703 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			703 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This implements a top-down list scheduler, using standard algorithms.
 | |
| // The basic approach uses a priority queue of available nodes to schedule.
 | |
| // One at a time, nodes are taken from the priority queue (thus in priority
 | |
| // order), checked for legality to schedule, and emitted if legal.
 | |
| //
 | |
| // Nodes may not be legal to schedule either due to structural hazards (e.g.
 | |
| // pipeline or resource constraints) or because an input to the instruction has
 | |
| // not completed execution.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AggressiveAntiDepBreaker.h"
 | |
| #include "AntiDepBreaker.h"
 | |
| #include "CriticalAntiDepBreaker.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/LatencyPriorityQueue.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegisterClassInfo.h"
 | |
| #include "llvm/CodeGen/ScheduleDAGInstrs.h"
 | |
| #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | |
| #include "llvm/CodeGen/SchedulerRegistry.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetLowering.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "post-RA-sched"
 | |
| 
 | |
| STATISTIC(NumNoops, "Number of noops inserted");
 | |
| STATISTIC(NumStalls, "Number of pipeline stalls");
 | |
| STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
 | |
| 
 | |
| // Post-RA scheduling is enabled with
 | |
| // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
 | |
| // override the target.
 | |
| static cl::opt<bool>
 | |
| EnablePostRAScheduler("post-RA-scheduler",
 | |
|                        cl::desc("Enable scheduling after register allocation"),
 | |
|                        cl::init(false), cl::Hidden);
 | |
| static cl::opt<std::string>
 | |
| EnableAntiDepBreaking("break-anti-dependencies",
 | |
|                       cl::desc("Break post-RA scheduling anti-dependencies: "
 | |
|                                "\"critical\", \"all\", or \"none\""),
 | |
|                       cl::init("none"), cl::Hidden);
 | |
| 
 | |
| // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
 | |
| static cl::opt<int>
 | |
| DebugDiv("postra-sched-debugdiv",
 | |
|                       cl::desc("Debug control MBBs that are scheduled"),
 | |
|                       cl::init(0), cl::Hidden);
 | |
| static cl::opt<int>
 | |
| DebugMod("postra-sched-debugmod",
 | |
|                       cl::desc("Debug control MBBs that are scheduled"),
 | |
|                       cl::init(0), cl::Hidden);
 | |
| 
 | |
| AntiDepBreaker::~AntiDepBreaker() { }
 | |
| 
 | |
| namespace {
 | |
|   class PostRAScheduler : public MachineFunctionPass {
 | |
|     const TargetInstrInfo *TII;
 | |
|     RegisterClassInfo RegClassInfo;
 | |
| 
 | |
|   public:
 | |
|     static char ID;
 | |
|     PostRAScheduler() : MachineFunctionPass(ID) {}
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.setPreservesCFG();
 | |
|       AU.addRequired<AAResultsWrapperPass>();
 | |
|       AU.addRequired<TargetPassConfig>();
 | |
|       AU.addRequired<MachineDominatorTree>();
 | |
|       AU.addPreserved<MachineDominatorTree>();
 | |
|       AU.addRequired<MachineLoopInfo>();
 | |
|       AU.addPreserved<MachineLoopInfo>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     MachineFunctionProperties getRequiredProperties() const override {
 | |
|       return MachineFunctionProperties().set(
 | |
|           MachineFunctionProperties::Property::NoVRegs);
 | |
|     }
 | |
| 
 | |
|     bool runOnMachineFunction(MachineFunction &Fn) override;
 | |
| 
 | |
|   private:
 | |
|     bool enablePostRAScheduler(
 | |
|         const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel,
 | |
|         TargetSubtargetInfo::AntiDepBreakMode &Mode,
 | |
|         TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const;
 | |
|   };
 | |
|   char PostRAScheduler::ID = 0;
 | |
| 
 | |
|   class SchedulePostRATDList : public ScheduleDAGInstrs {
 | |
|     /// AvailableQueue - The priority queue to use for the available SUnits.
