2106 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2106 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // Perform peephole optimizations on the machine code:
 | |
| //
 | |
| // - Optimize Extensions
 | |
| //
 | |
| //     Optimization of sign / zero extension instructions. It may be extended to
 | |
| //     handle other instructions with similar properties.
 | |
| //
 | |
| //     On some targets, some instructions, e.g. X86 sign / zero extension, may
 | |
| //     leave the source value in the lower part of the result. This optimization
 | |
| //     will replace some uses of the pre-extension value with uses of the
 | |
| //     sub-register of the results.
 | |
| //
 | |
| // - Optimize Comparisons
 | |
| //
 | |
| //     Optimization of comparison instructions. For instance, in this code:
 | |
| //
 | |
| //       sub r1, 1
 | |
| //       cmp r1, 0
 | |
| //       bz  L1
 | |
| //
 | |
| //     If the "sub" instruction all ready sets (or could be modified to set) the
 | |
| //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
 | |
| //     eliminate the "cmp" instruction.
 | |
| //
 | |
| //     Another instance, in this code:
 | |
| //
 | |
| //       sub r1, r3 | sub r1, imm
 | |
| //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
 | |
| //       bge L1
 | |
| //
 | |
| //     If the branch instruction can use flag from "sub", then we can replace
 | |
| //     "sub" with "subs" and eliminate the "cmp" instruction.
 | |
| //
 | |
| // - Optimize Loads:
 | |
| //
 | |
| //     Loads that can be folded into a later instruction. A load is foldable
 | |
| //     if it loads to virtual registers and the virtual register defined has
 | |
| //     a single use.
 | |
| //
 | |
| // - Optimize Copies and Bitcast (more generally, target specific copies):
 | |
| //
 | |
| //     Rewrite copies and bitcasts to avoid cross register bank copies
 | |
| //     when possible.
 | |
| //     E.g., Consider the following example, where capital and lower
 | |
| //     letters denote different register file:
 | |
| //     b = copy A <-- cross-bank copy
 | |
| //     C = copy b <-- cross-bank copy
 | |
| //   =>
 | |
| //     b = copy A <-- cross-bank copy
 | |
| //     C = copy A <-- same-bank copy
 | |
| //
 | |
| //     E.g., for bitcast:
 | |
| //     b = bitcast A <-- cross-bank copy
 | |
| //     C = bitcast b <-- cross-bank copy
 | |
| //   =>
 | |
| //     b = bitcast A <-- cross-bank copy
 | |
| //     C = copy A    <-- same-bank copy
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetOpcodes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/MC/LaneBitmask.h"
 | |
| #include "llvm/MC/MCInstrDesc.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <memory>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
 | |
| using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
 | |
| 
 | |
| #define DEBUG_TYPE "peephole-opt"
 | |
| 
 | |
| // Optimize Extensions
 | |
| static cl::opt<bool>
 | |
| Aggressive("aggressive-ext-opt", cl::Hidden,
 | |
|            cl::desc("Aggressive extension optimization"));
 | |
| 
 | |
| static cl::opt<bool>
 | |
| DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
 | |
|                 cl::desc("Disable the peephole optimizer"));
 | |
| 
 | |
| /// Specifiy whether or not the value tracking looks through
 | |
| /// complex instructions. When this is true, the value tracker
 | |
| /// bails on everything that is not a copy or a bitcast.
 | |
| static cl::opt<bool>
 | |
| DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
 | |
|                   cl::desc("Disable advanced copy optimization"));
 | |
| 
 | |
| static cl::opt<bool> DisableNAPhysCopyOpt(
 | |
|     "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
 | |
|     cl::desc("Disable non-allocatable physical register copy optimization"));
 | |
| 
 | |
| // Limit the number of PHI instructions to process
 | |
| // in PeepholeOptimizer::getNextSource.
 | |
| static cl::opt<unsigned> RewritePHILimit(
 | |
|     "rewrite-phi-limit", cl::Hidden, cl::init(10),
 | |
|     cl::desc("Limit the length of PHI chains to lookup"));
 | |
| 
 | |
| // Limit the length of recurrence chain when evaluating the benefit of
 | |
| // commuting operands.
 | |
| static cl::opt<unsigned> MaxRecurrenceChain(
 | |
|     "recurrence-chain-limit", cl::Hidden, cl::init(3),
 | |
|     cl::desc("Maximum length of recurrence chain when evaluating the benefit "
 | |
|              "of commuting operands"));
 | |
| 
 | |
| 
 | |
| STATISTIC(NumReuse, "Number of extension results reused");
 | |
| STATISTIC(NumCmps, "Number of compares eliminated");
 | |
| STATISTIC(NumImmFold, "Number of move immediate folded");
 | |
| STATISTIC(NumLoadFold, "Number of loads folded");
 | |
| STATISTIC(NumSelects, "Number of selects optimized");
 | |
| STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
 | |
| STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
 | |
| STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class ValueTrackerResult;
 | |
|   class RecurrenceInstr;
 | |
| 
 | |
|   class PeepholeOptimizer : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     const TargetRegisterInfo *TRI;
 | |
|     MachineRegisterInfo *MRI;
 | |
|     MachineDominatorTree *DT;  // Machine dominator tree
 | |
|     MachineLoopInfo *MLI;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
| 
 | |
|     PeepholeOptimizer() : MachineFunctionPass(ID) {
 | |
|       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|       AU.addRequired<MachineLoopInfo>();
 | |
|       AU.addPreserved<MachineLoopInfo>();
 | |
|       if (Aggressive) {
 | |
|         AU.addRequired<MachineDominatorTree>();
 | |
|         AU.addPreserved<MachineDominatorTree>();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// Track Def -> Use info used for rewriting copies.
 | |
|     using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
 | |
| 
 | |
|     /// Sequence of instructions that formulate recurrence cycle.
 | |
|     using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
 | |
| 
 | |
|   private:
 | |
|     bool optimizeCmpInstr(MachineInstr &MI);
 | |
|     bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
 | |
|                           SmallPtrSetImpl<MachineInstr*> &LocalMIs);
 | |
|     bool optimizeSelect(MachineInstr &MI,
 | |
|                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
 | |
|     bool optimizeCondBranch(MachineInstr &MI);
 | |
|     bool optimizeCoalescableCopy(MachineInstr &MI);
 | |
|     bool optimizeUncoalescableCopy(MachineInstr &MI,
 | |
|                                    SmallPtrSetImpl<MachineInstr *> &LocalMIs);
 | |
|     bool optimizeRecurrence(MachineInstr &PHI);
 | |
|     bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
 | |
|     bool isMoveImmediate(MachineInstr &MI,
 | |
|                          SmallSet<unsigned, 4> &ImmDefRegs,
 | |
|                          DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
 | |
|     bool foldImmediate(MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
 | |
|                        DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
 | |
| 
 | |
|     /// Finds recurrence cycles, but only ones that formulated around
 | |
|     /// a def operand and a use operand that are tied. If there is a use
 | |
|     /// operand commutable with the tied use operand, find recurrence cycle
 | |
|     /// along that operand as well.
 | |
|     bool findTargetRecurrence(unsigned Reg,
 | |
|                               const SmallSet<unsigned, 2> &TargetReg,
 | |
|                               RecurrenceCycle &RC);
 | |
| 
 | |
|     /// If copy instruction \p MI is a virtual register copy, track it in
 | |
|     /// the set \p CopySrcRegs and \p CopyMIs. If this virtual register was
 | |
|     /// previously seen as a copy, replace the uses of this copy with the
 | |
|     /// previously seen copy's destination register.
 | |
|     bool foldRedundantCopy(MachineInstr &MI,
 | |
|                            SmallSet<unsigned, 4> &CopySrcRegs,
 | |
|                            DenseMap<unsigned, MachineInstr *> &CopyMIs);
 | |
| 
 | |
|     /// Is the register \p Reg a non-allocatable physical register?
 | |
|     bool isNAPhysCopy(unsigned Reg);
 | |
| 
 | |
|     /// If copy instruction \p MI is a non-allocatable virtual<->physical
 | |
|     /// register copy, track it in the \p NAPhysToVirtMIs map. If this
 | |
|     /// non-allocatable physical register was previously copied to a virtual
 | |
|     /// registered and hasn't been clobbered, the virt->phys copy can be
 | |
|     /// deleted.
 | |
|     bool foldRedundantNAPhysCopy(MachineInstr &MI,
 | |
|         DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs);
 | |
| 
 | |
|     bool isLoadFoldable(MachineInstr &MI,
 | |
|                         SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
 | |
| 
 | |
|     /// Check whether \p MI is understood by the register coalescer
 | |
|     /// but may require some rewriting.
 | |
|     bool isCoalescableCopy(const MachineInstr &MI) {
 | |
|       // SubregToRegs are not interesting, because they are already register
 | |
|       // coalescer friendly.
 | |
|       return MI.isCopy() || (!DisableAdvCopyOpt &&
 | |
|                              (MI.isRegSequence() || MI.isInsertSubreg() ||
 | |
|                               MI.isExtractSubreg()));
 | |
|     }
 | |
| 
 | |
|     /// Check whether \p MI is a copy like instruction that is
 | |
|     /// not recognized by the register coalescer.
 | |
|     bool isUncoalescableCopy(const MachineInstr &MI) {
 | |
|       return MI.isBitcast() ||
 | |
|              (!DisableAdvCopyOpt &&
 | |
|               (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
 | |
|                MI.isExtractSubregLike()));
 | |
|     }
 | |
| 
 | |
|     MachineInstr &rewriteSource(MachineInstr &CopyLike,
 | |
|                                 RegSubRegPair Def, RewriteMapTy &RewriteMap);
 | |
|   };
 | |
| 
 | |
|   /// Helper class to hold instructions that are inside recurrence cycles.
 | |
|   /// The recurrence cycle is formulated around 1) a def operand and its
 | |
|   /// tied use operand, or 2) a def operand and a use operand that is commutable
 | |
|   /// with another use operand which is tied to the def operand. In the latter
 | |
|   /// case, index of the tied use operand and the commutable use operand are
 | |
|   /// maintained with CommutePair.
 | |
|   class RecurrenceInstr {
 | |
|   public:
 | |
|     using IndexPair = std::pair<unsigned, unsigned>;
 | |
| 
 | |
|     RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
 | |
|     RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
 | |
|       : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
 | |
| 
 | |
|     MachineInstr *getMI() const { return MI; }
 | |
|     Optional<IndexPair> getCommutePair() const { return CommutePair; }
 | |
| 
 | |
|   private:
 | |
|     MachineInstr *MI;
 | |
|     Optional<IndexPair> CommutePair;
 | |
|   };
 | |
| 
 | |
|   /// Helper class to hold a reply for ValueTracker queries.
