1077 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1077 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Support/YAMLTraits.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/ADT/Twine.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include "llvm/Support/Errc.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/Format.h"
 | |
| #include "llvm/Support/LineIterator.h"
 | |
| #include "llvm/Support/MemoryBuffer.h"
 | |
| #include "llvm/Support/Unicode.h"
 | |
| #include "llvm/Support/YAMLParser.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| using namespace yaml;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  IO
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| IO::IO(void *Context) : Ctxt(Context) {}
 | |
| 
 | |
| IO::~IO() = default;
 | |
| 
 | |
| void *IO::getContext() {
 | |
|   return Ctxt;
 | |
| }
 | |
| 
 | |
| void IO::setContext(void *Context) {
 | |
|   Ctxt = Context;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Input
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Input::Input(StringRef InputContent, void *Ctxt,
 | |
|              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
 | |
|     : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
 | |
|   if (DiagHandler)
 | |
|     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
 | |
|   DocIterator = Strm->begin();
 | |
| }
 | |
| 
 | |
| Input::Input(MemoryBufferRef Input, void *Ctxt,
 | |
|              SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
 | |
|     : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
 | |
|   if (DiagHandler)
 | |
|     SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
 | |
|   DocIterator = Strm->begin();
 | |
| }
 | |
| 
 | |
| Input::~Input() = default;
 | |
| 
 | |
| std::error_code Input::error() { return EC; }
 | |
| 
 | |
| // Pin the vtables to this file.
 | |
| void Input::HNode::anchor() {}
 | |
| void Input::EmptyHNode::anchor() {}
 | |
| void Input::ScalarHNode::anchor() {}
 | |
| void Input::MapHNode::anchor() {}
 | |
| void Input::SequenceHNode::anchor() {}
 | |
| 
 | |
| bool Input::outputting() {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Input::setCurrentDocument() {
 | |
|   if (DocIterator != Strm->end()) {
 | |
|     Node *N = DocIterator->getRoot();
 | |
|     if (!N) {
 | |
|       assert(Strm->failed() && "Root is NULL iff parsing failed");
 | |
|       EC = make_error_code(errc::invalid_argument);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (isa<NullNode>(N)) {
 | |
|       // Empty files are allowed and ignored
 | |
|       ++DocIterator;
 | |
|       return setCurrentDocument();
 | |
|     }
 | |
|     TopNode = createHNodes(N);
 | |
|     CurrentNode = TopNode.get();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Input::nextDocument() {
 | |
|   return ++DocIterator != Strm->end();
 | |
| }
 | |
| 
 | |
| const Node *Input::getCurrentNode() const {
 | |
|   return CurrentNode ? CurrentNode->_node : nullptr;
 | |
| }
 | |
| 
 | |
| bool Input::mapTag(StringRef Tag, bool Default) {
 | |
|   // CurrentNode can be null if setCurrentDocument() was unable to
 | |
|   // parse the document because it was invalid or empty.
 | |
|   if (!CurrentNode)
 | |
|     return false;
 | |
| 
 | |
|   std::string foundTag = CurrentNode->_node->getVerbatimTag();
 | |
|   if (foundTag.empty()) {
 | |
|     // If no tag found and 'Tag' is the default, say it was found.
 | |
|     return Default;
 | |
|   }
 | |
|   // Return true iff found tag matches supplied tag.
 | |
|   return Tag.equals(foundTag);
 | |
| }
 | |
| 
 | |
| void Input::beginMapping() {
 | |
|   if (EC)
 | |
|     return;
 | |
|   // CurrentNode can be null if the document is empty.
 | |
|   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
 | |
|   if (MN) {
 | |
|     MN->ValidKeys.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| std::vector<StringRef> Input::keys() {
 | |
|   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
 | |
|   std::vector<StringRef> Ret;
 | |
|   if (!MN) {
 | |
|     setError(CurrentNode, "not a mapping");
 | |
|     return Ret;
 | |
|   }
 | |
|   for (auto &P : MN->Mapping)
 | |
|     Ret.push_back(P.first());
 | |
|   return Ret;
 | |
| }
 | |
| 
 | |
| bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
 | |
|                          void *&SaveInfo) {
 | |
|   UseDefault = false;
 | |
|   if (EC)
 | |
|     return false;
 | |
| 
 | |
|   // CurrentNode is null for empty documents, which is an error in case required
 | |
|   // nodes are present.