 | |
|     ///
 | |
|     LatencyPriorityQueue AvailableQueue;
 | |
| 
 | |
|     /// PendingQueue - This contains all of the instructions whose operands have
 | |
|     /// been issued, but their results are not ready yet (due to the latency of
 | |
|     /// the operation).  Once the operands becomes available, the instruction is
 | |
|     /// added to the AvailableQueue.
 | |
|     std::vector<SUnit*> PendingQueue;
 | |
| 
 | |
|     /// HazardRec - The hazard recognizer to use.
 | |
|     ScheduleHazardRecognizer *HazardRec;
 | |
| 
 | |
|     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
 | |
|     AntiDepBreaker *AntiDepBreak;
 | |
| 
 | |
|     /// AA - AliasAnalysis for making memory reference queries.
 | |
|     AliasAnalysis *AA;
 | |
| 
 | |
|     /// The schedule. Null SUnit*'s represent noop instructions.
 | |
|     std::vector<SUnit*> Sequence;
 | |
| 
 | |
|     /// Ordered list of DAG postprocessing steps.
 | |
|     std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
 | |
| 
 | |
|     /// The index in BB of RegionEnd.
 | |
|     ///
 | |
|     /// This is the instruction number from the top of the current block, not
 | |
|     /// the SlotIndex. It is only used by the AntiDepBreaker.
 | |
|     unsigned EndIndex;
 | |
| 
 | |
|   public:
 | |
|     SchedulePostRATDList(
 | |
|         MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
 | |
|         const RegisterClassInfo &,
 | |
|         TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
 | |
|         SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs);
 | |
| 
 | |
|     ~SchedulePostRATDList() override;
 | |
| 
 | |
|     /// startBlock - Initialize register live-range state for scheduling in
 | |
|     /// this block.
 | |
|     ///
 | |
|     void startBlock(MachineBasicBlock *BB) override;
 | |
| 
 | |
|     // Set the index of RegionEnd within the current BB.
 | |
|     void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
 | |
| 
 | |
|     /// Initialize the scheduler state for the next scheduling region.
 | |
|     void enterRegion(MachineBasicBlock *bb,
 | |
|                      MachineBasicBlock::iterator begin,
 | |
|                      MachineBasicBlock::iterator end,
 | |
|                      unsigned regioninstrs) override;
 | |
| 
 | |
|     /// Notify that the scheduler has finished scheduling the current region.
 | |
|     void exitRegion() override;
 | |
| 
 | |
|     /// Schedule - Schedule the instruction range using list scheduling.
 | |
|     ///
 | |
|     void schedule() override;
 | |
| 
 | |
|     void EmitSchedule();
 | |
| 
 | |
|     /// Observe - Update liveness information to account for the current
 | |
|     /// instruction, which will not be scheduled.
 | |
|     ///
 | |
|     void Observe(MachineInstr &MI, unsigned Count);
 | |
| 
 | |
|     /// finishBlock - Clean up register live-range state.
 | |
|     ///
 | |
|     void finishBlock() override;
 | |
| 
 | |
|   private:
 | |
|     /// Apply each ScheduleDAGMutation step in order.
 | |
|     void postprocessDAG();
 | |
| 
 | |
|     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
 | |
|     void ReleaseSuccessors(SUnit *SU);
 | |
|     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
 | |
|     void ListScheduleTopDown();
 | |
| 
 | |
|     void dumpSchedule() const;
 | |
|     void emitNoop(unsigned CurCycle);
 | |
|   };
 | |
| }
 | |
| 
 | |
| char &llvm::PostRASchedulerID = PostRAScheduler::ID;
 | |
| 
 | |
| INITIALIZE_PASS(PostRAScheduler, DEBUG_TYPE,
 | |
|                 "Post RA top-down list latency scheduler", false, false)
 | |
| 
 | |
| SchedulePostRATDList::SchedulePostRATDList(
 | |
|     MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
 | |
|     const RegisterClassInfo &RCI,
 | |
|     TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
 | |
|     SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs)
 | |
|     : ScheduleDAGInstrs(MF, &MLI), AA(AA), EndIndex(0) {
 | |
| 
 | |
|   const InstrItineraryData *InstrItins =
 | |
|       MF.getSubtarget().getInstrItineraryData();
 | |
|   HazardRec =
 | |
|       MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
 | |
|           InstrItins, this);
 | |
|   MF.getSubtarget().getPostRAMutations(Mutations);
 | |
| 
 | |
|   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
 | |
|           MRI.tracksLiveness()) &&
 | |
|          "Live-ins must be accurate for anti-dependency breaking");
 | |
|   AntiDepBreak =
 | |
|     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
 | |
|      (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
 | |
|      ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
 | |
|       (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr));
 | |
| }
 | |
| 
 | |
| SchedulePostRATDList::~SchedulePostRATDList() {
 | |
|   delete HazardRec;
 | |
|   delete AntiDepBreak;
 | |
| }
 | |
| 
 | |
| /// Initialize state associated with the next scheduling region.
