943 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			943 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
 | |
| // register allocator for LLVM. This allocator works by constructing a PBQP
 | |
| // problem representing the register allocation problem under consideration,
 | |
| // solving this using a PBQP solver, and mapping the solution back to a
 | |
| // register assignment. If any variables are selected for spilling then spill
 | |
| // code is inserted and the process repeated.
 | |
| //
 | |
| // The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
 | |
| // for register allocation. For more information on PBQP for register
 | |
| // allocation, see the following papers:
 | |
| //
 | |
| //   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
 | |
| //   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
 | |
| //   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
 | |
| //
 | |
| //   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
 | |
| //   architectures. In Proceedings of the Joint Conference on Languages,
 | |
| //   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
 | |
| //   NY, USA, 139-148.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/RegAllocPBQP.h"
 | |
| #include "RegisterCoalescer.h"
 | |
| #include "Spiller.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/BitVector.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/CodeGen/CalcSpillWeights.h"
 | |
| #include "llvm/CodeGen/LiveInterval.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/LiveRangeEdit.h"
 | |
| #include "llvm/CodeGen/LiveStacks.h"
 | |
| #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
 | |
| #include "llvm/CodeGen/MachineDominators.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/PBQP/Graph.h"
 | |
| #include "llvm/CodeGen/PBQP/Math.h"
 | |
| #include "llvm/CodeGen/PBQP/Solution.h"
 | |
| #include "llvm/CodeGen/PBQPRAConstraint.h"
 | |
| #include "llvm/CodeGen/RegAllocRegistry.h"
 | |
| #include "llvm/CodeGen/SlotIndexes.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/CodeGen/VirtRegMap.h"
 | |
| #include "llvm/Config/llvm-config.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/MC/MCRegisterInfo.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Compiler.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/FileSystem.h"
 | |
| #include "llvm/Support/Printable.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstddef>
 | |
| #include <limits>
 | |
| #include <map>
 | |
| #include <memory>
 | |
| #include <queue>
 | |
| #include <set>
 | |
| #include <sstream>
 | |
| #include <string>
 | |
| #include <system_error>
 | |
| #include <tuple>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| 
 | |
| static RegisterRegAlloc
 | |
| RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
 | |
|                        createDefaultPBQPRegisterAllocator);
 | |
| 
 | |
| static cl::opt<bool>
 | |
| PBQPCoalescing("pbqp-coalescing",
 | |
|                 cl::desc("Attempt coalescing during PBQP register allocation."),
 | |
|                 cl::init(false), cl::Hidden);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| static cl::opt<bool>
 | |
| PBQPDumpGraphs("pbqp-dump-graphs",
 | |
|                cl::desc("Dump graphs for each function/round in the compilation unit."),
 | |
|                cl::init(false), cl::Hidden);
 | |
| #endif
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| ///
 | |
| /// PBQP based allocators solve the register allocation problem by mapping
 | |
| /// register allocation problems to Partitioned Boolean Quadratic
 | |
| /// Programming problems.
 | |
| class RegAllocPBQP : public MachineFunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   /// Construct a PBQP register allocator.
 | |
|   RegAllocPBQP(char *cPassID = nullptr)
 | |
|       : MachineFunctionPass(ID), customPassID(cPassID) {
 | |
|     initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
 | |
|     initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
 | |
|     initializeLiveStacksPass(*PassRegistry::getPassRegistry());
 | |
|     initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   /// Return the pass name.
 | |
|   StringRef getPassName() const override { return "PBQP Register Allocator"; }
 | |
| 
 | |
|   /// PBQP analysis usage.
 | |
|   void getAnalysisUsage(AnalysisUsage &au) const override;
 | |
| 
 | |
|   /// Perform register allocation
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   MachineFunctionProperties getRequiredProperties() const override {
 | |
|     return MachineFunctionProperties().set(
 | |
|         MachineFunctionProperties::Property::NoPHIs);
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   using LI2NodeMap = std::map<const LiveInterval *, unsigned>;
 | |
|   using Node2LIMap = std::vector<const LiveInterval *>;
 | |
|   using AllowedSet = std::vector<unsigned>;
 | |
|   using AllowedSetMap = std::vector<AllowedSet>;
 | |
|   using RegPair = std::pair<unsigned, unsigned>;
 | |
|   using CoalesceMap = std::map<RegPair, PBQP::PBQPNum>;
 | |
|   using RegSet = std::set<unsigned>;
 | |
| 
 | |
|   char *customPassID;
 | |
| 
 | |
|   RegSet VRegsToAlloc, EmptyIntervalVRegs;
 | |
| 
 | |
|   /// Inst which is a def of an original reg and whose defs are already all
 | |
|   /// dead after remat is saved in DeadRemats. The deletion of such inst is
 | |
|   /// postponed till all the allocations are done, so its remat expr is
 | |
|   /// always available for the remat of all the siblings of the original reg.
