1360 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1360 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // \file
 | |
| //
 | |
| // This file defines the interleaved-load-combine pass. The pass searches for
 | |
| // ShuffleVectorInstruction that execute interleaving loads. If a matching
 | |
| // pattern is found, it adds a combined load and further instructions in a
 | |
| // pattern that is detectable by InterleavedAccesPass. The old instructions are
 | |
| // left dead to be removed later. The pass is specifically designed to be
 | |
| // executed just before InterleavedAccesPass to find any left-over instances
 | |
| // that are not detected within former passes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/MemoryLocation.h"
 | |
| #include "llvm/Analysis/MemorySSA.h"
 | |
| #include "llvm/Analysis/MemorySSAUpdater.h"
 | |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | |
| #include "llvm/Analysis/TargetTransformInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/LegacyPassManager.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <list>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "interleaved-load-combine"
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Statistic counter
 | |
| STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");
 | |
| 
 | |
| /// Option to disable the pass
 | |
| static cl::opt<bool> DisableInterleavedLoadCombine(
 | |
|     "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
 | |
|     cl::desc("Disable combining of interleaved loads"));
 | |
| 
 | |
| struct VectorInfo;
 | |
| 
 | |
| struct InterleavedLoadCombineImpl {
 | |
| public:
 | |
|   InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
 | |
|                              TargetMachine &TM)
 | |
|       : F(F), DT(DT), MSSA(MSSA),
 | |
|         TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
 | |
|         TTI(TM.getTargetTransformInfo(F)) {}
 | |
| 
 | |
|   /// Scan the function for interleaved load candidates and execute the
 | |
|   /// replacement if applicable.
 | |
|   bool run();
 | |
| 
 | |
| private:
 | |
|   /// Function this pass is working on
 | |
|   Function &F;
 | |
| 
 | |
|   /// Dominator Tree Analysis
 | |
|   DominatorTree &DT;
 | |
| 
 | |
|   /// Memory Alias Analyses
 | |
|   MemorySSA &MSSA;
 | |
| 
 | |
|   /// Target Lowering Information
 | |
|   const TargetLowering &TLI;
 | |
| 
 | |
|   /// Target Transform Information
 | |
|   const TargetTransformInfo TTI;
 | |
| 
 | |
|   /// Find the instruction in sets LIs that dominates all others, return nullptr
 | |
|   /// if there is none.
 | |
|   LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);
 | |
| 
 | |
|   /// Replace interleaved load candidates. It does additional
 | |
|   /// analyses if this makes sense. Returns true on success and false
 | |
|   /// of nothing has been changed.
 | |
|   bool combine(std::list<VectorInfo> &InterleavedLoad,
 | |
|                OptimizationRemarkEmitter &ORE);
 | |
| 
 | |
|   /// Given a set of VectorInfo containing candidates for a given interleave
 | |
|   /// factor, find a set that represents a 'factor' interleaved load.
 | |
|   bool findPattern(std::list<VectorInfo> &Candidates,
 | |
|                    std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
 | |
|                    const DataLayout &DL);
 | |
| }; // InterleavedLoadCombine
 | |
| 
 | |
| /// First Order Polynomial on an n-Bit Integer Value
 | |
| ///
 | |
| /// Polynomial(Value) = Value * B + A + E*2^(n-e)
 | |
| ///
 | |
| /// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
 | |
| /// significant bits. It is introduced if an exact computation cannot be proven
 | |
| /// (e.q. division by 2).
 | |
| ///
 | |
| /// As part of this optimization multiple loads will be combined. It necessary
 | |
| /// to prove that loads are within some relative offset to each other. This
 | |
| /// class is used to prove relative offsets of values loaded from memory.
 | |
| ///
 | |
| /// Representing an integer in this form is sound since addition in two's
 | |
| /// complement is associative (trivial) and multiplication distributes over the
 | |
| /// addition (see Proof(1) in Polynomial::mul). Further, both operations
 | |
| /// commute.
 | |
| //
 | |
| // Example:
 | |
| // declare @fn(i64 %IDX, <4 x float>* %PTR) {
 | |
| //   %Pa1 = add i64 %IDX, 2
 | |
| //   %Pa2 = lshr i64 %Pa1, 1
 | |
| //   %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
 | |
| //   %Va = load <4 x float>, <4 x float>* %Pa3
 | |
| //
 | |
| //   %Pb1 = add i64 %IDX, 4
 | |
| //   %Pb2 = lshr i64 %Pb1, 1
 | |
| //   %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
 | |
| //   %Vb = load <4 x float>, <4 x float>* %Pb3
 | |
| // ... }
 | |
| //
 | |
| // The goal is to prove that two loads load consecutive addresses.
 | |
| //
 | |
| // In this case the polynomials are constructed by the following
 | |
| // steps.
 | |
| //
 | |
| // The number tag #e specifies the error bits.
 | |
| //
 | |
| // Pa_0 = %IDX              #0
 | |
| // Pa_1 = %IDX + 2          #0 | add 2
 | |
| // Pa_2 = %IDX/2 + 1        #1 | lshr 1
 | |
| // Pa_3 = %IDX/2 + 1        #1 | GEP, step signext to i64
 | |
| // Pa_4 = (%IDX/2)*16 + 16  #0 | GEP, multiply index by sizeof(4) for floats
 | |
| // Pa_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
 | |
| //
 | |
| // Pb_0 = %IDX              #0
 | |
| // Pb_1 = %IDX + 4          #0 | add 2
 | |
| // Pb_2 = %IDX/2 + 2        #1 | lshr 1
 | |
| // Pb_3 = %IDX/2 + 2        #1 | GEP, step signext to i64
 | |
| // Pb_4 = (%IDX/2)*16 + 32  #0 | GEP, multiply index by sizeof(4) for floats
 | |
| // Pb_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
 | |
| //
 | |
| // Pb_5 - Pa_5 = 16         #0 | subtract to get the offset
 | |
| //
 | |
| // Remark: %PTR is not maintained within this class. So in this instance the
 | |
| // offset of 16 can only be assumed if the pointers are equal.
