449 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			449 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- Loads.cpp - Local load analysis ------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines simple local analyses for load instructions.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/GlobalAlias.h"
 | |
| #include "llvm/IR/GlobalVariable.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Statepoint.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static bool isAligned(const Value *Base, const APInt &Offset, unsigned Align,
 | |
|                       const DataLayout &DL) {
 | |
|   APInt BaseAlign(Offset.getBitWidth(), Base->getPointerAlignment(DL));
 | |
| 
 | |
|   if (!BaseAlign) {
 | |
|     Type *Ty = Base->getType()->getPointerElementType();
 | |
|     if (!Ty->isSized())
 | |
|       return false;
 | |
|     BaseAlign = DL.getABITypeAlignment(Ty);
 | |
|   }
 | |
| 
 | |
|   APInt Alignment(Offset.getBitWidth(), Align);
 | |
| 
 | |
|   assert(Alignment.isPowerOf2() && "must be a power of 2!");
 | |
|   return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
 | |
| }
 | |
| 
 | |
| static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
 | |
|   Type *Ty = Base->getType();
 | |
|   assert(Ty->isSized() && "must be sized");
 | |
|   APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
 | |
|   return isAligned(Base, Offset, Align, DL);
 | |
| }
 | |
| 
 | |
| /// Test if V is always a pointer to allocated and suitably aligned memory for
 | |
| /// a simple load or store.
 | |
| static bool isDereferenceableAndAlignedPointer(
 | |
|     const Value *V, unsigned Align, const APInt &Size, const DataLayout &DL,
 | |
|     const Instruction *CtxI, const DominatorTree *DT,
 | |
|     SmallPtrSetImpl<const Value *> &Visited) {
 | |
|   // Already visited?  Bail out, we've likely hit unreachable code.
 | |
|   if (!Visited.insert(V).second)
 | |
|     return false;
 | |
| 
 | |
|   // Note that it is not safe to speculate into a malloc'd region because
 | |
|   // malloc may return null.
 | |
| 
 | |
|   // bitcast instructions are no-ops as far as dereferenceability is concerned.
 | |
|   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V))
 | |
|     return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, Size,
 | |
|                                               DL, CtxI, DT, Visited);
 | |
| 
 | |
|   bool CheckForNonNull = false;
 | |
|   APInt KnownDerefBytes(Size.getBitWidth(),
 | |
|                         V->getPointerDereferenceableBytes(DL, CheckForNonNull));
 | |
|   if (KnownDerefBytes.getBoolValue()) {
 | |
|     if (KnownDerefBytes.uge(Size))
 | |
|       if (!CheckForNonNull || isKnownNonZero(V, DL, 0, nullptr, CtxI, DT))
 | |
|         return isAligned(V, Align, DL);
 | |
|   }
 | |
| 
 | |
|   // For GEPs, determine if the indexing lands within the allocated object.
 | |
|   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
 | |
|     const Value *Base = GEP->getPointerOperand();
 | |
| 
 | |
|     APInt Offset(DL.getIndexTypeSizeInBits(GEP->getType()), 0);
 | |
|     if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.isNegative() ||
 | |
|         !Offset.urem(APInt(Offset.getBitWidth(), Align)).isMinValue())
 | |
|       return false;
 | |
| 
 | |
|     // If the base pointer is dereferenceable for Offset+Size bytes, then the
 | |
|     // GEP (== Base + Offset) is dereferenceable for Size bytes.  If the base
 | |
|     // pointer is aligned to Align bytes, and the Offset is divisible by Align
 | |
|     // then the GEP (== Base + Offset == k_0 * Align + k_1 * Align) is also
 | |
|     // aligned to Align bytes.
 | |
| 
 | |
|     // Offset and Size may have different bit widths if we have visited an
 | |
|     // addrspacecast, so we can't do arithmetic directly on the APInt values.
