (OutputSection *osec : outputSections)
 | 
						|
    if (!(osec->flags & SHF_ALLOC)) {
 | 
						|
      osec->offset = alignTo(off, osec->alignment);
 | 
						|
      off = osec->offset + osec->size;
 | 
						|
    }
 | 
						|
 | 
						|
  sectionHeaderOff = alignTo(off, config->wordsize);
 | 
						|
  fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
 | 
						|
 | 
						|
  // Our logic assumes that sections have rising VA within the same segment.
 | 
						|
  // With use of linker scripts it is possible to violate this rule and get file
 | 
						|
  // offset overlaps or overflows. That should never happen with a valid script
 | 
						|
  // which does not move the location counter backwards and usually scripts do
 | 
						|
  // not do that. Unfortunately, there are apps in the wild, for example, Linux
 | 
						|
  // kernel, which control segment distribution explicitly and move the counter
 | 
						|
  // backwards, so we have to allow doing that to support linking them. We
 | 
						|
  // perform non-critical checks for overlaps in checkSectionOverlap(), but here
 | 
						|
  // we want to prevent file size overflows because it would crash the linker.
 | 
						|
  for (OutputSection *sec : outputSections) {
 | 
						|
    if (sec->type == SHT_NOBITS)
 | 
						|
      continue;
 | 
						|
    if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
 | 
						|
      error("unable to place section " + sec->name + " at file offset " +
 | 
						|
            rangeToString(sec->offset, sec->size) +
 | 
						|
            "; check your linker script for overflows");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Finalize the program headers. We call this function after we assign
 | 
						|
// file offsets and VAs to all sections.
 | 
						|
template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
 | 
						|
  for (PhdrEntry *p : part.phdrs) {
 | 
						|
    OutputSection *first = p->firstSec;
 | 
						|
    OutputSection *last = p->lastSec;
 | 
						|
 | 
						|
    if (first) {
 | 
						|
      p->p_filesz = last->offset - first->offset;
 | 
						|
      if (last->type != SHT_NOBITS)
 | 
						|
        p->p_filesz += last->size;
 | 
						|
 | 
						|
      p->p_memsz = last->addr + last->size - first->addr;
 | 
						|
      p->p_offset = first->offset;
 | 
						|
      p->p_vaddr = first->addr;
 | 
						|
 | 
						|
      // File offsets in partitions other than the main partition are relative
 | 
						|
      // to the offset of the ELF headers. Perform that adjustment now.
 | 
						|
      if (part.elfHeader)
 | 
						|
        p->p_offset -= part.elfHeader->getParent()->offset;
 | 
						|
 | 
						|
      if (!p->hasLMA)
 | 
						|
        p->p_paddr = first->getLMA();
 | 
						|
    }
 | 
						|
 | 
						|
    if (p->p_type == PT_GNU_RELRO) {
 | 
						|
      p->p_align = 1;
 | 
						|
      // musl/glibc ld.so rounds the size down, so we need to round up
 | 
						|
      // to protect the last page. This is a no-op on FreeBSD which always
 | 
						|
      // rounds up.
 | 
						|
      p->p_memsz = alignTo(p->p_offset + p->p_memsz, config->commonPageSize) -
 | 
						|
                   p->p_offset;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// A helper struct for checkSectionOverlap.
 | 
						|
namespace {
 | 
						|
struct SectionOffset {
 | 
						|
  OutputSection *sec;
 | 
						|
  uint64_t offset;
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
// Check whether sections overlap for a specific address range (file offsets,
 | 
						|
// load and virtual addresses).
 | 
						|
static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions,
 | 
						|
                         bool isVirtualAddr) {
 | 
						|
  llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
 | 
						|
    return a.offset < b.offset;
 | 
						|
  });
 | 
						|
 | 
						|
  // Finding overlap is easy given a vector is sorted by start position.
 | 
						|
  // If an element starts before the end of the previous element, they overlap.
 | 
						|
  for (size_t i = 1, end = sections.size(); i < end; ++i) {
 | 
						|
    SectionOffset a = sections[i - 1];
 | 
						|
    SectionOffset b = sections[i];
 | 
						|
    if (b.offset >= a.offset + a.sec->size)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If both sections are in OVERLAY we allow the overlapping of virtual
 | 
						|
    // addresses, because it is what OVERLAY was designed for.
