710 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			710 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- CGSCCPassManager.cpp - Managing & running CGSCC passes -------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/CGSCCPassManager.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/iterator_range.h"
 | |
| #include "llvm/Analysis/LazyCallGraph.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/Constant.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| 
 | |
| #define DEBUG_TYPE "cgscc"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| // Explicit template instantiations and specialization definitions for core
 | |
| // template typedefs.
 | |
| namespace llvm {
 | |
| 
 | |
| // Explicit instantiations for the core proxy templates.
 | |
| template class AllAnalysesOn<LazyCallGraph::SCC>;
 | |
| template class AnalysisManager<LazyCallGraph::SCC, LazyCallGraph &>;
 | |
| template class PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager,
 | |
|                            LazyCallGraph &, CGSCCUpdateResult &>;
 | |
| template class InnerAnalysisManagerProxy<CGSCCAnalysisManager, Module>;
 | |
| template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
 | |
|                                          LazyCallGraph::SCC, LazyCallGraph &>;
 | |
| template class OuterAnalysisManagerProxy<CGSCCAnalysisManager, Function>;
 | |
| 
 | |
| /// Explicitly specialize the pass manager run method to handle call graph
 | |
| /// updates.
 | |
| template <>
 | |
| PreservedAnalyses
 | |
| PassManager<LazyCallGraph::SCC, CGSCCAnalysisManager, LazyCallGraph &,
 | |
|             CGSCCUpdateResult &>::run(LazyCallGraph::SCC &InitialC,
 | |
|                                       CGSCCAnalysisManager &AM,
 | |
|                                       LazyCallGraph &G, CGSCCUpdateResult &UR) {
 | |
|   // Request PassInstrumentation from analysis manager, will use it to run
 | |
|   // instrumenting callbacks for the passes later.
 | |
|   PassInstrumentation PI =
 | |
|       AM.getResult<PassInstrumentationAnalysis>(InitialC, G);
 | |
| 
 | |
|   PreservedAnalyses PA = PreservedAnalyses::all();
 | |
| 
 | |
|   if (DebugLogging)
 | |
|     dbgs() << "Starting CGSCC pass manager run.\n";
 | |
| 
 | |
|   // The SCC may be refined while we are running passes over it, so set up
 | |
|   // a pointer that we can update.
 | |
|   LazyCallGraph::SCC *C = &InitialC;
 | |
| 
 | |
|   for (auto &Pass : Passes) {
 | |
|     if (DebugLogging)
 | |
|       dbgs() << "Running pass: " << Pass->name() << " on " << *C << "\n";
 | |
| 
 | |
|     // Check the PassInstrumentation's BeforePass callbacks before running the
 | |
|     // pass, skip its execution completely if asked to (callback returns false).
 | |
|     if (!PI.runBeforePass(*Pass, *C))
 | |
|       continue;
 | |
| 
 | |
|     PreservedAnalyses PassPA = Pass->run(*C, AM, G, UR);
 | |
| 
 | |
|     if (UR.InvalidatedSCCs.count(C))
 | |
|       PI.runAfterPassInvalidated<LazyCallGraph::SCC>(*Pass);
 | |
|     else
 | |
|       PI.runAfterPass<LazyCallGraph::SCC>(*Pass, *C);
 | |
| 
 | |
|     // Update the SCC if necessary.
 | |
|     C = UR.UpdatedC ? UR.UpdatedC : C;
 | |
| 
 | |
|     // If the CGSCC pass wasn't able to provide a valid updated SCC, the
 | |
|     // current SCC may simply need to be skipped if invalid.
 | |
|     if (UR.InvalidatedSCCs.count(C)) {
 | |
|       LLVM_DEBUG(dbgs() << "Skipping invalidated root or island SCC!\n");
 | |
|       break;
 | |
|     }
 | |
|     // Check that we didn't miss any update scenario.
 | |
|     assert(C->begin() != C->end() && "Cannot have an empty SCC!");
 | |
| 
 | |
|     // Update the analysis manager as each pass runs and potentially
 | |
|     // invalidates analyses.
 | |
|     AM.invalidate(*C, PassPA);
 | |
| 
 | |
|     // Finally, we intersect the final preserved analyses to compute the
 | |
|     // aggregate preserved set for this pass manager.
 | |
|     PA.intersect(std::move(PassPA));
 | |
| 
 | |
|     // FIXME: Historically, the pass managers all called the LLVM context's
 | |
|     // yield function here. We don't have a generic way to acquire the
 | |
|     // context and it isn't yet clear what the right pattern is for yielding
 | |
|     // in the new pass manager so it is currently omitted.
