927 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			927 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// This pass does misc. AMDGPU optimizations on IR before instruction
 | |
| /// selection.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AMDGPU.h"
 | |
| #include "AMDGPUSubtarget.h"
 | |
| #include "AMDGPUTargetMachine.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/Analysis/AssumptionCache.h"
 | |
| #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/TargetPassConfig.h"
 | |
| #include "llvm/IR/Attributes.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/InstrTypes.h"
 | |
| #include "llvm/IR/Instruction.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/Intrinsics.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Operator.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/IR/Value.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Casting.h"
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| 
 | |
| #define DEBUG_TYPE "amdgpu-codegenprepare"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| static cl::opt<bool> WidenLoads(
 | |
|   "amdgpu-codegenprepare-widen-constant-loads",
 | |
|   cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
 | |
|   cl::ReallyHidden,
 | |
|   cl::init(true));
 | |
| 
 | |
| class AMDGPUCodeGenPrepare : public FunctionPass,
 | |
|                              public InstVisitor<AMDGPUCodeGenPrepare, bool> {
 | |
|   const GCNSubtarget *ST = nullptr;
 | |
|   AssumptionCache *AC = nullptr;
 | |
|   LegacyDivergenceAnalysis *DA = nullptr;
 | |
|   Module *Mod = nullptr;
 | |
|   bool HasUnsafeFPMath = false;
 | |
| 
 | |
|   /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
 | |
|   /// binary operation \p V.
 | |
|   ///
 | |
|   /// \returns Binary operation \p V.
 | |
|   /// \returns \p T's base element bit width.
 | |
|   unsigned getBaseElementBitWidth(const Type *T) const;
 | |
| 
 | |
|   /// \returns Equivalent 32 bit integer type for given type \p T. For example,
 | |
|   /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
 | |
|   /// is returned.
 | |
|   Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
 | |
| 
 | |
|   /// \returns True if binary operation \p I is a signed binary operation, false
 | |
|   /// otherwise.
 | |
|   bool isSigned(const BinaryOperator &I) const;
 | |
| 
 | |
|   /// \returns True if the condition of 'select' operation \p I comes from a
 | |
|   /// signed 'icmp' operation, false otherwise.
 | |
|   bool isSigned(const SelectInst &I) const;
 | |
| 
 | |
|   /// \returns True if type \p T needs to be promoted to 32 bit integer type,
 | |
|   /// false otherwise.
 | |
|   bool needsPromotionToI32(const Type *T) const;
 | |
| 
 | |
|   /// Promotes uniform binary operation \p I to equivalent 32 bit binary
 | |
|   /// operation.
 | |
|   ///
 | |
|   /// \details \p I's base element bit width must be greater than 1 and less
 | |
|   /// than or equal 16. Promotion is done by sign or zero extending operands to
 | |
|   /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
 | |
|   /// truncating the result of 32 bit binary operation back to \p I's original
 | |
|   /// type. Division operation is not promoted.
 | |
|   ///
 | |
|   /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
 | |
|   /// false otherwise.
 | |
|   bool promoteUniformOpToI32(BinaryOperator &I) const;
 | |
| 
 | |
|   /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
 | |
|   ///
 | |
|   /// \details \p I's base element bit width must be greater than 1 and less
 | |
|   /// than or equal 16. Promotion is done by sign or zero extending operands to
 | |
|   /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
 | |
|   ///
 | |
|   /// \returns True.
 | |
|   bool promoteUniformOpToI32(ICmpInst &I) const;
 | |
| 
 | |
|   /// Promotes uniform 'select' operation \p I to 32 bit 'select'
 | |
|   /// operation.
 | |
|   ///
 | |
|   /// \details \p I's base element bit width must be greater than 1 and less
 | |
|   /// than or equal 16. Promotion is done by sign or zero extending operands to
 | |
|   /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
 | |
|   /// result of 32 bit 'select' operation back to \p I's original type.
 | |
|   ///
 | |
|   /// \returns True.
 | |
|   bool promoteUniformOpToI32(SelectInst &I) const;
 | |
| 
 | |
|   /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
 | |
|   /// intrinsic.
 | |
|   ///
 | |
|   /// \details \p I's base element bit width must be greater than 1 and less
 | |
|   /// than or equal 16. Promotion is done by zero extending the operand to 32
 | |
|   /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
 | |
|   /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
 | |
|   /// shift amount is 32 minus \p I's base element bit width), and truncating
 | |
|   /// the result of the shift operation back to \p I's original type.
 | |
|   ///
 | |
|   /// \returns True.