 | |
|     return isDereferenceableAndAlignedPointer(
 | |
|         Base, Align, Offset + Size.sextOrTrunc(Offset.getBitWidth()),
 | |
|         DL, CtxI, DT, Visited);
 | |
|   }
 | |
| 
 | |
|   // For gc.relocate, look through relocations
 | |
|   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
 | |
|     return isDereferenceableAndAlignedPointer(
 | |
|         RelocateInst->getDerivedPtr(), Align, Size, DL, CtxI, DT, Visited);
 | |
| 
 | |
|   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
 | |
|     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, Size,
 | |
|                                               DL, CtxI, DT, Visited);
 | |
| 
 | |
|   if (const auto *Call = dyn_cast<CallBase>(V))
 | |
|     if (auto *RP = getArgumentAliasingToReturnedPointer(Call))
 | |
|       return isDereferenceableAndAlignedPointer(RP, Align, Size, DL, CtxI, DT,
 | |
|                                                 Visited);
 | |
| 
 | |
|   // If we don't know, assume the worst.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
 | |
|                                               const APInt &Size,
 | |
|                                               const DataLayout &DL,
 | |
|                                               const Instruction *CtxI,
 | |
|                                               const DominatorTree *DT) {
 | |
|   SmallPtrSet<const Value *, 32> Visited;
 | |
|   return ::isDereferenceableAndAlignedPointer(V, Align, Size, DL, CtxI, DT,
 | |
|                                               Visited);
 | |
| }
 | |
| 
 | |
| bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
 | |
|                                               const DataLayout &DL,
 | |
|                                               const Instruction *CtxI,
 | |
|                                               const DominatorTree *DT) {
 | |
|   // When dereferenceability information is provided by a dereferenceable
 | |
|   // attribute, we know exactly how many bytes are dereferenceable. If we can
 | |
|   // determine the exact offset to the attributed variable, we can use that
 | |
|   // information here.
 | |
|   Type *VTy = V->getType();
 | |
|   Type *Ty = VTy->getPointerElementType();
 | |
| 
 | |
|   // Require ABI alignment for loads without alignment specification
 | |
|   if (Align == 0)
 | |
|     Align = DL.getABITypeAlignment(Ty);
 | |
| 
 | |
|   if (!Ty->isSized())
 | |
|     return false;
 | |
| 
 | |
|   SmallPtrSet<const Value *, 32> Visited;
 | |
|   return ::isDereferenceableAndAlignedPointer(
 | |
|       V, Align, APInt(DL.getIndexTypeSizeInBits(VTy), DL.getTypeStoreSize(Ty)), DL,
 | |
|       CtxI, DT, Visited);
 | |
| }
 | |
| 
 | |
| bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
 | |
|                                     const Instruction *CtxI,
 | |
|                                     const DominatorTree *DT) {
 | |
|   return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT);
 | |
| }
 | |
| 
 | |
| /// Test if A and B will obviously have the same value.
 | |
| ///
 | |
| /// This includes recognizing that %t0 and %t1 will have the same
 | |
| /// value in code like this:
 | |
| /// \code
 | |
| ///   %t0 = getelementptr \@a, 0, 3
 | |
| ///   store i32 0, i32* %t0
 | |
| ///   %t1 = getelementptr \@a, 0, 3
 | |
| ///   %t2 = load i32* %t1
 | |
| /// \endcode
 | |
| ///
 | |
| static bool AreEquivalentAddressValues(const Value *A, const Value *B) {
 | |
|   // Test if the values are trivially equivalent.
 | |
|   if (A == B)
 | |
|     return true;
 | |
| 
 | |
|   // Test if the values come from identical arithmetic instructions.
 | |
|   // Use isIdenticalToWhenDefined instead of isIdenticalTo because
 | |
|   // this function is only used when one address use dominates the
 | |
|   // other, which means that they'll always either have the same
 | |
|   // value or one of them will have an undefined value.
 | |
|   if (isa<BinaryOperator>(A) || isa<CastInst>(A) || isa<PHINode>(A) ||
 | |
|       isa<GetElementPtrInst>(A))
 | |
|     if (const Instruction *BI = dyn_cast<Instruction>(B))
 | |
|       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
 | |
|         return true;
 | |
| 
 | |
|   // Otherwise they may not be equivalent.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check if executing a load of this pointer value cannot trap.
 | |
| ///
 | |
| /// If DT and ScanFrom are specified this method performs context-sensitive
 | |
| /// analysis and returns true if it is safe to load immediately before ScanFrom.