 | |
|   /// Contains the returned sources for a given search and the instructions
 | |
|   /// where the sources were tracked from.
 | |
|   class ValueTrackerResult {
 | |
|   private:
 | |
|     /// Track all sources found by one ValueTracker query.
 | |
|     SmallVector<RegSubRegPair, 2> RegSrcs;
 | |
| 
 | |
|     /// Instruction using the sources in 'RegSrcs'.
 | |
|     const MachineInstr *Inst = nullptr;
 | |
| 
 | |
|   public:
 | |
|     ValueTrackerResult() = default;
 | |
| 
 | |
|     ValueTrackerResult(unsigned Reg, unsigned SubReg) {
 | |
|       addSource(Reg, SubReg);
 | |
|     }
 | |
| 
 | |
|     bool isValid() const { return getNumSources() > 0; }
 | |
| 
 | |
|     void setInst(const MachineInstr *I) { Inst = I; }
 | |
|     const MachineInstr *getInst() const { return Inst; }
 | |
| 
 | |
|     void clear() {
 | |
|       RegSrcs.clear();
 | |
|       Inst = nullptr;
 | |
|     }
 | |
| 
 | |
|     void addSource(unsigned SrcReg, unsigned SrcSubReg) {
 | |
|       RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
 | |
|     }
 | |
| 
 | |
|     void setSource(int Idx, unsigned SrcReg, unsigned SrcSubReg) {
 | |
|       assert(Idx < getNumSources() && "Reg pair source out of index");
 | |
|       RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
 | |
|     }
 | |
| 
 | |
|     int getNumSources() const { return RegSrcs.size(); }
 | |
| 
 | |
|     RegSubRegPair getSrc(int Idx) const {
 | |
|       return RegSrcs[Idx];
 | |
|     }
 | |
| 
 | |
|     unsigned getSrcReg(int Idx) const {
 | |
|       assert(Idx < getNumSources() && "Reg source out of index");
 | |
|       return RegSrcs[Idx].Reg;
 | |
|     }
 | |
| 
 | |
|     unsigned getSrcSubReg(int Idx) const {
 | |
|       assert(Idx < getNumSources() && "SubReg source out of index");
 | |
|       return RegSrcs[Idx].SubReg;
 | |
|     }
 | |
| 
 | |
|     bool operator==(const ValueTrackerResult &Other) {
 | |
|       if (Other.getInst() != getInst())
 | |
|         return false;
 | |
| 
 | |
|       if (Other.getNumSources() != getNumSources())
 | |
|         return false;
 | |
| 
 | |
|       for (int i = 0, e = Other.getNumSources(); i != e; ++i)
 | |
|         if (Other.getSrcReg(i) != getSrcReg(i) ||
 | |
|             Other.getSrcSubReg(i) != getSrcSubReg(i))
 | |
|           return false;
 | |
|       return true;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   /// Helper class to track the possible sources of a value defined by
 | |
|   /// a (chain of) copy related instructions.
 | |
|   /// Given a definition (instruction and definition index), this class
 | |
|   /// follows the use-def chain to find successive suitable sources.
 | |
|   /// The given source can be used to rewrite the definition into
 | |
|   /// def = COPY src.
 | |
|   ///
 | |
|   /// For instance, let us consider the following snippet:
 | |
|   /// v0 =
 | |
|   /// v2 = INSERT_SUBREG v1, v0, sub0
 | |
|   /// def = COPY v2.sub0
 | |
|   ///
 | |
|   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
 | |
|   /// suitable sources:
 | |
|   /// v2.sub0 and v0.
 | |
|   /// Then, def can be rewritten into def = COPY v0.
 | |
|   class ValueTracker {
 | |
|   private:
 | |
|     /// The current point into the use-def chain.
 | |
|     const MachineInstr *Def = nullptr;
 | |
| 
 | |
|     /// The index of the definition in Def.
 | |
|     unsigned DefIdx = 0;
 | |
| 
 | |
|     /// The sub register index of the definition.
 | |
|     unsigned DefSubReg;
 | |
| 
 | |
|     /// The register where the value can be found.
 | |
|     unsigned Reg;
 | |
| 
 | |
|     /// MachineRegisterInfo used to perform tracking.
 | |
|     const MachineRegisterInfo &MRI;
 | |
| 
 | |
|     /// Optional TargetInstrInfo used to perform some complex tracking.
 | |
|     const TargetInstrInfo *TII;
 | |
| 
 | |
|     /// Dispatcher to the right underlying implementation of getNextSource.
 | |
|     ValueTrackerResult getNextSourceImpl();
 | |
| 
 | |
|     /// Specialized version of getNextSource for Copy instructions.
 | |
|     ValueTrackerResult getNextSourceFromCopy();
 | |
| 
 | |
|     /// Specialized version of getNextSource for Bitcast instructions.
 | |
|     ValueTrackerResult getNextSourceFromBitcast();
 | |
| 
 | |
|     /// Specialized version of getNextSource for RegSequence instructions.
 | |
|     ValueTrackerResult getNextSourceFromRegSequence();
 | |
| 
 | |
|     /// Specialized version of getNextSource for InsertSubreg instructions.
 | |
|     ValueTrackerResult getNextSourceFromInsertSubreg();
 | |
| 
 | |
|     /// Specialized version of getNextSource for ExtractSubreg instructions.
 | |
|     ValueTrackerResult getNextSourceFromExtractSubreg();
 | |
| 
 | |
|     /// Specialized version of getNextSource for SubregToReg instructions.
 | |
|     ValueTrackerResult getNextSourceFromSubregToReg();
 | |
| 
 | |
|     /// Specialized version of getNextSource for PHI instructions.
 | |
|     ValueTrackerResult getNextSourceFromPHI();
 | |
| 
 | |
|   public:
 | |
|     /// Create a ValueTracker instance for the value defined by \p Reg.
 | |
|     /// \p DefSubReg represents the sub register index the value tracker will
 | |
|     /// track. It does not need to match the sub register index used in the
 | |
|     /// definition of \p Reg.
 | |
|     /// If \p Reg is a physical register, a value tracker constructed with
 | |
|     /// this constructor will not find any alternative source.
 | |
|     /// Indeed, when \p Reg is a physical register that constructor does not
 | |
|     /// know which definition of \p Reg it should track.
 | |
|     /// Use the next constructor to track a physical register.
 | |
|     ValueTracker(unsigned Reg, unsigned DefSubReg,
 | |
|                  const MachineRegisterInfo &MRI,
 | |
|                  const TargetInstrInfo *TII = nullptr)
 | |
|         : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
 | |
|       if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
 | |
|         Def = MRI.getVRegDef(Reg);
 | |
|         DefIdx = MRI.def_begin(Reg).getOperandNo();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     /// Following the use-def chain, get the next available source
 | |
|     /// for the tracked value.
 | |
|     /// \return A ValueTrackerResult containing a set of registers
 | |
|     /// and sub registers with tracked values. A ValueTrackerResult with
 | |
|     /// an empty set of registers means no source was found.
 | |
|     ValueTrackerResult getNextSource();
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char PeepholeOptimizer::ID = 0;
 | |
| 
 | |
| char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
 | |
|                       "Peephole Optimizations", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
 | |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | |
| INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
 | |
|                     "Peephole Optimizations", false, false)
 | |
| 
 | |
| /// If instruction is a copy-like instruction, i.e. it reads a single register
 | |
| /// and writes a single register and it does not modify the source, and if the
 | |
| /// source value is preserved as a sub-register of the result, then replace all
 | |
| /// reachable uses of the source with the subreg of the result.
 | |
| ///
 | |
| /// Do not generate an EXTRACT that is used only in a debug use, as this changes
 | |
| /// the code. Since this code does not currently share EXTRACTs, just ignore all
 | |
| /// debug uses.
 | |
| bool PeepholeOptimizer::
 | |
| optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
 | |
|                  SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
 | |
|   unsigned SrcReg, DstReg, SubIdx;
 | |
|   if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
 | |
|     return false;
 | |
| 
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
 | |
|       TargetRegisterInfo::isPhysicalRegister(SrcReg))
 | |
|     return false;
 | |
| 
 | |
|   if (MRI->hasOneNonDBGUse(SrcReg))
 | |
|     // No other uses.
 | |
|     return false;
 | |
| 
 | |
|   // Ensure DstReg can get a register class that actually supports
 | |
|   // sub-registers. Don't change the class until we commit.
 | |
|   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
 | |
|   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
 | |
|   if (!DstRC)
 | |
|     return false;
 | |
| 
 | |
|   // The ext instr may be operating on a sub-register of SrcReg as well.
 | |
|   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
 | |
|   // register.
 | |
|   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
 | |
|   // SrcReg:SubIdx should be replaced.
 | |
|   bool UseSrcSubIdx =
 | |
|       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
 | |
| 
 | |
|   // The source has other uses. See if we can replace the other uses with use of
 | |
|   // the result of the extension.
 | |
|   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
 | |
|   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
 | |
|     ReachedBBs.insert(UI.getParent());
 | |
| 
 | |
|   // Uses that are in the same BB of uses of the result of the instruction.
 | |
|   SmallVector<MachineOperand*, 8> Uses;
 | |
| 
 | |
|   // Uses that the result of the instruction can reach.
 | |
|   SmallVector<MachineOperand*, 8> ExtendedUses;
 | |
| 
 | |
|   bool ExtendLife = true;
 | |
|   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
 | |
|     MachineInstr *UseMI = UseMO.getParent();
 | |
|     if (UseMI == &MI)
 | |
|       continue;
 | |
| 
 | |
|     if (UseMI->isPHI()) {
 | |
|       ExtendLife = false;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Only accept uses of SrcReg:SubIdx.
 | |
|     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
 | |
|       continue;
 | |
| 
 | |
|     // It's an error to translate this:
 | |
|     //
 | |
|     //    %reg1025 = <sext> %reg1024
 | |
|     //     ...
 | |
|     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
 | |
|     //
 | |
|     // into this:
 | |
|     //
 | |
|     //    %reg1025 = <sext> %reg1024
 | |
|     //     ...
 | |
|     //    %reg1027 = COPY %reg1025:4
 | |
|     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
 | |
|     //
 | |
|     // The problem here is that SUBREG_TO_REG is there to assert that an
 | |
|     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
 | |
|     // the COPY here, it will give us the value after the <sext>, not the
 | |
|     // original value of %reg1024 before <sext>.
 | |
|     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
 | |
|       continue;
 | |
| 
 | |
|     MachineBasicBlock *UseMBB = UseMI->getParent();
 | |
|     if (UseMBB == &MBB) {
 | |
|       // Local uses that come after the extension.