 | |
|   bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
 | |
| 
 | |
|   /// Expands 24 bit div or rem.
 | |
|   Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
 | |
|                         Value *Num, Value *Den,
 | |
|                         bool IsDiv, bool IsSigned) const;
 | |
| 
 | |
|   /// Expands 32 bit div or rem.
 | |
|   Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
 | |
|                         Value *Num, Value *Den) const;
 | |
| 
 | |
|   /// Widen a scalar load.
 | |
|   ///
 | |
|   /// \details \p Widen scalar load for uniform, small type loads from constant
 | |
|   //  memory / to a full 32-bits and then truncate the input to allow a scalar
 | |
|   //  load instead of a vector load.
 | |
|   //
 | |
|   /// \returns True.
 | |
| 
 | |
|   bool canWidenScalarExtLoad(LoadInst &I) const;
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
 | |
| 
 | |
|   bool visitFDiv(BinaryOperator &I);
 | |
| 
 | |
|   bool visitInstruction(Instruction &I) { return false; }
 | |
|   bool visitBinaryOperator(BinaryOperator &I);
 | |
|   bool visitLoadInst(LoadInst &I);
 | |
|   bool visitICmpInst(ICmpInst &I);
 | |
|   bool visitSelectInst(SelectInst &I);
 | |
| 
 | |
|   bool visitIntrinsicInst(IntrinsicInst &I);
 | |
|   bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
 | |
| 
 | |
|   bool doInitialization(Module &M) override;
 | |
|   bool runOnFunction(Function &F) override;
 | |
| 
 | |
|   StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.addRequired<AssumptionCacheTracker>();
 | |
|     AU.addRequired<LegacyDivergenceAnalysis>();
 | |
|     AU.setPreservesAll();
 | |
|  }
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
 | |
|   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
 | |
| 
 | |
|   if (T->isIntegerTy())
 | |
|     return T->getIntegerBitWidth();
 | |
|   return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
 | |
| }
 | |
| 
 | |
| Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
 | |
|   assert(needsPromotionToI32(T) && "T does not need promotion to i32");
 | |
| 
 | |
|   if (T->isIntegerTy())
 | |
|     return B.getInt32Ty();
 | |
|   return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
 | |
|   return I.getOpcode() == Instruction::AShr ||
 | |
|       I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
 | |
|   return isa<ICmpInst>(I.getOperand(0)) ?
 | |
|       cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
 | |
|   const IntegerType *IntTy = dyn_cast<IntegerType>(T);
 | |
|   if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
 | |
|     return true;
 | |
| 
 | |
|   if (const VectorType *VT = dyn_cast<VectorType>(T)) {
 | |
|     // TODO: The set of packed operations is more limited, so may want to
 | |
|     // promote some anyway.
 | |
|     if (ST->hasVOP3PInsts())
 | |
|       return false;
 | |
| 
 | |
|     return needsPromotionToI32(VT->getElementType());
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Return true if the op promoted to i32 should have nsw set.
 | |
| static bool promotedOpIsNSW(const Instruction &I) {
 | |
|   switch (I.getOpcode()) {
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Sub:
 | |
|     return true;
 | |
|   case Instruction::Mul:
 | |
|     return I.hasNoUnsignedWrap();
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Return true if the op promoted to i32 should have nuw set.
 | |
| static bool promotedOpIsNUW(const Instruction &I) {
 | |
|   switch (I.getOpcode()) {
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::Add:
 | |
|   case Instruction::Mul:
 | |
|     return true;
 | |
|   case Instruction::Sub:
 | |
|     return I.hasNoUnsignedWrap();
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
 | |
|   Type *Ty = I.getType();
 | |
|   const DataLayout &DL = Mod->getDataLayout();
 | |
|   int TySize = DL.getTypeSizeInBits(Ty);
 | |
|   unsigned Align = I.getAlignment() ?