 | |
|     // ...getContext().yield();
 | |
|   }
 | |
| 
 | |
|   // Before we mark all of *this* SCC's analyses as preserved below, intersect
 | |
|   // this with the cross-SCC preserved analysis set. This is used to allow
 | |
|   // CGSCC passes to mutate ancestor SCCs and still trigger proper invalidation
 | |
|   // for them.
 | |
|   UR.CrossSCCPA.intersect(PA);
 | |
| 
 | |
|   // Invalidation was handled after each pass in the above loop for the current
 | |
|   // SCC. Therefore, the remaining analysis results in the AnalysisManager are
 | |
|   // preserved. We mark this with a set so that we don't need to inspect each
 | |
|   // one individually.
 | |
|   PA.preserveSet<AllAnalysesOn<LazyCallGraph::SCC>>();
 | |
| 
 | |
|   if (DebugLogging)
 | |
|     dbgs() << "Finished CGSCC pass manager run.\n";
 | |
| 
 | |
|   return PA;
 | |
| }
 | |
| 
 | |
| bool CGSCCAnalysisManagerModuleProxy::Result::invalidate(
 | |
|     Module &M, const PreservedAnalyses &PA,
 | |
|     ModuleAnalysisManager::Invalidator &Inv) {
 | |
|   // If literally everything is preserved, we're done.
 | |
|   if (PA.areAllPreserved())
 | |
|     return false; // This is still a valid proxy.
 | |
| 
 | |
|   // If this proxy or the call graph is going to be invalidated, we also need
 | |
|   // to clear all the keys coming from that analysis.
 | |
|   //
 | |
|   // We also directly invalidate the FAM's module proxy if necessary, and if
 | |
|   // that proxy isn't preserved we can't preserve this proxy either. We rely on
 | |
|   // it to handle module -> function analysis invalidation in the face of
 | |
|   // structural changes and so if it's unavailable we conservatively clear the
 | |
|   // entire SCC layer as well rather than trying to do invalidation ourselves.
 | |
|   auto PAC = PA.getChecker<CGSCCAnalysisManagerModuleProxy>();
 | |
|   if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Module>>()) ||
 | |
|       Inv.invalidate<LazyCallGraphAnalysis>(M, PA) ||
 | |
|       Inv.invalidate<FunctionAnalysisManagerModuleProxy>(M, PA)) {
 | |
|     InnerAM->clear();
 | |
| 
 | |
|     // And the proxy itself should be marked as invalid so that we can observe
 | |
|     // the new call graph. This isn't strictly necessary because we cheat
 | |
|     // above, but is still useful.
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Directly check if the relevant set is preserved so we can short circuit
 | |
|   // invalidating SCCs below.
 | |
|   bool AreSCCAnalysesPreserved =
 | |
|       PA.allAnalysesInSetPreserved<AllAnalysesOn<LazyCallGraph::SCC>>();
 | |
| 
 | |
|   // Ok, we have a graph, so we can propagate the invalidation down into it.
 | |
|   G->buildRefSCCs();
 | |
|   for (auto &RC : G->postorder_ref_sccs())
 | |
|     for (auto &C : RC) {
 | |
|       Optional<PreservedAnalyses> InnerPA;
 | |
| 
 | |
|       // Check to see whether the preserved set needs to be adjusted based on
 | |
|       // module-level analysis invalidation triggering deferred invalidation
 | |
|       // for this SCC.
 | |
|       if (auto *OuterProxy =
 | |
|               InnerAM->getCachedResult<ModuleAnalysisManagerCGSCCProxy>(C))
 | |
|         for (const auto &OuterInvalidationPair :
 | |
|              OuterProxy->getOuterInvalidations()) {
 | |
|           AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
 | |
|           const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
 | |
|           if (Inv.invalidate(OuterAnalysisID, M, PA)) {
 | |
|             if (!InnerPA)
 | |
|               InnerPA = PA;
 | |
|             for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
 | |
|               InnerPA->abandon(InnerAnalysisID);
 | |
|           }
 | |
|         }
 | |
| 
 | |
|       // Check if we needed a custom PA set. If so we'll need to run the inner
 | |
|       // invalidation.
 | |
|       if (InnerPA) {
 | |
|         InnerAM->invalidate(C, *InnerPA);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise we only need to do invalidation if the original PA set didn't
 | |
|       // preserve all SCC analyses.