 | |
| ///
 | |
| /// If it is not obviously safe to load from the specified pointer, we do
 | |
| /// a quick local scan of the basic block containing \c ScanFrom, to determine
 | |
| /// if the address is already accessed.
 | |
| ///
 | |
| /// This uses the pointee type to determine how many bytes need to be safe to
 | |
| /// load from the pointer.
 | |
| bool llvm::isSafeToLoadUnconditionally(Value *V, unsigned Align,
 | |
|                                        const DataLayout &DL,
 | |
|                                        Instruction *ScanFrom,
 | |
|                                        const DominatorTree *DT) {
 | |
|   // Zero alignment means that the load has the ABI alignment for the target
 | |
|   if (Align == 0)
 | |
|     Align = DL.getABITypeAlignment(V->getType()->getPointerElementType());
 | |
|   assert(isPowerOf2_32(Align));
 | |
| 
 | |
|   // If DT is not specified we can't make context-sensitive query
 | |
|   const Instruction* CtxI = DT ? ScanFrom : nullptr;
 | |
|   if (isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT))
 | |
|     return true;
 | |
| 
 | |
|   int64_t ByteOffset = 0;
 | |
|   Value *Base = V;
 | |
|   Base = GetPointerBaseWithConstantOffset(V, ByteOffset, DL);
 | |
| 
 | |
|   if (ByteOffset < 0) // out of bounds
 | |
|     return false;
 | |
| 
 | |
|   Type *BaseType = nullptr;
 | |
|   unsigned BaseAlign = 0;
 | |
|   if (const AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
 | |
|     // An alloca is safe to load from as load as it is suitably aligned.
 | |
|     BaseType = AI->getAllocatedType();
 | |
|     BaseAlign = AI->getAlignment();
 | |
|   } else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
 | |
|     // Global variables are not necessarily safe to load from if they are
 | |
|     // interposed arbitrarily. Their size may change or they may be weak and
 | |
|     // require a test to determine if they were in fact provided.
 | |
|     if (!GV->isInterposable()) {
 | |
|       BaseType = GV->getType()->getElementType();
 | |
|       BaseAlign = GV->getAlignment();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   PointerType *AddrTy = cast<PointerType>(V->getType());
 | |
|   uint64_t LoadSize = DL.getTypeStoreSize(AddrTy->getElementType());
 | |
| 
 | |
|   // If we found a base allocated type from either an alloca or global variable,
 | |
|   // try to see if we are definitively within the allocated region. We need to
 | |
|   // know the size of the base type and the loaded type to do anything in this
 | |
|   // case.
 | |
|   if (BaseType && BaseType->isSized()) {
 | |
|     if (BaseAlign == 0)
 | |
|       BaseAlign = DL.getPrefTypeAlignment(BaseType);
 | |
| 
 | |
|     if (Align <= BaseAlign) {
 | |
|       // Check if the load is within the bounds of the underlying object.
 | |
|       if (ByteOffset + LoadSize <= DL.getTypeAllocSize(BaseType) &&
 | |
|           ((ByteOffset % Align) == 0))
 | |
|         return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!ScanFrom)
 | |
|     return false;
 | |
| 
 | |
|   // Otherwise, be a little bit aggressive by scanning the local block where we
 | |
|   // want to check to see if the pointer is already being loaded or stored
 | |
|   // from/to.  If so, the previous load or store would have already trapped,
 | |
|   // so there is no harm doing an extra load (also, CSE will later eliminate
 | |
|   // the load entirely).
 | |
|   BasicBlock::iterator BBI = ScanFrom->getIterator(),
 | |
|                        E = ScanFrom->getParent()->begin();
 | |
| 
 | |
|   // We can at least always strip pointer casts even though we can't use the
 | |
|   // base here.
 | |
|   V = V->stripPointerCasts();
 | |
| 
 | |
|   while (BBI != E) {
 | |
|     --BBI;
 | |
| 
 | |
|     // If we see a free or a call which may write to memory (i.e. which might do
 | |
|     // a free) the pointer could be marked invalid.