 | |
|   SmallPtrSet<MachineInstr *, 32> DeadRemats;
 | |
| 
 | |
|   /// Finds the initial set of vreg intervals to allocate.
 | |
|   void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
 | |
| 
 | |
|   /// Constructs an initial graph.
 | |
|   void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
 | |
| 
 | |
|   /// Spill the given VReg.
 | |
|   void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals,
 | |
|                  MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
 | |
|                  Spiller &VRegSpiller);
 | |
| 
 | |
|   /// Given a solved PBQP problem maps this solution back to a register
 | |
|   /// assignment.
 | |
|   bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
 | |
|                          const PBQP::Solution &Solution,
 | |
|                          VirtRegMap &VRM,
 | |
|                          Spiller &VRegSpiller);
 | |
| 
 | |
|   /// Postprocessing before final spilling. Sets basic block "live in"
 | |
|   /// variables.
 | |
|   void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
 | |
|                      VirtRegMap &VRM) const;
 | |
| 
 | |
|   void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
 | |
| };
 | |
| 
 | |
| char RegAllocPBQP::ID = 0;
 | |
| 
 | |
| /// Set spill costs for each node in the PBQP reg-alloc graph.
 | |
| class SpillCosts : public PBQPRAConstraint {
 | |
| public:
 | |
|   void apply(PBQPRAGraph &G) override {
 | |
|     LiveIntervals &LIS = G.getMetadata().LIS;
 | |
| 
 | |
|     // A minimum spill costs, so that register constraints can can be set
 | |
|     // without normalization in the [0.0:MinSpillCost( interval.
 | |
|     const PBQP::PBQPNum MinSpillCost = 10.0;
 | |
| 
 | |
|     for (auto NId : G.nodeIds()) {
 | |
|       PBQP::PBQPNum SpillCost =
 | |
|         LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
 | |
|       if (SpillCost == 0.0)
 | |
|         SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
 | |
|       else
 | |
|         SpillCost += MinSpillCost;
 | |
|       PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
 | |
|       NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
 | |
|       G.setNodeCosts(NId, std::move(NodeCosts));
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| /// Add interference edges between overlapping vregs.
 | |
| class Interference : public PBQPRAConstraint {
 | |
| private:
 | |
|   using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *;
 | |
|   using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>;
 | |
|   using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>;
 | |
|   using DisjointAllowedRegsCache = DenseSet<IKey>;
 | |
|   using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>;
 | |
|   using IEdgeCache = DenseSet<IEdgeKey>;
 | |
| 
 | |
|   bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
 | |
|                                PBQPRAGraph::NodeId MId,
 | |
|                                const DisjointAllowedRegsCache &D) const {
 | |
|     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
 | |
|     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
 | |
| 
 | |
|     if (NRegs == MRegs)
 | |
|       return false;
 | |
| 
 | |
|     if (NRegs < MRegs)
 | |
|       return D.count(IKey(NRegs, MRegs)) > 0;
 | |
| 
 | |
|     return D.count(IKey(MRegs, NRegs)) > 0;
 | |
|   }
 | |
| 
 | |
|   void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
 | |
|                               PBQPRAGraph::NodeId MId,
 | |
|                               DisjointAllowedRegsCache &D) {
 | |
|     const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
 | |
|     const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
 | |
| 
 | |
|     assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
 | |
| 
 | |
|     if (NRegs < MRegs)
 | |
|       D.insert(IKey(NRegs, MRegs));
 | |
|     else
 | |
|       D.insert(IKey(MRegs, NRegs));
 | |
|   }
 | |
| 
 | |
|   // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
 | |
|   // for the fast interference graph construction algorithm. The last is there
 | |
|   // to save us from looking up node ids via the VRegToNode map in the graph
 | |
|   // metadata.