 | |
| //
 | |
| class Polynomial {
 | |
|   /// Operations on B
 | |
|   enum BOps {
 | |
|     LShr,
 | |
|     Mul,
 | |
|     SExt,
 | |
|     Trunc,
 | |
|   };
 | |
| 
 | |
|   /// Number of Error Bits e
 | |
|   unsigned ErrorMSBs;
 | |
| 
 | |
|   /// Value
 | |
|   Value *V;
 | |
| 
 | |
|   /// Coefficient B
 | |
|   SmallVector<std::pair<BOps, APInt>, 4> B;
 | |
| 
 | |
|   /// Coefficient A
 | |
|   APInt A;
 | |
| 
 | |
| public:
 | |
|   Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() {
 | |
|     IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
 | |
|     if (Ty) {
 | |
|       ErrorMSBs = 0;
 | |
|       this->V = V;
 | |
|       A = APInt(Ty->getBitWidth(), 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
 | |
|       : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {}
 | |
| 
 | |
|   Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
 | |
|       : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {}
 | |
| 
 | |
|   Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {}
 | |
| 
 | |
|   /// Increment and clamp the number of undefined bits.
 | |
|   void incErrorMSBs(unsigned amt) {
 | |
|     if (ErrorMSBs == (unsigned)-1)
 | |
|       return;
 | |
| 
 | |
|     ErrorMSBs += amt;
 | |
|     if (ErrorMSBs > A.getBitWidth())
 | |
|       ErrorMSBs = A.getBitWidth();
 | |
|   }
 | |
| 
 | |
|   /// Decrement and clamp the number of undefined bits.
 | |
|   void decErrorMSBs(unsigned amt) {
 | |
|     if (ErrorMSBs == (unsigned)-1)
 | |
|       return;
 | |
| 
 | |
|     if (ErrorMSBs > amt)
 | |
|       ErrorMSBs -= amt;
 | |
|     else
 | |
|       ErrorMSBs = 0;
 | |
|   }
 | |
| 
 | |
|   /// Apply an add on the polynomial
 | |
|   Polynomial &add(const APInt &C) {
 | |
|     // Note: Addition is associative in two's complement even when in case of
 | |
|     // signed overflow.
 | |
|     //
 | |
|     // Error bits can only propagate into higher significant bits. As these are
 | |
|     // already regarded as undefined, there is no change.
 | |
|     //
 | |
|     // Theorem: Adding a constant to a polynomial does not change the error
 | |
|     // term.
 | |
|     //
 | |
|     // Proof:
 | |
|     //
 | |
|     //   Since the addition is associative and commutes:
 | |
|     //
 | |
|     //   (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
 | |
|     // [qed]
 | |
| 
 | |
|     if (C.getBitWidth() != A.getBitWidth()) {
 | |
|       ErrorMSBs = (unsigned)-1;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     A += C;
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// Apply a multiplication onto the polynomial.
 | |
|   Polynomial &mul(const APInt &C) {
 | |
|     // Note: Multiplication distributes over the addition
 | |
|     //
 | |
|     // Theorem: Multiplication distributes over the addition
 | |
|     //
 | |
|     // Proof(1):
 | |
|     //
 | |
|     //   (B+A)*C =-
 | |
|     //        = (B + A) + (B + A) + .. {C Times}
 | |
|     //         addition is associative and commutes, hence
 | |
|     //        = B + B + .. {C Times} .. + A + A + .. {C times}
 | |
|     //        = B*C + A*C
 | |
|     //   (see (function add) for signed values and overflows)
 | |
|     // [qed]
 | |
|     //
 | |
|     // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
 | |
|     // to the left.
 | |
|     //
 | |
|     // Proof(2):
 | |
|     //
 | |
|     //   Let B' and A' be the n-Bit inputs with some unknown errors EA,
 | |
|     //   EB at e leading bits. B' and A' can be written down as:
 | |
|     //
 | |
|     //     B' = B + 2^(n-e)*EB
 | |
|     //     A' = A + 2^(n-e)*EA
 | |
|     //
 | |
|     //   Let C' be an input with c trailing zero bits. C' can be written as
 | |
|     //
 | |
|     //     C' = C*2^c
 | |
|     //
 | |
|     //   Therefore we can compute the result by using distributivity and
 | |
|     //   commutativity.
 | |
|     //
 | |
|     //     (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
 | |
|     //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
 | |
|     //                     = (B'+A') * C' =
 | |
|     //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
 | |
|     //                     = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
 | |
|     //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
 | |
|     //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
 | |
|     //                     = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
 | |
|     //
 | |
|     //   Let EC be the final error with EC = C*(EB + EA)
 | |
|     //
 | |
|     //                     = (B + A)*C' + EC*2^(n-e)*2^c =
 | |
|     //                     = (B + A)*C' + EC*2^(n-(e-c))
 | |
|     //
 | |
|     //   Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
 | |
|     //   less error bits than the input. c bits are shifted out to the left.
 | |
|     // [qed]
 | |
| 
 | |
|     if (C.getBitWidth() != A.getBitWidth()) {
 | |
|       ErrorMSBs = (unsigned)-1;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     // Multiplying by one is a no-op.
 | |
|     if (C.isOneValue()) {
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     // Multiplying by zero removes the coefficient B and defines all bits.
 | |
|     if (C.isNullValue()) {
 | |
|       ErrorMSBs = 0;
 | |
|       deleteB();
 | |
|     }
 | |
| 
 | |
|     // See Proof(2): Trailing zero bits indicate a left shift. This removes
 | |
|     // leading bits from the result even if they are undefined.
 | |
|     decErrorMSBs(C.countTrailingZeros());
 | |
| 
 | |
|     A *= C;
 | |
|     pushBOperation(Mul, C);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// Apply a logical shift right on the polynomial
 | |
|   Polynomial &lshr(const APInt &C) {
 | |
|     // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
 | |
|     //          where
 | |
|     //             e' = e + 1,
 | |
|     //             E is a e-bit number,
 | |
|     //             E' is a e'-bit number,
 | |
|     //   holds under the following precondition:
 | |
|     //          pre(1): A % 2 = 0
 | |
|     //          pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
 | |
|     //   where >> expresses a logical shift to the right, with adding zeros.
