473 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			473 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InterleavedAccessPass.cpp ------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the Interleaved Access pass, which identifies
 | |
| // interleaved memory accesses and transforms them into target specific
 | |
| // intrinsics.
 | |
| //
 | |
| // An interleaved load reads data from memory into several vectors, with
 | |
| // DE-interleaving the data on a factor. An interleaved store writes several
 | |
| // vectors to memory with RE-interleaving the data on a factor.
 | |
| //
 | |
| // As interleaved accesses are difficult to identified in CodeGen (mainly
 | |
| // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
 | |
| // IR), we identify and transform them to intrinsics in this pass so the
 | |
| // intrinsics can be easily matched into target specific instructions later in
 | |
| // CodeGen.
 | |
| //
 | |
| // E.g. An interleaved load (Factor = 2):
 | |
| //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
 | |
| //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
 | |
| //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
 | |
| //
 | |
| // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
 | |
| // intrinsic in ARM backend.
 | |
| //
 | |
| // In X86, this can be further optimized into a set of target
 | |
| // specific loads followed by an optimized sequence of shuffles.
 | |
| //
 | |
| // E.g. An interleaved store (Factor = 3):
 | |
| //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
 | |
| //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
 | |
| //        store <12 x i32> %i.vec, <12 x i32>* %ptr
 | |
| //
 | |
| // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
 | |
| // intrinsic in ARM backend.
 | |
| //
 | |
| // Similarly, a set of interleaved stores can be transformed into an optimized
 | |
| // sequence of shuffles followed by a set of target specific stores for X86.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstIterator.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include <cassert>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "interleaved-access"
 | |
| 
 | |
| static cl::opt<bool> LowerInterleavedAccesses(
 | |
|     "lower-interleaved-accesses",
 | |
|     cl::desc("Enable lowering interleaved accesses to intrinsics"),
 | |
|     cl::init(true), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class InterleavedAccess : public FunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   InterleavedAccess() : FunctionPass(ID) {
 | |
|     initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   StringRef getPassName() const override { return "Interleaved Access Pass"; }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     AU.addPreserved<DominatorTreeWrapperPass>();
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   DominatorTree *DT = nullptr;
 | |
|   const TargetLowering *TLI = nullptr;
 | |
| 
 | |
|   /// The maximum supported interleave factor.
 | |
|   unsigned MaxFactor;
 | |
| 
 | |
|   /// Transform an interleaved load into target specific intrinsics.
 | |
|   bool lowerInterleavedLoad(LoadInst *LI,
 | |
|                             SmallVector<Instruction *, 32> &DeadInsts);
 | |
| 
 | |
|   /// Transform an interleaved store into target specific intrinsics.
 | |
|   bool lowerInterleavedStore(StoreInst *SI,
 | |
|                              SmallVector<Instruction *, 32> &DeadInsts);
 | |
| 
 | |
|   /// Returns true if the uses of an interleaved load by the
 | |
|   /// extractelement instructions in \p Extracts can be replaced by uses of the
 | |
|   /// shufflevector instructions in \p Shuffles instead. If so, the necessary
 | |
|   /// replacements are also performed.
 | |
|   bool tryReplaceExtracts(ArrayRef<ExtractElementInst *> Extracts,
 | |
|                           ArrayRef<ShuffleVectorInst *> Shuffles);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace.
 | |
| 
 | |
| char InterleavedAccess::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(InterleavedAccess, DEBUG_TYPE,
 | |
|     "Lower interleaved memory accesses to target specific intrinsics", false,
 | |
|     false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_END(InterleavedAccess, DEBUG_TYPE,
 | |
|     "Lower interleaved memory accesses to target specific intrinsics", false,
 | |
|     false)
 | |
| 
 | |
| FunctionPass *llvm::createInterleavedAccessPass() {
 | |
|   return new InterleavedAccess();
 | |
| }
 | |
| 
 | |
| /// Check if the mask is a DE-interleave mask of the given factor
 | |
| /// \p Factor like:
 | |
| ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
 | |
| static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor,
 | |
|                                        unsigned &Index) {
 | |
|   // Check all potential start indices from 0 to (Factor - 1).
 | |
|   for (Index = 0; Index < Factor; Index++) {
 | |
|     unsigned i = 0;
 | |
| 
 | |
|     // Check that elements are in ascending order by Factor. Ignore undef
 | |
|     // elements.
