427 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			427 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements bookkeeping for "interesting" users of expressions
 | |
| // computed from induction variables.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/IVUsers.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/CodeMetrics.h"
 | |
| #include "llvm/Analysis/LoopAnalysisManager.h"
 | |
| #include "llvm/Analysis/LoopPass.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "iv-users"
 | |
| 
 | |
| AnalysisKey IVUsersAnalysis::Key;
 | |
| 
 | |
| IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM,
 | |
|                              LoopStandardAnalysisResults &AR) {
 | |
|   return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE);
 | |
| }
 | |
| 
 | |
| char IVUsersWrapperPass::ID = 0;
 | |
| INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users",
 | |
|                       "Induction Variable Users", false, true)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
 | |
| INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users",
 | |
|                     false, true)
 | |
| 
 | |
| Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); }
 | |
| 
 | |
| /// isInteresting - Test whether the given expression is "interesting" when
 | |
| /// used by the given expression, within the context of analyzing the
 | |
| /// given loop.
 | |
| static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L,
 | |
|                           ScalarEvolution *SE, LoopInfo *LI) {
 | |
|   // An addrec is interesting if it's affine or if it has an interesting start.
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     // Keep things simple. Don't touch loop-variant strides unless they're
 | |
|     // only used outside the loop and we can simplify them.
 | |
|     if (AR->getLoop() == L)
 | |
|       return AR->isAffine() ||
 | |
|              (!L->contains(I) &&
 | |
|               SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR);
 | |
|     // Otherwise recurse to see if the start value is interesting, and that
 | |
|     // the step value is not interesting, since we don't yet know how to
 | |
|     // do effective SCEV expansions for addrecs with interesting steps.
 | |
|     return isInteresting(AR->getStart(), I, L, SE, LI) &&
 | |
|           !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI);
 | |
|   }
 | |
| 
 | |
|   // An add is interesting if exactly one of its operands is interesting.
 | |
|   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | |
|     bool AnyInterestingYet = false;
 | |
|     for (const auto *Op : Add->operands())
 | |
|       if (isInteresting(Op, I, L, SE, LI)) {
 | |
|         if (AnyInterestingYet)
 | |
|           return false;
 | |
|         AnyInterestingYet = true;
 | |
|       }
 | |
|     return AnyInterestingYet;
 | |
|   }
 | |
| 
 | |
|   // Nothing else is interesting here.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Return true if all loop headers that dominate this block are in simplified
 | |
| /// form.
 | |
| static bool isSimplifiedLoopNest(BasicBlock *BB, const DominatorTree *DT,
 | |
|                                  const LoopInfo *LI,
 | |
|                                  SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
 | |
|   Loop *NearestLoop = nullptr;
 | |
|   for (DomTreeNode *Rung = DT->getNode(BB);
 | |
|        Rung; Rung = Rung->getIDom()) {
 | |
|     BasicBlock *DomBB = Rung->getBlock();
 | |
|     Loop *DomLoop = LI->getLoopFor(DomBB);
 | |
|     if (DomLoop && DomLoop->getHeader() == DomBB) {
 | |
|       // If the domtree walk reaches a loop with no preheader, return false.
 | |
|       if (!DomLoop->isLoopSimplifyForm())
 | |
|         return false;
 | |
|       // If we have already checked this loop nest, stop checking.
 | |
|       if (SimpleLoopNests.count(DomLoop))
 | |
|         break;
 | |
|       // If we have not already checked this loop nest, remember the loop
 | |
|       // header nearest to BB. The nearest loop may not contain BB.
 | |
|       if (!NearestLoop)
 | |
|         NearestLoop = DomLoop;
 | |
|     }
 | |
|   }
 | |
|   if (NearestLoop)
 | |
|     SimpleLoopNests.insert(NearestLoop);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
 | |
| /// and now we need to decide whether the user should use the preinc or post-inc
 | |
| /// value.  If this user should use the post-inc version of the IV, return true.
 | |
| ///
 | |
| /// Choosing wrong here can break dominance properties (if we choose to use the
 | |
| /// post-inc value when we cannot) or it can end up adding extra live-ranges to
 | |
| /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
 | |
| /// should use the post-inc value).
 | |
| static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
 | |
|                                        const Loop *L, DominatorTree *DT) {
 | |
|   // If the user is in the loop, use the preinc value.