 | |
|     //
 | |
|     //  We need to show that for every, E there is a E'
 | |
|     //
 | |
|     //  B = b_h * 2^(n-1) + b_m * 2 + b_l
 | |
|     //  A = a_h * 2^(n-1) + a_m * 2         (pre(1))
 | |
|     //
 | |
|     //  where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
 | |
|     //
 | |
|     //  Let X = (B + A + E*2^(n-e)) >> 1
 | |
|     //  Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
 | |
|     //
 | |
|     //    X = [B + A + E*2^(n-e)] >> 1 =
 | |
|     //      = [  b_h * 2^(n-1) + b_m * 2 + b_l +
 | |
|     //         + a_h * 2^(n-1) + a_m * 2 +
 | |
|     //         + E * 2^(n-e) ] >> 1 =
 | |
|     //
 | |
|     //    The sum is built by putting the overflow of [a_m + b+n] into the term
 | |
|     //    2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
 | |
|     //    this bit is discarded. This is expressed by % 2.
 | |
|     //
 | |
|     //    The bit in position 0 cannot overflow into the term (b_m + a_m).
 | |
|     //
 | |
|     //      = [  ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
 | |
|     //         + ((b_m + a_m) % 2^(n-2)) * 2 +
 | |
|     //         + b_l + E * 2^(n-e) ] >> 1 =
 | |
|     //
 | |
|     //    The shift is computed by dividing the terms by 2 and by cutting off
 | |
|     //    b_l.
 | |
|     //
 | |
|     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
 | |
|     //         + ((b_m + a_m) % 2^(n-2)) +
 | |
|     //         + E * 2^(n-(e+1)) =
 | |
|     //
 | |
|     //    by the definition in the Theorem e+1 = e'
 | |
|     //
 | |
|     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
 | |
|     //         + ((b_m + a_m) % 2^(n-2)) +
 | |
|     //         + E * 2^(n-e') =
 | |
|     //
 | |
|     //    Compute Y by applying distributivity first
 | |
|     //
 | |
|     //    Y =  (B >> 1) + (A >> 1) + E*2^(n-e') =
 | |
|     //      =    (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
 | |
|     //         + (a_h * 2^(n-1) + a_m * 2) >> 1 +
 | |
|     //         + E * 2^(n-e) >> 1 =
 | |
|     //
 | |
|     //    Again, the shift is computed by dividing the terms by 2 and by cutting
 | |
|     //    off b_l.
 | |
|     //
 | |
|     //      =     b_h * 2^(n-2) + b_m +
 | |
|     //         +  a_h * 2^(n-2) + a_m +
 | |
|     //         +  E * 2^(n-(e+1)) =
 | |
|     //
 | |
|     //    Again, the sum is built by putting the overflow of [a_m + b+n] into
 | |
|     //    the term 2^(n-1). But this time there is room for a second bit in the
 | |
|     //    term 2^(n-2) we add this bit to a new term and denote it o_h in a
 | |
|     //    second step.
 | |
|     //
 | |
|     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
 | |
|     //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
 | |
|     //         + ((b_m + a_m) % 2^(n-2)) +
 | |
|     //         + E * 2^(n-(e+1)) =
 | |
|     //
 | |
|     //    Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
 | |
|     //    Further replace e+1 by e'.
 | |
|     //
 | |
|     //      =    o_h * 2^(n-1) +
 | |
|     //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
 | |
|     //         + ((b_m + a_m) % 2^(n-2)) +
 | |
|     //         + E * 2^(n-e') =
 | |
|     //
 | |
|     //    Move o_h into the error term and construct E'. To ensure that there is
 | |
|     //    no 2^x with negative x, this step requires pre(2) (e < n).
 | |
|     //
 | |
|     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
 | |
|     //         + ((b_m + a_m) % 2^(n-2)) +
 | |
|     //         + o_h * 2^(e'-1) * 2^(n-e') +               | pre(2), move 2^(e'-1)
 | |
|     //                                                     | out of the old exponent
 | |
|     //         + E * 2^(n-e') =
 | |
|     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
 | |
|     //         + ((b_m + a_m) % 2^(n-2)) +
 | |
|     //         + [o_h * 2^(e'-1) + E] * 2^(n-e') +         | move 2^(e'-1) out of
 | |
|     //                                                     | the old exponent
 | |
|     //
 | |
|     //    Let E' = o_h * 2^(e'-1) + E
 | |
|     //
 | |
|     //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
 | |
|     //         + ((b_m + a_m) % 2^(n-2)) +
 | |
|     //         + E' * 2^(n-e')
 | |
|     //
 | |
|     //    Because X and Y are distinct only in there error terms and E' can be
 | |
|     //    constructed as shown the theorem holds.
 | |
|     // [qed]
 | |
|     //
 | |
|     // For completeness in case of the case e=n it is also required to show that
 | |
|     // distributivity can be applied.
 | |
|     //
 | |
|     // In this case Theorem(1) transforms to (the pre-condition on A can also be
 | |
|     // dropped)
 | |
|     //
 | |
|     // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
 | |
|     //          where
 | |
|     //             A, B, E, E' are two's complement numbers with the same bit
 | |
|     //             width
 | |
|     //
 | |
|     //   Let A + B + E = X
 | |
|     //   Let (B >> 1) + (A >> 1) = Y
 | |
|     //
 | |
|     //   Therefore we need to show that for every X and Y there is an E' which
 | |
|     //   makes the equation
 | |
|     //
 | |
|     //     X = Y + E'
 | |
|     //
 | |
|     //   hold. This is trivially the case for E' = X - Y.
 | |
|     //
 | |
|     // [qed]
 | |
|     //
 | |
|     // Remark: Distributing lshr with and arbitrary number n can be expressed as
 | |
|     //   ((((B + A) lshr 1) lshr 1) ... ) {n times}.
 | |
|     // This construction induces n additional error bits at the left.
 | |
| 
 | |
|     if (C.getBitWidth() != A.getBitWidth()) {
 | |
|       ErrorMSBs = (unsigned)-1;
 | |
|       return *this;
 | |
|     }
 | |
| 
 | |
|     if (C.isNullValue())
 | |
|       return *this;
 | |
| 
 | |
|     // Test if the result will be zero
 | |
|     unsigned shiftAmt = C.getZExtValue();
 | |
|     if (shiftAmt >= C.getBitWidth())
 | |
|       return mul(APInt(C.getBitWidth(), 0));
 | |
| 
 | |
|     // The proof that shiftAmt LSBs are zero for at least one summand is only
 | |
|     // possible for the constant number.
 | |
|     //
 | |
|     // If this can be proven add shiftAmt to the error counter
 | |
|     // `ErrorMSBs`. Otherwise set all bits as undefined.