 | |
| void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
 | |
|                  MachineBasicBlock::iterator begin,
 | |
|                  MachineBasicBlock::iterator end,
 | |
|                  unsigned regioninstrs) {
 | |
|   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
 | |
|   Sequence.clear();
 | |
| }
 | |
| 
 | |
| /// Print the schedule before exiting the region.
 | |
| void SchedulePostRATDList::exitRegion() {
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "*** Final schedule ***\n";
 | |
|     dumpSchedule();
 | |
|     dbgs() << '\n';
 | |
|   });
 | |
|   ScheduleDAGInstrs::exitRegion();
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| /// dumpSchedule - dump the scheduled Sequence.
 | |
| LLVM_DUMP_METHOD void SchedulePostRATDList::dumpSchedule() const {
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | |
|     if (SUnit *SU = Sequence[i])
 | |
|       dumpNode(*SU);
 | |
|     else
 | |
|       dbgs() << "**** NOOP ****\n";
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool PostRAScheduler::enablePostRAScheduler(
 | |
|     const TargetSubtargetInfo &ST,
 | |
|     CodeGenOpt::Level OptLevel,
 | |
|     TargetSubtargetInfo::AntiDepBreakMode &Mode,
 | |
|     TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const {
 | |
|   Mode = ST.getAntiDepBreakMode();
 | |
|   ST.getCriticalPathRCs(CriticalPathRCs);
 | |
| 
 | |
|   // Check for explicit enable/disable of post-ra scheduling.
 | |
|   if (EnablePostRAScheduler.getPosition() > 0)
 | |
|     return EnablePostRAScheduler;
 | |
| 
 | |
|   return ST.enablePostRAScheduler() &&
 | |
|          OptLevel >= ST.getOptLevelToEnablePostRAScheduler();
 | |
| }
 | |
| 
 | |
| bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
 | |
|   if (skipFunction(Fn.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   TII = Fn.getSubtarget().getInstrInfo();
 | |
|   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
 | |
|   AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
|   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
 | |
| 
 | |
|   RegClassInfo.runOnMachineFunction(Fn);
 | |
| 
 | |
|   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
 | |
|     TargetSubtargetInfo::ANTIDEP_NONE;
 | |
|   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
 | |
| 
 | |
|   // Check that post-RA scheduling is enabled for this target.
 | |
|   // This may upgrade the AntiDepMode.
 | |
|   if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(),
 | |
|                              AntiDepMode, CriticalPathRCs))
 | |
|     return false;
 | |
| 
 | |
|   // Check for antidep breaking override...
