213 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			213 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- PhiValues.cpp - Phi Value Analysis ---------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/PhiValues.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| void PhiValues::PhiValuesCallbackVH::deleted() {
 | |
|   PV->invalidateValue(getValPtr());
 | |
| }
 | |
| 
 | |
| void PhiValues::PhiValuesCallbackVH::allUsesReplacedWith(Value *) {
 | |
|   // We could potentially update the cached values we have with the new value,
 | |
|   // but it's simpler to just treat the old value as invalidated.
 | |
|   PV->invalidateValue(getValPtr());
 | |
| }
 | |
| 
 | |
| bool PhiValues::invalidate(Function &, const PreservedAnalyses &PA,
 | |
|                            FunctionAnalysisManager::Invalidator &) {
 | |
|   // PhiValues is invalidated if it isn't preserved.
 | |
|   auto PAC = PA.getChecker<PhiValuesAnalysis>();
 | |
|   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>());
 | |
| }
 | |
| 
 | |
| // The goal here is to find all of the non-phi values reachable from this phi,
 | |
| // and to do the same for all of the phis reachable from this phi, as doing so
 | |
| // is necessary anyway in order to get the values for this phi. We do this using
 | |
| // Tarjan's algorithm with Nuutila's improvements to find the strongly connected
 | |
| // components of the phi graph rooted in this phi:
 | |
| //  * All phis in a strongly connected component will have the same reachable
 | |
| //    non-phi values. The SCC may not be the maximal subgraph for that set of
 | |
| //    reachable values, but finding out that isn't really necessary (it would
 | |
| //    only reduce the amount of memory needed to store the values).
 | |
| //  * Tarjan's algorithm completes components in a bottom-up manner, i.e. it
 | |
| //    never completes a component before the components reachable from it have
 | |
| //    been completed. This means that when we complete a component we have
 | |
| //    everything we need to collect the values reachable from that component.
 | |
| //  * We collect both the non-phi values reachable from each SCC, as that's what
 | |
| //    we're ultimately interested in, and all of the reachable values, i.e.
 | |
| //    including phis, as that makes invalidateValue easier.
 | |
| void PhiValues::processPhi(const PHINode *Phi,
 | |
|                            SmallVector<const PHINode *, 8> &Stack) {
 | |
|   // Initialize the phi with the next depth number.
 | |
|   assert(DepthMap.lookup(Phi) == 0);
 | |
|   assert(NextDepthNumber != UINT_MAX);
 | |
|   unsigned int DepthNumber = ++NextDepthNumber;
 | |
|   DepthMap[Phi] = DepthNumber;
 | |
| 
 | |
|   // Recursively process the incoming phis of this phi.
 | |
|   TrackedValues.insert(PhiValuesCallbackVH(const_cast<PHINode *>(Phi), this));
 | |
|   for (Value *PhiOp : Phi->incoming_values()) {
 | |
|     if (PHINode *PhiPhiOp = dyn_cast<PHINode>(PhiOp)) {
 | |
|       // Recurse if the phi has not yet been visited.
 | |
|       if (DepthMap.lookup(PhiPhiOp) == 0)
 | |
|         processPhi(PhiPhiOp, Stack);
 | |
|       assert(DepthMap.lookup(PhiPhiOp) != 0);
 | |
|       // If the phi did not become part of a component then this phi and that
 | |
|       // phi are part of the same component, so adjust the depth number.
 | |
|       if (!ReachableMap.count(DepthMap[PhiPhiOp]))
 | |
|         DepthMap[Phi] = std::min(DepthMap[Phi], DepthMap[PhiPhiOp]);
 | |
|     } else {
 | |
|       TrackedValues.insert(PhiValuesCallbackVH(PhiOp, this));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Now that incoming phis have been handled, push this phi to the stack.
 | |
|   Stack.push_back(Phi);
 | |
| 
 | |
|   // If the depth number has not changed then we've finished collecting the phis
 | |
|   // of a strongly connected component.
 | |
|   if (DepthMap[Phi] == DepthNumber) {
 | |
|     // Collect the reachable values for this component. The phis of this
 | |
|     // component will be those on top of the depth stach with the same or
 | |
|     // greater depth number.
 | |
|     ConstValueSet Reachable;
 | |
|     while (!Stack.empty() && DepthMap[Stack.back()] >= DepthNumber) {
 | |
|       const PHINode *ComponentPhi = Stack.pop_back_val();
 | |
|       Reachable.insert(ComponentPhi);
 | |
|       DepthMap[ComponentPhi] = DepthNumber;
 | |
|       for (Value *Op : ComponentPhi->incoming_values()) {
 | |
|         if (PHINode *PhiOp = dyn_cast<PHINode>(Op)) {
 | |
|           // If this phi is not part of the same component then that component
 | |
|           // is guaranteed to have been completed before this one. Therefore we
 | |
|           // can just add its reachable values to the reachable values of this
 | |
|           // component.