 | |
|   using IntervalInfo =
 | |
|       std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>;
 | |
| 
 | |
|   static SlotIndex getStartPoint(const IntervalInfo &I) {
 | |
|     return std::get<0>(I)->segments[std::get<1>(I)].start;
 | |
|   }
 | |
| 
 | |
|   static SlotIndex getEndPoint(const IntervalInfo &I) {
 | |
|     return std::get<0>(I)->segments[std::get<1>(I)].end;
 | |
|   }
 | |
| 
 | |
|   static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
 | |
|     return std::get<2>(I);
 | |
|   }
 | |
| 
 | |
|   static bool lowestStartPoint(const IntervalInfo &I1,
 | |
|                                const IntervalInfo &I2) {
 | |
|     // Condition reversed because priority queue has the *highest* element at
 | |
|     // the front, rather than the lowest.
 | |
|     return getStartPoint(I1) > getStartPoint(I2);
 | |
|   }
 | |
| 
 | |
|   static bool lowestEndPoint(const IntervalInfo &I1,
 | |
|                              const IntervalInfo &I2) {
 | |
|     SlotIndex E1 = getEndPoint(I1);
 | |
|     SlotIndex E2 = getEndPoint(I2);
 | |
| 
 | |
|     if (E1 < E2)
 | |
|       return true;
 | |
| 
 | |
|     if (E1 > E2)
 | |
|       return false;
 | |
| 
 | |
|     // If two intervals end at the same point, we need a way to break the tie or
 | |
|     // the set will assume they're actually equal and refuse to insert a
 | |
|     // "duplicate". Just compare the vregs - fast and guaranteed unique.
 | |
|     return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
 | |
|   }
 | |
| 
 | |
|   static bool isAtLastSegment(const IntervalInfo &I) {
 | |
|     return std::get<1>(I) == std::get<0>(I)->size() - 1;
 | |
|   }
 | |
| 
 | |
|   static IntervalInfo nextSegment(const IntervalInfo &I) {
 | |
|     return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   void apply(PBQPRAGraph &G) override {
 | |
|     // The following is loosely based on the linear scan algorithm introduced in
 | |
|     // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
 | |
|     // isn't linear, because the size of the active set isn't bound by the
 | |
|     // number of registers, but rather the size of the largest clique in the
 | |
|     // graph. Still, we expect this to be better than N^2.
 | |
|     LiveIntervals &LIS = G.getMetadata().LIS;
 | |
| 
 | |
|     // Interferenc matrices are incredibly regular - they're only a function of
 | |
|     // the allowed sets, so we cache them to avoid the overhead of constructing
 | |
|     // and uniquing them.
 | |
|     IMatrixCache C;
 | |
| 
 | |
|     // Finding an edge is expensive in the worst case (O(max_clique(G))). So
 | |
|     // cache locally edges we have already seen.
 | |
|     IEdgeCache EC;
 | |
| 
 | |
|     // Cache known disjoint allowed registers pairs
 | |
|     DisjointAllowedRegsCache D;
 | |
| 
 | |
|     using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>;
 | |
|     using IntervalQueue =
 | |
|         std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
 | |
|                             decltype(&lowestStartPoint)>;
 | |
|     IntervalSet Active(lowestEndPoint);
 | |
|     IntervalQueue Inactive(lowestStartPoint);
 | |
| 
 | |
|     // Start by building the inactive set.
 | |
|     for (auto NId : G.nodeIds()) {
 | |
|       unsigned VReg = G.getNodeMetadata(NId).getVReg();
 | |
|       LiveInterval &LI = LIS.getInterval(VReg);
 | |
|       assert(!LI.empty() && "PBQP graph contains node for empty interval");
 | |
|       Inactive.push(std::make_tuple(&LI, 0, NId));
 | |
|     }
 | |
| 
 | |
|     while (!Inactive.empty()) {
 | |
|       // Tentatively grab the "next" interval - this choice may be overriden
 | |
|       // below.
 | |
|       IntervalInfo Cur = Inactive.top();
 | |
| 
 | |
|       // Retire any active intervals that end before Cur starts.
 | |
|       IntervalSet::iterator RetireItr = Active.begin();
 | |
|       while (RetireItr != Active.end() &&
 | |
|              (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
 | |
|         // If this interval has subsequent segments, add the next one to the
 | |
|         // inactive list.
 | |
|         if (!isAtLastSegment(*RetireItr))
 | |
|           Inactive.push(nextSegment(*RetireItr));
 | |
| 
 | |
|         ++RetireItr;
 | |
|       }
 | |
|       Active.erase(Active.begin(), RetireItr);
 | |
| 
 | |
|       // One of the newly retired segments may actually start before the
 | |
|       // Cur segment, so re-grab the front of the inactive list.
