391 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			391 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis
 | 
						|
//Implementation -==//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements divergence analysis which determines whether a branch
 | 
						|
// in a GPU program is divergent.It can help branch optimizations such as jump
 | 
						|
// threading and loop unswitching to make better decisions.
 | 
						|
//
 | 
						|
// GPU programs typically use the SIMD execution model, where multiple threads
 | 
						|
// in the same execution group have to execute in lock-step. Therefore, if the
 | 
						|
// code contains divergent branches (i.e., threads in a group do not agree on
 | 
						|
// which path of the branch to take), the group of threads has to execute all
 | 
						|
// the paths from that branch with different subsets of threads enabled until
 | 
						|
// they converge at the immediately post-dominating BB of the paths.
 | 
						|
//
 | 
						|
// Due to this execution model, some optimizations such as jump
 | 
						|
// threading and loop unswitching can be unfortunately harmful when performed on
 | 
						|
// divergent branches. Therefore, an analysis that computes which branches in a
 | 
						|
// GPU program are divergent can help the compiler to selectively run these
 | 
						|
// optimizations.
 | 
						|
//
 | 
						|
// This file defines divergence analysis which computes a conservative but
 | 
						|
// non-trivial approximation of all divergent branches in a GPU program. It
 | 
						|
// partially implements the approach described in
 | 
						|
//
 | 
						|
//   Divergence Analysis
 | 
						|
//   Sampaio, Souza, Collange, Pereira
 | 
						|
//   TOPLAS '13
 | 
						|
//
 | 
						|
// The divergence analysis identifies the sources of divergence (e.g., special
 | 
						|
// variables that hold the thread ID), and recursively marks variables that are
 | 
						|
// data or sync dependent on a source of divergence as divergent.
 | 
						|
//
 | 
						|
// While data dependency is a well-known concept, the notion of sync dependency
 | 
						|
// is worth more explanation. Sync dependence characterizes the control flow
 | 
						|
// aspect of the propagation of branch divergence. For example,
 | 
						|
//
 | 
						|
//   %cond = icmp slt i32 %tid, 10
 | 
						|
//   br i1 %cond, label %then, label %else
 | 
						|
// then:
 | 
						|
//   br label %merge
 | 
						|
// else:
 | 
						|
//   br label %merge
 | 
						|
// merge:
 | 
						|
//   %a = phi i32 [ 0, %then ], [ 1, %else ]
 | 
						|
//
 | 
						|
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
 | 
						|
// because %tid is not on its use-def chains, %a is sync dependent on %tid
 | 
						|
// because the branch "br i1 %cond" depends on %tid and affects which value %a
 | 
						|
// is assigned to.
 | 
						|
//
 | 
						|
// The current implementation has the following limitations:
 | 
						|
// 1. intra-procedural. It conservatively considers the arguments of a
 | 
						|
//    non-kernel-entry function and the return value of a function call as
 | 
						|
//    divergent.
 | 
						|
// 2. memory as black box. It conservatively considers values loaded from
 | 
						|
//    generic or local address as divergent. This can be improved by leveraging
 | 
						|
//    pointer analysis.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/DivergenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
 | 
						|
#include "llvm/Analysis/Passes.h"
 | 
						|
#include "llvm/Analysis/PostDominators.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <vector>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "divergence"
 | 
						|
 | 
						|
// transparently use the GPUDivergenceAnalysis
 | 
						|
static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false),
 | 
						|
                              cl::Hidden,
 | 
						|
                              cl::desc("turn the LegacyDivergenceAnalysis into "
 | 
						|
                                       "a wrapper for GPUDivergenceAnalysis"));
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class DivergencePropagator {
 | 
						|
public:
 | 
						|
  DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
 | 
						|
                       PostDominatorTree &PDT, DenseSet<const Value *> &DV)
 | 
						|
      : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV) {}
 | 
						|
  void populateWithSourcesOfDivergence();
 | 
						|
  void propagate();
 | 
						|
 | 
						|
private:
 | 
						|
  // A helper function that explores data dependents of V.
 | 
						|
  void exploreDataDependency(Value *V);
 | 
						|
  // A helper function that explores sync dependents of TI.