 | |
|     if (A.countTrailingZeros() < shiftAmt)
 | |
|       ErrorMSBs = A.getBitWidth();
 | |
|     else
 | |
|       incErrorMSBs(shiftAmt);
 | |
| 
 | |
|     // Apply the operation.
 | |
|     pushBOperation(LShr, C);
 | |
|     A = A.lshr(shiftAmt);
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// Apply a sign-extend or truncate operation on the polynomial.
 | |
|   Polynomial &sextOrTrunc(unsigned n) {
 | |
|     if (n < A.getBitWidth()) {
 | |
|       // Truncate: Clearly undefined Bits on the MSB side are removed
 | |
|       // if there are any.
 | |
|       decErrorMSBs(A.getBitWidth() - n);
 | |
|       A = A.trunc(n);
 | |
|       pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
 | |
|     }
 | |
|     if (n > A.getBitWidth()) {
 | |
|       // Extend: Clearly extending first and adding later is different
 | |
|       // to adding first and extending later in all extended bits.
 | |
|       incErrorMSBs(n - A.getBitWidth());
 | |
|       A = A.sext(n);
 | |
|       pushBOperation(SExt, APInt(sizeof(n) * 8, n));
 | |
|     }
 | |
| 
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   /// Test if there is a coefficient B.
 | |
|   bool isFirstOrder() const { return V != nullptr; }
 | |
| 
 | |
|   /// Test coefficient B of two Polynomials are equal.
 | |
|   bool isCompatibleTo(const Polynomial &o) const {
 | |
|     // The polynomial use different bit width.
 | |
|     if (A.getBitWidth() != o.A.getBitWidth())
 | |
|       return false;
 | |
| 
 | |
|     // If neither Polynomial has the Coefficient B.
 | |
|     if (!isFirstOrder() && !o.isFirstOrder())
 | |
|       return true;
 | |
| 
 | |
|     // The index variable is different.
 | |
|     if (V != o.V)
 | |
|       return false;
 | |
| 
 | |
|     // Check the operations.
 | |
|     if (B.size() != o.B.size())
 | |
|       return false;
 | |
| 
 | |
|     auto ob = o.B.begin();
 | |
|     for (auto &b : B) {
 | |
|       if (b != *ob)
 | |
|         return false;
 | |
|       ob++;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Subtract two polynomials, return an undefined polynomial if
 | |
|   /// subtraction is not possible.
 | |
|   Polynomial operator-(const Polynomial &o) const {
 | |
|     // Return an undefined polynomial if incompatible.
 | |
|     if (!isCompatibleTo(o))
 | |
|       return Polynomial();
 | |
| 
 | |
|     // If the polynomials are compatible (meaning they have the same
 | |
|     // coefficient on B), B is eliminated. Thus a polynomial solely
 | |
|     // containing A is returned
 | |
|     return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
 | |
|   }
 | |
| 
 | |
|   /// Subtract a constant from a polynomial,
 | |
|   Polynomial operator-(uint64_t C) const {
 | |
|     Polynomial Result(*this);
 | |
|     Result.A -= C;
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   /// Add a constant to a polynomial,
 | |
|   Polynomial operator+(uint64_t C) const {
 | |
|     Polynomial Result(*this);
 | |
|     Result.A += C;
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   /// Returns true if it can be proven that two Polynomials are equal.
 | |
|   bool isProvenEqualTo(const Polynomial &o) {
 | |
|     // Subtract both polynomials and test if it is fully defined and zero.
 | |
|     Polynomial r = *this - o;
 | |
|     return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue());
 | |
|   }
 | |
| 
 | |
|   /// Print the polynomial into a stream.
 | |
|   void print(raw_ostream &OS) const {
 | |
|     OS << "[{#ErrBits:" << ErrorMSBs << "} ";
 | |
| 
 | |
|     if (V) {
 | |
|       for (auto b : B)
 | |
|         OS << "(";
 | |
|       OS << "(" << *V << ") ";
 | |
| 
 | |
|       for (auto b : B) {
 | |
|         switch (b.first) {
 | |
|         case LShr:
 | |
|           OS << "LShr ";
 | |
|           break;
 | |
|         case Mul:
 | |
|           OS << "Mul ";
 | |
|           break;
 | |
|         case SExt:
 | |
|           OS << "SExt ";
 | |
|           break;
 | |
|         case Trunc:
 | |
|           OS << "Trunc ";
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|         OS << b.second << ") ";
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     OS << "+ " << A << "]";
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void deleteB() {
 | |
|     V = nullptr;
 | |
|     B.clear();
 | |
|   }
 | |
| 
 | |
|   void pushBOperation(const BOps Op, const APInt &C) {
 | |
|     if (isFirstOrder()) {
 | |
|       B.push_back(std::make_pair(Op, C));
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
 | |
|   S.print(OS);
 | |
|   return OS;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /// VectorInfo stores abstract the following information for each vector
 | |
| /// element:
 | |
| ///
 | |
| /// 1) The the memory address loaded into the element as Polynomial
 | |
| /// 2) a set of load instruction necessary to construct the vector,
 | |
| /// 3) a set of all other instructions that are necessary to create the vector and
 | |
| /// 4) a pointer value that can be used as relative base for all elements.
 | |
| struct VectorInfo {
 | |
| private:
 | |
|   VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
 | |
|     llvm_unreachable(
 | |
|         "Copying VectorInfo is neither implemented nor necessary,");
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   /// Information of a Vector Element
 | |
|   struct ElementInfo {
 | |
|     /// Offset Polynomial.