 | |
|   if (!CurrentNode) {
 | |
|     if (Required)
 | |
|       EC = make_error_code(errc::invalid_argument);
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
 | |
|   if (!MN) {
 | |
|     if (Required || !isa<EmptyHNode>(CurrentNode))
 | |
|       setError(CurrentNode, "not a mapping");
 | |
|     return false;
 | |
|   }
 | |
|   MN->ValidKeys.push_back(Key);
 | |
|   HNode *Value = MN->Mapping[Key].get();
 | |
|   if (!Value) {
 | |
|     if (Required)
 | |
|       setError(CurrentNode, Twine("missing required key '") + Key + "'");
 | |
|     else
 | |
|       UseDefault = true;
 | |
|     return false;
 | |
|   }
 | |
|   SaveInfo = CurrentNode;
 | |
|   CurrentNode = Value;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Input::postflightKey(void *saveInfo) {
 | |
|   CurrentNode = reinterpret_cast<HNode *>(saveInfo);
 | |
| }
 | |
| 
 | |
| void Input::endMapping() {
 | |
|   if (EC)
 | |
|     return;
 | |
|   // CurrentNode can be null if the document is empty.
 | |
|   MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
 | |
|   if (!MN)
 | |
|     return;
 | |
|   for (const auto &NN : MN->Mapping) {
 | |
|     if (!is_contained(MN->ValidKeys, NN.first())) {
 | |
|       setError(NN.second.get(), Twine("unknown key '") + NN.first() + "'");
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Input::beginFlowMapping() { beginMapping(); }
 | |
| 
 | |
| void Input::endFlowMapping() { endMapping(); }
 | |
| 
 | |
| unsigned Input::beginSequence() {
 | |
|   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
 | |
|     return SQ->Entries.size();
 | |
|   if (isa<EmptyHNode>(CurrentNode))
 | |
|     return 0;
 | |
|   // Treat case where there's a scalar "null" value as an empty sequence.
 | |
|   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
 | |
|     if (isNull(SN->value()))
 | |
|       return 0;
 | |
|   }
 | |
|   // Any other type of HNode is an error.
 | |
|   setError(CurrentNode, "not a sequence");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void Input::endSequence() {
 | |
| }
 | |
| 
 | |
| bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
 | |
|   if (EC)
 | |
|     return false;
 | |
|   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
 | |
|     SaveInfo = CurrentNode;
 | |
|     CurrentNode = SQ->Entries[Index].get();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Input::postflightElement(void *SaveInfo) {
 | |
|   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
 | |
| }
 | |
| 
 | |
| unsigned Input::beginFlowSequence() { return beginSequence(); }
 | |
| 
 | |
| bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
 | |
|   if (EC)
 | |
|     return false;
 | |
|   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
 | |
|     SaveInfo = CurrentNode;
 | |
|     CurrentNode = SQ->Entries[index].get();
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Input::postflightFlowElement(void *SaveInfo) {
 | |
|   CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
 | |
| }
 | |
| 
 | |
| void Input::endFlowSequence() {
 | |
| }
 | |
| 
 | |
| void Input::beginEnumScalar() {
 | |
|   ScalarMatchFound = false;
 | |
| }
 | |
| 
 | |
| bool Input::matchEnumScalar(const char *Str, bool) {
 | |
|   if (ScalarMatchFound)
 | |
|     return false;
 | |
|   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
 | |
|     if (SN->value().equals(Str)) {
 | |
|       ScalarMatchFound = true;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Input::matchEnumFallback() {
 | |
|   if (ScalarMatchFound)
 | |
|     return false;
 | |
|   ScalarMatchFound = true;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Input::endEnumScalar() {
 | |
|   if (!ScalarMatchFound) {
 | |
|     setError(CurrentNode, "unknown enumerated scalar");
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool Input::beginBitSetScalar(bool &DoClear) {
 | |
|   BitValuesUsed.clear();
 | |
|   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
 | |