 | 
						|
    if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
 | 
						|
      continue;
 | 
						|
 | 
						|
    errorOrWarn("section " + a.sec->name + " " + name +
 | 
						|
                " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
 | 
						|
                " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
 | 
						|
                b.sec->name + " range is " +
 | 
						|
                rangeToString(b.offset, b.sec->size));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Check for overlapping sections and address overflows.
 | 
						|
//
 | 
						|
// In this function we check that none of the output sections have overlapping
 | 
						|
// file offsets. For SHF_ALLOC sections we also check that the load address
 | 
						|
// ranges and the virtual address ranges don't overlap
 | 
						|
template <class ELFT> void Writer<ELFT>::checkSections() {
 | 
						|
  // First, check that section's VAs fit in available address space for target.
 | 
						|
  for (OutputSection *os : outputSections)
 | 
						|
    if ((os->addr + os->size < os->addr) ||
 | 
						|
        (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
 | 
						|
      errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
 | 
						|
                  " of size 0x" + utohexstr(os->size) +
 | 
						|
                  " exceeds available address space");
 | 
						|
 | 
						|
  // Check for overlapping file offsets. In this case we need to skip any
 | 
						|
  // section marked as SHT_NOBITS. These sections don't actually occupy space in
 | 
						|
  // the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
 | 
						|
  // binary is specified only add SHF_ALLOC sections are added to the output
 | 
						|
  // file so we skip any non-allocated sections in that case.
 | 
						|
  std::vector<SectionOffset> fileOffs;
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    if (sec->size > 0 && sec->type != SHT_NOBITS &&
 | 
						|
        (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
 | 
						|
      fileOffs.push_back({sec, sec->offset});
 | 
						|
  checkOverlap("file", fileOffs, false);
 | 
						|
 | 
						|
  // When linking with -r there is no need to check for overlapping virtual/load
 | 
						|
  // addresses since those addresses will only be assigned when the final
 | 
						|
  // executable/shared object is created.
 | 
						|
  if (config->relocatable)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Checking for overlapping virtual and load addresses only needs to take
 | 
						|
  // into account SHF_ALLOC sections since others will not be loaded.
 | 
						|
  // Furthermore, we also need to skip SHF_TLS sections since these will be
 | 
						|
  // mapped to other addresses at runtime and can therefore have overlapping
 | 
						|
  // ranges in the file.
 | 
						|
  std::vector<SectionOffset> vmas;
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
 | 
						|
      vmas.push_back({sec, sec->addr});
 | 
						|
  checkOverlap("virtual address", vmas, true);
 | 
						|
 | 
						|
  // Finally, check that the load addresses don't overlap. This will usually be
 | 
						|
  // the same as the virtual addresses but can be different when using a linker
 | 
						|
  // script with AT().
 | 
						|
  std::vector<SectionOffset> lmas;
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
 | 
						|
      lmas.push_back({sec, sec->getLMA()});
 | 
						|
  checkOverlap("load address", lmas, false);
 | 
						|
}
 | 
						|
 | 
						|
// The entry point address is chosen in the following ways.
 | 
						|
//
 | 
						|
// 1. the '-e' entry command-line option;
 | 
						|
// 2. the ENTRY(symbol) command in a linker control script;
 | 
						|
// 3. the value of the symbol _start, if present;
 | 
						|
// 4. the number represented by the entry symbol, if it is a number;
 | 
						|
// 5. the address 0.
 | 
						|
static uint64_t getEntryAddr() {
 | 
						|
  // Case 1, 2 or 3
 | 
						|
  if (Symbol *b = symtab->find(config->entry))
 | 
						|
    return b->getVA();
 | 
						|
 | 
						|
  // Case 4
 | 
						|
  uint64_t addr;
 | 
						|
  if (to_integer(config->entry, addr))
 | 
						|
    return addr;
 | 
						|
 | 
						|
  // Case 5
 | 
						|
  if (config->warnMissingEntry)
 | 
						|
    warn("cannot find entry symbol " + config->entry +
 | 
						|
         "; not setting start address");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t getELFType() {
 | 
						|
  if (config->isPic)
 | 
						|
    return ET_DYN;
 | 
						|
  if (config->relocatable)
 | 
						|
    return ET_REL;
 | 
						|
  return ET_EXEC;
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void Writer<ELFT>::writeHeader() {
 | 
						|
  writeEhdr<ELFT>(Out::bufferStart, *mainPart);
 | 
						|
  writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
 | 
						|
 | 
						|
  auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
 | 
						|
  eHdr->e_type = getELFType();
 | 
						|
  eHdr->e_entry = getEntryAddr();
 | 
						|
  eHdr->e_shoff = sectionHeaderOff;
 | 
						|
 | 
						|
  // Write the section header table.