 | |
|     Polynomial Ofs;
 | |
| 
 | |
|     /// The Load Instruction used to Load the entry. LI is null if the pointer
 | |
|     /// of the load instruction does not point on to the entry
 | |
|     LoadInst *LI;
 | |
| 
 | |
|     ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
 | |
|         : Ofs(Offset), LI(LI) {}
 | |
|   };
 | |
| 
 | |
|   /// Basic-block the load instructions are within
 | |
|   BasicBlock *BB;
 | |
| 
 | |
|   /// Pointer value of all participation load instructions
 | |
|   Value *PV;
 | |
| 
 | |
|   /// Participating load instructions
 | |
|   std::set<LoadInst *> LIs;
 | |
| 
 | |
|   /// Participating instructions
 | |
|   std::set<Instruction *> Is;
 | |
| 
 | |
|   /// Final shuffle-vector instruction
 | |
|   ShuffleVectorInst *SVI;
 | |
| 
 | |
|   /// Information of the offset for each vector element
 | |
|   ElementInfo *EI;
 | |
| 
 | |
|   /// Vector Type
 | |
|   VectorType *const VTy;
 | |
| 
 | |
|   VectorInfo(VectorType *VTy)
 | |
|       : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) {
 | |
|     EI = new ElementInfo[VTy->getNumElements()];
 | |
|   }
 | |
| 
 | |
|   virtual ~VectorInfo() { delete[] EI; }
 | |
| 
 | |
|   unsigned getDimension() const { return VTy->getNumElements(); }
 | |
| 
 | |
|   /// Test if the VectorInfo can be part of an interleaved load with the
 | |
|   /// specified factor.
 | |
|   ///
 | |
|   /// \param Factor of the interleave
 | |
|   /// \param DL Targets Datalayout
 | |
|   ///
 | |
|   /// \returns true if this is possible and false if not
 | |
|   bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
 | |
|     unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
 | |
|     for (unsigned i = 1; i < getDimension(); i++) {
 | |
|       if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Recursively computes the vector information stored in V.
 | |
|   ///
 | |
|   /// This function delegates the work to specialized implementations
 | |
|   ///
 | |
|   /// \param V Value to operate on
 | |
|   /// \param Result Result of the computation
 | |
|   ///
 | |
|   /// \returns false if no sensible information can be gathered.
 | |
|   static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
 | |
|     ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
 | |
|     if (SVI)
 | |
|       return computeFromSVI(SVI, Result, DL);
 | |
|     LoadInst *LI = dyn_cast<LoadInst>(V);
 | |
|     if (LI)
 | |
|       return computeFromLI(LI, Result, DL);
 | |
|     BitCastInst *BCI = dyn_cast<BitCastInst>(V);
 | |
|     if (BCI)
 | |
|       return computeFromBCI(BCI, Result, DL);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   /// BitCastInst specialization to compute the vector information.
 | |
|   ///
 | |
|   /// \param BCI BitCastInst to operate on
 | |
|   /// \param Result Result of the computation
 | |
|   ///
 | |
|   /// \returns false if no sensible information can be gathered.
 | |
|   static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
 | |
|                              const DataLayout &DL) {
 | |
|     Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));
 | |
| 
 | |
|     if (!Op)
 | |
|       return false;
 | |
| 
 | |
|     VectorType *VTy = dyn_cast<VectorType>(Op->getType());
 | |
|     if (!VTy)
 | |
|       return false;
 | |
| 
 | |
|     // We can only cast from large to smaller vectors
 | |
|     if (Result.VTy->getNumElements() % VTy->getNumElements())
 | |
|       return false;
 | |
| 
 | |
|     unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
 | |
|     unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
 | |
|     unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());
 | |
| 
 | |
|     if (NewSize * Factor != OldSize)
 | |
|       return false;
 | |
| 
 | |
|     VectorInfo Old(VTy);
 | |
|     if (!compute(Op, Old, DL))
 | |
|       return false;
 | |
| 
 | |
|     for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
 | |
|       for (unsigned j = 0; j < Factor; j++) {
 | |
|         Result.EI[i + j] =
 | |
|             ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
 | |
|                         j == 0 ? Old.EI[i / Factor].LI : nullptr);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     Result.BB = Old.BB;
 | |
|     Result.PV = Old.PV;
 | |
|     Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
 | |
|     Result.Is.insert(Old.Is.begin(), Old.Is.end());
 | |
|     Result.Is.insert(BCI);
 | |
|     Result.SVI = nullptr;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// ShuffleVectorInst specialization to compute vector information.
 | |
|   ///
 | |
|   /// \param SVI ShuffleVectorInst to operate on
 | |
|   /// \param Result Result of the computation
 | |
|   ///
 | |
|   /// Compute the left and the right side vector information and merge them by
 | |
|   /// applying the shuffle operation. This function also ensures that the left
 | |
|   /// and right side have compatible loads. This means that all loads are with
 | |
|   /// in the same basic block and are based on the same pointer.
 | |
|   ///
 | |
|   /// \returns false if no sensible information can be gathered.
 | |
|   static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
 | |
|                              const DataLayout &DL) {
 | |
|     VectorType *ArgTy = dyn_cast<VectorType>(SVI->getOperand(0)->getType());
 | |
|     assert(ArgTy && "ShuffleVector Operand is not a VectorType");
 | |
| 
 | |
|     // Compute the left hand vector information.
 | |
|     VectorInfo LHS(ArgTy);
 | |
|     if (!compute(SVI->getOperand(0), LHS, DL))
 | |
|       LHS.BB = nullptr;
 | |
| 
 | |
|     // Compute the right hand vector information.
 | |
|     VectorInfo RHS(ArgTy);
 | |
|     if (!compute(SVI->getOperand(1), RHS, DL))
 | |
|       RHS.BB = nullptr;
 | |
| 
 | |
|     // Neither operand produced sensible results?
 | |
|     if (!LHS.BB && !RHS.BB)
 | |
|       return false;
 | |
|     // Only RHS produced sensible results?
 | |
|     else if (!LHS.BB) {
 | |
|       Result.BB = RHS.BB;
 | |
|       Result.PV = RHS.PV;
 | |
|     }
 | |
|     // Only LHS produced sensible results?
 | |
|     else if (!RHS.BB) {
 | |
|       Result.BB = LHS.BB;
 | |
|       Result.PV = LHS.PV;
 | |
|     }
 | |
|     // Both operands produced sensible results?
 | |
|     else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
 | |
|       Result.BB = LHS.BB;
 | |
|       Result.PV = LHS.PV;
 | |
|     }
 | |
|     // Both operands produced sensible results but they are incompatible.
 | |
|     else {
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Merge and apply the operation on the offset information.