 | |
|     if (isa<CallInst>(BBI) && BBI->mayWriteToMemory() &&
 | |
|         !isa<DbgInfoIntrinsic>(BBI))
 | |
|       return false;
 | |
| 
 | |
|     Value *AccessedPtr;
 | |
|     unsigned AccessedAlign;
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
 | |
|       // Ignore volatile loads. The execution of a volatile load cannot
 | |
|       // be used to prove an address is backed by regular memory; it can,
 | |
|       // for example, point to an MMIO register.
 | |
|       if (LI->isVolatile())
 | |
|         continue;
 | |
|       AccessedPtr = LI->getPointerOperand();
 | |
|       AccessedAlign = LI->getAlignment();
 | |
|     } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI)) {
 | |
|       // Ignore volatile stores (see comment for loads).
 | |
|       if (SI->isVolatile())
 | |
|         continue;
 | |
|       AccessedPtr = SI->getPointerOperand();
 | |
|       AccessedAlign = SI->getAlignment();
 | |
|     } else
 | |
|       continue;
 | |
| 
 | |
|     Type *AccessedTy = AccessedPtr->getType()->getPointerElementType();
 | |
|     if (AccessedAlign == 0)
 | |
|       AccessedAlign = DL.getABITypeAlignment(AccessedTy);
 | |
|     if (AccessedAlign < Align)
 | |
|       continue;
 | |
| 
 | |
|     // Handle trivial cases.
 | |
|     if (AccessedPtr == V)
 | |
|       return true;
 | |
| 
 | |
|     if (AreEquivalentAddressValues(AccessedPtr->stripPointerCasts(), V) &&
 | |
|         LoadSize <= DL.getTypeStoreSize(AccessedTy))
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// DefMaxInstsToScan - the default number of maximum instructions
 | |
| /// to scan in the block, used by FindAvailableLoadedValue().
 | |
| /// FindAvailableLoadedValue() was introduced in r60148, to improve jump
 | |
| /// threading in part by eliminating partially redundant loads.
 | |
| /// At that point, the value of MaxInstsToScan was already set to '6'
 | |
| /// without documented explanation.
 | |
| cl::opt<unsigned>
 | |
| llvm::DefMaxInstsToScan("available-load-scan-limit", cl::init(6), cl::Hidden,
 | |
|   cl::desc("Use this to specify the default maximum number of instructions "
 | |
|            "to scan backward from a given instruction, when searching for "
 | |
|            "available loaded value"));
 | |
| 
 | |
| Value *llvm::FindAvailableLoadedValue(LoadInst *Load,
 | |
|                                       BasicBlock *ScanBB,
 | |
|                                       BasicBlock::iterator &ScanFrom,
 | |
|                                       unsigned MaxInstsToScan,
 | |
|                                       AliasAnalysis *AA, bool *IsLoad,
 | |
|                                       unsigned *NumScanedInst) {
 | |
|   // Don't CSE load that is volatile or anything stronger than unordered.
 | |
|   if (!Load->isUnordered())
 | |
|     return nullptr;
 | |
| 
 | |
|   return FindAvailablePtrLoadStore(
 | |
|       Load->getPointerOperand(), Load->getType(), Load->isAtomic(), ScanBB,
 | |
|       ScanFrom, MaxInstsToScan, AA, IsLoad, NumScanedInst);
 | |
| }
 | |
| 
 | |
| Value *llvm::FindAvailablePtrLoadStore(Value *Ptr, Type *AccessTy,
 | |
|                                        bool AtLeastAtomic, BasicBlock *ScanBB,
 | |
|                                        BasicBlock::iterator &ScanFrom,
 | |
|                                        unsigned MaxInstsToScan,
 | |
|                                        AliasAnalysis *AA, bool *IsLoadCSE,
 | |
|                                        unsigned *NumScanedInst) {
 | |
|   if (MaxInstsToScan == 0)
 | |
|     MaxInstsToScan = ~0U;
 | |
| 
 | |
|   const DataLayout &DL = ScanBB->getModule()->getDataLayout();
 | |
| 
 | |
|   // Try to get the store size for the type.
 | |
|   auto AccessSize = LocationSize::precise(DL.getTypeStoreSize(AccessTy));
 | |
| 
 | |
|   Value *StrippedPtr = Ptr->stripPointerCasts();
 | |
| 
 | |
|   while (ScanFrom != ScanBB->begin()) {
 | |
|     // We must ignore debug info directives when counting (otherwise they
 | |
|     // would affect codegen).