 | |
|       Cur = Inactive.top();
 | |
|       Inactive.pop();
 | |
| 
 | |
|       // At this point we know that Cur overlaps all active intervals. Add the
 | |
|       // interference edges.
 | |
|       PBQP::GraphBase::NodeId NId = getNodeId(Cur);
 | |
|       for (const auto &A : Active) {
 | |
|         PBQP::GraphBase::NodeId MId = getNodeId(A);
 | |
| 
 | |
|         // Do not add an edge when the nodes' allowed registers do not
 | |
|         // intersect: there is obviously no interference.
 | |
|         if (haveDisjointAllowedRegs(G, NId, MId, D))
 | |
|           continue;
 | |
| 
 | |
|         // Check that we haven't already added this edge
 | |
|         IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
 | |
|         if (EC.count(EK))
 | |
|           continue;
 | |
| 
 | |
|         // This is a new edge - add it to the graph.
 | |
|         if (!createInterferenceEdge(G, NId, MId, C))
 | |
|           setDisjointAllowedRegs(G, NId, MId, D);
 | |
|         else
 | |
|           EC.insert(EK);
 | |
|       }
 | |
| 
 | |
|       // Finally, add Cur to the Active set.
 | |
|       Active.insert(Cur);
 | |
|     }
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   // Create an Interference edge and add it to the graph, unless it is
 | |
|   // a null matrix, meaning the nodes' allowed registers do not have any
 | |
|   // interference. This case occurs frequently between integer and floating
 | |
|   // point registers for example.
 | |
|   // return true iff both nodes interferes.
 | |
|   bool createInterferenceEdge(PBQPRAGraph &G,
 | |
|                               PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
 | |
|                               IMatrixCache &C) {
 | |
|     const TargetRegisterInfo &TRI =
 | |
|         *G.getMetadata().MF.getSubtarget().getRegisterInfo();
 | |
|     const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
 | |
|     const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
 | |
| 
 | |
|     // Try looking the edge costs up in the IMatrixCache first.
 | |
|     IKey K(&NRegs, &MRegs);
 | |
|     IMatrixCache::iterator I = C.find(K);
 | |
|     if (I != C.end()) {
 | |
|       G.addEdgeBypassingCostAllocator(NId, MId, I->second);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
 | |
|     bool NodesInterfere = false;
 | |
|     for (unsigned I = 0; I != NRegs.size(); ++I) {
 | |
|       unsigned PRegN = NRegs[I];
 | |
|       for (unsigned J = 0; J != MRegs.size(); ++J) {
 | |
|         unsigned PRegM = MRegs[J];
 | |
|         if (TRI.regsOverlap(PRegN, PRegM)) {
 | |
|           M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
 | |
|           NodesInterfere = true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (!NodesInterfere)
 | |
|       return false;
 | |
| 
 | |
|     PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
 | |
|     C[K] = G.getEdgeCostsPtr(EId);
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class Coalescing : public PBQPRAConstraint {
 | |
| public:
 | |
|   void apply(PBQPRAGraph &G) override {
 | |
|     MachineFunction &MF = G.getMetadata().MF;
 | |
|     MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
 | |
|     CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
 | |
| 
 | |
|     // Scan the machine function and add a coalescing cost whenever CoalescerPair
 | |
|     // gives the Ok.
 | |
|     for (const auto &MBB : MF) {
 | |
|       for (const auto &MI : MBB) {
 | |
|         // Skip not-coalescable or already coalesced copies.