 | |
|                    I.getAlignment() : DL.getABITypeAlignment(Ty);
 | |
| 
 | |
|   return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I);
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
 | |
|   assert(needsPromotionToI32(I.getType()) &&
 | |
|          "I does not need promotion to i32");
 | |
| 
 | |
|   if (I.getOpcode() == Instruction::SDiv ||
 | |
|       I.getOpcode() == Instruction::UDiv ||
 | |
|       I.getOpcode() == Instruction::SRem ||
 | |
|       I.getOpcode() == Instruction::URem)
 | |
|     return false;
 | |
| 
 | |
|   IRBuilder<> Builder(&I);
 | |
|   Builder.SetCurrentDebugLocation(I.getDebugLoc());
 | |
| 
 | |
|   Type *I32Ty = getI32Ty(Builder, I.getType());
 | |
|   Value *ExtOp0 = nullptr;
 | |
|   Value *ExtOp1 = nullptr;
 | |
|   Value *ExtRes = nullptr;
 | |
|   Value *TruncRes = nullptr;
 | |
| 
 | |
|   if (isSigned(I)) {
 | |
|     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
 | |
|     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
 | |
|   } else {
 | |
|     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
 | |
|     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
 | |
|   }
 | |
| 
 | |
|   ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
 | |
|   if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
 | |
|     if (promotedOpIsNSW(cast<Instruction>(I)))
 | |
|       Inst->setHasNoSignedWrap();
 | |
| 
 | |
|     if (promotedOpIsNUW(cast<Instruction>(I)))
 | |
|       Inst->setHasNoUnsignedWrap();
 | |
| 
 | |
|     if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
 | |
|       Inst->setIsExact(ExactOp->isExact());
 | |
|   }
 | |
| 
 | |
|   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
 | |
| 
 | |
|   I.replaceAllUsesWith(TruncRes);
 | |
|   I.eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
 | |
|   assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
 | |
|          "I does not need promotion to i32");
 | |
| 
 | |
|   IRBuilder<> Builder(&I);
 | |
|   Builder.SetCurrentDebugLocation(I.getDebugLoc());
 | |
| 
 | |
|   Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
 | |
|   Value *ExtOp0 = nullptr;
 | |
|   Value *ExtOp1 = nullptr;
 | |
|   Value *NewICmp  = nullptr;
 | |
| 
 | |
|   if (I.isSigned()) {
 | |
|     ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
 | |
|     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
 | |
|   } else {
 | |
|     ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
 | |
|     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
 | |
|   }
 | |
|   NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
 | |
| 
 | |
|   I.replaceAllUsesWith(NewICmp);
 | |
|   I.eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
 | |
|   assert(needsPromotionToI32(I.getType()) &&
 | |
|          "I does not need promotion to i32");
 | |
| 
 | |
|   IRBuilder<> Builder(&I);
 | |
|   Builder.SetCurrentDebugLocation(I.getDebugLoc());
 | |
| 
 | |
|   Type *I32Ty = getI32Ty(Builder, I.getType());
 | |
|   Value *ExtOp1 = nullptr;
 | |
|   Value *ExtOp2 = nullptr;
 | |
|   Value *ExtRes = nullptr;
 | |
|   Value *TruncRes = nullptr;
 | |
| 
 | |
|   if (isSigned(I)) {
 | |
|     ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
 | |
|     ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
 | |
|   } else {
 | |
|     ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
 | |
|     ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
 | |
|   }
 | |
|   ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
 | |
|   TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
 | |
| 
 | |
|   I.replaceAllUsesWith(TruncRes);
 | |
|   I.eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
 | |
|     IntrinsicInst &I) const {
 | |
|   assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
 | |
|          "I must be bitreverse intrinsic");
 | |
|   assert(needsPromotionToI32(I.getType()) &&
 | |
|          "I does not need promotion to i32");
 | |
| 
 | |
|   IRBuilder<> Builder(&I);
 | |
|   Builder.SetCurrentDebugLocation(I.getDebugLoc());
 | |
| 
 | |
|   Type *I32Ty = getI32Ty(Builder, I.getType());
 | |
|   Function *I32 =
 | |
|       Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
 | |
|   Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
 | |
|   Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
 | |
|   Value *LShrOp =
 | |
|       Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
 | |
|   Value *TruncRes =
 | |
|       Builder.CreateTrunc(LShrOp, I.getType());
 | |
| 
 | |
|   I.replaceAllUsesWith(TruncRes);
 | |
|   I.eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) {
 | |
|   const ConstantFP *CNum = dyn_cast<ConstantFP>(Num);
 | |
|   if (!CNum)
 | |
|     return HasDenormals;
 | |
| 
 | |
|   if (UnsafeDiv)
 | |
|     return true;
 | |
| 
 | |
|   bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0);
 | |
| 
 | |
|   // Reciprocal f32 is handled separately without denormals.
 | |
|   return HasDenormals ^ IsOne;
 | |
| }
 | |
| 
 | |
| // Insert an intrinsic for fast fdiv for safe math situations where we can
 | |
| // reduce precision. Leave fdiv for situations where the generic node is
 | |
| // expected to be optimized.