 | |
|       if (!LocalMIs.count(UseMI))
 | |
|         Uses.push_back(&UseMO);
 | |
|     } else if (ReachedBBs.count(UseMBB)) {
 | |
|       // Non-local uses where the result of the extension is used. Always
 | |
|       // replace these unless it's a PHI.
 | |
|       Uses.push_back(&UseMO);
 | |
|     } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
 | |
|       // We may want to extend the live range of the extension result in order
 | |
|       // to replace these uses.
 | |
|       ExtendedUses.push_back(&UseMO);
 | |
|     } else {
 | |
|       // Both will be live out of the def MBB anyway. Don't extend live range of
 | |
|       // the extension result.
 | |
|       ExtendLife = false;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ExtendLife && !ExtendedUses.empty())
 | |
|     // Extend the liveness of the extension result.
 | |
|     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
 | |
| 
 | |
|   // Now replace all uses.
 | |
|   bool Changed = false;
 | |
|   if (!Uses.empty()) {
 | |
|     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
 | |
| 
 | |
|     // Look for PHI uses of the extended result, we don't want to extend the
 | |
|     // liveness of a PHI input. It breaks all kinds of assumptions down
 | |
|     // stream. A PHI use is expected to be the kill of its source values.
 | |
|     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
 | |
|       if (UI.isPHI())
 | |
|         PHIBBs.insert(UI.getParent());
 | |
| 
 | |
|     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
 | |
|     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
 | |
|       MachineOperand *UseMO = Uses[i];
 | |
|       MachineInstr *UseMI = UseMO->getParent();
 | |
|       MachineBasicBlock *UseMBB = UseMI->getParent();
 | |
|       if (PHIBBs.count(UseMBB))
 | |
|         continue;
 | |
| 
 | |
|       // About to add uses of DstReg, clear DstReg's kill flags.
 | |
|       if (!Changed) {
 | |
|         MRI->clearKillFlags(DstReg);
 | |
|         MRI->constrainRegClass(DstReg, DstRC);
 | |
|       }
 | |
| 
 | |
|       unsigned NewVR = MRI->createVirtualRegister(RC);
 | |
|       MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
 | |
|                                    TII->get(TargetOpcode::COPY), NewVR)
 | |
|         .addReg(DstReg, 0, SubIdx);
 | |
|       // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
 | |
|       if (UseSrcSubIdx) {
 | |
|         Copy->getOperand(0).setSubReg(SubIdx);
 | |
|         Copy->getOperand(0).setIsUndef();
 | |
|       }
 | |
|       UseMO->setReg(NewVR);
 | |
|       ++NumReuse;
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// If the instruction is a compare and the previous instruction it's comparing
 | |
| /// against already sets (or could be modified to set) the same flag as the
 | |
| /// compare, then we can remove the comparison and use the flag from the
 | |
| /// previous instruction.
 | |
| bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
 | |
|   // If this instruction is a comparison against zero and isn't comparing a
 | |
|   // physical register, we can try to optimize it.
 | |
|   unsigned SrcReg, SrcReg2;
 | |
|   int CmpMask, CmpValue;
 | |
|   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
 | |
|       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
 | |
|       (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
 | |
|     return false;
 | |
| 
 | |
|   // Attempt to optimize the comparison instruction.
 | |
|   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
 | |
|     ++NumCmps;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Optimize a select instruction.
 | |
| bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
 | |
|                             SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
 | |
|   unsigned TrueOp = 0;
 | |
|   unsigned FalseOp = 0;
 | |
|   bool Optimizable = false;
 | |
|   SmallVector<MachineOperand, 4> Cond;
 | |
|   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
 | |
|     return false;
 | |
|   if (!Optimizable)
 | |
|     return false;
 | |
|   if (!TII->optimizeSelect(MI, LocalMIs))
 | |
|     return false;
 | |
|   MI.eraseFromParent();
 | |
|   ++NumSelects;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check if a simpler conditional branch can be generated.
 | |
| bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
 | |
|   return TII->optimizeCondBranch(MI);
 | |
| }
 | |
| 
 | |
| /// Try to find the next source that share the same register file
 | |
| /// for the value defined by \p Reg and \p SubReg.
 | |
| /// When true is returned, the \p RewriteMap can be used by the client to
 | |
| /// retrieve all Def -> Use along the way up to the next source. Any found
 | |
| /// Use that is not itself a key for another entry, is the next source to
 | |
| /// use. During the search for the next source, multiple sources can be found
 | |
| /// given multiple incoming sources of a PHI instruction. In this case, we
 | |
| /// look in each PHI source for the next source; all found next sources must
 | |
| /// share the same register file as \p Reg and \p SubReg. The client should
 | |
| /// then be capable to rewrite all intermediate PHIs to get the next source.
 | |
| /// \return False if no alternative sources are available. True otherwise.
 | |
| bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
 | |
|                                        RewriteMapTy &RewriteMap) {
 | |
|   // Do not try to find a new source for a physical register.
 | |
|   // So far we do not have any motivating example for doing that.
 | |
|   // Thus, instead of maintaining untested code, we will revisit that if
 | |
|   // that changes at some point.
 | |
|   unsigned Reg = RegSubReg.Reg;
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(Reg))
 | |
|     return false;
 | |
|   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
 | |
| 
 | |
|   SmallVector<RegSubRegPair, 4> SrcToLook;
 | |
|   RegSubRegPair CurSrcPair = RegSubReg;
 | |
|   SrcToLook.push_back(CurSrcPair);
 | |
| 
 | |
|   unsigned PHICount = 0;
 | |
|   do {
 | |
|     CurSrcPair = SrcToLook.pop_back_val();
 | |
|     // As explained above, do not handle physical registers
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg))
 | |
|       return false;
 | |
| 
 | |
|     ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
 | |
| 
 | |
|     // Follow the chain of copies until we find a more suitable source, a phi
 | |
|     // or have to abort.
 | |
|     while (true) {
 | |
|       ValueTrackerResult Res = ValTracker.getNextSource();
 | |
|       // Abort at the end of a chain (without finding a suitable source).
 | |
|       if (!Res.isValid())
 | |
|         return false;
 | |
| 
 | |
|       // Insert the Def -> Use entry for the recently found source.
 | |
|       ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
 | |
|       if (CurSrcRes.isValid()) {
 | |
|         assert(CurSrcRes == Res && "ValueTrackerResult found must match");
 | |
|         // An existent entry with multiple sources is a PHI cycle we must avoid.
 | |
|         // Otherwise it's an entry with a valid next source we already found.
 | |
|         if (CurSrcRes.getNumSources() > 1) {
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                      << "findNextSource: found PHI cycle, aborting...\n");
 | |
|           return false;
 | |
|         }
 | |
|         break;
 | |
|       }
 | |
|       RewriteMap.insert(std::make_pair(CurSrcPair, Res));
 | |
| 
 | |
|       // ValueTrackerResult usually have one source unless it's the result from
 | |
|       // a PHI instruction. Add the found PHI edges to be looked up further.
 | |
|       unsigned NumSrcs = Res.getNumSources();
 | |
|       if (NumSrcs > 1) {
 | |
|         PHICount++;
 | |
|         if (PHICount >= RewritePHILimit) {
 | |
|           LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
 | |
|           return false;
 | |
|         }
 | |
| 
 | |
|         for (unsigned i = 0; i < NumSrcs; ++i)
 | |
|           SrcToLook.push_back(Res.getSrc(i));
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       CurSrcPair = Res.getSrc(0);
 | |
|       // Do not extend the live-ranges of physical registers as they add
 | |
|       // constraints to the register allocator. Moreover, if we want to extend
 | |
|       // the live-range of a physical register, unlike SSA virtual register,
 | |
|       // we will have to check that they aren't redefine before the related use.
 | |
|       if (TargetRegisterInfo::isPhysicalRegister(CurSrcPair.Reg))
 | |
|         return false;
 | |
| 
 | |
|       // Keep following the chain if the value isn't any better yet.
 | |
|       const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
 | |
|       if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
 | |
|                                      CurSrcPair.SubReg))
 | |
|         continue;
 | |
| 
 | |
|       // We currently cannot deal with subreg operands on PHI instructions
 | |
|       // (see insertPHI()).
 | |
|       if (PHICount > 0 && CurSrcPair.SubReg != 0)
 | |
|         continue;
 | |
| 
 | |
|       // We found a suitable source, and are done with this chain.
 | |
|       break;
 | |
|     }
 | |
|   } while (!SrcToLook.empty());
 | |
| 
 | |
|   // If we did not find a more suitable source, there is nothing to optimize.
 | |
|   return CurSrcPair.Reg != Reg;
 | |
| }
 | |
| 
 | |
| /// Insert a PHI instruction with incoming edges \p SrcRegs that are
 | |
| /// guaranteed to have the same register class. This is necessary whenever we
 | |
| /// successfully traverse a PHI instruction and find suitable sources coming
 | |
| /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
 | |
| /// suitable to be used in a new COPY instruction.
 | |
| static MachineInstr &
 | |
| insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
 | |
|           const SmallVectorImpl<RegSubRegPair> &SrcRegs,
 | |
|           MachineInstr &OrigPHI) {
 | |
|   assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
 | |
| 
 | |
|   const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
 | |
|   // NewRC is only correct if no subregisters are involved. findNextSource()
 | |
|   // should have rejected those cases already.
 | |
|   assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
 | |
|   unsigned NewVR = MRI.createVirtualRegister(NewRC);
 | |
|   MachineBasicBlock *MBB = OrigPHI.getParent();
 | |
|   MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
 | |
|                                     TII.get(TargetOpcode::PHI), NewVR);
 | |
| 
 | |
|   unsigned MBBOpIdx = 2;
 | |
|   for (const RegSubRegPair &RegPair : SrcRegs) {
 | |
|     MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
 | |
|     MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
 | |
|     // Since we're extended the lifetime of RegPair.Reg, clear the
 | |
|     // kill flags to account for that and make RegPair.Reg reaches
 | |
|     // the new PHI.
 | |
|     MRI.clearKillFlags(RegPair.Reg);
 | |
|     MBBOpIdx += 2;
 | |
|   }
 | |
| 
 | |
|   return *MIB;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Interface to query instructions amenable to copy rewriting.
 | |
| class Rewriter {
 | |
| protected:
 | |
|   MachineInstr &CopyLike;
 | |
|   unsigned CurrentSrcIdx = 0;   ///< The index of the source being rewritten.
 | |
| public:
 | |
|   Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
 | |
|   virtual ~Rewriter() {}
 | |
| 
 | |
|   /// Get the next rewritable source (SrcReg, SrcSubReg) and
 | |
|   /// the related value that it affects (DstReg, DstSubReg).