 | |
|     for (; i < Mask.size(); i++)
 | |
|       if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor)
 | |
|         break;
 | |
| 
 | |
|     if (i == Mask.size())
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check if the mask is a DE-interleave mask for an interleaved load.
 | |
| ///
 | |
| /// E.g. DE-interleave masks (Factor = 2) could be:
 | |
| ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements)
 | |
| ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements)
 | |
| static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
 | |
|                                unsigned &Index, unsigned MaxFactor,
 | |
|                                unsigned NumLoadElements) {
 | |
|   if (Mask.size() < 2)
 | |
|     return false;
 | |
| 
 | |
|   // Check potential Factors.
 | |
|   for (Factor = 2; Factor <= MaxFactor; Factor++) {
 | |
|     // Make sure we don't produce a load wider than the input load.
 | |
|     if (Mask.size() * Factor > NumLoadElements)
 | |
|       return false;
 | |
|     if (isDeInterleaveMaskOfFactor(Mask, Factor, Index))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Check if the mask can be used in an interleaved store.
 | |
| //
 | |
| /// It checks for a more general pattern than the RE-interleave mask.
 | |
| /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
 | |
| /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
 | |
| /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
 | |
| /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
 | |
| ///
 | |
| /// The particular case of an RE-interleave mask is:
 | |
| /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
 | |
| /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
 | |
| static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor,
 | |
|                                unsigned MaxFactor, unsigned OpNumElts) {
 | |
|   unsigned NumElts = Mask.size();
 | |
|   if (NumElts < 4)
 | |
|     return false;
 | |
| 
 | |
|   // Check potential Factors.
 | |
|   for (Factor = 2; Factor <= MaxFactor; Factor++) {
 | |
|     if (NumElts % Factor)
 | |
|       continue;
 | |
| 
 | |
|     unsigned LaneLen = NumElts / Factor;
 | |
|     if (!isPowerOf2_32(LaneLen))
 | |
|       continue;
 | |
| 
 | |
|     // Check whether each element matches the general interleaved rule.
 | |
|     // Ignore undef elements, as long as the defined elements match the rule.
 | |
|     // Outer loop processes all factors (x, y, z in the above example)
 | |
|     unsigned I = 0, J;
 | |
|     for (; I < Factor; I++) {
 | |
|       unsigned SavedLaneValue;
 | |
|       unsigned SavedNoUndefs = 0;
 | |
| 
 | |
|       // Inner loop processes consecutive accesses (x, x+1... in the example)
 | |
|       for (J = 0; J < LaneLen - 1; J++) {
 | |
|         // Lane computes x's position in the Mask
 | |
|         unsigned Lane = J * Factor + I;
 | |
|         unsigned NextLane = Lane + Factor;
 | |
|         int LaneValue = Mask[Lane];
 | |
|         int NextLaneValue = Mask[NextLane];
 | |
| 
 | |
|         // If both are defined, values must be sequential
 | |
|         if (LaneValue >= 0 && NextLaneValue >= 0 &&
 | |
|             LaneValue + 1 != NextLaneValue)
 | |
|           break;
 | |
| 
 | |
|         // If the next value is undef, save the current one as reference
 | |
|         if (LaneValue >= 0 && NextLaneValue < 0) {
 | |
|           SavedLaneValue = LaneValue;
 | |
|           SavedNoUndefs = 1;
 | |
|         }
 | |
| 
 | |
|         // Undefs are allowed, but defined elements must still be consecutive:
 | |
|         // i.e.: x,..., undef,..., x + 2,..., undef,..., undef,..., x + 5, ....
 | |
|         // Verify this by storing the last non-undef followed by an undef
 | |
|         // Check that following non-undef masks are incremented with the
 | |
|         // corresponding distance.
 | |
|         if (SavedNoUndefs > 0 && LaneValue < 0) {
 | |
|           SavedNoUndefs++;
 | |
|           if (NextLaneValue >= 0 &&
 | |
|               SavedLaneValue + SavedNoUndefs != (unsigned)NextLaneValue)
 | |
|             break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (J < LaneLen - 1)
 | |
|         break;
 | |
| 
 | |
|       int StartMask = 0;
 | |
|       if (Mask[I] >= 0) {
 | |
|         // Check that the start of the I range (J=0) is greater than 0
 | |
|         StartMask = Mask[I];
 | |
|       } else if (Mask[(LaneLen - 1) * Factor + I] >= 0) {
 | |
|         // StartMask defined by the last value in lane
 | |
|         StartMask = Mask[(LaneLen - 1) * Factor + I] - J;
 | |
|       } else if (SavedNoUndefs > 0) {
 | |
|         // StartMask defined by some non-zero value in the j loop
 | |
|         StartMask = SavedLaneValue - (LaneLen - 1 - SavedNoUndefs);
 | |
|       }
 | |
|       // else StartMask remains set to 0, i.e. all elements are undefs
 | |
| 
 | |
|       if (StartMask < 0)
 | |
|         break;
 | |
|       // We must stay within the vectors; This case can happen with undefs.