 | |
|         if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
 | |
|           continue;
 | |
| 
 | |
|         unsigned DstReg = CP.getDstReg();
 | |
|         unsigned SrcReg = CP.getSrcReg();
 | |
| 
 | |
|         const float Scale = 1.0f / MBFI.getEntryFreq();
 | |
|         PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;
 | |
| 
 | |
|         if (CP.isPhys()) {
 | |
|           if (!MF.getRegInfo().isAllocatable(DstReg))
 | |
|             continue;
 | |
| 
 | |
|           PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
 | |
| 
 | |
|           const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
 | |
|             G.getNodeMetadata(NId).getAllowedRegs();
 | |
| 
 | |
|           unsigned PRegOpt = 0;
 | |
|           while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
 | |
|             ++PRegOpt;
 | |
| 
 | |
|           if (PRegOpt < Allowed.size()) {
 | |
|             PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
 | |
|             NewCosts[PRegOpt + 1] -= CBenefit;
 | |
|             G.setNodeCosts(NId, std::move(NewCosts));
 | |
|           }
 | |
|         } else {
 | |
|           PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
 | |
|           PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
 | |
|           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
 | |
|             &G.getNodeMetadata(N1Id).getAllowedRegs();
 | |
|           const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
 | |
|             &G.getNodeMetadata(N2Id).getAllowedRegs();
 | |
| 
 | |
|           PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
 | |
|           if (EId == G.invalidEdgeId()) {
 | |
|             PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
 | |
|                                          Allowed2->size() + 1, 0);
 | |
|             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
 | |
|             G.addEdge(N1Id, N2Id, std::move(Costs));
 | |
|           } else {
 | |
|             if (G.getEdgeNode1Id(EId) == N2Id) {
 | |
|               std::swap(N1Id, N2Id);
 | |
|               std::swap(Allowed1, Allowed2);
 | |
|             }
 | |
|             PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
 | |
|             addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
 | |
|             G.updateEdgeCosts(EId, std::move(Costs));
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   void addVirtRegCoalesce(
 | |
|                     PBQPRAGraph::RawMatrix &CostMat,
 | |
|                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
 | |
|                     const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
 | |
|                     PBQP::PBQPNum Benefit) {
 | |
|     assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
 | |
|     assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
 | |
|     for (unsigned I = 0; I != Allowed1.size(); ++I) {
 | |
|       unsigned PReg1 = Allowed1[I];
 | |
|       for (unsigned J = 0; J != Allowed2.size(); ++J) {
 | |
|         unsigned PReg2 = Allowed2[J];
 | |
|         if (PReg1 == PReg2)
 | |
|           CostMat[I + 1][J + 1] -= Benefit;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| // Out-of-line destructor/anchor for PBQPRAConstraint.
 | |
| PBQPRAConstraint::~PBQPRAConstraint() = default;
 | |
| 
 | |
| void PBQPRAConstraint::anchor() {}
 | |
| 
 | |
| void PBQPRAConstraintList::anchor() {}
 | |
| 
 | |
| void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
 | |
|   au.setPreservesCFG();
 | |
|   au.addRequired<AAResultsWrapperPass>();
 | |
|   au.addPreserved<AAResultsWrapperPass>();
 | |
|   au.addRequired<SlotIndexes>();
 | |
|   au.addPreserved<SlotIndexes>();
 | |
|   au.addRequired<LiveIntervals>();
 | |
|   au.addPreserved<LiveIntervals>();
 | |
|   //au.addRequiredID(SplitCriticalEdgesID);
 | |
|   if (customPassID)
 | |
|     au.addRequiredID(*customPassID);
 | |
|   au.addRequired<LiveStacks>();
 | |
|   au.addPreserved<LiveStacks>();
 | |
|   au.addRequired<MachineBlockFrequencyInfo>();
 | |
|   au.addPreserved<MachineBlockFrequencyInfo>();
 | |
|   au.addRequired<MachineLoopInfo>();
 | |
|   au.addPreserved<MachineLoopInfo>();
 | |
|   au.addRequired<MachineDominatorTree>();
 | |
|   au.addPreserved<MachineDominatorTree>();
 | |
|   au.addRequired<VirtRegMap>();
 | |
|   au.addPreserved<VirtRegMap>();
 | |
|   MachineFunctionPass::getAnalysisUsage(au);
 | |
| }
 | |
| 
 | |
| void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
 | |
|                                             LiveIntervals &LIS) {
 | |
|   const MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
| 
 | |
|   // Iterate over all live ranges.
 | |
|   for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
 | |
|     unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
 | |
|     if (MRI.reg_nodbg_empty(Reg))
 | |
|       continue;
 | |
|     VRegsToAlloc.insert(Reg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
 | |
|                                    const MachineFunction &MF) {
 | |
|   const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs();
 | |
|   for (unsigned i = 0; CSR[i] != 0; ++i)
 | |
|     if (TRI.regsOverlap(reg, CSR[i]))
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
 | |
|                                    Spiller &VRegSpiller) {
 | |
|   MachineFunction &MF = G.getMetadata().MF;
 | |
| 
 | |
|   LiveIntervals &LIS = G.getMetadata().LIS;
 | |
|   const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
 | |
|   const TargetRegisterInfo &TRI =
 | |
|       *G.getMetadata().MF.getSubtarget().getRegisterInfo();
 | |
| 
 | |
|   std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
 | |
| 
 | |
|   std::map<unsigned, std::vector<unsigned>> VRegAllowedMap;
 | |
| 
 | |
|   while (!Worklist.empty()) {
 | |
|     unsigned VReg = Worklist.back();
 | |
|     Worklist.pop_back();
 | |
| 
 | |
|     LiveInterval &VRegLI = LIS.getInterval(VReg);
 | |
| 
 | |
|     // If this is an empty interval move it to the EmptyIntervalVRegs set then
 | |
|     // continue.