 | 
						|
  void exploreSyncDependency(Instruction *TI);
 | 
						|
  // Computes the influence region from Start to End. This region includes all
 | 
						|
  // basic blocks on any simple path from Start to End.
 | 
						|
  void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
 | 
						|
                              DenseSet<BasicBlock *> &InfluenceRegion);
 | 
						|
  // Finds all users of I that are outside the influence region, and add these
 | 
						|
  // users to Worklist.
 | 
						|
  void findUsersOutsideInfluenceRegion(
 | 
						|
      Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);
 | 
						|
 | 
						|
  Function &F;
 | 
						|
  TargetTransformInfo &TTI;
 | 
						|
  DominatorTree &DT;
 | 
						|
  PostDominatorTree &PDT;
 | 
						|
  std::vector<Value *> Worklist; // Stack for DFS.
 | 
						|
  DenseSet<const Value *> &DV;   // Stores all divergent values.
 | 
						|
};
 | 
						|
 | 
						|
void DivergencePropagator::populateWithSourcesOfDivergence() {
 | 
						|
  Worklist.clear();
 | 
						|
  DV.clear();
 | 
						|
  for (auto &I : instructions(F)) {
 | 
						|
    if (TTI.isSourceOfDivergence(&I)) {
 | 
						|
      Worklist.push_back(&I);
 | 
						|
      DV.insert(&I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (auto &Arg : F.args()) {
 | 
						|
    if (TTI.isSourceOfDivergence(&Arg)) {
 | 
						|
      Worklist.push_back(&Arg);
 | 
						|
      DV.insert(&Arg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void DivergencePropagator::exploreSyncDependency(Instruction *TI) {
 | 
						|
  // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
 | 
						|
  // immediate post dominator are divergent. This rule handles if-then-else
 | 
						|
  // patterns. For example,
 | 
						|
  //
 | 
						|
  // if (tid < 5)
 | 
						|
  //   a1 = 1;
 | 
						|
  // else
 | 
						|
  //   a2 = 2;
 | 
						|
  // a = phi(a1, a2); // sync dependent on (tid < 5)
 | 
						|
  BasicBlock *ThisBB = TI->getParent();
 | 
						|
 | 
						|
  // Unreachable blocks may not be in the dominator tree.
 | 
						|
  if (!DT.isReachableFromEntry(ThisBB))
 | 
						|
    return;
 | 
						|
 | 
						|
  // If the function has no exit blocks or doesn't reach any exit blocks, the
 | 
						|
  // post dominator may be null.
 | 
						|
  DomTreeNode *ThisNode = PDT.getNode(ThisBB);
 | 
						|
  if (!ThisNode)
 | 
						|
    return;
 | 
						|
 | 
						|
  BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
 | 
						|
  if (IPostDom == nullptr)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
 | 
						|
    // A PHINode is uniform if it returns the same value no matter which path is
 | 
						|
    // taken.
 | 
						|
    if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
 | 
						|
      Worklist.push_back(&*I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Propagation rule 2: if a value defined in a loop is used outside, the user
 | 
						|
  // is sync dependent on the condition of the loop exits that dominate the
 | 
						|
  // user. For example,
 | 
						|
  //
 | 
						|
  // int i = 0;
 | 
						|
  // do {
 | 
						|
  //   i++;
 | 
						|
  //   if (foo(i)) ... // uniform
 | 
						|
  // } while (i < tid);
 | 
						|
  // if (bar(i)) ...   // divergent
 | 
						|
  //
 | 
						|
  // A program may contain unstructured loops. Therefore, we cannot leverage
 | 
						|
  // LoopInfo, which only recognizes natural loops.
 | 
						|
  //
 | 
						|
  // The algorithm used here handles both natural and unstructured loops.  Given
 | 
						|
  // a branch TI, we first compute its influence region, the union of all simple
 | 
						|
  // paths from TI to its immediate post dominator (IPostDom). Then, we search
 | 
						|
  // for all the values defined in the influence region but used outside. All
 | 
						|
  // these users are sync dependent on TI.
 | 
						|
  DenseSet<BasicBlock *> InfluenceRegion;
 | 
						|
  computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
 | 
						|
  // An insight that can speed up the search process is that all the in-region
 | 
						|
  // values that are used outside must dominate TI. Therefore, instead of
 | 
						|
  // searching every basic blocks in the influence region, we search all the
 | 
						|
  // dominators of TI until it is outside the influence region.