 | |
|   /// A source is considered rewritable if its register class and the
 | |
|   /// register class of the related DstReg may not be register
 | |
|   /// coalescer friendly. In other words, given a copy-like instruction
 | |
|   /// not all the arguments may be returned at rewritable source, since
 | |
|   /// some arguments are none to be register coalescer friendly.
 | |
|   ///
 | |
|   /// Each call of this method moves the current source to the next
 | |
|   /// rewritable source.
 | |
|   /// For instance, let CopyLike be the instruction to rewrite.
 | |
|   /// CopyLike has one definition and one source:
 | |
|   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
 | |
|   ///
 | |
|   /// The first call will give the first rewritable source, i.e.,
 | |
|   /// the only source this instruction has:
 | |
|   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
 | |
|   /// This source defines the whole definition, i.e.,
 | |
|   /// (DstReg, DstSubReg) = (dst, dstSubIdx).
 | |
|   ///
 | |
|   /// The second and subsequent calls will return false, as there is only one
 | |
|   /// rewritable source.
 | |
|   ///
 | |
|   /// \return True if a rewritable source has been found, false otherwise.
 | |
|   /// The output arguments are valid if and only if true is returned.
 | |
|   virtual bool getNextRewritableSource(RegSubRegPair &Src,
 | |
|                                        RegSubRegPair &Dst) = 0;
 | |
| 
 | |
|   /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
 | |
|   /// \return True if the rewriting was possible, false otherwise.
 | |
|   virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) = 0;
 | |
| };
 | |
| 
 | |
| /// Rewriter for COPY instructions.
 | |
| class CopyRewriter : public Rewriter {
 | |
| public:
 | |
|   CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
 | |
|     assert(MI.isCopy() && "Expected copy instruction");
 | |
|   }
 | |
|   virtual ~CopyRewriter() = default;
 | |
| 
 | |
|   bool getNextRewritableSource(RegSubRegPair &Src,
 | |
|                                RegSubRegPair &Dst) override {
 | |
|     // CurrentSrcIdx > 0 means this function has already been called.
 | |
|     if (CurrentSrcIdx > 0)
 | |
|       return false;
 | |
|     // This is the first call to getNextRewritableSource.
 | |
|     // Move the CurrentSrcIdx to remember that we made that call.
 | |
|     CurrentSrcIdx = 1;
 | |
|     // The rewritable source is the argument.
 | |
|     const MachineOperand &MOSrc = CopyLike.getOperand(1);
 | |
|     Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
 | |
|     // What we track are the alternative sources of the definition.
 | |
|     const MachineOperand &MODef = CopyLike.getOperand(0);
 | |
|     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
 | |
|     if (CurrentSrcIdx != 1)
 | |
|       return false;
 | |
|     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
 | |
|     MOSrc.setReg(NewReg);
 | |
|     MOSrc.setSubReg(NewSubReg);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Helper class to rewrite uncoalescable copy like instructions
 | |
| /// into new COPY (coalescable friendly) instructions.
 | |
| class UncoalescableRewriter : public Rewriter {
 | |
|   unsigned NumDefs;  ///< Number of defs in the bitcast.
 | |
| 
 | |
| public:
 | |
|   UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
 | |
|     NumDefs = MI.getDesc().getNumDefs();
 | |
|   }
 | |
| 
 | |
|   /// \see See Rewriter::getNextRewritableSource()
 | |
|   /// All such sources need to be considered rewritable in order to
 | |
|   /// rewrite a uncoalescable copy-like instruction. This method return
 | |
|   /// each definition that must be checked if rewritable.
 | |
|   bool getNextRewritableSource(RegSubRegPair &Src,
 | |
|                                RegSubRegPair &Dst) override {
 | |
|     // Find the next non-dead definition and continue from there.
 | |
|     if (CurrentSrcIdx == NumDefs)
 | |
|       return false;
 | |
| 
 | |
|     while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
 | |
|       ++CurrentSrcIdx;
 | |
|       if (CurrentSrcIdx == NumDefs)
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // What we track are the alternative sources of the definition.
 | |
|     Src = RegSubRegPair(0, 0);
 | |
|     const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
 | |
|     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
 | |
| 
 | |
|     CurrentSrcIdx++;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
 | |
|     return false;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Specialized rewriter for INSERT_SUBREG instruction.
 | |
| class InsertSubregRewriter : public Rewriter {
 | |
| public:
 | |
|   InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
 | |
|     assert(MI.isInsertSubreg() && "Invalid instruction");
 | |
|   }
 | |
| 
 | |
|   /// \see See Rewriter::getNextRewritableSource()
 | |
|   /// Here CopyLike has the following form:
 | |
|   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
 | |
|   /// Src1 has the same register class has dst, hence, there is
 | |
|   /// nothing to rewrite.
 | |
|   /// Src2.src2SubIdx, may not be register coalescer friendly.
 | |
|   /// Therefore, the first call to this method returns:
 | |
|   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
 | |
|   /// (DstReg, DstSubReg) = (dst, subIdx).
 | |
|   ///
 | |
|   /// Subsequence calls will return false.
 | |
|   bool getNextRewritableSource(RegSubRegPair &Src,
 | |
|                                RegSubRegPair &Dst) override {
 | |
|     // If we already get the only source we can rewrite, return false.
 | |
|     if (CurrentSrcIdx == 2)
 | |
|       return false;
 | |
|     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
 | |
|     CurrentSrcIdx = 2;
 | |
|     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
 | |
|     Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
 | |
|     const MachineOperand &MODef = CopyLike.getOperand(0);
 | |
| 
 | |
|     // We want to track something that is compatible with the
 | |
|     // partial definition.
 | |
|     if (MODef.getSubReg())
 | |
|       // Bail if we have to compose sub-register indices.
 | |
|       return false;
 | |
|     Dst = RegSubRegPair(MODef.getReg(),
 | |
|                         (unsigned)CopyLike.getOperand(3).getImm());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
 | |
|     if (CurrentSrcIdx != 2)
 | |
|       return false;
 | |
|     // We are rewriting the inserted reg.
 | |
|     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
 | |
|     MO.setReg(NewReg);
 | |
|     MO.setSubReg(NewSubReg);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Specialized rewriter for EXTRACT_SUBREG instruction.
 | |
| class ExtractSubregRewriter : public Rewriter {
 | |
|   const TargetInstrInfo &TII;
 | |
| 
 | |
| public:
 | |
|   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
 | |
|       : Rewriter(MI), TII(TII) {
 | |
|     assert(MI.isExtractSubreg() && "Invalid instruction");
 | |
|   }
 | |
| 
 | |
|   /// \see Rewriter::getNextRewritableSource()
 | |
|   /// Here CopyLike has the following form:
 | |
|   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
 | |
|   /// There is only one rewritable source: Src.subIdx,
 | |
|   /// which defines dst.dstSubIdx.
 | |
|   bool getNextRewritableSource(RegSubRegPair &Src,
 | |
|                                RegSubRegPair &Dst) override {
 | |
|     // If we already get the only source we can rewrite, return false.
 | |
|     if (CurrentSrcIdx == 1)
 | |
|       return false;
 | |
|     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
 | |
|     CurrentSrcIdx = 1;
 | |
|     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
 | |
|     // If we have to compose sub-register indices, bail out.
 | |
|     if (MOExtractedReg.getSubReg())
 | |
|       return false;
 | |
| 
 | |
|     Src = RegSubRegPair(MOExtractedReg.getReg(),
 | |
|                         CopyLike.getOperand(2).getImm());
 | |
| 
 | |
|     // We want to track something that is compatible with the definition.
 | |
|     const MachineOperand &MODef = CopyLike.getOperand(0);
 | |
|     Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
 | |
|     // The only source we can rewrite is the input register.
 | |
|     if (CurrentSrcIdx != 1)
 | |
|       return false;
 | |
| 
 | |
|     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
 | |
| 
 | |
|     // If we find a source that does not require to extract something,
 | |
|     // rewrite the operation with a copy.
 | |
|     if (!NewSubReg) {
 | |
|       // Move the current index to an invalid position.
 | |
|       // We do not want another call to this method to be able
 | |
|       // to do any change.
 | |
|       CurrentSrcIdx = -1;
 | |
|       // Rewrite the operation as a COPY.
 | |
|       // Get rid of the sub-register index.
 | |
|       CopyLike.RemoveOperand(2);
 | |
|       // Morph the operation into a COPY.
 | |
|       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
 | |
|       return true;
 | |
|     }
 | |
|     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Specialized rewriter for REG_SEQUENCE instruction.
 | |
| class RegSequenceRewriter : public Rewriter {
 | |
| public:
 | |
|   RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
 | |
|     assert(MI.isRegSequence() && "Invalid instruction");
 | |
|   }
 | |
| 
 | |
|   /// \see Rewriter::getNextRewritableSource()
 | |
|   /// Here CopyLike has the following form:
 | |
|   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
 | |
|   /// Each call will return a different source, walking all the available
 | |
|   /// source.
 | |
|   ///
 | |
|   /// The first call returns:
 | |
|   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
 | |
|   /// (DstReg, DstSubReg) = (dst, subIdx1).
 | |
|   ///
 | |
|   /// The second call returns:
 | |
|   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
 | |
|   /// (DstReg, DstSubReg) = (dst, subIdx2).
 | |
|   ///
 | |
|   /// And so on, until all the sources have been traversed, then
 | |
|   /// it returns false.
 | |
|   bool getNextRewritableSource(RegSubRegPair &Src,
 | |
|                                RegSubRegPair &Dst) override {
 | |
|     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
 | |
| 
 | |
|     // If this is the first call, move to the first argument.
 | |
|     if (CurrentSrcIdx == 0) {
 | |
|       CurrentSrcIdx = 1;
 | |
|     } else {
 | |
|       // Otherwise, move to the next argument and check that it is valid.
 | |
|       CurrentSrcIdx += 2;
 | |
|       if (CurrentSrcIdx >= CopyLike.getNumOperands())
 | |
|         return false;
 | |
|     }
 | |
|     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
 | |
|     Src.Reg = MOInsertedReg.getReg();
 | |
|     // If we have to compose sub-register indices, bail out.
 | |
|     if ((Src.SubReg = MOInsertedReg.getSubReg()))
 | |
|       return false;
 | |
| 
 | |
|     // We want to track something that is compatible with the related
 | |
|     // partial definition.
 | |
|     Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
 | |
| 
 | |
|     const MachineOperand &MODef = CopyLike.getOperand(0);
 | |
|     Dst.Reg = MODef.getReg();
 | |
|     // If we have to compose sub-registers, bail.