 | |
|     if (VRegLI.empty()) {
 | |
|       EmptyIntervalVRegs.insert(VRegLI.reg);
 | |
|       VRegsToAlloc.erase(VRegLI.reg);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
 | |
| 
 | |
|     // Record any overlaps with regmask operands.
 | |
|     BitVector RegMaskOverlaps;
 | |
|     LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
 | |
| 
 | |
|     // Compute an initial allowed set for the current vreg.
 | |
|     std::vector<unsigned> VRegAllowed;
 | |
|     ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
 | |
|     for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
 | |
|       unsigned PReg = RawPRegOrder[I];
 | |
|       if (MRI.isReserved(PReg))
 | |
|         continue;
 | |
| 
 | |
|       // vregLI crosses a regmask operand that clobbers preg.
 | |
|       if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
 | |
|         continue;
 | |
| 
 | |
|       // vregLI overlaps fixed regunit interference.
 | |
|       bool Interference = false;
 | |
|       for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
 | |
|         if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
 | |
|           Interference = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       if (Interference)
 | |
|         continue;
 | |
| 
 | |
|       // preg is usable for this virtual register.
 | |
|       VRegAllowed.push_back(PReg);
 | |
|     }
 | |
| 
 | |
|     // Check for vregs that have no allowed registers. These should be
 | |
|     // pre-spilled and the new vregs added to the worklist.
 | |
|     if (VRegAllowed.empty()) {
 | |
|       SmallVector<unsigned, 8> NewVRegs;
 | |
|       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
 | |
|       Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end());
 | |
|       continue;
 | |
|     } else
 | |
|       VRegAllowedMap[VReg] = std::move(VRegAllowed);
 | |
|   }
 | |
| 
 | |
|   for (auto &KV : VRegAllowedMap) {
 | |
|     auto VReg = KV.first;
 | |
| 
 | |
|     // Move empty intervals to the EmptyIntervalVReg set.
 | |
|     if (LIS.getInterval(VReg).empty()) {
 | |
|       EmptyIntervalVRegs.insert(VReg);
 | |
|       VRegsToAlloc.erase(VReg);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto &VRegAllowed = KV.second;
 | |
| 
 | |
|     PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
 | |
| 
 | |
|     // Tweak cost of callee saved registers, as using then force spilling and
 | |
|     // restoring them. This would only happen in the prologue / epilogue though.
 | |
|     for (unsigned i = 0; i != VRegAllowed.size(); ++i)
 | |
|       if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
 | |
|         NodeCosts[1 + i] += 1.0;
 | |
| 
 | |
|     PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
 | |
|     G.getNodeMetadata(NId).setVReg(VReg);
 | |
|     G.getNodeMetadata(NId).setAllowedRegs(
 | |
|       G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
 | |
|     G.getMetadata().setNodeIdForVReg(VReg, NId);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegAllocPBQP::spillVReg(unsigned VReg,
 | |
|                              SmallVectorImpl<unsigned> &NewIntervals,
 | |
|                              MachineFunction &MF, LiveIntervals &LIS,
 | |
|                              VirtRegMap &VRM, Spiller &VRegSpiller) {
 | |
|   VRegsToAlloc.erase(VReg);
 | |
|   LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
 | |
|                     nullptr, &DeadRemats);
 | |
|   VRegSpiller.spill(LRE);
 | |
| 
 | |
|   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
 | |
|   (void)TRI;
 | |
|   LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: "
 | |
|                     << LRE.getParent().weight << ", New vregs: ");
 | |
| 
 | |
|   // Copy any newly inserted live intervals into the list of regs to
 | |
|   // allocate.
 | |
|   for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
 | |
|        I != E; ++I) {
 | |
|     const LiveInterval &LI = LIS.getInterval(*I);
 | |
|     assert(!LI.empty() && "Empty spill range.");
 | |
|     LLVM_DEBUG(dbgs() << printReg(LI.reg, &TRI) << " ");
 | |
|     VRegsToAlloc.insert(LI.reg);
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << ")\n");
 | |
| }
 | |
| 
 | |
| bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
 | |
|                                      const PBQP::Solution &Solution,
 | |
|                                      VirtRegMap &VRM,
 | |
|                                      Spiller &VRegSpiller) {
 | |
|   MachineFunction &MF = G.getMetadata().MF;
 | |
|   LiveIntervals &LIS = G.getMetadata().LIS;
 | |
|   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
 | |
|   (void)TRI;
 | |
| 
 | |
|   // Set to true if we have any spills
 | |
|   bool AnotherRoundNeeded = false;
 | |
| 
 | |
|   // Clear the existing allocation.