 | |
|       if (!AreSCCAnalysesPreserved)
 | |
|         InnerAM->invalidate(C, PA);
 | |
|     }
 | |
| 
 | |
|   // Return false to indicate that this result is still a valid proxy.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| template <>
 | |
| CGSCCAnalysisManagerModuleProxy::Result
 | |
| CGSCCAnalysisManagerModuleProxy::run(Module &M, ModuleAnalysisManager &AM) {
 | |
|   // Force the Function analysis manager to also be available so that it can
 | |
|   // be accessed in an SCC analysis and proxied onward to function passes.
 | |
|   // FIXME: It is pretty awkward to just drop the result here and assert that
 | |
|   // we can find it again later.
 | |
|   (void)AM.getResult<FunctionAnalysisManagerModuleProxy>(M);
 | |
| 
 | |
|   return Result(*InnerAM, AM.getResult<LazyCallGraphAnalysis>(M));
 | |
| }
 | |
| 
 | |
| AnalysisKey FunctionAnalysisManagerCGSCCProxy::Key;
 | |
| 
 | |
| FunctionAnalysisManagerCGSCCProxy::Result
 | |
| FunctionAnalysisManagerCGSCCProxy::run(LazyCallGraph::SCC &C,
 | |
|                                        CGSCCAnalysisManager &AM,
 | |
|                                        LazyCallGraph &CG) {
 | |
|   // Collect the FunctionAnalysisManager from the Module layer and use that to
 | |
|   // build the proxy result.
 | |
|   //
 | |
|   // This allows us to rely on the FunctionAnalysisMangaerModuleProxy to
 | |
|   // invalidate the function analyses.
 | |
|   auto &MAM = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
 | |
|   Module &M = *C.begin()->getFunction().getParent();
 | |
|   auto *FAMProxy = MAM.getCachedResult<FunctionAnalysisManagerModuleProxy>(M);
 | |
|   assert(FAMProxy && "The CGSCC pass manager requires that the FAM module "
 | |
|                      "proxy is run on the module prior to entering the CGSCC "
 | |
|                      "walk.");
 | |
| 
 | |
|   // Note that we special-case invalidation handling of this proxy in the CGSCC
 | |
|   // analysis manager's Module proxy. This avoids the need to do anything
 | |
|   // special here to recompute all of this if ever the FAM's module proxy goes
 | |
|   // away.
 | |
|   return Result(FAMProxy->getManager());
 | |
| }
 | |
| 
 | |
| bool FunctionAnalysisManagerCGSCCProxy::Result::invalidate(
 | |
|     LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
 | |
|     CGSCCAnalysisManager::Invalidator &Inv) {
 | |
|   // If literally everything is preserved, we're done.
 | |
|   if (PA.areAllPreserved())
 | |
|     return false; // This is still a valid proxy.
 | |
| 
 | |
|   // If this proxy isn't marked as preserved, then even if the result remains
 | |
|   // valid, the key itself may no longer be valid, so we clear everything.
 | |
|   //
 | |
|   // Note that in order to preserve this proxy, a module pass must ensure that
 | |
|   // the FAM has been completely updated to handle the deletion of functions.
 | |
|   // Specifically, any FAM-cached results for those functions need to have been
 | |
|   // forcibly cleared. When preserved, this proxy will only invalidate results
 | |
|   // cached on functions *still in the module* at the end of the module pass.
 | |
|   auto PAC = PA.getChecker<FunctionAnalysisManagerCGSCCProxy>();
 | |
|   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) {
 | |
|     for (LazyCallGraph::Node &N : C)
 | |
|       FAM->clear(N.getFunction(), N.getFunction().getName());
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Directly check if the relevant set is preserved.
 | |
|   bool AreFunctionAnalysesPreserved =
 | |
|       PA.allAnalysesInSetPreserved<AllAnalysesOn<Function>>();
 | |
| 
 | |
|   // Now walk all the functions to see if any inner analysis invalidation is
 | |
|   // necessary.
 | |
|   for (LazyCallGraph::Node &N : C) {
 | |
|     Function &F = N.getFunction();
 | |
|     Optional<PreservedAnalyses> FunctionPA;
 | |
| 
 | |
|     // Check to see whether the preserved set needs to be pruned based on
 | |
|     // SCC-level analysis invalidation that triggers deferred invalidation
 | |
|     // registered with the outer analysis manager proxy for this function.