 | |
|     return MODef.getSubReg() == 0;
 | |
|   }
 | |
| 
 | |
|   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
 | |
|     // We cannot rewrite out of bound operands.
 | |
|     // Moreover, rewritable sources are at odd positions.
 | |
|     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
 | |
|       return false;
 | |
| 
 | |
|     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
 | |
|     MO.setReg(NewReg);
 | |
|     MO.setSubReg(NewSubReg);
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| /// Get the appropriated Rewriter for \p MI.
 | |
| /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
 | |
| /// rewriter works for \p MI.
 | |
| static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
 | |
|   // Handle uncoalescable copy-like instructions.
 | |
|   if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
 | |
|       MI.isExtractSubregLike())
 | |
|     return new UncoalescableRewriter(MI);
 | |
| 
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     return nullptr;
 | |
|   case TargetOpcode::COPY:
 | |
|     return new CopyRewriter(MI);
 | |
|   case TargetOpcode::INSERT_SUBREG:
 | |
|     return new InsertSubregRewriter(MI);
 | |
|   case TargetOpcode::EXTRACT_SUBREG:
 | |
|     return new ExtractSubregRewriter(MI, TII);
 | |
|   case TargetOpcode::REG_SEQUENCE:
 | |
|     return new RegSequenceRewriter(MI);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Given a \p Def.Reg and Def.SubReg  pair, use \p RewriteMap to find
 | |
| /// the new source to use for rewrite. If \p HandleMultipleSources is true and
 | |
| /// multiple sources for a given \p Def are found along the way, we found a
 | |
| /// PHI instructions that needs to be rewritten.
 | |
| /// TODO: HandleMultipleSources should be removed once we test PHI handling
 | |
| /// with coalescable copies.
 | |
| static RegSubRegPair
 | |
| getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
 | |
|              RegSubRegPair Def,
 | |
|              const PeepholeOptimizer::RewriteMapTy &RewriteMap,
 | |
|              bool HandleMultipleSources = true) {
 | |
|   RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
 | |
|   while (true) {
 | |
|     ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
 | |
|     // If there are no entries on the map, LookupSrc is the new source.
 | |
|     if (!Res.isValid())
 | |
|       return LookupSrc;
 | |
| 
 | |
|     // There's only one source for this definition, keep searching...
 | |
|     unsigned NumSrcs = Res.getNumSources();
 | |
|     if (NumSrcs == 1) {
 | |
|       LookupSrc.Reg = Res.getSrcReg(0);
 | |
|       LookupSrc.SubReg = Res.getSrcSubReg(0);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // TODO: Remove once multiple srcs w/ coalescable copies are supported.
 | |
|     if (!HandleMultipleSources)
 | |
|       break;
 | |
| 
 | |
|     // Multiple sources, recurse into each source to find a new source
 | |
|     // for it. Then, rewrite the PHI accordingly to its new edges.
 | |
|     SmallVector<RegSubRegPair, 4> NewPHISrcs;
 | |
|     for (unsigned i = 0; i < NumSrcs; ++i) {
 | |
|       RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
 | |
|       NewPHISrcs.push_back(
 | |
|           getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
 | |
|     }
 | |
| 
 | |
|     // Build the new PHI node and return its def register as the new source.
 | |
|     MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
 | |
|     MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
 | |
|     LLVM_DEBUG(dbgs() << "-- getNewSource\n");
 | |
|     LLVM_DEBUG(dbgs() << "   Replacing: " << OrigPHI);
 | |
|     LLVM_DEBUG(dbgs() << "        With: " << NewPHI);
 | |
|     const MachineOperand &MODef = NewPHI.getOperand(0);
 | |
|     return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
 | |
|   }
 | |
| 
 | |
|   return RegSubRegPair(0, 0);
 | |
| }
 | |
| 
 | |
| /// Optimize generic copy instructions to avoid cross register bank copy.
 | |
| /// The optimization looks through a chain of copies and tries to find a source
 | |
| /// that has a compatible register class.
 | |
| /// Two register classes are considered to be compatible if they share the same
 | |
| /// register bank.
 | |
| /// New copies issued by this optimization are register allocator
 | |
| /// friendly. This optimization does not remove any copy as it may
 | |
| /// overconstrain the register allocator, but replaces some operands
 | |
| /// when possible.
 | |
| /// \pre isCoalescableCopy(*MI) is true.
 | |
| /// \return True, when \p MI has been rewritten. False otherwise.
 | |
| bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
 | |
|   assert(isCoalescableCopy(MI) && "Invalid argument");
 | |
|   assert(MI.getDesc().getNumDefs() == 1 &&
 | |
|          "Coalescer can understand multiple defs?!");
 | |
|   const MachineOperand &MODef = MI.getOperand(0);
 | |
|   // Do not rewrite physical definitions.
 | |
|   if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   // Get the right rewriter for the current copy.
 | |
|   std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
 | |
|   // If none exists, bail out.
 | |
|   if (!CpyRewriter)
 | |
|     return false;
 | |
|   // Rewrite each rewritable source.
 | |
|   RegSubRegPair Src;
 | |
|   RegSubRegPair TrackPair;
 | |
|   while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
 | |
|     // Keep track of PHI nodes and its incoming edges when looking for sources.
 | |
|     RewriteMapTy RewriteMap;
 | |
|     // Try to find a more suitable source. If we failed to do so, or get the
 | |
|     // actual source, move to the next source.
 | |
|     if (!findNextSource(TrackPair, RewriteMap))
 | |
|       continue;
 | |
| 
 | |
|     // Get the new source to rewrite. TODO: Only enable handling of multiple
 | |
|     // sources (PHIs) once we have a motivating example and testcases for it.
 | |
|     RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
 | |
|                                         /*HandleMultipleSources=*/false);
 | |
|     if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
 | |
|       continue;
 | |
| 
 | |
|     // Rewrite source.
 | |
|     if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
 | |
|       // We may have extended the live-range of NewSrc, account for that.
 | |
|       MRI->clearKillFlags(NewSrc.Reg);
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
|   // TODO: We could have a clean-up method to tidy the instruction.
 | |
|   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
 | |
|   // => v0 = COPY v1
 | |
|   // Currently we haven't seen motivating example for that and we
 | |
|   // want to avoid untested code.
 | |
|   NumRewrittenCopies += Changed;
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| /// Rewrite the source found through \p Def, by using the \p RewriteMap
 | |
| /// and create a new COPY instruction. More info about RewriteMap in
 | |
| /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
 | |
| /// Uncoalescable copies, since they are copy like instructions that aren't
 | |
| /// recognized by the register allocator.
 | |
| MachineInstr &
 | |
| PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
 | |
|                                  RegSubRegPair Def, RewriteMapTy &RewriteMap) {
 | |
|   assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
 | |
|          "We do not rewrite physical registers");
 | |
| 
 | |
|   // Find the new source to use in the COPY rewrite.
 | |
|   RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
 | |
| 
 | |
|   // Insert the COPY.
 | |
|   const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
 | |
|   unsigned NewVReg = MRI->createVirtualRegister(DefRC);
 | |
| 
 | |
|   MachineInstr *NewCopy =
 | |
|       BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
 | |
|               TII->get(TargetOpcode::COPY), NewVReg)
 | |
|           .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
 | |
| 
 | |
|   if (Def.SubReg) {
 | |
|     NewCopy->getOperand(0).setSubReg(Def.SubReg);
 | |
|     NewCopy->getOperand(0).setIsUndef();
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
 | |
|   LLVM_DEBUG(dbgs() << "   Replacing: " << CopyLike);
 | |
|   LLVM_DEBUG(dbgs() << "        With: " << *NewCopy);
 | |
|   MRI->replaceRegWith(Def.Reg, NewVReg);
 | |
|   MRI->clearKillFlags(NewVReg);
 | |
| 
 | |
|   // We extended the lifetime of NewSrc.Reg, clear the kill flags to
 | |
|   // account for that.
 | |
|   MRI->clearKillFlags(NewSrc.Reg);
 | |
| 
 | |
|   return *NewCopy;
 | |
| }
 | |
| 
 | |
| /// Optimize copy-like instructions to create
 | |
| /// register coalescer friendly instruction.
 | |
| /// The optimization tries to kill-off the \p MI by looking
 | |
| /// through a chain of copies to find a source that has a compatible
 | |
| /// register class.
 | |
| /// If such a source is found, it replace \p MI by a generic COPY
 | |
| /// operation.
 | |
| /// \pre isUncoalescableCopy(*MI) is true.
 | |
| /// \return True, when \p MI has been optimized. In that case, \p MI has
 | |
| /// been removed from its parent.
 | |
| /// All COPY instructions created, are inserted in \p LocalMIs.
 | |
| bool PeepholeOptimizer::optimizeUncoalescableCopy(
 | |
|     MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
 | |
|   assert(isUncoalescableCopy(MI) && "Invalid argument");
 | |
|   UncoalescableRewriter CpyRewriter(MI);
 | |
| 
 | |
|   // Rewrite each rewritable source by generating new COPYs. This works
 | |
|   // differently from optimizeCoalescableCopy since it first makes sure that all
 | |
|   // definitions can be rewritten.
 | |
|   RewriteMapTy RewriteMap;
 | |
|   RegSubRegPair Src;
 | |
|   RegSubRegPair Def;
 | |
|   SmallVector<RegSubRegPair, 4> RewritePairs;
 | |
|   while (CpyRewriter.getNextRewritableSource(Src, Def)) {
 | |
|     // If a physical register is here, this is probably for a good reason.
 | |
|     // Do not rewrite that.