|     BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
 | |
|   } else {
 | |
|     setError(CurrentNode, "expected sequence of bit values");
 | |
|   }
 | |
|   DoClear = true;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Input::bitSetMatch(const char *Str, bool) {
 | |
|   if (EC)
 | |
|     return false;
 | |
|   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
 | |
|     unsigned Index = 0;
 | |
|     for (auto &N : SQ->Entries) {
 | |
|       if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
 | |
|         if (SN->value().equals(Str)) {
 | |
|           BitValuesUsed[Index] = true;
 | |
|           return true;
 | |
|         }
 | |
|       } else {
 | |
|         setError(CurrentNode, "unexpected scalar in sequence of bit values");
 | |
|       }
 | |
|       ++Index;
 | |
|     }
 | |
|   } else {
 | |
|     setError(CurrentNode, "expected sequence of bit values");
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Input::endBitSetScalar() {
 | |
|   if (EC)
 | |
|     return;
 | |
|   if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
 | |
|     assert(BitValuesUsed.size() == SQ->Entries.size());
 | |
|     for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
 | |
|       if (!BitValuesUsed[i]) {
 | |
|         setError(SQ->Entries[i].get(), "unknown bit value");
 | |
|         return;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Input::scalarString(StringRef &S, QuotingType) {
 | |
|   if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
 | |
|     S = SN->value();
 | |
|   } else {
 | |
|     setError(CurrentNode, "unexpected scalar");
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
 | |
| 
 | |
| void Input::scalarTag(std::string &Tag) {
 | |
|   Tag = CurrentNode->_node->getVerbatimTag();
 | |
| }
 | |
| 
 | |
| void Input::setError(HNode *hnode, const Twine &message) {
 | |
|   assert(hnode && "HNode must not be NULL");
 | |
|   setError(hnode->_node, message);
 | |
| }
 | |
| 
 | |
| NodeKind Input::getNodeKind() {
 | |
|   if (isa<ScalarHNode>(CurrentNode))
 | |
|     return NodeKind::Scalar;
 | |
|   else if (isa<MapHNode>(CurrentNode))
 | |
|     return NodeKind::Map;
 | |
|   else if (isa<SequenceHNode>(CurrentNode))
 | |
|     return NodeKind::Sequence;
 | |
|   llvm_unreachable("Unsupported node kind");
 | |
| }
 | |
| 
 | |
| void Input::setError(Node *node, const Twine &message) {
 | |
|   Strm->printError(node, message);
 | |
|   EC = make_error_code(errc::invalid_argument);
 | |
| }
 | |
| 
 | |
| std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
 | |
|   SmallString<128> StringStorage;
 | |
|   if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
 | |
|     StringRef KeyStr = SN->getValue(StringStorage);
 | |
|     if (!StringStorage.empty()) {
 | |
|       // Copy string to permanent storage
 | |
|       KeyStr = StringStorage.str().copy(StringAllocator);
 | |
|     }
 | |
|     return llvm::make_unique<ScalarHNode>(N, KeyStr);
 | |
|   } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
 | |
|     StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
 | |
|     return llvm::make_unique<ScalarHNode>(N, ValueCopy);
 | |
|   } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
 | |
|     auto SQHNode = llvm::make_unique<SequenceHNode>(N);
 | |
|     for (Node &SN : *SQ) {
 | |
|       auto Entry = createHNodes(&SN);
 | |
|       if (EC)
 | |
|         break;
 | |
|       SQHNode->Entries.push_back(std::move(Entry));
 | |
|     }
 | |
|     return std::move(SQHNode);
 | |
|   } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
 | |
|     auto mapHNode = llvm::make_unique<MapHNode>(N);
 | |
|     for (KeyValueNode &KVN : *Map) {
 | |
|       Node *KeyNode = KVN.getKey();
 | |
|       ScalarNode *Key = dyn_cast<ScalarNode>(KeyNode);
 | |
|       Node *Value = KVN.getValue();
 | |
|       if (!Key || !Value) {
 | |
|         if (!Key)
 | |
|           setError(KeyNode, "Map key must be a scalar");
 | |
|         if (!Value)