 | |
|   VRM.clearAllVirt();
 | |
| 
 | |
|   // Iterate over the nodes mapping the PBQP solution to a register
 | |
|   // assignment.
 | |
|   for (auto NId : G.nodeIds()) {
 | |
|     unsigned VReg = G.getNodeMetadata(NId).getVReg();
 | |
|     unsigned AllocOption = Solution.getSelection(NId);
 | |
| 
 | |
|     if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
 | |
|       unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
 | |
|       LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> "
 | |
|                         << TRI.getName(PReg) << "\n");
 | |
|       assert(PReg != 0 && "Invalid preg selected.");
 | |
|       VRM.assignVirt2Phys(VReg, PReg);
 | |
|     } else {
 | |
|       // Spill VReg. If this introduces new intervals we'll need another round
 | |
|       // of allocation.
 | |
|       SmallVector<unsigned, 8> NewVRegs;
 | |
|       spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
 | |
|       AnotherRoundNeeded |= !NewVRegs.empty();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return !AnotherRoundNeeded;
 | |
| }
 | |
| 
 | |
| void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
 | |
|                                  LiveIntervals &LIS,
 | |
|                                  VirtRegMap &VRM) const {
 | |
|   MachineRegisterInfo &MRI = MF.getRegInfo();
 | |
| 
 | |
|   // First allocate registers for the empty intervals.
 | |
|   for (RegSet::const_iterator
 | |
|          I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
 | |
|          I != E; ++I) {
 | |
|     LiveInterval &LI = LIS.getInterval(*I);
 | |
| 
 | |
|     unsigned PReg = MRI.getSimpleHint(LI.reg);
 | |
| 
 | |
|     if (PReg == 0) {
 | |
|       const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
 | |
|       const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF);
 | |
|       for (unsigned CandidateReg : RawPRegOrder) {
 | |
|         if (!VRM.getRegInfo().isReserved(CandidateReg)) {
 | |
|           PReg = CandidateReg;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       assert(PReg &&
 | |
|              "No un-reserved physical registers in this register class");
 | |
|     }
 | |
| 
 | |
|     VRM.assignVirt2Phys(LI.reg, PReg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
 | |
|   VRegSpiller.postOptimization();
 | |
|   /// Remove dead defs because of rematerialization.
 | |
|   for (auto DeadInst : DeadRemats) {
 | |
|     LIS.RemoveMachineInstrFromMaps(*DeadInst);
 | |
|     DeadInst->eraseFromParent();
 | |
|   }
 | |
|   DeadRemats.clear();
 | |
| }
 | |
| 
 | |
| static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
 | |
|                                          unsigned NumInstr) {
 | |
|   // All intervals have a spill weight that is mostly proportional to the number
 | |
|   // of uses, with uses in loops having a bigger weight.
 | |
|   return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
 | |
| }
 | |
| 
 | |
| bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
 | |
|   LiveIntervals &LIS = getAnalysis<LiveIntervals>();
 | |
|   MachineBlockFrequencyInfo &MBFI =
 | |
|     getAnalysis<MachineBlockFrequencyInfo>();
 | |
| 
 | |
|   VirtRegMap &VRM = getAnalysis<VirtRegMap>();
 | |
| 
 | |
|   calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(),
 | |
|                                 MBFI, normalizePBQPSpillWeight);
 | |
| 
 | |
|   std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
 | |
| 
 | |
|   MF.getRegInfo().freezeReservedRegs(MF);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
 | |
| 
 | |
|   // Allocator main loop:
 | |
|   //
 | |
|   // * Map current regalloc problem to a PBQP problem
 | |
|   // * Solve the PBQP problem
 | |
|   // * Map the solution back to a register allocation
 | |
|   // * Spill if necessary
 | |
|   //
 | |
|   // This process is continued till no more spills are generated.
 | |
| 
 | |
|   // Find the vreg intervals in need of allocation.