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(Def.Reg))
 | |
|       return false;
 | |
| 
 | |
|     // If we do not know how to rewrite this definition, there is no point
 | |
|     // in trying to kill this instruction.
 | |
|     if (!findNextSource(Def, RewriteMap))
 | |
|       return false;
 | |
| 
 | |
|     RewritePairs.push_back(Def);
 | |
|   }
 | |
| 
 | |
|   // The change is possible for all defs, do it.
 | |
|   for (const RegSubRegPair &Def : RewritePairs) {
 | |
|     // Rewrite the "copy" in a way the register coalescer understands.
 | |
|     MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
 | |
|     LocalMIs.insert(&NewCopy);
 | |
|   }
 | |
| 
 | |
|   // MI is now dead.
 | |
|   MI.eraseFromParent();
 | |
|   ++NumUncoalescableCopies;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Check whether MI is a candidate for folding into a later instruction.
 | |
| /// We only fold loads to virtual registers and the virtual register defined
 | |
| /// has a single use.
 | |
| bool PeepholeOptimizer::isLoadFoldable(
 | |
|     MachineInstr &MI, SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
 | |
|   if (!MI.canFoldAsLoad() || !MI.mayLoad())
 | |
|     return false;
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   if (MCID.getNumDefs() != 1)
 | |
|     return false;
 | |
| 
 | |
|   unsigned Reg = MI.getOperand(0).getReg();
 | |
|   // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
 | |
|   // loads. It should be checked when processing uses of the load, since
 | |
|   // uses can be removed during peephole.
 | |
|   if (!MI.getOperand(0).getSubReg() &&
 | |
|       TargetRegisterInfo::isVirtualRegister(Reg) &&
 | |
|       MRI->hasOneNonDBGUse(Reg)) {
 | |
|     FoldAsLoadDefCandidates.insert(Reg);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool PeepholeOptimizer::isMoveImmediate(
 | |
|     MachineInstr &MI, SmallSet<unsigned, 4> &ImmDefRegs,
 | |
|     DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
 | |
|   const MCInstrDesc &MCID = MI.getDesc();
 | |
|   if (!MI.isMoveImmediate())
 | |
|     return false;
 | |
|   if (MCID.getNumDefs() != 1)
 | |
|     return false;
 | |
|   unsigned Reg = MI.getOperand(0).getReg();
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
 | |
|     ImmDefMIs.insert(std::make_pair(Reg, &MI));
 | |
|     ImmDefRegs.insert(Reg);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Try folding register operands that are defined by move immediate
 | |
| /// instructions, i.e. a trivial constant folding optimization, if
 | |
| /// and only if the def and use are in the same BB.
 | |
| bool PeepholeOptimizer::foldImmediate(MachineInstr &MI,
 | |
|     SmallSet<unsigned, 4> &ImmDefRegs,
 | |
|     DenseMap<unsigned, MachineInstr *> &ImmDefMIs) {
 | |
|   for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
 | |
|     MachineOperand &MO = MI.getOperand(i);
 | |
|     if (!MO.isReg() || MO.isDef())
 | |
|       continue;
 | |
|     // Ignore dead implicit defs.
 | |
|     if (MO.isImplicit() && MO.isDead())
 | |
|       continue;
 | |
|     unsigned Reg = MO.getReg();
 | |
|     if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | |
|       continue;
 | |
|     if (ImmDefRegs.count(Reg) == 0)
 | |
|       continue;
 | |
|     DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
 | |
|     assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
 | |
|     if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
 | |
|       ++NumImmFold;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // FIXME: This is very simple and misses some cases which should be handled when
 | |
| // motivating examples are found.
 | |
| //
 | |
| // The copy rewriting logic should look at uses as well as defs and be able to
 | |
| // eliminate copies across blocks.
 | |
| //
 | |
| // Later copies that are subregister extracts will also not be eliminated since
 | |
| // only the first copy is considered.
 | |
| //
 | |
| // e.g.
 | |
| // %1 = COPY %0
 | |
| // %2 = COPY %0:sub1
 | |
| //
 | |
| // Should replace %2 uses with %1:sub1
 | |
| bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI,
 | |
|     SmallSet<unsigned, 4> &CopySrcRegs,
 | |
|     DenseMap<unsigned, MachineInstr *> &CopyMIs) {
 | |
|   assert(MI.isCopy() && "expected a COPY machine instruction");
 | |
| 
 | |
|   unsigned SrcReg = MI.getOperand(1).getReg();
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
 | |
|     return false;
 | |
| 
 | |
|   unsigned DstReg = MI.getOperand(0).getReg();
 | |
|   if (!TargetRegisterInfo::isVirtualRegister(DstReg))
 | |
|     return false;
 | |
| 
 | |
|   if (CopySrcRegs.insert(SrcReg).second) {
 | |
|     // First copy of this reg seen.
 | |
|     CopyMIs.insert(std::make_pair(SrcReg, &MI));
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   MachineInstr *PrevCopy = CopyMIs.find(SrcReg)->second;
 | |
| 
 | |
|   unsigned SrcSubReg = MI.getOperand(1).getSubReg();
 | |
|   unsigned PrevSrcSubReg = PrevCopy->getOperand(1).getSubReg();
 | |
| 
 | |
|   // Can't replace different subregister extracts.
 | |
|   if (SrcSubReg != PrevSrcSubReg)
 | |
|     return false;
 | |
| 
 | |
|   unsigned PrevDstReg = PrevCopy->getOperand(0).getReg();
 | |
| 
 | |
|   // Only replace if the copy register class is the same.
 | |
|   //
 | |
|   // TODO: If we have multiple copies to different register classes, we may want
 | |
|   // to track multiple copies of the same source register.
 | |
|   if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
 | |
|     return false;
 | |
| 
 | |
|   MRI->replaceRegWith(DstReg, PrevDstReg);
 | |
| 
 | |
|   // Lifetime of the previous copy has been extended.
 | |
|   MRI->clearKillFlags(PrevDstReg);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool PeepholeOptimizer::isNAPhysCopy(unsigned Reg) {
 | |
|   return TargetRegisterInfo::isPhysicalRegister(Reg) &&
 | |
|          !MRI->isAllocatable(Reg);
 | |
| }
 | |
| 
 | |
| bool PeepholeOptimizer::foldRedundantNAPhysCopy(
 | |
|     MachineInstr &MI, DenseMap<unsigned, MachineInstr *> &NAPhysToVirtMIs) {
 | |
|   assert(MI.isCopy() && "expected a COPY machine instruction");
 | |
| 
 | |
|   if (DisableNAPhysCopyOpt)
 | |
|     return false;
 | |
| 
 | |
|   unsigned DstReg = MI.getOperand(0).getReg();
 | |
|   unsigned SrcReg = MI.getOperand(1).getReg();
 | |
|   if (isNAPhysCopy(SrcReg) && TargetRegisterInfo::isVirtualRegister(DstReg)) {
 | |
|     // %vreg = COPY %physreg
 | |
|     // Avoid using a datastructure which can track multiple live non-allocatable
 | |
|     // phys->virt copies since LLVM doesn't seem to do this.
 | |
|     NAPhysToVirtMIs.insert({SrcReg, &MI});
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (!(TargetRegisterInfo::isVirtualRegister(SrcReg) && isNAPhysCopy(DstReg)))
 | |
|     return false;
 | |
| 
 | |
|   // %physreg = COPY %vreg
 | |
|   auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
 | |
|   if (PrevCopy == NAPhysToVirtMIs.end()) {
 | |
|     // We can't remove the copy: there was an intervening clobber of the
 | |
|     // non-allocatable physical register after the copy to virtual.
 | |
|     LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
 | |
|                       << MI);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   unsigned PrevDstReg = PrevCopy->second->getOperand(0).getReg();
 | |
|   if (PrevDstReg == SrcReg) {
 | |
|     // Remove the virt->phys copy: we saw the virtual register definition, and
 | |
|     // the non-allocatable physical register's state hasn't changed since then.
 | |
|     LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
 | |
|     ++NumNAPhysCopies;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Potential missed optimization opportunity: we saw a different virtual
 | |
|   // register get a copy of the non-allocatable physical register, and we only
 | |
|   // track one such copy. Avoid getting confused by this new non-allocatable
 | |
|   // physical register definition, and remove it from the tracked copies.
 | |
|   LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
 | |
|   NAPhysToVirtMIs.erase(PrevCopy);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// \bried Returns true if \p MO is a virtual register operand.
 | |
| static bool isVirtualRegisterOperand(MachineOperand &MO) {
 | |
|   if (!MO.isReg())
 | |
|     return false;
 | |
|   return TargetRegisterInfo::isVirtualRegister(MO.getReg());
 | |
| }
 | |
| 
 | |
| bool PeepholeOptimizer::findTargetRecurrence(
 | |
|     unsigned Reg, const SmallSet<unsigned, 2> &TargetRegs,
 | |
|     RecurrenceCycle &RC) {
 | |
|   // Recurrence found if Reg is in TargetRegs.
 | |
|   if (TargetRegs.count(Reg))
 | |
|     return true;
 | |
| 
 | |
|   // TODO: Curerntly, we only allow the last instruction of the recurrence
 | |
|   // cycle (the instruction that feeds the PHI instruction) to have more than
 | |
|   // one uses to guarantee that commuting operands does not tie registers
 | |
|   // with overlapping live range. Once we have actual live range info of
 | |
|   // each register, this constraint can be relaxed.
 | |
|   if (!MRI->hasOneNonDBGUse(Reg))
 | |
|     return false;
 | |
| 
 | |
|   // Give up if the reccurrence chain length is longer than the limit.
 | |
|   if (RC.size() >= MaxRecurrenceChain)
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
 | |
|   unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
 | |
| 
 | |
|   // Only interested in recurrences whose instructions have only one def, which
 | |
|   // is a virtual register.
 | |
|   if (MI.getDesc().getNumDefs() != 1)
 | |
|     return false;
 | |
| 
 | |
|   MachineOperand &DefOp = MI.getOperand(0);
 | |
|   if (!isVirtualRegisterOperand(DefOp))
 | |
|     return false;
 | |
| 
 | |
|   // Check if def operand of MI is tied to any use operand. We are only
 | |
|   // interested in the case that all the instructions in the recurrence chain
 | |
|   // have there def operand tied with one of the use operand.
 | |
|   unsigned TiedUseIdx;
 | |
|   if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
 | |
|     return false;
 | |
| 
 | |
|   if (Idx == TiedUseIdx) {
 | |
|     RC.push_back(RecurrenceInstr(&MI));
 | |
|     return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
 | |
|   } else {
 | |
|     // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
 | |
|     unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
 | |
|     if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
 | |
|       RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
 | |
|       return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Phi instructions will eventually be lowered to copy instructions.
 | |
| /// If phi is in a loop header, a recurrence may formulated around the source
 | |
| /// and destination of the phi. For such case commuting operands of the
 | |
| /// instructions in the recurrence may enable coalescing of the copy instruction
 | |
| /// generated from the phi. For example, if there is a recurrence of
 | |
| ///
 | |
| /// LoopHeader:
 | |
| ///   %1 = phi(%0, %100)
 | |
| /// LoopLatch:
 | |
| ///   %0<def, tied1> = ADD %2<def, tied0>, %1
 | |
| ///
 | |
| /// , the fact that %0 and %2 are in the same tied operands set makes
 | |
| /// the coalescing of copy instruction generated from the phi in
 | |
| /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
 | |
| /// %2 have overlapping live range. This introduces additional move
 | |
| /// instruction to the final assembly. However, if we commute %2 and
 | |
| /// %1 of ADD instruction, the redundant move instruction can be
 | |
| /// avoided.
