107 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			107 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C
		
	
	
	
//===-- floatundidf.c - Implement __floatundidf ---------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements __floatundidf for the compiler_rt library.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Returns: convert a to a double, rounding toward even.
 | 
						|
 | 
						|
// Assumption: double is a IEEE 64 bit floating point type
 | 
						|
//             du_int is a 64 bit integral type
 | 
						|
 | 
						|
// seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm
 | 
						|
// mmmm
 | 
						|
 | 
						|
#include "int_lib.h"
 | 
						|
 | 
						|
#ifndef __SOFT_FP__
 | 
						|
// Support for systems that have hardware floating-point; we'll set the inexact
 | 
						|
// flag as a side-effect of this computation.
 | 
						|
 | 
						|
COMPILER_RT_ABI double __floatundidf(du_int a) {
 | 
						|
  static const double twop52 = 4503599627370496.0;           // 0x1.0p52
 | 
						|
  static const double twop84 = 19342813113834066795298816.0; // 0x1.0p84
 | 
						|
  static const double twop84_plus_twop52 =
 | 
						|
      19342813118337666422669312.0; // 0x1.00000001p84
 | 
						|
 | 
						|
  union {
 | 
						|
    uint64_t x;
 | 
						|
    double d;
 | 
						|
  } high = {.d = twop84};
 | 
						|
  union {
 | 
						|
    uint64_t x;
 | 
						|
    double d;
 | 
						|
  } low = {.d = twop52};
 | 
						|
 | 
						|
  high.x |= a >> 32;
 | 
						|
  low.x |= a & UINT64_C(0x00000000ffffffff);
 | 
						|
 | 
						|
  const double result = (high.d - twop84_plus_twop52) + low.d;
 | 
						|
  return result;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
// Support for systems that don't have hardware floating-point; there are no
 | 
						|
// flags to set, and we don't want to code-gen to an unknown soft-float
 | 
						|
// implementation.
 | 
						|
 | 
						|
COMPILER_RT_ABI double __floatundidf(du_int a) {
 | 
						|
  if (a == 0)
 | 
						|
    return 0.0;
 | 
						|
  const unsigned N = sizeof(du_int) * CHAR_BIT;
 | 
						|
  int sd = N - __builtin_clzll(a); // number of significant digits
 | 
						|
  int e = sd - 1;                  // exponent
 | 
						|
  if (sd > DBL_MANT_DIG) {
 | 
						|
    //  start:  0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx
 | 
						|
    //  finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR
 | 
						|
    //                                                12345678901234567890123456
 | 
						|
    //  1 = msb 1 bit
 | 
						|
    //  P = bit DBL_MANT_DIG-1 bits to the right of 1
 | 
						|
    //  Q = bit DBL_MANT_DIG bits to the right of 1
 | 
						|
    //  R = "or" of all bits to the right of Q
 | 
						|
    switch (sd) {
 | 
						|
    case DBL_MANT_DIG + 1:
 | 
						|
      a <<= 1;
 | 
						|
      break;
 | 
						|
    case DBL_MANT_DIG + 2:
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      a = (a >> (sd - (DBL_MANT_DIG + 2))) |
 | 
						|
          ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG + 2) - sd))) != 0);
 | 
						|
    };
 | 
						|
    // finish:
 | 
						|
    a |= (a & 4) != 0; // Or P into R
 | 
						|
    ++a;               // round - this step may add a significant bit
 | 
						|
    a >>= 2;           // dump Q and R
 | 
						|
    // a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits
 | 
						|
    if (a & ((du_int)1 << DBL_MANT_DIG)) {
 | 
						|
      a >>= 1;
 | 
						|
      ++e;
 | 
						|
    }
 | 
						|
    // a is now rounded to DBL_MANT_DIG bits
 | 
						|
  } else {
 | 
						|
    a <<= (DBL_MANT_DIG - sd);
 | 
						|
    // a is now rounded to DBL_MANT_DIG bits
 | 
						|
  }
 | 
						|
  double_bits fb;
 | 
						|
  fb.u.s.high = ((e + 1023) << 20) |              // exponent
 | 
						|
                ((su_int)(a >> 32) & 0x000FFFFF); // mantissa-high
 | 
						|
  fb.u.s.low = (su_int)a;                         // mantissa-low
 | 
						|
  return fb.f;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(__ARM_EABI__)
 | 
						|
#if defined(COMPILER_RT_ARMHF_TARGET)
 | 
						|
AEABI_RTABI double __aeabi_ul2d(du_int a) { return __floatundidf(a); }
 | 
						|
#else
 | 
						|
COMPILER_RT_ALIAS(__floatundidf, __aeabi_ul2d)
 | 
						|
#endif
 | 
						|
#endif
 |