 | |
|           setError(KeyNode, "Map value must not be empty");
 | |
|         break;
 | |
|       }
 | |
|       StringStorage.clear();
 | |
|       StringRef KeyStr = Key->getValue(StringStorage);
 | |
|       if (!StringStorage.empty()) {
 | |
|         // Copy string to permanent storage
 | |
|         KeyStr = StringStorage.str().copy(StringAllocator);
 | |
|       }
 | |
|       auto ValueHNode = createHNodes(Value);
 | |
|       if (EC)
 | |
|         break;
 | |
|       mapHNode->Mapping[KeyStr] = std::move(ValueHNode);
 | |
|     }
 | |
|     return std::move(mapHNode);
 | |
|   } else if (isa<NullNode>(N)) {
 | |
|     return llvm::make_unique<EmptyHNode>(N);
 | |
|   } else {
 | |
|     setError(N, "unknown node kind");
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Input::setError(const Twine &Message) {
 | |
|   setError(CurrentNode, Message);
 | |
| }
 | |
| 
 | |
| bool Input::canElideEmptySequence() {
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Output
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Output::Output(raw_ostream &yout, void *context, int WrapColumn)
 | |
|     : IO(context), Out(yout), WrapColumn(WrapColumn) {}
 | |
| 
 | |
| Output::~Output() = default;
 | |
| 
 | |
| bool Output::outputting() {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Output::beginMapping() {
 | |
|   StateStack.push_back(inMapFirstKey);
 | |
|   NeedsNewLine = true;
 | |
| }
 | |
| 
 | |
| bool Output::mapTag(StringRef Tag, bool Use) {
 | |
|   if (Use) {
 | |
|     // If this tag is being written inside a sequence we should write the start
 | |
|     // of the sequence before writing the tag, otherwise the tag won't be
 | |
|     // attached to the element in the sequence, but rather the sequence itself.
 | |
|     bool SequenceElement = false;
 | |
|     if (StateStack.size() > 1) {
 | |
|       auto &E = StateStack[StateStack.size() - 2];
 | |
|       SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
 | |
|     }
 | |
|     if (SequenceElement && StateStack.back() == inMapFirstKey) {
 | |
|       newLineCheck();
 | |
|     } else {
 | |
|       output(" ");
 | |
|     }
 | |
|     output(Tag);
 | |
|     if (SequenceElement) {
 | |
|       // If we're writing the tag during the first element of a map, the tag
 | |
|       // takes the place of the first element in the sequence.
 | |
|       if (StateStack.back() == inMapFirstKey) {
 | |
|         StateStack.pop_back();
 | |
|         StateStack.push_back(inMapOtherKey);
 | |
|       }
 | |
|       // Tags inside maps in sequences should act as keys in the map from a
 | |
|       // formatting perspective, so we always want a newline in a sequence.
 | |
|       NeedsNewLine = true;
 | |
|     }
 | |
|   }
 | |
|   return Use;
 | |
| }
 | |
| 
 | |
| void Output::endMapping() {
 | |
|   // If we did not map anything, we should explicitly emit an empty map
 | |
|   if (StateStack.back() == inMapFirstKey)
 | |
|     output("{}");
 | |
|   StateStack.pop_back();
 | |
| }
 | |
| 
 | |
| std::vector<StringRef> Output::keys() {
 | |
|   report_fatal_error("invalid call");
 | |
| }
 | |
| 
 | |
| bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
 | |
|                           bool &UseDefault, void *&) {
 | |
|   UseDefault = false;
 | |
|   if (Required || !SameAsDefault || WriteDefaultValues) {
 | |
|     auto State = StateStack.back();
 | |
|     if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
 | |
|       flowKey(Key);
 | |
|     } else {
 | |
|       newLineCheck();
 | |
|       paddedKey(Key);
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Output::postflightKey(void *) {
 | |
|   if (StateStack.back() == inMapFirstKey) {
 | |
|     StateStack.pop_back();
 | |
|     StateStack.push_back(inMapOtherKey);
 | |
|   } else if (StateStack.back() == inFlowMapFirstKey) {
 | |
|     StateStack.pop_back();
 | |
|     StateStack.push_back(inFlowMapOtherKey);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Output::beginFlowMapping() {