 | |
|     if (auto *OuterProxy =
 | |
|             FAM->getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F))
 | |
|       for (const auto &OuterInvalidationPair :
 | |
|            OuterProxy->getOuterInvalidations()) {
 | |
|         AnalysisKey *OuterAnalysisID = OuterInvalidationPair.first;
 | |
|         const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
 | |
|         if (Inv.invalidate(OuterAnalysisID, C, PA)) {
 | |
|           if (!FunctionPA)
 | |
|             FunctionPA = PA;
 | |
|           for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
 | |
|             FunctionPA->abandon(InnerAnalysisID);
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     // Check if we needed a custom PA set, and if so we'll need to run the
 | |
|     // inner invalidation.
 | |
|     if (FunctionPA) {
 | |
|       FAM->invalidate(F, *FunctionPA);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise we only need to do invalidation if the original PA set didn't
 | |
|     // preserve all function analyses.
 | |
|     if (!AreFunctionAnalysesPreserved)
 | |
|       FAM->invalidate(F, PA);
 | |
|   }
 | |
| 
 | |
|   // Return false to indicate that this result is still a valid proxy.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| } // end namespace llvm
 | |
| 
 | |
| /// When a new SCC is created for the graph and there might be function
 | |
| /// analysis results cached for the functions now in that SCC two forms of
 | |
| /// updates are required.
 | |
| ///
 | |
| /// First, a proxy from the SCC to the FunctionAnalysisManager needs to be
 | |
| /// created so that any subsequent invalidation events to the SCC are
 | |
| /// propagated to the function analysis results cached for functions within it.
 | |
| ///
 | |
| /// Second, if any of the functions within the SCC have analysis results with
 | |
| /// outer analysis dependencies, then those dependencies would point to the
 | |
| /// *wrong* SCC's analysis result. We forcibly invalidate the necessary
 | |
| /// function analyses so that they don't retain stale handles.
 | |
| static void updateNewSCCFunctionAnalyses(LazyCallGraph::SCC &C,
 | |
|                                          LazyCallGraph &G,
 | |
|                                          CGSCCAnalysisManager &AM) {
 | |
|   // Get the relevant function analysis manager.
 | |
|   auto &FAM =
 | |
|       AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, G).getManager();
 | |
| 
 | |
|   // Now walk the functions in this SCC and invalidate any function analysis
 | |
|   // results that might have outer dependencies on an SCC analysis.
 | |
|   for (LazyCallGraph::Node &N : C) {
 | |
|     Function &F = N.getFunction();
 | |
| 
 | |
|     auto *OuterProxy =
 | |
|         FAM.getCachedResult<CGSCCAnalysisManagerFunctionProxy>(F);
 | |
|     if (!OuterProxy)
 | |
|       // No outer analyses were queried, nothing to do.
 | |
|       continue;
 | |
| 
 | |
|     // Forcibly abandon all the inner analyses with dependencies, but
 | |
|     // invalidate nothing else.
 | |
|     auto PA = PreservedAnalyses::all();
 | |
|     for (const auto &OuterInvalidationPair :
 | |
|          OuterProxy->getOuterInvalidations()) {
 | |
|       const auto &InnerAnalysisIDs = OuterInvalidationPair.second;
 | |
|       for (AnalysisKey *InnerAnalysisID : InnerAnalysisIDs)
 | |
|         PA.abandon(InnerAnalysisID);
 | |
|     }
 | |
| 
 | |
|     // Now invalidate anything we found.
 | |
|     FAM.invalidate(F, PA);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Helper function to update both the \c CGSCCAnalysisManager \p AM and the \c
 | |
| /// CGSCCPassManager's \c CGSCCUpdateResult \p UR based on a range of newly
 | |
| /// added SCCs.
 | |
| ///
 | |
| /// The range of new SCCs must be in postorder already. The SCC they were split
 | |
| /// out of must be provided as \p C. The current node being mutated and
 | |
| /// triggering updates must be passed as \p N.
 | |
| ///
 | |
| /// This function returns the SCC containing \p N. This will be either \p C if
 | |
| /// no new SCCs have been split out, or it will be the new SCC containing \p N.
 | |
| template <typename SCCRangeT>
 | |
| static LazyCallGraph::SCC *
 | |
| incorporateNewSCCRange(const SCCRangeT &NewSCCRange, LazyCallGraph &G,
 | |
|                        LazyCallGraph::Node &N, LazyCallGraph::SCC *C,
 | |
|                        CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
 | |
|   using SCC = LazyCallGraph::SCC;
 | |
| 
 | |
|   if (NewSCCRange.begin() == NewSCCRange.end())
 | |
|     return C;
 | |
| 
 | |
|   // Add the current SCC to the worklist as its shape has changed.