 | |
|   if (L->contains(User))
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   if (!LatchBlock)
 | |
|     return false;
 | |
| 
 | |
|   // Ok, the user is outside of the loop.  If it is dominated by the latch
 | |
|   // block, use the post-inc value.
 | |
|   if (DT->dominates(LatchBlock, User->getParent()))
 | |
|     return true;
 | |
| 
 | |
|   // There is one case we have to be careful of: PHI nodes.  These little guys
 | |
|   // can live in blocks that are not dominated by the latch block, but (since
 | |
|   // their uses occur in the predecessor block, not the block the PHI lives in)
 | |
|   // should still use the post-inc value.  Check for this case now.
 | |
|   PHINode *PN = dyn_cast<PHINode>(User);
 | |
|   if (!PN || !Operand)
 | |
|     return false; // not a phi, not dominated by latch block.
 | |
| 
 | |
|   // Look at all of the uses of Operand by the PHI node.  If any use corresponds
 | |
|   // to a block that is not dominated by the latch block, give up and use the
 | |
|   // preincremented value.
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|     if (PN->getIncomingValue(i) == Operand &&
 | |
|         !DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
 | |
|       return false;
 | |
| 
 | |
|   // Okay, all uses of Operand by PN are in predecessor blocks that really are
 | |
|   // dominated by the latch block.  Use the post-incremented value.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// AddUsersImpl - Inspect the specified instruction.  If it is a
 | |
| /// reducible SCEV, recursively add its users to the IVUsesByStride set and
 | |
| /// return true.  Otherwise, return false.
 | |
| bool IVUsers::AddUsersImpl(Instruction *I,
 | |
|                            SmallPtrSetImpl<Loop*> &SimpleLoopNests) {
 | |
|   const DataLayout &DL = I->getModule()->getDataLayout();
 | |
| 
 | |
|   // Add this IV user to the Processed set before returning false to ensure that
 | |
|   // all IV users are members of the set. See IVUsers::isIVUserOrOperand.
 | |
|   if (!Processed.insert(I).second)
 | |
|     return true;    // Instruction already handled.
 | |
| 
 | |
|   if (!SE->isSCEVable(I->getType()))
 | |
|     return false;   // Void and FP expressions cannot be reduced.
 | |
| 
 | |
|   // IVUsers is used by LSR which assumes that all SCEV expressions are safe to
 | |
|   // pass to SCEVExpander. Expressions are not safe to expand if they represent
 | |
|   // operations that are not safe to speculate, namely integer division.
 | |
|   if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I))
 | |
|     return false;
 | |
| 
 | |
|   // LSR is not APInt clean, do not touch integers bigger than 64-bits.
 | |
|   // Also avoid creating IVs of non-native types. For example, we don't want a
 | |
|   // 64-bit IV in 32-bit code just because the loop has one 64-bit cast.
 | |
|   uint64_t Width = SE->getTypeSizeInBits(I->getType());
 | |
|   if (Width > 64 || !DL.isLegalInteger(Width))
 | |
|     return false;
 | |
| 
 | |
|   // Don't attempt to promote ephemeral values to indvars. They will be removed
 | |
|   // later anyway.
 | |
|   if (EphValues.count(I))
 | |
|     return false;
 | |
| 
 | |
|   // Get the symbolic expression for this instruction.
 | |
|   const SCEV *ISE = SE->getSCEV(I);
 | |
| 
 | |
|   // If we've come to an uninteresting expression, stop the traversal and
 | |
|   // call this a user.
 | |
|   if (!isInteresting(ISE, I, L, SE, LI))
 | |
|     return false;
 | |
| 
 | |
|   SmallPtrSet<Instruction *, 4> UniqueUsers;
 | |
|   for (Use &U : I->uses()) {
 | |
|     Instruction *User = cast<Instruction>(U.getUser());
 | |
|     if (!UniqueUsers.insert(User).second)
 | |
|       continue;
 | |
| 
 | |
|     // Do not infinitely recurse on PHI nodes.
 | |
|     if (isa<PHINode>(User) && Processed.count(User))
 | |
|       continue;
 | |
| 
 | |
|     // Only consider IVUsers that are dominated by simplified loop
 | |
|     // headers. Otherwise, SCEVExpander will crash.
 | |
|     BasicBlock *UseBB = User->getParent();
 | |
|     // A phi's use is live out of its predecessor block.