 | 
						|
  BasicBlock *InfluencedBB = ThisBB;
 | 
						|
  while (InfluenceRegion.count(InfluencedBB)) {
 | 
						|
    for (auto &I : *InfluencedBB)
 | 
						|
      findUsersOutsideInfluenceRegion(I, InfluenceRegion);
 | 
						|
    DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
 | 
						|
    if (IDomNode == nullptr)
 | 
						|
      break;
 | 
						|
    InfluencedBB = IDomNode->getBlock();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void DivergencePropagator::findUsersOutsideInfluenceRegion(
 | 
						|
    Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
 | 
						|
  for (User *U : I.users()) {
 | 
						|
    Instruction *UserInst = cast<Instruction>(U);
 | 
						|
    if (!InfluenceRegion.count(UserInst->getParent())) {
 | 
						|
      if (DV.insert(UserInst).second)
 | 
						|
        Worklist.push_back(UserInst);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// A helper function for computeInfluenceRegion that adds successors of "ThisBB"
 | 
						|
// to the influence region.
 | 
						|
static void
 | 
						|
addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
 | 
						|
                               DenseSet<BasicBlock *> &InfluenceRegion,
 | 
						|
                               std::vector<BasicBlock *> &InfluenceStack) {
 | 
						|
  for (BasicBlock *Succ : successors(ThisBB)) {
 | 
						|
    if (Succ != End && InfluenceRegion.insert(Succ).second)
 | 
						|
      InfluenceStack.push_back(Succ);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void DivergencePropagator::computeInfluenceRegion(
 | 
						|
    BasicBlock *Start, BasicBlock *End,
 | 
						|
    DenseSet<BasicBlock *> &InfluenceRegion) {
 | 
						|
  assert(PDT.properlyDominates(End, Start) &&
 | 
						|
         "End does not properly dominate Start");
 | 
						|
 | 
						|
  // The influence region starts from the end of "Start" to the beginning of
 | 
						|
  // "End". Therefore, "Start" should not be in the region unless "Start" is in
 | 
						|
  // a loop that doesn't contain "End".
 | 
						|
  std::vector<BasicBlock *> InfluenceStack;
 | 
						|
  addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
 | 
						|
  while (!InfluenceStack.empty()) {
 | 
						|
    BasicBlock *BB = InfluenceStack.back();
 | 
						|
    InfluenceStack.pop_back();
 | 
						|
    addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void DivergencePropagator::exploreDataDependency(Value *V) {
 | 
						|
  // Follow def-use chains of V.
 | 
						|
  for (User *U : V->users()) {
 | 
						|
    Instruction *UserInst = cast<Instruction>(U);
 | 
						|
    if (!TTI.isAlwaysUniform(U) && DV.insert(UserInst).second)
 | 
						|
      Worklist.push_back(UserInst);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void DivergencePropagator::propagate() {
 | 
						|
  // Traverse the dependency graph using DFS.
 | 
						|
  while (!Worklist.empty()) {
 | 
						|
    Value *V = Worklist.back();
 | 
						|
    Worklist.pop_back();
 | 
						|
    if (Instruction *I = dyn_cast<Instruction>(V)) {
 | 
						|
      // Terminators with less than two successors won't introduce sync
 | 
						|
      // dependency. Ignore them.
 | 
						|
      if (I->isTerminator() && I->getNumSuccessors() > 1)
 | 
						|
        exploreSyncDependency(I);
 | 
						|
    }
 | 
						|
    exploreDataDependency(V);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
} // namespace
 | 
						|
 | 
						|
// Register this pass.