 | 
						|
  //
 | 
						|
  // The ELF header can only store numbers up to SHN_LORESERVE in the e_shnum
 | 
						|
  // and e_shstrndx fields. When the value of one of these fields exceeds
 | 
						|
  // SHN_LORESERVE ELF requires us to put sentinel values in the ELF header and
 | 
						|
  // use fields in the section header at index 0 to store
 | 
						|
  // the value. The sentinel values and fields are:
 | 
						|
  // e_shnum = 0, SHdrs[0].sh_size = number of sections.
 | 
						|
  // e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
 | 
						|
  auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
 | 
						|
  size_t num = outputSections.size() + 1;
 | 
						|
  if (num >= SHN_LORESERVE)
 | 
						|
    sHdrs->sh_size = num;
 | 
						|
  else
 | 
						|
    eHdr->e_shnum = num;
 | 
						|
 | 
						|
  uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
 | 
						|
  if (strTabIndex >= SHN_LORESERVE) {
 | 
						|
    sHdrs->sh_link = strTabIndex;
 | 
						|
    eHdr->e_shstrndx = SHN_XINDEX;
 | 
						|
  } else {
 | 
						|
    eHdr->e_shstrndx = strTabIndex;
 | 
						|
  }
 | 
						|
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    sec->writeHeaderTo<ELFT>(++sHdrs);
 | 
						|
}
 | 
						|
 | 
						|
// Open a result file.
 | 
						|
template <class ELFT> void Writer<ELFT>::openFile() {
 | 
						|
  uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
 | 
						|
  if (fileSize != size_t(fileSize) || maxSize < fileSize) {
 | 
						|
    std::string msg;
 | 
						|
    raw_string_ostream s(msg);
 | 
						|
    s << "output file too large: " << Twine(fileSize) << " bytes\n"
 | 
						|
      << "section sizes:\n";
 | 
						|
    for (OutputSection *os : outputSections)
 | 
						|
      s << os->name << ' ' << os->size << "\n";
 | 
						|
    error(s.str());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  unlinkAsync(config->outputFile);
 | 
						|
  unsigned flags = 0;
 | 
						|
  if (!config->relocatable)
 | 
						|
    flags |= FileOutputBuffer::F_executable;
 | 
						|
  if (!config->mmapOutputFile)
 | 
						|
    flags |= FileOutputBuffer::F_no_mmap;
 | 
						|
  Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
 | 
						|
      FileOutputBuffer::create(config->outputFile, fileSize, flags);
 | 
						|
 | 
						|
  if (!bufferOrErr) {
 | 
						|
    error("failed to open " + config->outputFile + ": " +
 | 
						|
          llvm::toString(bufferOrErr.takeError()));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  buffer = std::move(*bufferOrErr);
 | 
						|
  Out::bufferStart = buffer->getBufferStart();
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    if (sec->flags & SHF_ALLOC)
 | 
						|
      sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
 | 
						|
}
 | 
						|
 | 
						|
static void fillTrap(uint8_t *i, uint8_t *end) {
 | 
						|
  for (; i + 4 <= end; i += 4)
 | 
						|
    memcpy(i, &target->trapInstr, 4);
 | 
						|
}
 | 
						|
 | 
						|
// Fill the last page of executable segments with trap instructions
 | 
						|
// instead of leaving them as zero. Even though it is not required by any
 | 
						|
// standard, it is in general a good thing to do for security reasons.
 | 
						|
//
 | 
						|
// We'll leave other pages in segments as-is because the rest will be
 | 
						|
// overwritten by output sections.
 | 
						|
template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
 | 
						|
  for (Partition &part : partitions) {
 | 
						|
    // Fill the last page.
 | 
						|
    for (PhdrEntry *p : part.phdrs)
 | 
						|
      if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
 | 
						|
        fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
 | 
						|
                                              config->maxPageSize),
 | 
						|
                 Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
 | 
						|
                                            config->maxPageSize));
 | 
						|
 | 
						|
    // Round up the file size of the last segment to the page boundary iff it is
 | 
						|
    // an executable segment to ensure that other tools don't accidentally
 | 
						|
    // trim the instruction padding (e.g. when stripping the file).