 | |
|     if (PHINode *PHI = dyn_cast<PHINode>(User)) {
 | |
|       unsigned OperandNo = U.getOperandNo();
 | |
|       unsigned ValNo = PHINode::getIncomingValueNumForOperand(OperandNo);
 | |
|       UseBB = PHI->getIncomingBlock(ValNo);
 | |
|     }
 | |
|     if (!isSimplifiedLoopNest(UseBB, DT, LI, SimpleLoopNests))
 | |
|       return false;
 | |
| 
 | |
|     // Descend recursively, but not into PHI nodes outside the current loop.
 | |
|     // It's important to see the entire expression outside the loop to get
 | |
|     // choices that depend on addressing mode use right, although we won't
 | |
|     // consider references outside the loop in all cases.
 | |
|     // If User is already in Processed, we don't want to recurse into it again,
 | |
|     // but do want to record a second reference in the same instruction.
 | |
|     bool AddUserToIVUsers = false;
 | |
|     if (LI->getLoopFor(User->getParent()) != L) {
 | |
|       if (isa<PHINode>(User) || Processed.count(User) ||
 | |
|           !AddUsersImpl(User, SimpleLoopNests)) {
 | |
|         LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n'
 | |
|                           << "   OF SCEV: " << *ISE << '\n');
 | |
|         AddUserToIVUsers = true;
 | |
|       }
 | |
|     } else if (Processed.count(User) || !AddUsersImpl(User, SimpleLoopNests)) {
 | |
|       LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n'
 | |
|                         << "   OF SCEV: " << *ISE << '\n');
 | |
|       AddUserToIVUsers = true;
 | |
|     }
 | |
| 
 | |
|     if (AddUserToIVUsers) {
 | |
|       // Okay, we found a user that we cannot reduce.
 | |
|       IVStrideUse &NewUse = AddUser(User, I);
 | |
|       // Autodetect the post-inc loop set, populating NewUse.PostIncLoops.
 | |
|       // The regular return value here is discarded; instead of recording
 | |
|       // it, we just recompute it when we need it.
 | |
|       const SCEV *OriginalISE = ISE;
 | |
| 
 | |
|       auto NormalizePred = [&](const SCEVAddRecExpr *AR) {
 | |
|         auto *L = AR->getLoop();
 | |
|         bool Result = IVUseShouldUsePostIncValue(User, I, L, DT);
 | |
|         if (Result)
 | |
|           NewUse.PostIncLoops.insert(L);
 | |
|         return Result;
 | |
|       };
 | |
| 
 | |
|       ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE);
 | |
| 
 | |
|       // PostIncNormalization effectively simplifies the expression under
 | |
|       // pre-increment assumptions. Those assumptions (no wrapping) might not
 | |
|       // hold for the post-inc value. Catch such cases by making sure the
 | |
|       // transformation is invertible.
 | |
|       if (OriginalISE != ISE) {
 | |
|         const SCEV *DenormalizedISE =
 | |
|             denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE);
 | |
| 
 | |
|         // If we normalized the expression, but denormalization doesn't give the
 | |
|         // original one, discard this user.
 | |
|         if (OriginalISE != DenormalizedISE) {
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << "   DISCARDING (NORMALIZATION ISN'T INVERTIBLE): "
 | |
|                      << *ISE << '\n');
 | |
|           IVUses.pop_back();
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|       LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs()
 | |
|                  << "   NORMALIZED TO: " << *ISE << '\n');
 | |
|     }
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool IVUsers::AddUsersIfInteresting(Instruction *I) {
 | |
|   // SCEVExpander can only handle users that are dominated by simplified loop
 | |
|   // entries. Keep track of all loops that are only dominated by other simple
 | |
|   // loops so we don't traverse the domtree for each user.
 | |
|   SmallPtrSet<Loop*,16> SimpleLoopNests;
 | |
| 
 | |
|   return AddUsersImpl(I, SimpleLoopNests);
 | |
| }
 | |
| 
 | |
| IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) {
 | |
|   IVUses.push_back(new IVStrideUse(this, User, Operand));
 | |
|   return IVUses.back();
 | |
| }
 | |
| 
 | |
| IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT,
 | |
|                  ScalarEvolution *SE)
 | |
|     : L(L), AC(AC), LI(LI), DT(DT), SE(SE), IVUses() {
 | |
|   // Collect ephemeral values so that AddUsersIfInteresting skips them.