 | |
|   UR.CWorklist.insert(C);
 | |
|   LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist:" << *C
 | |
|                     << "\n");
 | |
| 
 | |
|   SCC *OldC = C;
 | |
| 
 | |
|   // Update the current SCC. Note that if we have new SCCs, this must actually
 | |
|   // change the SCC.
 | |
|   assert(C != &*NewSCCRange.begin() &&
 | |
|          "Cannot insert new SCCs without changing current SCC!");
 | |
|   C = &*NewSCCRange.begin();
 | |
|   assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
 | |
| 
 | |
|   // If we had a cached FAM proxy originally, we will want to create more of
 | |
|   // them for each SCC that was split off.
 | |
|   bool NeedFAMProxy =
 | |
|       AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(*OldC) != nullptr;
 | |
| 
 | |
|   // We need to propagate an invalidation call to all but the newly current SCC
 | |
|   // because the outer pass manager won't do that for us after splitting them.
 | |
|   // FIXME: We should accept a PreservedAnalysis from the CG updater so that if
 | |
|   // there are preserved analysis we can avoid invalidating them here for
 | |
|   // split-off SCCs.
 | |
|   // We know however that this will preserve any FAM proxy so go ahead and mark
 | |
|   // that.
 | |
|   PreservedAnalyses PA;
 | |
|   PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
 | |
|   AM.invalidate(*OldC, PA);
 | |
| 
 | |
|   // Ensure the now-current SCC's function analyses are updated.
 | |
|   if (NeedFAMProxy)
 | |
|     updateNewSCCFunctionAnalyses(*C, G, AM);
 | |
| 
 | |
|   for (SCC &NewC : llvm::reverse(make_range(std::next(NewSCCRange.begin()),
 | |
|                                             NewSCCRange.end()))) {
 | |
|     assert(C != &NewC && "No need to re-visit the current SCC!");
 | |
|     assert(OldC != &NewC && "Already handled the original SCC!");
 | |
|     UR.CWorklist.insert(&NewC);
 | |
|     LLVM_DEBUG(dbgs() << "Enqueuing a newly formed SCC:" << NewC << "\n");
 | |
| 
 | |
|     // Ensure new SCCs' function analyses are updated.
 | |
|     if (NeedFAMProxy)
 | |
|       updateNewSCCFunctionAnalyses(NewC, G, AM);
 | |
| 
 | |
|     // Also propagate a normal invalidation to the new SCC as only the current
 | |
|     // will get one from the pass manager infrastructure.
 | |
|     AM.invalidate(NewC, PA);
 | |
|   }
 | |
|   return C;
 | |
| }
 | |
| 
 | |
| LazyCallGraph::SCC &llvm::updateCGAndAnalysisManagerForFunctionPass(
 | |
|     LazyCallGraph &G, LazyCallGraph::SCC &InitialC, LazyCallGraph::Node &N,
 | |
|     CGSCCAnalysisManager &AM, CGSCCUpdateResult &UR) {
 | |
|   using Node = LazyCallGraph::Node;
 | |
|   using Edge = LazyCallGraph::Edge;
 | |
|   using SCC = LazyCallGraph::SCC;
 | |
|   using RefSCC = LazyCallGraph::RefSCC;
 | |
| 
 | |
|   RefSCC &InitialRC = InitialC.getOuterRefSCC();
 | |
|   SCC *C = &InitialC;
 | |
|   RefSCC *RC = &InitialRC;
 | |
|   Function &F = N.getFunction();
 | |
| 
 | |
|   // Walk the function body and build up the set of retained, promoted, and
 | |
|   // demoted edges.
 | |
|   SmallVector<Constant *, 16> Worklist;
 | |
|   SmallPtrSet<Constant *, 16> Visited;
 | |
|   SmallPtrSet<Node *, 16> RetainedEdges;
 | |
|   SmallSetVector<Node *, 4> PromotedRefTargets;
 | |
|   SmallSetVector<Node *, 4> DemotedCallTargets;
 | |
| 
 | |
|   // First walk the function and handle all called functions. We do this first
 | |
|   // because if there is a single call edge, whether there are ref edges is
 | |
|   // irrelevant.
 | |
|   for (Instruction &I : instructions(F))
 | |
|     if (auto CS = CallSite(&I))
 | |
|       if (Function *Callee = CS.getCalledFunction())
 | |
|         if (Visited.insert(Callee).second && !Callee->isDeclaration()) {
 | |
|           Node &CalleeN = *G.lookup(*Callee);
 | |
|           Edge *E = N->lookup(CalleeN);
 | |
|           // FIXME: We should really handle adding new calls. While it will
 | |
|           // make downstream usage more complex, there is no fundamental
 | |
|           // limitation and it will allow passes within the CGSCC to be a bit
 | |
|           // more flexible in what transforms they can do. Until then, we
 | |
|           // verify that new calls haven't been introduced.