 | 
						|
    PhdrEntry *last = nullptr;
 | 
						|
    for (PhdrEntry *p : part.phdrs)
 | 
						|
      if (p->p_type == PT_LOAD)
 | 
						|
        last = p;
 | 
						|
 | 
						|
    if (last && (last->p_flags & PF_X))
 | 
						|
      last->p_memsz = last->p_filesz =
 | 
						|
          alignTo(last->p_filesz, config->maxPageSize);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Write section contents to a mmap'ed file.
 | 
						|
template <class ELFT> void Writer<ELFT>::writeSections() {
 | 
						|
  llvm::TimeTraceScope timeScope("Write sections");
 | 
						|
 | 
						|
  // In -r or --emit-relocs mode, write the relocation sections first as in
 | 
						|
  // ELf_Rel targets we might find out that we need to modify the relocated
 | 
						|
  // section while doing it.
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    if (sec->type == SHT_REL || sec->type == SHT_RELA)
 | 
						|
      sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
 | 
						|
 | 
						|
  for (OutputSection *sec : outputSections)
 | 
						|
    if (sec->type != SHT_REL && sec->type != SHT_RELA)
 | 
						|
      sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
 | 
						|
 | 
						|
  // Finally, check that all dynamic relocation addends were written correctly.
 | 
						|
  if (config->checkDynamicRelocs && config->writeAddends) {
 | 
						|
    for (OutputSection *sec : outputSections)
 | 
						|
      if (sec->type == SHT_REL || sec->type == SHT_RELA)
 | 
						|
        sec->checkDynRelAddends(Out::bufferStart);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Computes a hash value of Data using a given hash function.
 | 
						|
// In order to utilize multiple cores, we first split data into 1MB
 | 
						|
// chunks, compute a hash for each chunk, and then compute a hash value
 | 
						|
// of the hash values.
 | 
						|
static void
 | 
						|
computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
 | 
						|
            llvm::ArrayRef<uint8_t> data,
 | 
						|
            std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
 | 
						|
  std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
 | 
						|
  std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
 | 
						|
 | 
						|
  // Compute hash values.
 | 
						|
  parallelForEachN(0, chunks.size(), [&](size_t i) {
 | 
						|
    hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
 | 
						|
  });
 | 
						|
 | 
						|
  // Write to the final output buffer.
 | 
						|
  hashFn(hashBuf.data(), hashes);
 | 
						|
}
 | 
						|
 | 
						|
template <class ELFT> void Writer<ELFT>::writeBuildId() {
 | 
						|
  if (!mainPart->buildId || !mainPart->buildId->getParent())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (config->buildId == BuildIdKind::Hexstring) {
 | 
						|
    for (Partition &part : partitions)
 | 
						|
      part.buildId->writeBuildId(config->buildIdVector);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute a hash of all sections of the output file.
 | 
						|
  size_t hashSize = mainPart->buildId->hashSize;
 | 
						|
  std::vector<uint8_t> buildId(hashSize);
 | 
						|
  llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
 | 
						|
 | 
						|
  switch (config->buildId) {
 | 
						|
  case BuildIdKind::Fast:
 | 
						|
    computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
 | 
						|
      write64le(dest, xxHash64(arr));
 | 
						|
    });
 | 
						|
    break;
 | 
						|
  case BuildIdKind::Md5:
 | 
						|
    computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
 | 
						|
      memcpy(dest, MD5::hash(arr).data(), hashSize);
 | 
						|
    });
 | 
						|
    break;
 | 
						|
  case BuildIdKind::Sha1:
 | 
						|
    computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
 | 
						|
      memcpy(dest, SHA1::hash(arr).data(), hashSize);
 | 
						|
    });
 | 
						|
    break;
 | 
						|
  case BuildIdKind::Uuid:
 | 
						|
    if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
 | 
						|
      error("entropy source failure: " + ec.message());
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("unknown BuildIdKind");
 | 
						|
  }
 | 
						|
  for (Partition &part : partitions)
 | 
						|
    part.buildId->writeBuildId(buildId);
 | 
						|
}
 | 
						|
 | 
						|
template void elf::createSyntheticSections<ELF32LE>();
 | 
						|
template void elf::createSyntheticSections<ELF32BE>();
 | 
						|
template void elf::createSyntheticSections<ELF64LE>();
 | 
						|
template void elf::createSyntheticSections<ELF64BE>();
 | 
						|
 | 
						|
template void elf::writeResult<ELF32LE>();
 | 
						|
template void elf::writeResult<ELF32BE>();
 | 
						|
template void elf::writeResult<ELF64LE>();
 | 
						|
template void elf::writeResult<ELF64BE>();
 |