 | |
|     if (LHS.BB) {
 | |
|       Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
 | |
|       Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
 | |
|     }
 | |
|     if (RHS.BB) {
 | |
|       Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
 | |
|       Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
 | |
|     }
 | |
|     Result.Is.insert(SVI);
 | |
|     Result.SVI = SVI;
 | |
| 
 | |
|     int j = 0;
 | |
|     for (int i : SVI->getShuffleMask()) {
 | |
|       assert((i < 2 * (signed)ArgTy->getNumElements()) &&
 | |
|              "Invalid ShuffleVectorInst (index out of bounds)");
 | |
| 
 | |
|       if (i < 0)
 | |
|         Result.EI[j] = ElementInfo();
 | |
|       else if (i < (signed)ArgTy->getNumElements()) {
 | |
|         if (LHS.BB)
 | |
|           Result.EI[j] = LHS.EI[i];
 | |
|         else
 | |
|           Result.EI[j] = ElementInfo();
 | |
|       } else {
 | |
|         if (RHS.BB)
 | |
|           Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
 | |
|         else
 | |
|           Result.EI[j] = ElementInfo();
 | |
|       }
 | |
|       j++;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// LoadInst specialization to compute vector information.
 | |
|   ///
 | |
|   /// This function also acts as abort condition to the recursion.
 | |
|   ///
 | |
|   /// \param LI LoadInst to operate on
 | |
|   /// \param Result Result of the computation
 | |
|   ///
 | |
|   /// \returns false if no sensible information can be gathered.
 | |
|   static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
 | |
|                             const DataLayout &DL) {
 | |
|     Value *BasePtr;
 | |
|     Polynomial Offset;
 | |
| 
 | |
|     if (LI->isVolatile())
 | |
|       return false;
 | |
| 
 | |
|     if (LI->isAtomic())
 | |
|       return false;
 | |
| 
 | |
|     // Get the base polynomial
 | |
|     computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);
 | |
| 
 | |
|     Result.BB = LI->getParent();
 | |
|     Result.PV = BasePtr;
 | |
|     Result.LIs.insert(LI);
 | |
|     Result.Is.insert(LI);
 | |
| 
 | |
|     for (unsigned i = 0; i < Result.getDimension(); i++) {
 | |
|       Value *Idx[2] = {
 | |
|           ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
 | |
|           ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
 | |
|       };
 | |
|       int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2));
 | |
|       Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Recursively compute polynomial of a value.
 | |
|   ///
 | |
|   /// \param BO Input binary operation
 | |
|   /// \param Result Result polynomial
 | |
|   static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
 | |
|     Value *LHS = BO.getOperand(0);
 | |
|     Value *RHS = BO.getOperand(1);
 | |
| 
 | |
|     // Find the RHS Constant if any
 | |
|     ConstantInt *C = dyn_cast<ConstantInt>(RHS);
 | |
|     if ((!C) && BO.isCommutative()) {
 | |
|       C = dyn_cast<ConstantInt>(LHS);
 | |
|       if (C)
 | |
|         std::swap(LHS, RHS);
 | |
|     }
 | |
| 
 | |
|     switch (BO.getOpcode()) {
 | |
|     case Instruction::Add:
 | |
|       if (!C)
 | |
|         break;
 | |
| 
 | |
|       computePolynomial(*LHS, Result);
 | |
|       Result.add(C->getValue());
 | |
|       return;
 | |
| 
 | |
|     case Instruction::LShr:
 | |
|       if (!C)
 | |
|         break;
 | |
| 
 | |
|       computePolynomial(*LHS, Result);
 | |
|       Result.lshr(C->getValue());
 | |
|       return;
 | |
| 
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     Result = Polynomial(&BO);
 | |
|   }
 | |
| 
 | |
|   /// Recursively compute polynomial of a value
 | |
|   ///
 | |
|   /// \param V input value
 | |
|   /// \param Result result polynomial
 | |
|   static void computePolynomial(Value &V, Polynomial &Result) {
 | |
|     if (isa<BinaryOperator>(&V))
 | |
|       computePolynomialBinOp(*dyn_cast<BinaryOperator>(&V), Result);
 | |
|     else
 | |
|       Result = Polynomial(&V);
 | |
|   }
 | |
| 
 | |
|   /// Compute the Polynomial representation of a Pointer type.
 | |
|   ///
 | |
|   /// \param Ptr input pointer value
 | |
|   /// \param Result result polynomial
 | |
|   /// \param BasePtr pointer the polynomial is based on
 | |
|   /// \param DL Datalayout of the target machine
 | |
|   static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
 | |
|                                            Value *&BasePtr,
 | |
|                                            const DataLayout &DL) {
 | |
|     // Not a pointer type? Return an undefined polynomial
 | |
|     PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
 | |
|     if (!PtrTy) {
 | |
|       Result = Polynomial();
 | |
|       BasePtr = nullptr;
 | |
|       return;
 | |
|     }
 | |
|     unsigned PointerBits =
 | |
|         DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());
 | |
| 
 | |
|     /// Skip pointer casts. Return Zero polynomial otherwise
 | |
|     if (isa<CastInst>(&Ptr)) {
 | |
|       CastInst &CI = *cast<CastInst>(&Ptr);
 | |
|       switch (CI.getOpcode()) {
 | |
|       case Instruction::BitCast:
 | |
|         computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
 | |
|         break;
 | |
|       default:
 | |
|         BasePtr = &Ptr;
 | |
|         Polynomial(PointerBits, 0);
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     /// Resolve GetElementPtrInst.
 | |
|     else if (isa<GetElementPtrInst>(&Ptr)) {
 | |
|       GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);
 | |
| 
 | |
|       APInt BaseOffset(PointerBits, 0);
 | |
| 
 | |
|       // Check if we can compute the Offset with accumulateConstantOffset
 | |
|       if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
 | |
|         Result = Polynomial(BaseOffset);
 | |
|         BasePtr = GEP.getPointerOperand();
 | |
|         return;
 | |
|       } else {
 | |
|         // Otherwise we allow that the last index operand of the GEP is
 | |
|         // non-constant.
 | |
|         unsigned idxOperand, e;
 | |
|         SmallVector<Value *, 4> Indices;
 | |
|         for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
 | |
|              idxOperand++) {
 | |
|           ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
 | |
|           if (!IDX)
 | |
|             break;
 | |
|           Indices.push_back(IDX);
 | |
|         }
 | |
| 
 | |
|         // It must also be the last operand.
 | |
|         if (idxOperand + 1 != e) {
 | |
|           Result = Polynomial();
 | |
|           BasePtr = nullptr;
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         // Compute the polynomial of the index operand.