 | |
|           assert(E && "No function transformations should introduce *new* "
 | |
|                       "call edges! Any new calls should be modeled as "
 | |
|                       "promoted existing ref edges!");
 | |
|           bool Inserted = RetainedEdges.insert(&CalleeN).second;
 | |
|           (void)Inserted;
 | |
|           assert(Inserted && "We should never visit a function twice.");
 | |
|           if (!E->isCall())
 | |
|             PromotedRefTargets.insert(&CalleeN);
 | |
|         }
 | |
| 
 | |
|   // Now walk all references.
 | |
|   for (Instruction &I : instructions(F))
 | |
|     for (Value *Op : I.operand_values())
 | |
|       if (auto *C = dyn_cast<Constant>(Op))
 | |
|         if (Visited.insert(C).second)
 | |
|           Worklist.push_back(C);
 | |
| 
 | |
|   auto VisitRef = [&](Function &Referee) {
 | |
|     Node &RefereeN = *G.lookup(Referee);
 | |
|     Edge *E = N->lookup(RefereeN);
 | |
|     // FIXME: Similarly to new calls, we also currently preclude
 | |
|     // introducing new references. See above for details.
 | |
|     assert(E && "No function transformations should introduce *new* ref "
 | |
|                 "edges! Any new ref edges would require IPO which "
 | |
|                 "function passes aren't allowed to do!");
 | |
|     bool Inserted = RetainedEdges.insert(&RefereeN).second;
 | |
|     (void)Inserted;
 | |
|     assert(Inserted && "We should never visit a function twice.");
 | |
|     if (E->isCall())
 | |
|       DemotedCallTargets.insert(&RefereeN);
 | |
|   };
 | |
|   LazyCallGraph::visitReferences(Worklist, Visited, VisitRef);
 | |
| 
 | |
|   // Include synthetic reference edges to known, defined lib functions.
 | |
|   for (auto *F : G.getLibFunctions())
 | |
|     // While the list of lib functions doesn't have repeats, don't re-visit
 | |
|     // anything handled above.
 | |
|     if (!Visited.count(F))
 | |
|       VisitRef(*F);
 | |
| 
 | |
|   // First remove all of the edges that are no longer present in this function.
 | |
|   // The first step makes these edges uniformly ref edges and accumulates them
 | |
|   // into a separate data structure so removal doesn't invalidate anything.
 | |
|   SmallVector<Node *, 4> DeadTargets;
 | |
|   for (Edge &E : *N) {
 | |
|     if (RetainedEdges.count(&E.getNode()))
 | |
|       continue;
 | |
| 
 | |
|     SCC &TargetC = *G.lookupSCC(E.getNode());
 | |
|     RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | |
|     if (&TargetRC == RC && E.isCall()) {
 | |
|       if (C != &TargetC) {
 | |
|         // For separate SCCs this is trivial.
 | |
|         RC->switchTrivialInternalEdgeToRef(N, E.getNode());
 | |
|       } else {
 | |
|         // Now update the call graph.
 | |
|         C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, E.getNode()),
 | |
|                                    G, N, C, AM, UR);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Now that this is ready for actual removal, put it into our list.
 | |
|     DeadTargets.push_back(&E.getNode());
 | |
|   }
 | |
|   // Remove the easy cases quickly and actually pull them out of our list.
 | |
|   DeadTargets.erase(
 | |
|       llvm::remove_if(DeadTargets,
 | |
|                       [&](Node *TargetN) {
 | |
|                         SCC &TargetC = *G.lookupSCC(*TargetN);
 | |
|                         RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | |
| 
 | |
|                         // We can't trivially remove internal targets, so skip
 | |
|                         // those.
 | |
|                         if (&TargetRC == RC)
 | |
|                           return false;
 | |
| 
 | |
|                         RC->removeOutgoingEdge(N, *TargetN);
 | |
|                         LLVM_DEBUG(dbgs() << "Deleting outgoing edge from '"
 | |
|                                           << N << "' to '" << TargetN << "'\n");
 | |
|                         return true;
 | |
|                       }),
 | |
|       DeadTargets.end());
 | |
| 
 | |
|   // Now do a batch removal of the internal ref edges left.
 | |
|   auto NewRefSCCs = RC->removeInternalRefEdge(N, DeadTargets);
 | |
|   if (!NewRefSCCs.empty()) {
 | |
|     // The old RefSCC is dead, mark it as such.