 | |
|   if (EnableAntiDepBreaking.getPosition() > 0) {
 | |
|     AntiDepMode = (EnableAntiDepBreaking == "all")
 | |
|       ? TargetSubtargetInfo::ANTIDEP_ALL
 | |
|       : ((EnableAntiDepBreaking == "critical")
 | |
|          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
 | |
|          : TargetSubtargetInfo::ANTIDEP_NONE);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "PostRAScheduler\n");
 | |
| 
 | |
|   SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode,
 | |
|                                  CriticalPathRCs);
 | |
| 
 | |
|   // Loop over all of the basic blocks
 | |
|   for (auto &MBB : Fn) {
 | |
| #ifndef NDEBUG
 | |
|     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
 | |
|     if (DebugDiv > 0) {
 | |
|       static int bbcnt = 0;
 | |
|       if (bbcnt++ % DebugDiv != DebugMod)
 | |
|         continue;
 | |
|       dbgs() << "*** DEBUG scheduling " << Fn.getName() << ":"
 | |
|              << printMBBReference(MBB) << " ***\n";
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // Initialize register live-range state for scheduling in this block.
 | |
|     Scheduler.startBlock(&MBB);
 | |
| 
 | |
|     // Schedule each sequence of instructions not interrupted by a label
 | |
|     // or anything else that effectively needs to shut down scheduling.
 | |
|     MachineBasicBlock::iterator Current = MBB.end();
 | |
|     unsigned Count = MBB.size(), CurrentCount = Count;
 | |
|     for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) {
 | |
|       MachineInstr &MI = *std::prev(I);
 | |
|       --Count;
 | |
|       // Calls are not scheduling boundaries before register allocation, but
 | |
|       // post-ra we don't gain anything by scheduling across calls since we
 | |
|       // don't need to worry about register pressure.
 | |
|       if (MI.isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) {
 | |
|         Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count);
 | |
|         Scheduler.setEndIndex(CurrentCount);
 | |
|         Scheduler.schedule();
 | |
|         Scheduler.exitRegion();
 | |
|         Scheduler.EmitSchedule();
 | |
|         Current = &MI;
 | |
|         CurrentCount = Count;
 | |
|         Scheduler.Observe(MI, CurrentCount);
 | |
|       }
 | |
|       I = MI;
 | |
|       if (MI.isBundle())
 | |
|         Count -= MI.getBundleSize();
 | |
|     }
 | |
|     assert(Count == 0 && "Instruction count mismatch!");
 | |
|     assert((MBB.begin() == Current || CurrentCount != 0) &&
 | |
|            "Instruction count mismatch!");
 | |
|     Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount);
 | |
|     Scheduler.setEndIndex(CurrentCount);
 | |
|     Scheduler.schedule();
 | |
|     Scheduler.exitRegion();
 | |
|     Scheduler.EmitSchedule();
 | |
| 
 | |
|     // Clean up register live-range state.
 | |
|     Scheduler.finishBlock();
 | |
| 
 | |
|     // Update register kills
 | |
|     Scheduler.fixupKills(MBB);
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// StartBlock - Initialize register live-range state for scheduling in
 | |
| /// this block.
 | |
| ///
 | |
| void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
 | |
|   // Call the superclass.
 | |
|   ScheduleDAGInstrs::startBlock(BB);
 | |
| 
 | |
|   // Reset the hazard recognizer and anti-dep breaker.
 | |
|   HazardRec->Reset();
 | |
|   if (AntiDepBreak)
 | |
|     AntiDepBreak->StartBlock(BB);
 | |
| }
 | |
| 
 | |
| /// Schedule - Schedule the instruction range using list scheduling.
 | |
| ///
 | |
| void SchedulePostRATDList::schedule() {
 | |
|   // Build the scheduling graph.
 | |
|   buildSchedGraph(AA);
 | |
| 
 | |
|   if (AntiDepBreak) {
 | |
|     unsigned Broken =
 | |
|       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
 | |
|                                           EndIndex, DbgValues);
 | |
| 
 | |
|     if (Broken != 0) {
 | |
|       // We made changes. Update the dependency graph.
 | |
|       // Theoretically we could update the graph in place:
 | |
|       // When a live range is changed to use a different register, remove
 | |
|       // the def's anti-dependence *and* output-dependence edges due to
 | |
|       // that register, and add new anti-dependence and output-dependence
 | |
|       // edges based on the next live range of the register.