 | |
| bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
 | |
|   SmallSet<unsigned, 2> TargetRegs;
 | |
|   for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
 | |
|     MachineOperand &MO = PHI.getOperand(Idx);
 | |
|     assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
 | |
|     TargetRegs.insert(MO.getReg());
 | |
|   }
 | |
| 
 | |
|   bool Changed = false;
 | |
|   RecurrenceCycle RC;
 | |
|   if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
 | |
|     // Commutes operands of instructions in RC if necessary so that the copy to
 | |
|     // be generated from PHI can be coalesced.
 | |
|     LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
 | |
|     for (auto &RI : RC) {
 | |
|       LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
 | |
|       auto CP = RI.getCommutePair();
 | |
|       if (CP) {
 | |
|         Changed = true;
 | |
|         TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
 | |
|                                 (*CP).second);
 | |
|         LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipFunction(MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
 | |
|   LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
 | |
| 
 | |
|   if (DisablePeephole)
 | |
|     return false;
 | |
| 
 | |
|   TII = MF.getSubtarget().getInstrInfo();
 | |
|   TRI = MF.getSubtarget().getRegisterInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
 | |
|   MLI = &getAnalysis<MachineLoopInfo>();
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (MachineBasicBlock &MBB : MF) {
 | |
|     bool SeenMoveImm = false;
 | |
| 
 | |
|     // During this forward scan, at some point it needs to answer the question
 | |
|     // "given a pointer to an MI in the current BB, is it located before or
 | |
|     // after the current instruction".
 | |
|     // To perform this, the following set keeps track of the MIs already seen
 | |
|     // during the scan, if a MI is not in the set, it is assumed to be located
 | |
|     // after. Newly created MIs have to be inserted in the set as well.
 | |
|     SmallPtrSet<MachineInstr*, 16> LocalMIs;
 | |
|     SmallSet<unsigned, 4> ImmDefRegs;
 | |
|     DenseMap<unsigned, MachineInstr*> ImmDefMIs;
 | |
|     SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
 | |
| 
 | |
|     // Track when a non-allocatable physical register is copied to a virtual
 | |
|     // register so that useless moves can be removed.
 | |
|     //
 | |
|     // %physreg is the map index; MI is the last valid `%vreg = COPY %physreg`
 | |
|     // without any intervening re-definition of %physreg.
 | |
|     DenseMap<unsigned, MachineInstr *> NAPhysToVirtMIs;
 | |
| 
 | |
|     // Set of virtual registers that are copied from.
 | |
|     SmallSet<unsigned, 4> CopySrcRegs;
 | |
|     DenseMap<unsigned, MachineInstr *> CopySrcMIs;
 | |
| 
 | |
|     bool IsLoopHeader = MLI->isLoopHeader(&MBB);
 | |
| 
 | |
|     for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
 | |
|          MII != MIE; ) {
 | |
|       MachineInstr *MI = &*MII;
 | |
|       // We may be erasing MI below, increment MII now.
 | |
|       ++MII;
 | |
|       LocalMIs.insert(MI);
 | |
| 
 | |
|       // Skip debug instructions. They should not affect this peephole optimization.
 | |
|       if (MI->isDebugInstr())
 | |
|           continue;
 | |
| 
 | |
|       if (MI->isPosition())
 | |
|         continue;
 | |
| 
 | |
|       if (IsLoopHeader && MI->isPHI()) {
 | |
|         if (optimizeRecurrence(*MI)) {
 | |
|           Changed = true;
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (!MI->isCopy()) {
 | |
|         for (const MachineOperand &MO : MI->operands()) {
 | |
|           // Visit all operands: definitions can be implicit or explicit.
 | |
|           if (MO.isReg()) {
 | |
|             unsigned Reg = MO.getReg();
 | |
|             if (MO.isDef() && isNAPhysCopy(Reg)) {
 | |
|               const auto &Def = NAPhysToVirtMIs.find(Reg);
 | |
|               if (Def != NAPhysToVirtMIs.end()) {
 | |
|                 // A new definition of the non-allocatable physical register
 | |
|                 // invalidates previous copies.
 | |
|                 LLVM_DEBUG(dbgs()
 | |
|                            << "NAPhysCopy: invalidating because of " << *MI);
 | |
|                 NAPhysToVirtMIs.erase(Def);
 | |
|               }
 | |
|             }
 | |
|           } else if (MO.isRegMask()) {
 | |
|             const uint32_t *RegMask = MO.getRegMask();
 | |
|             for (auto &RegMI : NAPhysToVirtMIs) {
 | |
|               unsigned Def = RegMI.first;
 | |
|               if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
 | |
|                 LLVM_DEBUG(dbgs()
 | |
|                            << "NAPhysCopy: invalidating because of " << *MI);
 | |
|                 NAPhysToVirtMIs.erase(Def);
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (MI->isImplicitDef() || MI->isKill())
 | |
|         continue;
 | |
| 
 | |
|       if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
 | |
|         // Blow away all non-allocatable physical registers knowledge since we
 | |
|         // don't know what's correct anymore.
 | |
|         //
 | |
|         // FIXME: handle explicit asm clobbers.
 | |
|         LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
 | |
|                           << *MI);
 | |
|         NAPhysToVirtMIs.clear();
 | |
|       }
 | |
| 
 | |
|       if ((isUncoalescableCopy(*MI) &&
 | |
|            optimizeUncoalescableCopy(*MI, LocalMIs)) ||
 | |
|           (MI->isCompare() && optimizeCmpInstr(*MI)) ||
 | |
|           (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
 | |
|         // MI is deleted.
 | |
|         LocalMIs.erase(MI);
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
 | |
|         // MI is just rewritten.
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (MI->isCopy() &&
 | |
|           (foldRedundantCopy(*MI, CopySrcRegs, CopySrcMIs) ||
 | |
|            foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
 | |
|         LocalMIs.erase(MI);
 | |
|         MI->eraseFromParent();
 | |
|         Changed = true;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
 | |
|         SeenMoveImm = true;
 | |
|       } else {
 | |
|         Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
 | |
|         // optimizeExtInstr might have created new instructions after MI
 | |
|         // and before the already incremented MII. Adjust MII so that the
 | |
|         // next iteration sees the new instructions.
 | |
|         MII = MI;
 | |
|         ++MII;
 | |
|         if (SeenMoveImm)
 | |
|           Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs);
 | |
|       }
 | |
| 
 | |
|       // Check whether MI is a load candidate for folding into a later
 | |
|       // instruction. If MI is not a candidate, check whether we can fold an
 | |
|       // earlier load into MI.
 | |
|       if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
 | |
|           !FoldAsLoadDefCandidates.empty()) {
 | |
| 
 | |
|         // We visit each operand even after successfully folding a previous
 | |
|         // one.  This allows us to fold multiple loads into a single
 | |
|         // instruction.  We do assume that optimizeLoadInstr doesn't insert
 | |
|         // foldable uses earlier in the argument list.  Since we don't restart
 | |
|         // iteration, we'd miss such cases.
 | |
|         const MCInstrDesc &MIDesc = MI->getDesc();
 | |
|         for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
 | |
|              ++i) {
 | |
|           const MachineOperand &MOp = MI->getOperand(i);
 | |
|           if (!MOp.isReg())
 | |
|             continue;
 | |
|           unsigned FoldAsLoadDefReg = MOp.getReg();
 | |
|           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
 | |
|             // We need to fold load after optimizeCmpInstr, since
 | |
|             // optimizeCmpInstr can enable folding by converting SUB to CMP.
 | |
|             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
 | |
|             // we need it for markUsesInDebugValueAsUndef().
 | |
|             unsigned FoldedReg = FoldAsLoadDefReg;
 | |
|             MachineInstr *DefMI = nullptr;
 | |
|             if (MachineInstr *FoldMI =
 | |
|                     TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
 | |
|               // Update LocalMIs since we replaced MI with FoldMI and deleted
 | |
|               // DefMI.
 | |
|               LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
 | |
|               LLVM_DEBUG(dbgs() << "     With: " << *FoldMI);
 | |
|               LocalMIs.erase(MI);
 | |
|               LocalMIs.erase(DefMI);
 | |
|               LocalMIs.insert(FoldMI);
 | |
|               MI->eraseFromParent();
 | |
|               DefMI->eraseFromParent();
 | |
|               MRI->markUsesInDebugValueAsUndef(FoldedReg);
 | |
|               FoldAsLoadDefCandidates.erase(FoldedReg);
 | |
|               ++NumLoadFold;
 | |
| 
 | |
|               // MI is replaced with FoldMI so we can continue trying to fold
 | |
|               Changed = true;
 | |
|               MI = FoldMI;
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // If we run into an instruction we can't fold across, discard
 | |
|       // the load candidates.  Note: We might be able to fold *into* this
 | |
|       // instruction, so this needs to be after the folding logic.
 | |
|       if (MI->isLoadFoldBarrier()) {
 | |
|         LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
 | |
|         FoldAsLoadDefCandidates.clear();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
 | |
|   assert(Def->isCopy() && "Invalid definition");
 | |
|   // Copy instruction are supposed to be: Def = Src.
 | |
|   // If someone breaks this assumption, bad things will happen everywhere.
 | |
|   assert(Def->getNumOperands() == 2 && "Invalid number of operands");
 | |
| 
 | |
|   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
 | |
|     // If we look for a different subreg, it means we want a subreg of src.
 | |
|     // Bails as we do not support composing subregs yet.
 | |
|     return ValueTrackerResult();
 | |
|   // Otherwise, we want the whole source.
 | |
|   const MachineOperand &Src = Def->getOperand(1);
 | |
|   if (Src.isUndef())
 | |
|     return ValueTrackerResult();
 | |
|   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
 | |
| }
 | |
| 
 | |
| ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
 | |
|   assert(Def->isBitcast() && "Invalid definition");
 | |
| 
 | |
|   // Bail if there are effects that a plain copy will not expose.
 | |
|   if (Def->hasUnmodeledSideEffects())
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   // Bitcasts with more than one def are not supported.
 | |
|   if (Def->getDesc().getNumDefs() != 1)
 | |
|     return ValueTrackerResult();
 | |
|   const MachineOperand DefOp = Def->getOperand(DefIdx);
 | |
|   if (DefOp.getSubReg() != DefSubReg)
 | |
|     // If we look for a different subreg, it means we want a subreg of the src.
 | |
|     // Bails as we do not support composing subregs yet.