 | |
|   StateStack.push_back(inFlowMapFirstKey);
 | |
|   newLineCheck();
 | |
|   ColumnAtMapFlowStart = Column;
 | |
|   output("{ ");
 | |
| }
 | |
| 
 | |
| void Output::endFlowMapping() {
 | |
|   StateStack.pop_back();
 | |
|   outputUpToEndOfLine(" }");
 | |
| }
 | |
| 
 | |
| void Output::beginDocuments() {
 | |
|   outputUpToEndOfLine("---");
 | |
| }
 | |
| 
 | |
| bool Output::preflightDocument(unsigned index) {
 | |
|   if (index > 0)
 | |
|     outputUpToEndOfLine("\n---");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Output::postflightDocument() {
 | |
| }
 | |
| 
 | |
| void Output::endDocuments() {
 | |
|   output("\n...\n");
 | |
| }
 | |
| 
 | |
| unsigned Output::beginSequence() {
 | |
|   StateStack.push_back(inSeqFirstElement);
 | |
|   NeedsNewLine = true;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void Output::endSequence() {
 | |
|   // If we did not emit anything, we should explicitly emit an empty sequence
 | |
|   if (StateStack.back() == inSeqFirstElement)
 | |
|     output("[]");
 | |
|   StateStack.pop_back();
 | |
| }
 | |
| 
 | |
| bool Output::preflightElement(unsigned, void *&) {
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Output::postflightElement(void *) {
 | |
|   if (StateStack.back() == inSeqFirstElement) {
 | |
|     StateStack.pop_back();
 | |
|     StateStack.push_back(inSeqOtherElement);
 | |
|   } else if (StateStack.back() == inFlowSeqFirstElement) {
 | |
|     StateStack.pop_back();
 | |
|     StateStack.push_back(inFlowSeqOtherElement);
 | |
|   }
 | |
| }
 | |
| 
 | |
| unsigned Output::beginFlowSequence() {
 | |
|   StateStack.push_back(inFlowSeqFirstElement);
 | |
|   newLineCheck();
 | |
|   ColumnAtFlowStart = Column;
 | |
|   output("[ ");
 | |
|   NeedFlowSequenceComma = false;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| void Output::endFlowSequence() {
 | |
|   StateStack.pop_back();
 | |
|   outputUpToEndOfLine(" ]");
 | |
| }
 | |
| 
 | |
| bool Output::preflightFlowElement(unsigned, void *&) {
 | |
|   if (NeedFlowSequenceComma)
 | |
|     output(", ");
 | |
|   if (WrapColumn && Column > WrapColumn) {
 | |
|     output("\n");
 | |
|     for (int i = 0; i < ColumnAtFlowStart; ++i)
 | |
|       output(" ");
 | |
|     Column = ColumnAtFlowStart;
 | |
|     output("  ");
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Output::postflightFlowElement(void *) {
 | |
|   NeedFlowSequenceComma = true;
 | |
| }
 | |
| 
 | |
| void Output::beginEnumScalar() {
 | |
|   EnumerationMatchFound = false;
 | |
| }
 | |
| 
 | |
| bool Output::matchEnumScalar(const char *Str, bool Match) {
 | |
|   if (Match && !EnumerationMatchFound) {
 | |
|     newLineCheck();
 | |
|     outputUpToEndOfLine(Str);
 | |
|     EnumerationMatchFound = true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool Output::matchEnumFallback() {
 | |
|   if (EnumerationMatchFound)
 | |
|     return false;
 | |
|   EnumerationMatchFound = true;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void Output::endEnumScalar() {
 | |
|   if (!EnumerationMatchFound)
 | |
|     llvm_unreachable("bad runtime enum value");
 | |
| }
 | |
| 
 | |
| bool Output::beginBitSetScalar(bool &DoClear) {
 | |
|   newLineCheck();
 | |
|   output("[ ");
 | |
|   NeedBitValueComma = false;
 | |
|   DoClear = false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Output::bitSetMatch(const char *Str, bool Matches) {
 | |
|   if (Matches) {
 | |
|     if (NeedBitValueComma)
 | |
|       output(", ");
 | |
|     output(Str);
 | |
|     NeedBitValueComma = true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void Output::endBitSetScalar() {
 | |
|   outputUpToEndOfLine(" ]");
 | |
| }
 | |
| 
 | |
| void Output::scalarString(StringRef &S, QuotingType MustQuote) {
 | |
|   newLineCheck();
 | |
|   if (S.empty()) {
 | |
|     // Print '' for the empty string because leaving the field empty is not
 | |
|     // allowed.