 | |
|     UR.InvalidatedRefSCCs.insert(RC);
 | |
| 
 | |
|     // Note that we don't bother to invalidate analyses as ref-edge
 | |
|     // connectivity is not really observable in any way and is intended
 | |
|     // exclusively to be used for ordering of transforms rather than for
 | |
|     // analysis conclusions.
 | |
| 
 | |
|     // Update RC to the "bottom".
 | |
|     assert(G.lookupSCC(N) == C && "Changed the SCC when splitting RefSCCs!");
 | |
|     RC = &C->getOuterRefSCC();
 | |
|     assert(G.lookupRefSCC(N) == RC && "Failed to update current RefSCC!");
 | |
| 
 | |
|     // The RC worklist is in reverse postorder, so we enqueue the new ones in
 | |
|     // RPO except for the one which contains the source node as that is the
 | |
|     // "bottom" we will continue processing in the bottom-up walk.
 | |
|     assert(NewRefSCCs.front() == RC &&
 | |
|            "New current RefSCC not first in the returned list!");
 | |
|     for (RefSCC *NewRC : llvm::reverse(make_range(std::next(NewRefSCCs.begin()),
 | |
|                                                   NewRefSCCs.end()))) {
 | |
|       assert(NewRC != RC && "Should not encounter the current RefSCC further "
 | |
|                             "in the postorder list of new RefSCCs.");
 | |
|       UR.RCWorklist.insert(NewRC);
 | |
|       LLVM_DEBUG(dbgs() << "Enqueuing a new RefSCC in the update worklist: "
 | |
|                         << *NewRC << "\n");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Next demote all the call edges that are now ref edges. This helps make
 | |
|   // the SCCs small which should minimize the work below as we don't want to
 | |
|   // form cycles that this would break.
 | |
|   for (Node *RefTarget : DemotedCallTargets) {
 | |
|     SCC &TargetC = *G.lookupSCC(*RefTarget);
 | |
|     RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | |
| 
 | |
|     // The easy case is when the target RefSCC is not this RefSCC. This is
 | |
|     // only supported when the target RefSCC is a child of this RefSCC.
 | |
|     if (&TargetRC != RC) {
 | |
|       assert(RC->isAncestorOf(TargetRC) &&
 | |
|              "Cannot potentially form RefSCC cycles here!");
 | |
|       RC->switchOutgoingEdgeToRef(N, *RefTarget);
 | |
|       LLVM_DEBUG(dbgs() << "Switch outgoing call edge to a ref edge from '" << N
 | |
|                         << "' to '" << *RefTarget << "'\n");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // We are switching an internal call edge to a ref edge. This may split up
 | |
|     // some SCCs.
 | |
|     if (C != &TargetC) {
 | |
|       // For separate SCCs this is trivial.
 | |
|       RC->switchTrivialInternalEdgeToRef(N, *RefTarget);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Now update the call graph.
 | |
|     C = incorporateNewSCCRange(RC->switchInternalEdgeToRef(N, *RefTarget), G, N,
 | |
|                                C, AM, UR);
 | |
|   }
 | |
| 
 | |
|   // Now promote ref edges into call edges.
 | |
|   for (Node *CallTarget : PromotedRefTargets) {
 | |
|     SCC &TargetC = *G.lookupSCC(*CallTarget);
 | |
|     RefSCC &TargetRC = TargetC.getOuterRefSCC();
 | |
| 
 | |
|     // The easy case is when the target RefSCC is not this RefSCC. This is
 | |
|     // only supported when the target RefSCC is a child of this RefSCC.
 | |
|     if (&TargetRC != RC) {
 | |
|       assert(RC->isAncestorOf(TargetRC) &&
 | |
|              "Cannot potentially form RefSCC cycles here!");
 | |
|       RC->switchOutgoingEdgeToCall(N, *CallTarget);
 | |
|       LLVM_DEBUG(dbgs() << "Switch outgoing ref edge to a call edge from '" << N
 | |
|                         << "' to '" << *CallTarget << "'\n");
 | |
|       continue;
 | |
|     }
 | |
|     LLVM_DEBUG(dbgs() << "Switch an internal ref edge to a call edge from '"
 | |
|                       << N << "' to '" << *CallTarget << "'\n");
 | |
| 
 | |
|     // Otherwise we are switching an internal ref edge to a call edge. This
 | |
|     // may merge away some SCCs, and we add those to the UpdateResult. We also
 | |
|     // need to make sure to update the worklist in the event SCCs have moved
 | |
|     // before the current one in the post-order sequence
 | |
|     bool HasFunctionAnalysisProxy = false;
 | |
|     auto InitialSCCIndex = RC->find(*C) - RC->begin();
 | |
|     bool FormedCycle = RC->switchInternalEdgeToCall(
 | |
|         N, *CallTarget, [&](ArrayRef<SCC *> MergedSCCs) {
 | |
|           for (SCC *MergedC : MergedSCCs) {
 | |
|             assert(MergedC != &TargetC && "Cannot merge away the target SCC!");
 | |
| 
 | |
|             HasFunctionAnalysisProxy |=
 | |
|                 AM.getCachedResult<FunctionAnalysisManagerCGSCCProxy>(
 | |
|                     *MergedC) != nullptr;
 | |
| 
 | |
|             // Mark that this SCC will no longer be valid.