 | |
| bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
 | |
|   Type *Ty = FDiv.getType();
 | |
| 
 | |
|   if (!Ty->getScalarType()->isFloatTy())
 | |
|     return false;
 | |
| 
 | |
|   MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
 | |
|   if (!FPMath)
 | |
|     return false;
 | |
| 
 | |
|   const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
 | |
|   float ULP = FPOp->getFPAccuracy();
 | |
|   if (ULP < 2.5f)
 | |
|     return false;
 | |
| 
 | |
|   FastMathFlags FMF = FPOp->getFastMathFlags();
 | |
|   bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() ||
 | |
|                                       FMF.allowReciprocal();
 | |
| 
 | |
|   // With UnsafeDiv node will be optimized to just rcp and mul.
 | |
|   if (UnsafeDiv)
 | |
|     return false;
 | |
| 
 | |
|   IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
 | |
|   Builder.setFastMathFlags(FMF);
 | |
|   Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
 | |
| 
 | |
|   Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
 | |
| 
 | |
|   Value *Num = FDiv.getOperand(0);
 | |
|   Value *Den = FDiv.getOperand(1);
 | |
| 
 | |
|   Value *NewFDiv = nullptr;
 | |
| 
 | |
|   bool HasDenormals = ST->hasFP32Denormals();
 | |
|   if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
 | |
|     NewFDiv = UndefValue::get(VT);
 | |
| 
 | |
|     // FIXME: Doesn't do the right thing for cases where the vector is partially
 | |
|     // constant. This works when the scalarizer pass is run first.
 | |
|     for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
 | |
|       Value *NumEltI = Builder.CreateExtractElement(Num, I);
 | |
|       Value *DenEltI = Builder.CreateExtractElement(Den, I);
 | |
|       Value *NewElt;
 | |
| 
 | |
|       if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasDenormals)) {
 | |
|         NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
 | |
|       } else {
 | |
|         NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
 | |
|       }
 | |
| 
 | |
|       NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
 | |
|     }
 | |
|   } else {
 | |
|     if (!shouldKeepFDivF32(Num, UnsafeDiv, HasDenormals))
 | |
|       NewFDiv = Builder.CreateCall(Decl, { Num, Den });
 | |
|   }
 | |
| 
 | |
|   if (NewFDiv) {
 | |
|     FDiv.replaceAllUsesWith(NewFDiv);
 | |
|     NewFDiv->takeName(&FDiv);
 | |
|     FDiv.eraseFromParent();
 | |
|   }
 | |
| 
 | |
|   return !!NewFDiv;
 | |
| }
 | |
| 
 | |
| static bool hasUnsafeFPMath(const Function &F) {
 | |
|   Attribute Attr = F.getFnAttribute("unsafe-fp-math");
 | |
|   return Attr.getValueAsString() == "true";
 | |
| }
 | |
| 
 | |
| static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
 | |
|                                           Value *LHS, Value *RHS) {
 | |
|   Type *I32Ty = Builder.getInt32Ty();
 | |
|   Type *I64Ty = Builder.getInt64Ty();
 | |
| 
 | |
|   Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
 | |
|   Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
 | |
|   Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
 | |
|   Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
 | |
|   Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
 | |
|   Hi = Builder.CreateTrunc(Hi, I32Ty);
 | |
|   return std::make_pair(Lo, Hi);
 | |
| }
 | |
| 
 | |
| static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
 | |
|   return getMul64(Builder, LHS, RHS).second;
 | |
| }
 | |
| 
 | |
| // The fractional part of a float is enough to accurately represent up to
 | |
| // a 24-bit signed integer.