 | |
|       ScheduleDAG::clearDAG();
 | |
|       buildSchedGraph(AA);
 | |
| 
 | |
|       NumFixedAnti += Broken;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   postprocessDAG();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "********** List Scheduling **********\n");
 | |
|   LLVM_DEBUG(dump());
 | |
| 
 | |
|   AvailableQueue.initNodes(SUnits);
 | |
|   ListScheduleTopDown();
 | |
|   AvailableQueue.releaseState();
 | |
| }
 | |
| 
 | |
| /// Observe - Update liveness information to account for the current
 | |
| /// instruction, which will not be scheduled.
 | |
| ///
 | |
| void SchedulePostRATDList::Observe(MachineInstr &MI, unsigned Count) {
 | |
|   if (AntiDepBreak)
 | |
|     AntiDepBreak->Observe(MI, Count, EndIndex);
 | |
| }
 | |
| 
 | |
| /// FinishBlock - Clean up register live-range state.
 | |
| ///
 | |
| void SchedulePostRATDList::finishBlock() {
 | |
|   if (AntiDepBreak)
 | |
|     AntiDepBreak->FinishBlock();
 | |
| 
 | |
|   // Call the superclass.
 | |
|   ScheduleDAGInstrs::finishBlock();
 | |
| }
 | |
| 
 | |
| /// Apply each ScheduleDAGMutation step in order.
 | |
| void SchedulePostRATDList::postprocessDAG() {
 | |
|   for (auto &M : Mutations)
 | |
|     M->apply(this);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Top-Down Scheduling
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
 | |
| /// the PendingQueue if the count reaches zero.
 | |
| void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
 | |
|   SUnit *SuccSU = SuccEdge->getSUnit();
 | |
| 
 | |
|   if (SuccEdge->isWeak()) {
 | |
|     --SuccSU->WeakPredsLeft;
 | |
|     return;
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   if (SuccSU->NumPredsLeft == 0) {
 | |
|     dbgs() << "*** Scheduling failed! ***\n";
 | |
|     dumpNode(*SuccSU);
 | |
|     dbgs() << " has been released too many times!\n";
 | |
|     llvm_unreachable(nullptr);
 | |
|   }
 | |
| #endif
 | |
|   --SuccSU->NumPredsLeft;
 | |
| 
 | |
|   // Standard scheduler algorithms will recompute the depth of the successor
 | |
|   // here as such:
 | |
|   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
 | |
|   //
 | |
|   // However, we lazily compute node depth instead. Note that
 | |
|   // ScheduleNodeTopDown has already updated the depth of this node which causes
 | |
|   // all descendents to be marked dirty. Setting the successor depth explicitly
 | |
|   // here would cause depth to be recomputed for all its ancestors. If the
 | |
|   // successor is not yet ready (because of a transitively redundant edge) then
 | |
|   // this causes depth computation to be quadratic in the size of the DAG.
 | |
| 
 | |
|   // If all the node's predecessors are scheduled, this node is ready
 | |
|   // to be scheduled. Ignore the special ExitSU node.
 | |
|   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
 | |
|     PendingQueue.push_back(SuccSU);
 | |
| }
 | |
| 
 | |
| /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
 | |
| void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
 | |
|   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | |
|        I != E; ++I) {
 | |
|     ReleaseSucc(SU, &*I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
 | |
| /// count of its successors. If a successor pending count is zero, add it to
 | |
| /// the Available queue.
 | |
| void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
 | |
|   LLVM_DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
 | |
|   LLVM_DEBUG(dumpNode(*SU));
 | |
| 
 | |
|   Sequence.push_back(SU);
 | |
|   assert(CurCycle >= SU->getDepth() &&
 | |
|          "Node scheduled above its depth!");
 | |
|   SU->setDepthToAtLeast(CurCycle);
 | |
| 
 | |
|   ReleaseSuccessors(SU);
 | |
|   SU->isScheduled = true;
 | |
|   AvailableQueue.scheduledNode(SU);
 | |
| }
 | |
| 
 | |
| /// emitNoop - Add a noop to the current instruction sequence.