 | |
|             UR.InvalidatedSCCs.insert(MergedC);
 | |
| 
 | |
|             // FIXME: We should really do a 'clear' here to forcibly release
 | |
|             // memory, but we don't have a good way of doing that and
 | |
|             // preserving the function analyses.
 | |
|             auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
 | |
|             PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
 | |
|             AM.invalidate(*MergedC, PA);
 | |
|           }
 | |
|         });
 | |
| 
 | |
|     // If we formed a cycle by creating this call, we need to update more data
 | |
|     // structures.
 | |
|     if (FormedCycle) {
 | |
|       C = &TargetC;
 | |
|       assert(G.lookupSCC(N) == C && "Failed to update current SCC!");
 | |
| 
 | |
|       // If one of the invalidated SCCs had a cached proxy to a function
 | |
|       // analysis manager, we need to create a proxy in the new current SCC as
 | |
|       // the invalidated SCCs had their functions moved.
 | |
|       if (HasFunctionAnalysisProxy)
 | |
|         AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, G);
 | |
| 
 | |
|       // Any analyses cached for this SCC are no longer precise as the shape
 | |
|       // has changed by introducing this cycle. However, we have taken care to
 | |
|       // update the proxies so it remains valide.
 | |
|       auto PA = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
 | |
|       PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
 | |
|       AM.invalidate(*C, PA);
 | |
|     }
 | |
|     auto NewSCCIndex = RC->find(*C) - RC->begin();
 | |
|     // If we have actually moved an SCC to be topologically "below" the current
 | |
|     // one due to merging, we will need to revisit the current SCC after
 | |
|     // visiting those moved SCCs.
 | |
|     //
 | |
|     // It is critical that we *do not* revisit the current SCC unless we
 | |
|     // actually move SCCs in the process of merging because otherwise we may
 | |
|     // form a cycle where an SCC is split apart, merged, split, merged and so
 | |
|     // on infinitely.
 | |
|     if (InitialSCCIndex < NewSCCIndex) {
 | |
|       // Put our current SCC back onto the worklist as we'll visit other SCCs
 | |
|       // that are now definitively ordered prior to the current one in the
 | |
|       // post-order sequence, and may end up observing more precise context to
 | |
|       // optimize the current SCC.
 | |
|       UR.CWorklist.insert(C);
 | |
|       LLVM_DEBUG(dbgs() << "Enqueuing the existing SCC in the worklist: " << *C
 | |
|                         << "\n");
 | |
|       // Enqueue in reverse order as we pop off the back of the worklist.
 | |
|       for (SCC &MovedC : llvm::reverse(make_range(RC->begin() + InitialSCCIndex,
 | |
|                                                   RC->begin() + NewSCCIndex))) {
 | |
|         UR.CWorklist.insert(&MovedC);
 | |
|         LLVM_DEBUG(dbgs() << "Enqueuing a newly earlier in post-order SCC: "
 | |
|                           << MovedC << "\n");
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   assert(!UR.InvalidatedSCCs.count(C) && "Invalidated the current SCC!");
 | |
|   assert(!UR.InvalidatedRefSCCs.count(RC) && "Invalidated the current RefSCC!");
 | |
|   assert(&C->getOuterRefSCC() == RC && "Current SCC not in current RefSCC!");
 | |
| 
 | |
|   // Record the current RefSCC and SCC for higher layers of the CGSCC pass
 | |
|   // manager now that all the updates have been applied.
 | |
|   if (RC != &InitialRC)
 | |
|     UR.UpdatedRC = RC;
 | |
|   if (C != &InitialC)
 | |
|     UR.UpdatedC = C;
 | |
| 
 | |
|   return *C;
 | |
| }
 |