 | |
|       if (StartMask + LaneLen > OpNumElts*2)
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // Found an interleaved mask of current factor.
 | |
|     if (I == Factor)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool InterleavedAccess::lowerInterleavedLoad(
 | |
|     LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) {
 | |
|   if (!LI->isSimple())
 | |
|     return false;
 | |
| 
 | |
|   SmallVector<ShuffleVectorInst *, 4> Shuffles;
 | |
|   SmallVector<ExtractElementInst *, 4> Extracts;
 | |
| 
 | |
|   // Check if all users of this load are shufflevectors. If we encounter any
 | |
|   // users that are extractelement instructions, we save them to later check if
 | |
|   // they can be modifed to extract from one of the shufflevectors instead of
 | |
|   // the load.
 | |
|   for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) {
 | |
|     auto *Extract = dyn_cast<ExtractElementInst>(*UI);
 | |
|     if (Extract && isa<ConstantInt>(Extract->getIndexOperand())) {
 | |
|       Extracts.push_back(Extract);
 | |
|       continue;
 | |
|     }
 | |
|     ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI);
 | |
|     if (!SVI || !isa<UndefValue>(SVI->getOperand(1)))
 | |
|       return false;
 | |
| 
 | |
|     Shuffles.push_back(SVI);
 | |
|   }
 | |
| 
 | |
|   if (Shuffles.empty())
 | |
|     return false;
 | |
| 
 | |
|   unsigned Factor, Index;
 | |
| 
 | |
|   unsigned NumLoadElements = LI->getType()->getVectorNumElements();
 | |
|   // Check if the first shufflevector is DE-interleave shuffle.
 | |
|   if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index,
 | |
|                           MaxFactor, NumLoadElements))
 | |
|     return false;
 | |
| 
 | |
|   // Holds the corresponding index for each DE-interleave shuffle.
 | |
|   SmallVector<unsigned, 4> Indices;
 | |
|   Indices.push_back(Index);
 | |
| 
 | |
|   Type *VecTy = Shuffles[0]->getType();
 | |
| 
 | |
|   // Check if other shufflevectors are also DE-interleaved of the same type
 | |
|   // and factor as the first shufflevector.
 | |
|   for (unsigned i = 1; i < Shuffles.size(); i++) {
 | |
|     if (Shuffles[i]->getType() != VecTy)
 | |
|       return false;
 | |
| 
 | |
|     if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor,
 | |
|                                     Index))
 | |
|       return false;
 | |
| 
 | |
|     Indices.push_back(Index);
 | |
|   }
 | |
| 
 | |
|   // Try and modify users of the load that are extractelement instructions to
 | |
|   // use the shufflevector instructions instead of the load.
 | |
|   if (!tryReplaceExtracts(Extracts, Shuffles))
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n");
 | |
| 
 | |
|   // Try to create target specific intrinsics to replace the load and shuffles.
 | |
|   if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor))
 | |
|     return false;
 | |
| 
 | |
|   for (auto SVI : Shuffles)
 | |
|     DeadInsts.push_back(SVI);
 | |
| 
 | |
|   DeadInsts.push_back(LI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool InterleavedAccess::tryReplaceExtracts(
 | |
|     ArrayRef<ExtractElementInst *> Extracts,
 | |
|     ArrayRef<ShuffleVectorInst *> Shuffles) {
 | |
|   // If there aren't any extractelement instructions to modify, there's nothing
 | |
|   // to do.
 | |
|   if (Extracts.empty())
 | |
|     return true;
 | |
| 
 | |
|   // Maps extractelement instructions to vector-index pairs. The extractlement
 | |
|   // instructions will be modified to use the new vector and index operands.
 | |
|   DenseMap<ExtractElementInst *, std::pair<Value *, int>> ReplacementMap;
 | |
| 
 | |
|   for (auto *Extract : Extracts) {
 | |
|     // The vector index that is extracted.