 | |
|   EphValues.clear();
 | |
|   CodeMetrics::collectEphemeralValues(L, AC, EphValues);
 | |
| 
 | |
|   // Find all uses of induction variables in this loop, and categorize
 | |
|   // them by stride.  Start by finding all of the PHI nodes in the header for
 | |
|   // this loop.  If they are induction variables, inspect their uses.
 | |
|   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
 | |
|     (void)AddUsersIfInteresting(&*I);
 | |
| }
 | |
| 
 | |
| void IVUsers::print(raw_ostream &OS, const Module *M) const {
 | |
|   OS << "IV Users for loop ";
 | |
|   L->getHeader()->printAsOperand(OS, false);
 | |
|   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
 | |
|     OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L);
 | |
|   }
 | |
|   OS << ":\n";
 | |
| 
 | |
|   for (const IVStrideUse &IVUse : IVUses) {
 | |
|     OS << "  ";
 | |
|     IVUse.getOperandValToReplace()->printAsOperand(OS, false);
 | |
|     OS << " = " << *getReplacementExpr(IVUse);
 | |
|     for (auto PostIncLoop : IVUse.PostIncLoops) {
 | |
|       OS << " (post-inc with loop ";
 | |
|       PostIncLoop->getHeader()->printAsOperand(OS, false);
 | |
|       OS << ")";
 | |
|     }
 | |
|     OS << " in  ";
 | |
|     if (IVUse.getUser())
 | |
|       IVUse.getUser()->print(OS);
 | |
|     else
 | |
|       OS << "Printing <null> User";
 | |
|     OS << '\n';
 | |
|   }
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); }
 | |
| #endif
 | |
| 
 | |
| void IVUsers::releaseMemory() {
 | |
|   Processed.clear();
 | |
|   IVUses.clear();
 | |
| }
 | |
| 
 | |
| IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) {
 | |
|   initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<AssumptionCacheTracker>();
 | |
|   AU.addRequired<LoopInfoWrapperPass>();
 | |
|   AU.addRequired<DominatorTreeWrapperPass>();
 | |
|   AU.addRequired<ScalarEvolutionWrapperPass>();
 | |
|   AU.setPreservesAll();
 | |
| }
 | |
| 
 | |
| bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) {
 | |
|   auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
 | |
|       *L->getHeader()->getParent());
 | |
|   auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | |
|   auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
 | |
| 
 | |
|   IU.reset(new IVUsers(L, AC, LI, DT, SE));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const {
 | |
|   IU->print(OS, M);
 | |
| }
 | |
| 
 | |
| void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); }
 | |
| 
 | |
| /// getReplacementExpr - Return a SCEV expression which computes the
 | |
| /// value of the OperandValToReplace.
 | |
| const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const {
 | |
|   return SE->getSCEV(IU.getOperandValToReplace());
 | |
| }
 | |
| 
 | |
| /// getExpr - Return the expression for the use.
 | |
| const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const {
 | |
|   return normalizeForPostIncUse(getReplacementExpr(IU), IU.getPostIncLoops(),
 | |
|                                 *SE);
 | |
| }
 | |
| 
 | |
| static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) {
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     if (AR->getLoop() == L)
 | |
|       return AR;
 | |
|     return findAddRecForLoop(AR->getStart(), L);
 | |
|   }
 | |
| 
 | |
|   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
 | |
|     for (const auto *Op : Add->operands())
 | |
|       if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L))
 | |
|         return AR;
 | |
|     return nullptr;
 | |
|   }
 | |
| 
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const {
 | |
|   if (const SCEVAddRecExpr *AR = findAddRecForLoop(getExpr(IU), L))
 | |
|     return AR->getStepRecurrence(*SE);
 | |
|   return nullptr;
 | |
| }
 | |
| 
 | |
| void IVStrideUse::transformToPostInc(const Loop *L) {
 | |
|   PostIncLoops.insert(L);
 | |
| }
 | |
| 
 | |
| void IVStrideUse::deleted() {
 | |
|   // Remove this user from the list.
 | |
|   Parent->Processed.erase(this->getUser());
 | |
|   Parent->IVUses.erase(this);
 | |
|   // this now dangles!
 | |
| }
 |