 | |
|     outputUpToEndOfLine("''");
 | |
|     return;
 | |
|   }
 | |
|   if (MustQuote == QuotingType::None) {
 | |
|     // Only quote if we must.
 | |
|     outputUpToEndOfLine(S);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
 | |
|   output(Quote); // Starting quote.
 | |
| 
 | |
|   // When using double-quoted strings (and only in that case), non-printable characters may be
 | |
|   // present, and will be escaped using a variety of unicode-scalar and special short-form
 | |
|   // escapes. This is handled in yaml::escape.
 | |
|   if (MustQuote == QuotingType::Double) {
 | |
|     output(yaml::escape(S, /* EscapePrintable= */ false));
 | |
|     outputUpToEndOfLine(Quote);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   unsigned i = 0;
 | |
|   unsigned j = 0;
 | |
|   unsigned End = S.size();
 | |
|   const char *Base = S.data();
 | |
| 
 | |
|   // When using single-quoted strings, any single quote ' must be doubled to be escaped.
 | |
|   while (j < End) {
 | |
|     if (S[j] == '\'') {                    // Escape quotes.
 | |
|       output(StringRef(&Base[i], j - i));  // "flush".
 | |
|       output(StringLiteral("''"));         // Print it as ''
 | |
|       i = j + 1;
 | |
|     }
 | |
|     ++j;
 | |
|   }
 | |
|   output(StringRef(&Base[i], j - i));
 | |
|   outputUpToEndOfLine(Quote); // Ending quote.
 | |
| }
 | |
| 
 | |
| void Output::blockScalarString(StringRef &S) {
 | |
|   if (!StateStack.empty())
 | |
|     newLineCheck();
 | |
|   output(" |");
 | |
|   outputNewLine();
 | |
| 
 | |
|   unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
 | |
| 
 | |
|   auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
 | |
|   for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
 | |
|     for (unsigned I = 0; I < Indent; ++I) {
 | |
|       output("  ");
 | |
|     }
 | |
|     output(*Lines);
 | |
|     outputNewLine();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void Output::scalarTag(std::string &Tag) {
 | |
|   if (Tag.empty())
 | |
|     return;
 | |
|   newLineCheck();
 | |
|   output(Tag);
 | |
|   output(" ");
 | |
| }
 | |
| 
 | |
| void Output::setError(const Twine &message) {
 | |
| }
 | |
| 
 | |
| bool Output::canElideEmptySequence() {
 | |
|   // Normally, with an optional key/value where the value is an empty sequence,
 | |
|   // the whole key/value can be not written.  But, that produces wrong yaml
 | |
|   // if the key/value is the only thing in the map and the map is used in
 | |
|   // a sequence.  This detects if the this sequence is the first key/value
 | |
|   // in map that itself is embedded in a sequnce.
 | |
|   if (StateStack.size() < 2)
 | |
|     return true;
 | |
|   if (StateStack.back() != inMapFirstKey)
 | |
|     return true;
 | |
|   return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
 | |
| }
 | |
| 
 | |
| void Output::output(StringRef s) {
 | |
|   Column += s.size();
 | |
|   Out << s;
 | |
| }
 | |
| 
 | |
| void Output::outputUpToEndOfLine(StringRef s) {
 | |
|   output(s);
 | |
|   if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
 | |
|                              !inFlowMapAnyKey(StateStack.back())))
 | |
|     NeedsNewLine = true;
 | |
| }
 | |
| 
 | |
| void Output::outputNewLine() {
 | |
|   Out << "\n";
 | |
|   Column = 0;
 | |
| }
 | |
| 
 | |
| // if seq at top, indent as if map, then add "- "
 | |
| // if seq in middle, use "- " if firstKey, else use "  "
 | |
| //
 | |
| 
 | |
| void Output::newLineCheck() {
 | |
|   if (!NeedsNewLine)
 | |
|     return;
 | |
|   NeedsNewLine = false;
 | |
| 
 | |
|   outputNewLine();
 | |
| 
 | |
|   if (StateStack.size() == 0)
 | |
|     return;
 | |
| 
 | |
|   unsigned Indent = StateStack.size() - 1;
 | |
|   bool OutputDash = false;
 | |
| 
 | |
|   if (StateStack.back() == inSeqFirstElement ||
 | |
|       StateStack.back() == inSeqOtherElement) {
 | |
|     OutputDash = true;
 | |
|   } else if ((StateStack.size() > 1) &&
 | |
|              ((StateStack.back() == inMapFirstKey) ||
 | |
|               inFlowSeqAnyElement(StateStack.back()) ||
 | |
|               (StateStack.back() == inFlowMapFirstKey)) &&