 | |
| void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
 | |
|   LLVM_DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
 | |
|   HazardRec->EmitNoop();
 | |
|   Sequence.push_back(nullptr);   // NULL here means noop
 | |
|   ++NumNoops;
 | |
| }
 | |
| 
 | |
| /// ListScheduleTopDown - The main loop of list scheduling for top-down
 | |
| /// schedulers.
 | |
| void SchedulePostRATDList::ListScheduleTopDown() {
 | |
|   unsigned CurCycle = 0;
 | |
| 
 | |
|   // We're scheduling top-down but we're visiting the regions in
 | |
|   // bottom-up order, so we don't know the hazards at the start of a
 | |
|   // region. So assume no hazards (this should usually be ok as most
 | |
|   // blocks are a single region).
 | |
|   HazardRec->Reset();
 | |
| 
 | |
|   // Release any successors of the special Entry node.
 | |
|   ReleaseSuccessors(&EntrySU);
 | |
| 
 | |
|   // Add all leaves to Available queue.
 | |
|   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | |
|     // It is available if it has no predecessors.
 | |
|     if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
 | |
|       AvailableQueue.push(&SUnits[i]);
 | |
|       SUnits[i].isAvailable = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // In any cycle where we can't schedule any instructions, we must
 | |
|   // stall or emit a noop, depending on the target.
 | |
|   bool CycleHasInsts = false;
 | |
| 
 | |
|   // While Available queue is not empty, grab the node with the highest
 | |
|   // priority. If it is not ready put it back.  Schedule the node.
 | |
|   std::vector<SUnit*> NotReady;
 | |
|   Sequence.reserve(SUnits.size());
 | |
|   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
 | |
|     // Check to see if any of the pending instructions are ready to issue.  If
 | |
|     // so, add them to the available queue.
 | |
|     unsigned MinDepth = ~0u;
 | |
|     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
 | |
|       if (PendingQueue[i]->getDepth() <= CurCycle) {
 | |
|         AvailableQueue.push(PendingQueue[i]);
 | |
|         PendingQueue[i]->isAvailable = true;
 | |
|         PendingQueue[i] = PendingQueue.back();
 | |
|         PendingQueue.pop_back();
 | |
|         --i; --e;
 | |
|       } else if (PendingQueue[i]->getDepth() < MinDepth)
 | |
|         MinDepth = PendingQueue[i]->getDepth();
 | |
|     }
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "\n*** Examining Available\n";
 | |
|                AvailableQueue.dump(this));
 | |
| 
 | |
|     SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr;
 | |
|     bool HasNoopHazards = false;
 | |
|     while (!AvailableQueue.empty()) {
 | |
|       SUnit *CurSUnit = AvailableQueue.pop();
 | |
| 
 | |
|       ScheduleHazardRecognizer::HazardType HT =
 | |
|         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
 | |
|       if (HT == ScheduleHazardRecognizer::NoHazard) {
 | |
|         if (HazardRec->ShouldPreferAnother(CurSUnit)) {
 | |
|           if (!NotPreferredSUnit) {
 | |
|             // If this is the first non-preferred node for this cycle, then
 | |
|             // record it and continue searching for a preferred node. If this
 | |
|             // is not the first non-preferred node, then treat it as though
 | |
|             // there had been a hazard.
 | |
|             NotPreferredSUnit = CurSUnit;
 | |
|             continue;
 | |
|           }
 | |
|         } else {
 | |
|           FoundSUnit = CurSUnit;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       // Remember if this is a noop hazard.
 | |
|       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
 | |
| 
 | |
|       NotReady.push_back(CurSUnit);
 | |
|     }
 | |
| 
 | |
|     // If we have a non-preferred node, push it back onto the available list.
 | |
|     // If we did not find a preferred node, then schedule this first
 | |
|     // non-preferred node.
 | |
|     if (NotPreferredSUnit) {
 | |
|       if (!FoundSUnit) {
 | |
|         LLVM_DEBUG(
 | |
|             dbgs() << "*** Will schedule a non-preferred instruction...\n");
 | |
|         FoundSUnit = NotPreferredSUnit;
 | |
|       } else {
 | |
|         AvailableQueue.push(NotPreferredSUnit);
 | |
|       }
 | |
| 
 | |
|       NotPreferredSUnit = nullptr;
 | |
|     }
 | |
| 
 | |
|     // Add the nodes that aren't ready back onto the available list.