 | |
|     Instruction *Inst = &*--ScanFrom;
 | |
|     if (isa<DbgInfoIntrinsic>(Inst))
 | |
|       continue;
 | |
| 
 | |
|     // Restore ScanFrom to expected value in case next test succeeds
 | |
|     ScanFrom++;
 | |
| 
 | |
|     if (NumScanedInst)
 | |
|       ++(*NumScanedInst);
 | |
| 
 | |
|     // Don't scan huge blocks.
 | |
|     if (MaxInstsToScan-- == 0)
 | |
|       return nullptr;
 | |
| 
 | |
|     --ScanFrom;
 | |
|     // If this is a load of Ptr, the loaded value is available.
 | |
|     // (This is true even if the load is volatile or atomic, although
 | |
|     // those cases are unlikely.)
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
 | |
|       if (AreEquivalentAddressValues(
 | |
|               LI->getPointerOperand()->stripPointerCasts(), StrippedPtr) &&
 | |
|           CastInst::isBitOrNoopPointerCastable(LI->getType(), AccessTy, DL)) {
 | |
| 
 | |
|         // We can value forward from an atomic to a non-atomic, but not the
 | |
|         // other way around.
 | |
|         if (LI->isAtomic() < AtLeastAtomic)
 | |
|           return nullptr;
 | |
| 
 | |
|         if (IsLoadCSE)
 | |
|             *IsLoadCSE = true;
 | |
|         return LI;
 | |
|       }
 | |
| 
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | |
|       Value *StorePtr = SI->getPointerOperand()->stripPointerCasts();
 | |
|       // If this is a store through Ptr, the value is available!
 | |
|       // (This is true even if the store is volatile or atomic, although
 | |
|       // those cases are unlikely.)
 | |
|       if (AreEquivalentAddressValues(StorePtr, StrippedPtr) &&
 | |
|           CastInst::isBitOrNoopPointerCastable(SI->getValueOperand()->getType(),
 | |
|                                                AccessTy, DL)) {
 | |
| 
 | |
|         // We can value forward from an atomic to a non-atomic, but not the
 | |
|         // other way around.
 | |
|         if (SI->isAtomic() < AtLeastAtomic)
 | |
|           return nullptr;
 | |
| 
 | |
|         if (IsLoadCSE)
 | |
|           *IsLoadCSE = false;
 | |
|         return SI->getOperand(0);
 | |
|       }
 | |
| 
 | |
|       // If both StrippedPtr and StorePtr reach all the way to an alloca or
 | |
|       // global and they are different, ignore the store. This is a trivial form
 | |
|       // of alias analysis that is important for reg2mem'd code.
 | |
|       if ((isa<AllocaInst>(StrippedPtr) || isa<GlobalVariable>(StrippedPtr)) &&
 | |
|           (isa<AllocaInst>(StorePtr) || isa<GlobalVariable>(StorePtr)) &&
 | |
|           StrippedPtr != StorePtr)
 | |
|         continue;
 | |
| 
 | |
|       // If we have alias analysis and it says the store won't modify the loaded
 | |
|       // value, ignore the store.
 | |
|       if (AA && !isModSet(AA->getModRefInfo(SI, StrippedPtr, AccessSize)))
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise the store that may or may not alias the pointer, bail out.
 | |
|       ++ScanFrom;
 | |
|       return nullptr;
 | |
|     }
 | |
| 
 | |
|     // If this is some other instruction that may clobber Ptr, bail out.
 | |
|     if (Inst->mayWriteToMemory()) {
 | |
|       // If alias analysis claims that it really won't modify the load,
 | |
|       // ignore it.
 | |
|       if (AA && !isModSet(AA->getModRefInfo(Inst, StrippedPtr, AccessSize)))
 | |
|         continue;
 | |
| 
 | |
|       // May modify the pointer, bail out.
 | |
|       ++ScanFrom;
 | |
|       return nullptr;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Got to the start of the block, we didn't find it, but are done for this
 | |
|   // block.
 | |
|   return nullptr;
 | |
| }
 |