 | |
|   findVRegIntervalsToAlloc(MF, LIS);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   const Function &F = MF.getFunction();
 | |
|   std::string FullyQualifiedName =
 | |
|     F.getParent()->getModuleIdentifier() + "." + F.getName().str();
 | |
| #endif
 | |
| 
 | |
|   // If there are non-empty intervals allocate them using pbqp.
 | |
|   if (!VRegsToAlloc.empty()) {
 | |
|     const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
 | |
|     std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
 | |
|       llvm::make_unique<PBQPRAConstraintList>();
 | |
|     ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>());
 | |
|     ConstraintsRoot->addConstraint(llvm::make_unique<Interference>());
 | |
|     if (PBQPCoalescing)
 | |
|       ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>());
 | |
|     ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
 | |
| 
 | |
|     bool PBQPAllocComplete = false;
 | |
|     unsigned Round = 0;
 | |
| 
 | |
|     while (!PBQPAllocComplete) {
 | |
|       LLVM_DEBUG(dbgs() << "  PBQP Regalloc round " << Round << ":\n");
 | |
| 
 | |
|       PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
 | |
|       initializeGraph(G, VRM, *VRegSpiller);
 | |
|       ConstraintsRoot->apply(G);
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|       if (PBQPDumpGraphs) {
 | |
|         std::ostringstream RS;
 | |
|         RS << Round;
 | |
|         std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
 | |
|                                     ".pbqpgraph";
 | |
|         std::error_code EC;
 | |
|         raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text);
 | |
|         LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
 | |
|                           << GraphFileName << "\"\n");
 | |
|         G.dump(OS);
 | |
|       }
 | |
| #endif
 | |
| 
 | |
|       PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
 | |
|       PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
 | |
|       ++Round;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Finalise allocation, allocate empty ranges.
 | |
|   finalizeAlloc(MF, LIS, VRM);
 | |
|   postOptimization(*VRegSpiller, LIS);
 | |
|   VRegsToAlloc.clear();
 | |
|   EmptyIntervalVRegs.clear();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Create Printable object for node and register info.
 | |
| static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
 | |
|                                const PBQP::RegAlloc::PBQPRAGraph &G) {
 | |
|   return Printable([NId, &G](raw_ostream &OS) {
 | |
|     const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
 | |
|     const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
 | |
|     unsigned VReg = G.getNodeMetadata(NId).getVReg();
 | |
|     const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
 | |
|     OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')';
 | |
|   });
 | |
| }
 | |
| 
 | |
| #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | |
| LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
 | |
|   for (auto NId : nodeIds()) {
 | |
|     const Vector &Costs = getNodeCosts(NId);
 | |
|     assert(Costs.getLength() != 0 && "Empty vector in graph.");
 | |
|     OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
 | |
|   }
 | |
|   OS << '\n';
 | |
| 
 | |
|   for (auto EId : edgeIds()) {
 | |
|     NodeId N1Id = getEdgeNode1Id(EId);
 | |
|     NodeId N2Id = getEdgeNode2Id(EId);
 | |
|     assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
 | |
|     const Matrix &M = getEdgeCosts(EId);
 | |
|     assert(M.getRows() != 0 && "No rows in matrix.");
 | |
|     assert(M.getCols() != 0 && "No cols in matrix.");
 | |
|     OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
 | |
|     OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
 | |
|     OS << M << '\n';
 | |
|   }
 | |
| }
 | |
| 
 | |
| LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const {
 | |
|   dump(dbgs());
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
 | |
|   OS << "graph {\n";
 | |
|   for (auto NId : nodeIds()) {
 | |
|     OS << "  node" << NId << " [ label=\""
 | |
|        << PrintNodeInfo(NId, *this) << "\\n"
 | |
|        << getNodeCosts(NId) << "\" ]\n";
 | |
|   }
 | |
| 
 | |
|   OS << "  edge [ len=" << nodeIds().size() << " ]\n";
 | |
|   for (auto EId : edgeIds()) {
 | |
|     OS << "  node" << getEdgeNode1Id(EId)
 | |
|        << " -- node" << getEdgeNode2Id(EId)
 | |
|        << " [ label=\"";
 | |
|     const Matrix &EdgeCosts = getEdgeCosts(EId);
 | |
|     for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
 | |
|       OS << EdgeCosts.getRowAsVector(i) << "\\n";
 | |
|     }
 | |
|     OS << "\" ]\n";
 | |
|   }
 | |
|   OS << "}\n";
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
 | |
|   return new RegAllocPBQP(customPassID);
 | |
| }
 | |
| 
 | |
| FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
 | |
|   return createPBQPRegisterAllocator();
 | |
| }
 |