 | |
|         computePolynomial(*GEP.getOperand(idxOperand), Result);
 | |
| 
 | |
|         // Compute base offset from zero based index, excluding the last
 | |
|         // variable operand.
 | |
|         BaseOffset =
 | |
|             DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);
 | |
| 
 | |
|         // Apply the operations of GEP to the polynomial.
 | |
|         unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
 | |
|         Result.sextOrTrunc(PointerBits);
 | |
|         Result.mul(APInt(PointerBits, ResultSize));
 | |
|         Result.add(BaseOffset);
 | |
|         BasePtr = GEP.getPointerOperand();
 | |
|       }
 | |
|     }
 | |
|     // All other instructions are handled by using the value as base pointer and
 | |
|     // a zero polynomial.
 | |
|     else {
 | |
|       BasePtr = &Ptr;
 | |
|       Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   void print(raw_ostream &OS) const {
 | |
|     if (PV)
 | |
|       OS << *PV;
 | |
|     else
 | |
|       OS << "(none)";
 | |
|     OS << " + ";
 | |
|     for (unsigned i = 0; i < getDimension(); i++)
 | |
|       OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
 | |
|     OS << "]";
 | |
|   }
 | |
| #endif
 | |
| };
 | |
| 
 | |
| } // anonymous namespace
 | |
| 
 | |
| bool InterleavedLoadCombineImpl::findPattern(
 | |
|     std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
 | |
|     unsigned Factor, const DataLayout &DL) {
 | |
|   for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
 | |
|     unsigned i;
 | |
|     // Try to find an interleaved load using the front of Worklist as first line
 | |
|     unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());
 | |
| 
 | |
|     // List containing iterators pointing to the VectorInfos of the candidates
 | |
|     std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());
 | |
| 
 | |
|     for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
 | |
|       if (C->VTy != C0->VTy)
 | |
|         continue;
 | |
|       if (C->BB != C0->BB)
 | |
|         continue;
 | |
|       if (C->PV != C0->PV)
 | |
|         continue;
 | |
| 
 | |
|       // Check the current value matches any of factor - 1 remaining lines
 | |
|       for (i = 1; i < Factor; i++) {
 | |
|         if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
 | |
|           Res[i] = C;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       for (i = 1; i < Factor; i++) {
 | |
|         if (Res[i] == Candidates.end())
 | |
|           break;
 | |
|       }
 | |
|       if (i == Factor) {
 | |
|         Res[0] = C0;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (Res[0] != Candidates.end()) {
 | |
|       // Move the result into the output
 | |
|       for (unsigned i = 0; i < Factor; i++) {
 | |
|         InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
 | |
|       }
 | |
| 
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| LoadInst *
 | |
| InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
 | |
|   assert(!LIs.empty() && "No load instructions given.");
 | |
| 
 | |
|   // All LIs are within the same BB. Select the first for a reference.
 | |
|   BasicBlock *BB = (*LIs.begin())->getParent();
 | |
|   BasicBlock::iterator FLI =
 | |
|       std::find_if(BB->begin(), BB->end(), [&LIs](Instruction &I) -> bool {
 | |
|         return is_contained(LIs, &I);
 | |
|       });
 | |
|   assert(FLI != BB->end());
 | |
| 
 | |
|   return cast<LoadInst>(FLI);
 | |
| }
 | |
| 
 | |
| bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
 | |
|                                          OptimizationRemarkEmitter &ORE) {
 | |
|   LLVM_DEBUG(dbgs() << "Checking interleaved load\n");
 | |
| 
 | |
|   // The insertion point is the LoadInst which loads the first values. The
 | |
|   // following tests are used to proof that the combined load can be inserted
 | |
|   // just before InsertionPoint.
 | |
|   LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;
 | |
| 
 | |
|   // Test if the offset is computed
 | |
|   if (!InsertionPoint)
 | |
|     return false;
 | |
| 
 | |
|   std::set<LoadInst *> LIs;
 | |
|   std::set<Instruction *> Is;
 | |
|   std::set<Instruction *> SVIs;
 | |
| 
 | |
|   unsigned InterleavedCost;
 | |
|   unsigned InstructionCost = 0;
 | |
| 
 | |
|   // Get the interleave factor
 | |
|   unsigned Factor = InterleavedLoad.size();
 | |
| 
 | |
|   // Merge all input sets used in analysis
 | |
|   for (auto &VI : InterleavedLoad) {
 | |
|     // Generate a set of all load instructions to be combined
 | |
|     LIs.insert(VI.LIs.begin(), VI.LIs.end());
 | |
| 
 | |
|     // Generate a set of all instructions taking part in load
 | |
|     // interleaved. This list excludes the instructions necessary for the
 | |
|     // polynomial construction.
 | |
|     Is.insert(VI.Is.begin(), VI.Is.end());
 | |
| 
 | |
|     // Generate the set of the final ShuffleVectorInst.
 | |
|     SVIs.insert(VI.SVI);
 | |
|   }
 | |
| 
 | |
|   // There is nothing to combine.
 | |
|   if (LIs.size() < 2)
 | |
|     return false;
 | |
| 
 | |
|   // Test if all participating instruction will be dead after the
 | |
|   // transformation. If intermediate results are used, no performance gain can
 | |
|   // be expected. Also sum the cost of the Instructions beeing left dead.
 | |
|   for (auto &I : Is) {
 | |
|     // Compute the old cost
 | |
|     InstructionCost +=
 | |
|         TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);
 | |
| 
 | |
|     // The final SVIs are allowed not to be dead, all uses will be replaced
 | |
|     if (SVIs.find(I) != SVIs.end())
 | |
|       continue;
 | |
| 
 | |
|     // If there are users outside the set to be eliminated, we abort the
 | |
|     // transformation. No gain can be expected.
 | |
|     for (const auto &U : I->users()) {
 | |
|       if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // We know that all LoadInst are within the same BB. This guarantees that
 | |
|   // either everything or nothing is loaded.
 | |
|   LoadInst *First = findFirstLoad(LIs);
 | |
| 
 | |
|   // To be safe that the loads can be combined, iterate over all loads and test
 | |
|   // that the corresponding defining access dominates first LI. This guarantees
 | |
|   // that there are no aliasing stores in between the loads.