 | |
|           auto It = ReachableMap.find(DepthMap[PhiOp]);
 | |
|           if (It != ReachableMap.end())
 | |
|             Reachable.insert(It->second.begin(), It->second.end());
 | |
|         } else {
 | |
|           Reachable.insert(Op);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     ReachableMap.insert({DepthNumber,Reachable});
 | |
| 
 | |
|     // Filter out phis to get the non-phi reachable values.
 | |
|     ValueSet NonPhi;
 | |
|     for (const Value *V : Reachable)
 | |
|       if (!isa<PHINode>(V))
 | |
|         NonPhi.insert(const_cast<Value*>(V));
 | |
|     NonPhiReachableMap.insert({DepthNumber,NonPhi});
 | |
|   }
 | |
| }
 | |
| 
 | |
| const PhiValues::ValueSet &PhiValues::getValuesForPhi(const PHINode *PN) {
 | |
|   if (DepthMap.count(PN) == 0) {
 | |
|     SmallVector<const PHINode *, 8> Stack;
 | |
|     processPhi(PN, Stack);
 | |
|     assert(Stack.empty());
 | |
|   }
 | |
|   assert(DepthMap.lookup(PN) != 0);
 | |
|   return NonPhiReachableMap[DepthMap[PN]];
 | |
| }
 | |
| 
 | |
| void PhiValues::invalidateValue(const Value *V) {
 | |
|   // Components that can reach V are invalid.
 | |
|   SmallVector<unsigned int, 8> InvalidComponents;
 | |
|   for (auto &Pair : ReachableMap)
 | |
|     if (Pair.second.count(V))
 | |
|       InvalidComponents.push_back(Pair.first);
 | |
| 
 | |
|   for (unsigned int N : InvalidComponents) {
 | |
|     for (const Value *V : ReachableMap[N])
 | |
|       if (const PHINode *PN = dyn_cast<PHINode>(V))
 | |
|         DepthMap.erase(PN);
 | |
|     NonPhiReachableMap.erase(N);
 | |
|     ReachableMap.erase(N);
 | |
|   }
 | |
|   // This value is no longer tracked
 | |
|   auto It = TrackedValues.find_as(V);
 | |
|   if (It != TrackedValues.end())
 | |
|     TrackedValues.erase(It);
 | |
| }
 | |
| 
 | |
| void PhiValues::releaseMemory() {
 | |
|   DepthMap.clear();
 | |
|   NonPhiReachableMap.clear();
 | |
|   ReachableMap.clear();
 | |
| }
 | |
| 
 | |
| void PhiValues::print(raw_ostream &OS) const {
 | |
|   // Iterate through the phi nodes of the function rather than iterating through
 | |
|   // DepthMap in order to get predictable ordering.
 | |
|   for (const BasicBlock &BB : F) {
 | |
|     for (const PHINode &PN : BB.phis()) {
 | |
|       OS << "PHI ";
 | |
|       PN.printAsOperand(OS, false);
 | |
|       OS << " has values:\n";
 | |
|       unsigned int N = DepthMap.lookup(&PN);
 | |
|       auto It = NonPhiReachableMap.find(N);
 | |
|       if (It == NonPhiReachableMap.end())
 | |
|         OS << "  UNKNOWN\n";
 | |
|       else if (It->second.empty())
 | |
|         OS << "  NONE\n";
 | |
|       else
 | |
|         for (Value *V : It->second)
 | |
|           // Printing of an instruction prints two spaces at the start, so
 | |
|           // handle instructions and everything else slightly differently in
 | |
|           // order to get consistent indenting.
 | |
|           if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|             OS << *I << "\n";
 | |
|           else
 | |
|             OS << "  " << *V << "\n";
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| AnalysisKey PhiValuesAnalysis::Key;
 | |
| PhiValues PhiValuesAnalysis::run(Function &F, FunctionAnalysisManager &) {
 | |
|   return PhiValues(F);
 | |
| }
 | |
| 
 | |
| PreservedAnalyses PhiValuesPrinterPass::run(Function &F,
 | |
|                                             FunctionAnalysisManager &AM) {
 | |
|   OS << "PHI Values for function: " << F.getName() << "\n";
 | |
|   PhiValues &PI = AM.getResult<PhiValuesAnalysis>(F);
 | |
|   for (const BasicBlock &BB : F)
 | |
|     for (const PHINode &PN : BB.phis())
 | |
|       PI.getValuesForPhi(&PN);
 | |
|   PI.print(OS);
 | |
|   return PreservedAnalyses::all();
 | |
| }
 | |
| 
 | |
| PhiValuesWrapperPass::PhiValuesWrapperPass() : FunctionPass(ID) {
 | |
|   initializePhiValuesWrapperPassPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| bool PhiValuesWrapperPass::runOnFunction(Function &F) {
 | |
|   Result.reset(new PhiValues(F));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void PhiValuesWrapperPass::releaseMemory() {
 | |
|   Result->releaseMemory();
 | |
| }
 | |
| 
 | |
| void PhiValuesWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesAll();
 | |
| }
 | |
| 
 | |
| char PhiValuesWrapperPass::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS(PhiValuesWrapperPass, "phi-values", "Phi Values Analysis", false,
 | |
|                 true)
 |