 | |
|     if (!NotReady.empty()) {
 | |
|       AvailableQueue.push_all(NotReady);
 | |
|       NotReady.clear();
 | |
|     }
 | |
| 
 | |
|     // If we found a node to schedule...
 | |
|     if (FoundSUnit) {
 | |
|       // If we need to emit noops prior to this instruction, then do so.
 | |
|       unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
 | |
|       for (unsigned i = 0; i != NumPreNoops; ++i)
 | |
|         emitNoop(CurCycle);
 | |
| 
 | |
|       // ... schedule the node...
 | |
|       ScheduleNodeTopDown(FoundSUnit, CurCycle);
 | |
|       HazardRec->EmitInstruction(FoundSUnit);
 | |
|       CycleHasInsts = true;
 | |
|       if (HazardRec->atIssueLimit()) {
 | |
|         LLVM_DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle
 | |
|                           << '\n');
 | |
|         HazardRec->AdvanceCycle();
 | |
|         ++CurCycle;
 | |
|         CycleHasInsts = false;
 | |
|       }
 | |
|     } else {
 | |
|       if (CycleHasInsts) {
 | |
|         LLVM_DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
 | |
|         HazardRec->AdvanceCycle();
 | |
|       } else if (!HasNoopHazards) {
 | |
|         // Otherwise, we have a pipeline stall, but no other problem,
 | |
|         // just advance the current cycle and try again.
 | |
|         LLVM_DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
 | |
|         HazardRec->AdvanceCycle();
 | |
|         ++NumStalls;
 | |
|       } else {
 | |
|         // Otherwise, we have no instructions to issue and we have instructions
 | |
|         // that will fault if we don't do this right.  This is the case for
 | |
|         // processors without pipeline interlocks and other cases.
 | |
|         emitNoop(CurCycle);
 | |
|       }
 | |
| 
 | |
|       ++CurCycle;
 | |
|       CycleHasInsts = false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
 | |
|   unsigned Noops = 0;
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
 | |
|     if (!Sequence[i])
 | |
|       ++Noops;
 | |
|   assert(Sequence.size() - Noops == ScheduledNodes &&
 | |
|          "The number of nodes scheduled doesn't match the expected number!");
 | |
| #endif // NDEBUG
 | |
| }
 | |
| 
 | |
| // EmitSchedule - Emit the machine code in scheduled order.
 | |
| void SchedulePostRATDList::EmitSchedule() {
 | |
|   RegionBegin = RegionEnd;
 | |
| 
 | |
|   // If first instruction was a DBG_VALUE then put it back.
 | |
|   if (FirstDbgValue)
 | |
|     BB->splice(RegionEnd, BB, FirstDbgValue);
 | |
| 
 | |
|   // Then re-insert them according to the given schedule.
 | |
|   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
 | |
|     if (SUnit *SU = Sequence[i])
 | |
|       BB->splice(RegionEnd, BB, SU->getInstr());
 | |
|     else
 | |
|       // Null SUnit* is a noop.
 | |
|       TII->insertNoop(*BB, RegionEnd);
 | |
| 
 | |
|     // Update the Begin iterator, as the first instruction in the block
 | |
|     // may have been scheduled later.
 | |
|     if (i == 0)
 | |
|       RegionBegin = std::prev(RegionEnd);
 | |
|   }
 | |
| 
 | |
|   // Reinsert any remaining debug_values.
 | |
|   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
 | |
|          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
 | |
|     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
 | |
|     MachineInstr *DbgValue = P.first;
 | |
|     MachineBasicBlock::iterator OrigPrivMI = P.second;
 | |
|     BB->splice(++OrigPrivMI, BB, DbgValue);
 | |
|   }
 | |
|   DbgValues.clear();
 | |
|   FirstDbgValue = nullptr;
 | |
| }
 |