 | |
|   auto FMA = MSSA.getMemoryAccess(First);
 | |
|   for (auto LI : LIs) {
 | |
|     auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
 | |
|     if (!MSSA.dominates(MADef, FMA))
 | |
|       return false;
 | |
|   }
 | |
|   assert(!LIs.empty() && "There are no LoadInst to combine");
 | |
| 
 | |
|   // It is necessary that insertion point dominates all final ShuffleVectorInst.
 | |
|   for (auto &VI : InterleavedLoad) {
 | |
|     if (!DT.dominates(InsertionPoint, VI.SVI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // All checks are done. Add instructions detectable by InterleavedAccessPass
 | |
|   // The old instruction will are left dead.
 | |
|   IRBuilder<> Builder(InsertionPoint);
 | |
|   Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
 | |
|   unsigned ElementsPerSVI =
 | |
|       InterleavedLoad.front().SVI->getType()->getNumElements();
 | |
|   VectorType *ILTy = VectorType::get(ETy, Factor * ElementsPerSVI);
 | |
| 
 | |
|   SmallVector<unsigned, 4> Indices;
 | |
|   for (unsigned i = 0; i < Factor; i++)
 | |
|     Indices.push_back(i);
 | |
|   InterleavedCost = TTI.getInterleavedMemoryOpCost(
 | |
|       Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlignment(),
 | |
|       InsertionPoint->getPointerAddressSpace());
 | |
| 
 | |
|   if (InterleavedCost >= InstructionCost) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // Create a pointer cast for the wide load.
 | |
|   auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0),
 | |
|                                       ILTy->getPointerTo(),
 | |
|                                       "interleaved.wide.ptrcast");
 | |
| 
 | |
|   // Create the wide load and update the MemorySSA.
 | |
|   auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlignment(),
 | |
|                                       "interleaved.wide.load");
 | |
|   auto MSSAU = MemorySSAUpdater(&MSSA);
 | |
|   MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
 | |
|       LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
 | |
|   MSSAU.insertUse(MSSALoad);
 | |
| 
 | |
|   // Create the final SVIs and replace all uses.
 | |
|   int i = 0;
 | |
|   for (auto &VI : InterleavedLoad) {
 | |
|     SmallVector<uint32_t, 4> Mask;
 | |
|     for (unsigned j = 0; j < ElementsPerSVI; j++)
 | |
|       Mask.push_back(i + j * Factor);
 | |
| 
 | |
|     Builder.SetInsertPoint(VI.SVI);
 | |
|     auto SVI = Builder.CreateShuffleVector(LI, UndefValue::get(LI->getType()),
 | |
|                                            Mask, "interleaved.shuffle");
 | |
|     VI.SVI->replaceAllUsesWith(SVI);
 | |
|     i++;
 | |
|   }
 | |
| 
 | |
|   NumInterleavedLoadCombine++;
 | |
|   ORE.emit([&]() {
 | |
|     return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
 | |
|            << "Load interleaved combined with factor "
 | |
|            << ore::NV("Factor", Factor);
 | |
|   });
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool InterleavedLoadCombineImpl::run() {
 | |
|   OptimizationRemarkEmitter ORE(&F);
 | |
|   bool changed = false;
 | |
|   unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();
 | |
| 
 | |
|   auto &DL = F.getParent()->getDataLayout();
 | |
| 
 | |
|   // Start with the highest factor to avoid combining and recombining.
 | |
|   for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
 | |
|     std::list<VectorInfo> Candidates;
 | |
| 
 | |
|     for (BasicBlock &BB : F) {
 | |
|       for (Instruction &I : BB) {
 | |
|         if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {
 | |
| 
 | |
|           Candidates.emplace_back(SVI->getType());
 | |
| 
 | |
|           if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
 | |
|             Candidates.pop_back();
 | |
|             continue;
 | |
|           }
 | |
| 
 | |
|           if (!Candidates.back().isInterleaved(Factor, DL)) {
 | |
|             Candidates.pop_back();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     std::list<VectorInfo> InterleavedLoad;
 | |
|     while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
 | |
|       if (combine(InterleavedLoad, ORE)) {
 | |
|         changed = true;
 | |
|       } else {
 | |
|         // Remove the first element of the Interleaved Load but put the others
 | |
|         // back on the list and continue searching
 | |
|         Candidates.splice(Candidates.begin(), InterleavedLoad,
 | |
|                           std::next(InterleavedLoad.begin()),
 | |
|                           InterleavedLoad.end());
 | |
|       }
 | |
|       InterleavedLoad.clear();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return changed;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// This pass combines interleaved loads into a pattern detectable by
 | |
| /// InterleavedAccessPass.
 | |
| struct InterleavedLoadCombine : public FunctionPass {
 | |
|   static char ID;
 | |
| 
 | |
|   InterleavedLoadCombine() : FunctionPass(ID) {
 | |
|     initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   StringRef getPassName() const override {
 | |
|     return "Interleaved Load Combine Pass";
 | |
|   }
 | |
| 
 | |
|   bool runOnFunction(Function &F) override {
 | |
|     if (DisableInterleavedLoadCombine)
 | |
|       return false;
 | |
| 
 | |
|     auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
 | |
|     if (!TPC)
 | |
|       return false;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
 | |
|                       << "\n");
 | |
| 
 | |
|     return InterleavedLoadCombineImpl(
 | |
|                F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
 | |
|                getAnalysis<MemorySSAWrapperPass>().getMSSA(),
 | |
|                TPC->getTM<TargetMachine>())
 | |
|         .run();
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<MemorySSAWrapperPass>();
 | |
|     AU.addRequired<DominatorTreeWrapperPass>();
 | |
|     FunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
| private:
 | |
| };
 | |
| } // anonymous namespace
 | |
| 
 | |
| char InterleavedLoadCombine::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(
 | |
|     InterleavedLoadCombine, DEBUG_TYPE,
 | |
|     "Combine interleaved loads into wide loads and shufflevector instructions",
 | |
|     false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
 | |
| INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
 | |
| INITIALIZE_PASS_END(
 | |
|     InterleavedLoadCombine, DEBUG_TYPE,
 | |
|     "Combine interleaved loads into wide loads and shufflevector instructions",
 | |
|     false, false)
 | |
| 
 | |
| FunctionPass *
 | |
| llvm::createInterleavedLoadCombinePass() {
 | |
|   auto P = new InterleavedLoadCombine();
 | |
|   return P;
 | |
| }
 |