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   unsigned SrcIdx = Def->getNumOperands();
 | |
|   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
 | |
|        ++OpIdx) {
 | |
|     const MachineOperand &MO = Def->getOperand(OpIdx);
 | |
|     if (!MO.isReg() || !MO.getReg())
 | |
|       continue;
 | |
|     // Ignore dead implicit defs.
 | |
|     if (MO.isImplicit() && MO.isDead())
 | |
|       continue;
 | |
|     assert(!MO.isDef() && "We should have skipped all the definitions by now");
 | |
|     if (SrcIdx != EndOpIdx)
 | |
|       // Multiple sources?
 | |
|       return ValueTrackerResult();
 | |
|     SrcIdx = OpIdx;
 | |
|   }
 | |
| 
 | |
|   // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
 | |
|   // will break the assumed guarantees for the upper bits.
 | |
|   for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
 | |
|     if (UseMI.isSubregToReg())
 | |
|       return ValueTrackerResult();
 | |
|   }
 | |
| 
 | |
|   const MachineOperand &Src = Def->getOperand(SrcIdx);
 | |
|   if (Src.isUndef())
 | |
|     return ValueTrackerResult();
 | |
|   return ValueTrackerResult(Src.getReg(), Src.getSubReg());
 | |
| }
 | |
| 
 | |
| ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
 | |
|   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
 | |
|          "Invalid definition");
 | |
| 
 | |
|   if (Def->getOperand(DefIdx).getSubReg())
 | |
|     // If we are composing subregs, bail out.
 | |
|     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
 | |
|     // This should almost never happen as the SSA property is tracked at
 | |
|     // the register level (as opposed to the subreg level).
 | |
|     // I.e.,
 | |
|     // Def.sub0 =
 | |
|     // Def.sub1 =
 | |
|     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
 | |
|     // Def. Thus, it must not be generated.
 | |
|     // However, some code could theoretically generates a single
 | |
|     // Def.sub0 (i.e, not defining the other subregs) and we would
 | |
|     // have this case.
 | |
|     // If we can ascertain (or force) that this never happens, we could
 | |
|     // turn that into an assertion.
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   if (!TII)
 | |
|     // We could handle the REG_SEQUENCE here, but we do not want to
 | |
|     // duplicate the code from the generic TII.
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
 | |
|   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   // We are looking at:
 | |
|   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
 | |
|   // Check if one of the operand defines the subreg we are interested in.
 | |
|   for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
 | |
|     if (RegSeqInput.SubIdx == DefSubReg)
 | |
|       return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
 | |
|   }
 | |
| 
 | |
|   // If the subreg we are tracking is super-defined by another subreg,
 | |
|   // we could follow this value. However, this would require to compose
 | |
|   // the subreg and we do not do that for now.
 | |
|   return ValueTrackerResult();
 | |
| }
 | |
| 
 | |
| ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
 | |
|   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
 | |
|          "Invalid definition");
 | |
| 
 | |
|   if (Def->getOperand(DefIdx).getSubReg())
 | |
|     // If we are composing subreg, bail out.
 | |
|     // Same remark as getNextSourceFromRegSequence.
 | |
|     // I.e., this may be turned into an assert.
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   if (!TII)
 | |
|     // We could handle the REG_SEQUENCE here, but we do not want to
 | |
|     // duplicate the code from the generic TII.
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   RegSubRegPair BaseReg;
 | |
|   RegSubRegPairAndIdx InsertedReg;
 | |
|   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   // We are looking at:
 | |
|   // Def = INSERT_SUBREG v0, v1, sub1
 | |
|   // There are two cases:
 | |
|   // 1. DefSubReg == sub1, get v1.
 | |
|   // 2. DefSubReg != sub1, the value may be available through v0.
 | |
| 
 | |
|   // #1 Check if the inserted register matches the required sub index.
 | |
|   if (InsertedReg.SubIdx == DefSubReg) {
 | |
|     return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
 | |
|   }
 | |
|   // #2 Otherwise, if the sub register we are looking for is not partial
 | |
|   // defined by the inserted element, we can look through the main
 | |
|   // register (v0).
 | |
|   const MachineOperand &MODef = Def->getOperand(DefIdx);
 | |
|   // If the result register (Def) and the base register (v0) do not
 | |
|   // have the same register class or if we have to compose
 | |
|   // subregisters, bail out.
 | |
|   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
 | |
|       BaseReg.SubReg)
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   // Get the TRI and check if the inserted sub-register overlaps with the
 | |
|   // sub-register we are tracking.
 | |
|   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
 | |
|   if (!TRI ||
 | |
|       !(TRI->getSubRegIndexLaneMask(DefSubReg) &
 | |
|         TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
 | |
|     return ValueTrackerResult();
 | |
|   // At this point, the value is available in v0 via the same subreg
 | |
|   // we used for Def.
 | |
|   return ValueTrackerResult(BaseReg.Reg, DefSubReg);
 | |
| }
 | |
| 
 | |
| ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
 | |
|   assert((Def->isExtractSubreg() ||
 | |
|           Def->isExtractSubregLike()) && "Invalid definition");
 | |
|   // We are looking at:
 | |
|   // Def = EXTRACT_SUBREG v0, sub0
 | |
| 
 | |
|   // Bail if we have to compose sub registers.
 | |
|   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
 | |
|   if (DefSubReg)
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   if (!TII)
 | |
|     // We could handle the EXTRACT_SUBREG here, but we do not want to
 | |
|     // duplicate the code from the generic TII.
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   RegSubRegPairAndIdx ExtractSubregInputReg;
 | |
|   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   // Bail if we have to compose sub registers.
 | |
|   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
 | |
|   if (ExtractSubregInputReg.SubReg)
 | |
|     return ValueTrackerResult();
 | |
|   // Otherwise, the value is available in the v0.sub0.
 | |
|   return ValueTrackerResult(ExtractSubregInputReg.Reg,
 | |
|                             ExtractSubregInputReg.SubIdx);
 | |
| }
 | |
| 
 | |
| ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
 | |
|   assert(Def->isSubregToReg() && "Invalid definition");
 | |
|   // We are looking at:
 | |
|   // Def = SUBREG_TO_REG Imm, v0, sub0
 | |
| 
 | |
|   // Bail if we have to compose sub registers.
 | |
|   // If DefSubReg != sub0, we would have to check that all the bits
 | |
|   // we track are included in sub0 and if yes, we would have to
 | |
|   // determine the right subreg in v0.
 | |
|   if (DefSubReg != Def->getOperand(3).getImm())
 | |
|     return ValueTrackerResult();
 | |
|   // Bail if we have to compose sub registers.
 | |
|   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
 | |
|   if (Def->getOperand(2).getSubReg())
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   return ValueTrackerResult(Def->getOperand(2).getReg(),
 | |
|                             Def->getOperand(3).getImm());
 | |
| }
 | |
| 
 | |
| /// Explore each PHI incoming operand and return its sources.
 | |
| ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
 | |
|   assert(Def->isPHI() && "Invalid definition");
 | |
|   ValueTrackerResult Res;
 | |
| 
 | |
|   // If we look for a different subreg, bail as we do not support composing
 | |
|   // subregs yet.
 | |
|   if (Def->getOperand(0).getSubReg() != DefSubReg)
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   // Return all register sources for PHI instructions.
 | |
|   for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
 | |
|     const MachineOperand &MO = Def->getOperand(i);
 | |
|     assert(MO.isReg() && "Invalid PHI instruction");
 | |
|     // We have no code to deal with undef operands. They shouldn't happen in
 | |
|     // normal programs anyway.
 | |
|     if (MO.isUndef())
 | |
|       return ValueTrackerResult();
 | |
|     Res.addSource(MO.getReg(), MO.getSubReg());
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| ValueTrackerResult ValueTracker::getNextSourceImpl() {
 | |
|   assert(Def && "This method needs a valid definition");
 | |
| 
 | |
|   assert(((Def->getOperand(DefIdx).isDef() &&
 | |
|            (DefIdx < Def->getDesc().getNumDefs() ||
 | |
|             Def->getDesc().isVariadic())) ||
 | |
|           Def->getOperand(DefIdx).isImplicit()) &&
 | |
|          "Invalid DefIdx");
 | |
|   if (Def->isCopy())
 | |
|     return getNextSourceFromCopy();
 | |
|   if (Def->isBitcast())
 | |
|     return getNextSourceFromBitcast();
 | |
|   // All the remaining cases involve "complex" instructions.
 | |
|   // Bail if we did not ask for the advanced tracking.
 | |
|   if (DisableAdvCopyOpt)
 | |
|     return ValueTrackerResult();
 | |
|   if (Def->isRegSequence() || Def->isRegSequenceLike())
 | |
|     return getNextSourceFromRegSequence();
 | |
|   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
 | |
|     return getNextSourceFromInsertSubreg();
 | |
|   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
 | |
|     return getNextSourceFromExtractSubreg();
 | |
|   if (Def->isSubregToReg())
 | |
|     return getNextSourceFromSubregToReg();
 | |
|   if (Def->isPHI())
 | |
|     return getNextSourceFromPHI();
 | |
|   return ValueTrackerResult();
 | |
| }
 | |
| 
 | |
| ValueTrackerResult ValueTracker::getNextSource() {
 | |
|   // If we reach a point where we cannot move up in the use-def chain,
 | |
|   // there is nothing we can get.
 | |
|   if (!Def)
 | |
|     return ValueTrackerResult();
 | |
| 
 | |
|   ValueTrackerResult Res = getNextSourceImpl();
 | |
|   if (Res.isValid()) {
 | |
|     // Update definition, definition index, and subregister for the
 | |
|     // next call of getNextSource.
 | |
|     // Update the current register.
 | |
|     bool OneRegSrc = Res.getNumSources() == 1;
 | |
|     if (OneRegSrc)
 | |
|       Reg = Res.getSrcReg(0);
 | |
|     // Update the result before moving up in the use-def chain
 | |
|     // with the instruction containing the last found sources.
 | |
|     Res.setInst(Def);
 | |
| 
 | |
|     // If we can still move up in the use-def chain, move to the next
 | |
|     // definition.
 | |
|     if (!TargetRegisterInfo::isPhysicalRegister(Reg) && OneRegSrc) {
 | |
|       MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
 | |
|       if (DI != MRI.def_end()) {
 | |
|         Def = DI->getParent();
 | |
|         DefIdx = DI.getOperandNo();
 | |
|         DefSubReg = Res.getSrcSubReg(0);
 | |
|       } else {
 | |
|         Def = nullptr;
 | |
|       }
 | |
|       return Res;
 | |
|     }
 | |
|   }
 | |
|   // If we end up here, this means we will not be able to find another source
 | |
|   // for the next iteration. Make sure any new call to getNextSource bails out
 | |
|   // early by cutting the use-def chain.
 | |
|   Def = nullptr;
 | |
|   return Res;
 | |
| }
 |