 | |
|              inSeqAnyElement(StateStack[StateStack.size() - 2])) {
 | |
|     --Indent;
 | |
|     OutputDash = true;
 | |
|   }
 | |
| 
 | |
|   for (unsigned i = 0; i < Indent; ++i) {
 | |
|     output("  ");
 | |
|   }
 | |
|   if (OutputDash) {
 | |
|     output("- ");
 | |
|   }
 | |
| 
 | |
| }
 | |
| 
 | |
| void Output::paddedKey(StringRef key) {
 | |
|   output(key);
 | |
|   output(":");
 | |
|   const char *spaces = "                ";
 | |
|   if (key.size() < strlen(spaces))
 | |
|     output(&spaces[key.size()]);
 | |
|   else
 | |
|     output(" ");
 | |
| }
 | |
| 
 | |
| void Output::flowKey(StringRef Key) {
 | |
|   if (StateStack.back() == inFlowMapOtherKey)
 | |
|     output(", ");
 | |
|   if (WrapColumn && Column > WrapColumn) {
 | |
|     output("\n");
 | |
|     for (int I = 0; I < ColumnAtMapFlowStart; ++I)
 | |
|       output(" ");
 | |
|     Column = ColumnAtMapFlowStart;
 | |
|     output("  ");
 | |
|   }
 | |
|   output(Key);
 | |
|   output(": ");
 | |
| }
 | |
| 
 | |
| NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
 | |
| 
 | |
| bool Output::inSeqAnyElement(InState State) {
 | |
|   return State == inSeqFirstElement || State == inSeqOtherElement;
 | |
| }
 | |
| 
 | |
| bool Output::inFlowSeqAnyElement(InState State) {
 | |
|   return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
 | |
| }
 | |
| 
 | |
| bool Output::inMapAnyKey(InState State) {
 | |
|   return State == inMapFirstKey || State == inMapOtherKey;
 | |
| }
 | |
| 
 | |
| bool Output::inFlowMapAnyKey(InState State) {
 | |
|   return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  traits for built-in types
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
 | |
|   Out << (Val ? "true" : "false");
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
 | |
|   if (Scalar.equals("true")) {
 | |
|     Val = true;
 | |
|     return StringRef();
 | |
|   } else if (Scalar.equals("false")) {
 | |
|     Val = false;
 | |
|     return StringRef();
 | |
|   }
 | |
|   return "invalid boolean";
 | |
| }
 | |
| 
 | |
| void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
 | |
|                                      raw_ostream &Out) {
 | |
|   Out << Val;
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
 | |
|                                          StringRef &Val) {
 | |
|   Val = Scalar;
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<std::string>::output(const std::string &Val, void *,
 | |
|                                      raw_ostream &Out) {
 | |
|   Out << Val;
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
 | |
|                                          std::string &Val) {
 | |
|   Val = Scalar.str();
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
 | |
|                                    raw_ostream &Out) {
 | |
|   // use temp uin32_t because ostream thinks uint8_t is a character
 | |
|   uint32_t Num = Val;
 | |
|   Out << Num;
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
 | |
|   unsigned long long n;
 | |
|   if (getAsUnsignedInteger(Scalar, 0, n))
 | |
|     return "invalid number";
 | |
|   if (n > 0xFF)
 | |
|     return "out of range number";
 | |
|   Val = n;
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
 | |
|                                     raw_ostream &Out) {
 | |
|   Out << Val;
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
 | |
|                                         uint16_t &Val) {
 | |
|   unsigned long long n;
 | |
|   if (getAsUnsignedInteger(Scalar, 0, n))
 | |
|     return "invalid number";
 | |
|   if (n > 0xFFFF)
 | |
|     return "out of range number";
 | |
|   Val = n;
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
 | |
|                                     raw_ostream &Out) {
 | |
|   Out << Val;
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
 | |
|                                         uint32_t &Val) {
 | |
|   unsigned long long n;
 | |
|   if (getAsUnsignedInteger(Scalar, 0, n))
 | |
|     return "invalid number";
 | |
|   if (n > 0xFFFFFFFFUL)
 | |
|     return "out of range number";
 | |
|   Val = n;