 | 
						|
char LegacyDivergenceAnalysis::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence",
 | 
						|
                      "Legacy Divergence Analysis", false, true)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence",
 | 
						|
                    "Legacy Divergence Analysis", false, true)
 | 
						|
 | 
						|
FunctionPass *llvm::createLegacyDivergenceAnalysisPass() {
 | 
						|
  return new LegacyDivergenceAnalysis();
 | 
						|
}
 | 
						|
 | 
						|
void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<DominatorTreeWrapperPass>();
 | 
						|
  AU.addRequired<PostDominatorTreeWrapperPass>();
 | 
						|
  if (UseGPUDA)
 | 
						|
    AU.addRequired<LoopInfoWrapperPass>();
 | 
						|
  AU.setPreservesAll();
 | 
						|
}
 | 
						|
 | 
						|
bool LegacyDivergenceAnalysis::shouldUseGPUDivergenceAnalysis(
 | 
						|
    const Function &F) const {
 | 
						|
  if (!UseGPUDA)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // GPUDivergenceAnalysis requires a reducible CFG.
 | 
						|
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
  using RPOTraversal = ReversePostOrderTraversal<const Function *>;
 | 
						|
  RPOTraversal FuncRPOT(&F);
 | 
						|
  return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
 | 
						|
                                 const LoopInfo>(FuncRPOT, LI);
 | 
						|
}
 | 
						|
 | 
						|
bool LegacyDivergenceAnalysis::runOnFunction(Function &F) {
 | 
						|
  auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
 | 
						|
  if (TTIWP == nullptr)
 | 
						|
    return false;
 | 
						|
 | 
						|
  TargetTransformInfo &TTI = TTIWP->getTTI(F);
 | 
						|
  // Fast path: if the target does not have branch divergence, we do not mark
 | 
						|
  // any branch as divergent.
 | 
						|
  if (!TTI.hasBranchDivergence())
 | 
						|
    return false;
 | 
						|
 | 
						|
  DivergentValues.clear();
 | 
						|
  gpuDA = nullptr;
 | 
						|
 | 
						|
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | 
						|
  auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
 | 
						|
 | 
						|
  if (shouldUseGPUDivergenceAnalysis(F)) {
 | 
						|
    // run the new GPU divergence analysis
 | 
						|
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
 | 
						|
    gpuDA = llvm::make_unique<GPUDivergenceAnalysis>(F, DT, PDT, LI, TTI);
 | 
						|
 | 
						|
  } else {
 | 
						|
    // run LLVM's existing DivergenceAnalysis
 | 
						|
    DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues);
 | 
						|
    DP.populateWithSourcesOfDivergence();
 | 
						|
    DP.propagate();
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName()
 | 
						|
                    << ":\n";
 | 
						|
             print(dbgs(), F.getParent()));
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LegacyDivergenceAnalysis::isDivergent(const Value *V) const {
 | 
						|
  if (gpuDA) {
 | 
						|
    return gpuDA->isDivergent(*V);
 | 
						|
  }
 | 
						|
  return DivergentValues.count(V);
 | 
						|
}
 | 
						|
 | 
						|
void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
 | 
						|
  if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  const Function *F = nullptr;
 | 
						|
  if (!DivergentValues.empty()) {
 | 
						|
    const Value *FirstDivergentValue = *DivergentValues.begin();
 | 
						|
    if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
 | 
						|
      F = Arg->getParent();
 | 
						|
    } else if (const Instruction *I =
 | 
						|
                   dyn_cast<Instruction>(FirstDivergentValue)) {
 | 
						|
      F = I->getParent()->getParent();
 | 
						|
    } else {
 | 
						|
      llvm_unreachable("Only arguments and instructions can be divergent");
 | 
						|
    }
 | 
						|
  } else if (gpuDA) {
 | 
						|
    F = &gpuDA->getFunction();
 | 
						|
  }
 | 
						|
  if (!F)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Dumps all divergent values in F, arguments and then instructions.
 | 
						|
  for (auto &Arg : F->args()) {
 | 
						|
    OS << (isDivergent(&Arg) ? "DIVERGENT: " : "           ");
 | 
						|
    OS << Arg << "\n";
 | 
						|
  }
 | 
						|
  // Iterate instructions using instructions() to ensure a deterministic order.
 | 
						|
  for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) {
 | 
						|
    auto &BB = *BI;
 | 
						|
    OS << "\n           " << BB.getName() << ":\n";
 | 
						|
    for (auto &I : BB.instructionsWithoutDebug()) {
 | 
						|
      OS << (isDivergent(&I) ? "DIVERGENT:     " : "               ");
 | 
						|
      OS << I << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
  OS << "\n";
 | 
						|
}
 |