 | |
|     auto *IndexOperand = cast<ConstantInt>(Extract->getIndexOperand());
 | |
|     auto Index = IndexOperand->getSExtValue();
 | |
| 
 | |
|     // Look for a suitable shufflevector instruction. The goal is to modify the
 | |
|     // extractelement instruction (which uses an interleaved load) to use one
 | |
|     // of the shufflevector instructions instead of the load.
 | |
|     for (auto *Shuffle : Shuffles) {
 | |
|       // If the shufflevector instruction doesn't dominate the extract, we
 | |
|       // can't create a use of it.
 | |
|       if (!DT->dominates(Shuffle, Extract))
 | |
|         continue;
 | |
| 
 | |
|       // Inspect the indices of the shufflevector instruction. If the shuffle
 | |
|       // selects the same index that is extracted, we can modify the
 | |
|       // extractelement instruction.
 | |
|       SmallVector<int, 4> Indices;
 | |
|       Shuffle->getShuffleMask(Indices);
 | |
|       for (unsigned I = 0; I < Indices.size(); ++I)
 | |
|         if (Indices[I] == Index) {
 | |
|           assert(Extract->getOperand(0) == Shuffle->getOperand(0) &&
 | |
|                  "Vector operations do not match");
 | |
|           ReplacementMap[Extract] = std::make_pair(Shuffle, I);
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       // If we found a suitable shufflevector instruction, stop looking.
 | |
|       if (ReplacementMap.count(Extract))
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // If we did not find a suitable shufflevector instruction, the
 | |
|     // extractelement instruction cannot be modified, so we must give up.
 | |
|     if (!ReplacementMap.count(Extract))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Finally, perform the replacements.
 | |
|   IRBuilder<> Builder(Extracts[0]->getContext());
 | |
|   for (auto &Replacement : ReplacementMap) {
 | |
|     auto *Extract = Replacement.first;
 | |
|     auto *Vector = Replacement.second.first;
 | |
|     auto Index = Replacement.second.second;
 | |
|     Builder.SetInsertPoint(Extract);
 | |
|     Extract->replaceAllUsesWith(Builder.CreateExtractElement(Vector, Index));
 | |
|     Extract->eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool InterleavedAccess::lowerInterleavedStore(
 | |
|     StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) {
 | |
|   if (!SI->isSimple())
 | |
|     return false;
 | |
| 
 | |
|   ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand());
 | |
|   if (!SVI || !SVI->hasOneUse())
 | |
|     return false;
 | |
| 
 | |
|   // Check if the shufflevector is RE-interleave shuffle.
 | |
|   unsigned Factor;
 | |
|   unsigned OpNumElts = SVI->getOperand(0)->getType()->getVectorNumElements();
 | |
|   if (!isReInterleaveMask(SVI->getShuffleMask(), Factor, MaxFactor, OpNumElts))
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n");
 | |
| 
 | |
|   // Try to create target specific intrinsics to replace the store and shuffle.
 | |
|   if (!TLI->lowerInterleavedStore(SI, SVI, Factor))
 | |
|     return false;
 | |
| 
 | |
|   // Already have a new target specific interleaved store. Erase the old store.
 | |
|   DeadInsts.push_back(SI);
 | |
|   DeadInsts.push_back(SVI);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool InterleavedAccess::runOnFunction(Function &F) {
 | |
|   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
 | |
|   if (!TPC || !LowerInterleavedAccesses)
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n");
 | |
| 
 | |
|   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
 | |
|   auto &TM = TPC->getTM<TargetMachine>();
 | |
|   TLI = TM.getSubtargetImpl(F)->getTargetLowering();
 | |
|   MaxFactor = TLI->getMaxSupportedInterleaveFactor();
 | |
| 
 | |
|   // Holds dead instructions that will be erased later.
 | |
|   SmallVector<Instruction *, 32> DeadInsts;
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (auto &I : instructions(F)) {
 | |
|     if (LoadInst *LI = dyn_cast<LoadInst>(&I))
 | |
|       Changed |= lowerInterleavedLoad(LI, DeadInsts);
 | |
| 
 | |
|     if (StoreInst *SI = dyn_cast<StoreInst>(&I))
 | |
|       Changed |= lowerInterleavedStore(SI, DeadInsts);
 | |
|   }
 | |
| 
 | |
|   for (auto I : DeadInsts)
 | |
|     I->eraseFromParent();
 | |
| 
 | |
|   return Changed;
 | |
| }
 |