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
 | |
|                                     raw_ostream &Out) {
 | |
|   Out << Val;
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
 | |
|                                         uint64_t &Val) {
 | |
|   unsigned long long N;
 | |
|   if (getAsUnsignedInteger(Scalar, 0, N))
 | |
|     return "invalid number";
 | |
|   Val = N;
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
 | |
|   // use temp in32_t because ostream thinks int8_t is a character
 | |
|   int32_t Num = Val;
 | |
|   Out << Num;
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
 | |
|   long long N;
 | |
|   if (getAsSignedInteger(Scalar, 0, N))
 | |
|     return "invalid number";
 | |
|   if ((N > 127) || (N < -128))
 | |
|     return "out of range number";
 | |
|   Val = N;
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
 | |
|                                    raw_ostream &Out) {
 | |
|   Out << Val;
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
 | |
|   long long N;
 | |
|   if (getAsSignedInteger(Scalar, 0, N))
 | |
|     return "invalid number";
 | |
|   if ((N > INT16_MAX) || (N < INT16_MIN))
 | |
|     return "out of range number";
 | |
|   Val = N;
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
 | |
|                                    raw_ostream &Out) {
 | |
|   Out << Val;
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
 | |
|   long long N;
 | |
|   if (getAsSignedInteger(Scalar, 0, N))
 | |
|     return "invalid number";
 | |
|   if ((N > INT32_MAX) || (N < INT32_MIN))
 | |
|     return "out of range number";
 | |
|   Val = N;
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
 | |
|                                    raw_ostream &Out) {
 | |
|   Out << Val;
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
 | |
|   long long N;
 | |
|   if (getAsSignedInteger(Scalar, 0, N))
 | |
|     return "invalid number";
 | |
|   Val = N;
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
 | |
|   Out << format("%g", Val);
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
 | |
|   if (to_float(Scalar, Val))
 | |
|     return StringRef();
 | |
|   return "invalid floating point number";
 | |
| }
 | |
| 
 | |
| void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
 | |
|   Out << format("%g", Val);
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
 | |
|   if (to_float(Scalar, Val))
 | |
|     return StringRef();
 | |
|   return "invalid floating point number";
 | |
| }
 | |
| 
 | |
| void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
 | |
|   uint8_t Num = Val;
 | |
|   Out << format("0x%02X", Num);
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
 | |
|   unsigned long long n;
 | |
|   if (getAsUnsignedInteger(Scalar, 0, n))
 | |
|     return "invalid hex8 number";
 | |
|   if (n > 0xFF)
 | |
|     return "out of range hex8 number";
 | |
|   Val = n;
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
 | |
|   uint16_t Num = Val;
 | |
|   Out << format("0x%04X", Num);
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
 | |
|   unsigned long long n;
 | |
|   if (getAsUnsignedInteger(Scalar, 0, n))
 | |
|     return "invalid hex16 number";
 | |
|   if (n > 0xFFFF)
 | |
|     return "out of range hex16 number";
 | |
|   Val = n;
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
 | |
|   uint32_t Num = Val;
 | |
|   Out << format("0x%08X", Num);
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
 | |
|   unsigned long long n;
 | |
|   if (getAsUnsignedInteger(Scalar, 0, n))
 | |
|     return "invalid hex32 number";
 | |
|   if (n > 0xFFFFFFFFUL)
 | |
|     return "out of range hex32 number";
 | |
|   Val = n;
 | |
|   return StringRef();
 | |
| }
 | |
| 
 | |
| void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
 | |
|   uint64_t Num = Val;
 | |
|   Out << format("0x%016llX", Num);
 | |
| }
 | |
| 
 | |
| StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
 | |
|   unsigned long long Num;
 | |
|   if (getAsUnsignedInteger(Scalar, 0, Num))
 | |
|     return "invalid hex64 number";
 | |
|   Val = Num;
 | |
|   return StringRef();
 | |
| }
 |