 | |
| Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
 | |
|                                             BinaryOperator &I,
 | |
|                                             Value *Num, Value *Den,
 | |
|                                             bool IsDiv, bool IsSigned) const {
 | |
|   assert(Num->getType()->isIntegerTy(32));
 | |
| 
 | |
|   const DataLayout &DL = Mod->getDataLayout();
 | |
|   unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
 | |
|   if (LHSSignBits < 9)
 | |
|     return nullptr;
 | |
| 
 | |
|   unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
 | |
|   if (RHSSignBits < 9)
 | |
|     return nullptr;
 | |
| 
 | |
| 
 | |
|   unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
 | |
|   unsigned DivBits = 32 - SignBits;
 | |
|   if (IsSigned)
 | |
|     ++DivBits;
 | |
| 
 | |
|   Type *Ty = Num->getType();
 | |
|   Type *I32Ty = Builder.getInt32Ty();
 | |
|   Type *F32Ty = Builder.getFloatTy();
 | |
|   ConstantInt *One = Builder.getInt32(1);
 | |
|   Value *JQ = One;
 | |
| 
 | |
|   if (IsSigned) {
 | |
|     // char|short jq = ia ^ ib;
 | |
|     JQ = Builder.CreateXor(Num, Den);
 | |
| 
 | |
|     // jq = jq >> (bitsize - 2)
 | |
|     JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
 | |
| 
 | |
|     // jq = jq | 0x1
 | |
|     JQ = Builder.CreateOr(JQ, One);
 | |
|   }
 | |
| 
 | |
|   // int ia = (int)LHS;
 | |
|   Value *IA = Num;
 | |
| 
 | |
|   // int ib, (int)RHS;
 | |
|   Value *IB = Den;
 | |
| 
 | |
|   // float fa = (float)ia;
 | |
|   Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
 | |
|                        : Builder.CreateUIToFP(IA, F32Ty);
 | |
| 
 | |
|   // float fb = (float)ib;
 | |
|   Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
 | |
|                        : Builder.CreateUIToFP(IB,F32Ty);
 | |
| 
 | |
|   Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB);
 | |
|   Value *FQM = Builder.CreateFMul(FA, RCP);
 | |
| 
 | |
|   // fq = trunc(fqm);
 | |
|   CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
 | |
|   FQ->copyFastMathFlags(Builder.getFastMathFlags());
 | |
| 
 | |
|   // float fqneg = -fq;
 | |
|   Value *FQNeg = Builder.CreateFNeg(FQ);
 | |
| 
 | |
|   // float fr = mad(fqneg, fb, fa);
 | |
|   Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz,
 | |
|                                       {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
 | |
| 
 | |
|   // int iq = (int)fq;
 | |
|   Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
 | |
|                        : Builder.CreateFPToUI(FQ, I32Ty);
 | |
| 
 | |
|   // fr = fabs(fr);
 | |
|   FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
 | |
| 
 | |
|   // fb = fabs(fb);
 | |
|   FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
 | |
| 
 | |
|   // int cv = fr >= fb;
 | |
|   Value *CV = Builder.CreateFCmpOGE(FR, FB);
 | |
| 
 | |
|   // jq = (cv ? jq : 0);
 | |
|   JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
 | |
| 
 | |
|   // dst = iq + jq;
 | |
|   Value *Div = Builder.CreateAdd(IQ, JQ);
 | |
| 
 | |
|   Value *Res = Div;
 | |
|   if (!IsDiv) {
 | |
|     // Rem needs compensation, it's easier to recompute it
 | |
|     Value *Rem = Builder.CreateMul(Div, Den);
 | |
|     Res = Builder.CreateSub(Num, Rem);
 | |
|   }
 | |
| 
 | |
|   // Truncate to number of bits this divide really is.
 | |
|   if (IsSigned) {
 | |
|     Res = Builder.CreateTrunc(Res, Builder.getIntNTy(DivBits));
 | |
|     Res = Builder.CreateSExt(Res, Ty);
 | |
|   } else {
 | |
|     ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
 | |
|     Res = Builder.CreateAnd(Res, TruncMask);
 | |
|   }
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
 | |
|                                             BinaryOperator &I,
 | |
|                                             Value *Num, Value *Den) const {
 | |
|   Instruction::BinaryOps Opc = I.getOpcode();
 | |
|   assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
 | |
|          Opc == Instruction::SRem || Opc == Instruction::SDiv);
 | |
| 
 | |
|   FastMathFlags FMF;
 | |
|   FMF.setFast();
 | |
|   Builder.setFastMathFlags(FMF);
 | |
| 
 | |
|   if (isa<Constant>(Den))
 | |
|     return nullptr; // Keep it for optimization
 | |
| 
 | |
|   bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
 | |
|   bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
 | |
| 
 | |
|   Type *Ty = Num->getType();
 | |
|   Type *I32Ty = Builder.getInt32Ty();
 | |
|   Type *F32Ty = Builder.getFloatTy();
 | |
| 
 | |
|   if (Ty->getScalarSizeInBits() < 32) {
 | |
|     if (IsSigned) {
 | |
|       Num = Builder.CreateSExt(Num, I32Ty);
 | |
|       Den = Builder.CreateSExt(Den, I32Ty);
 | |
|     } else {
 | |
|       Num = Builder.CreateZExt(Num, I32Ty);
 | |
|       Den = Builder.CreateZExt(Den, I32Ty);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) {
 | |
|     Res = Builder.CreateTrunc(Res, Ty);
 | |
|     return Res;
 | |
|   }
 | |
| 
 | |
|   ConstantInt *Zero = Builder.getInt32(0);
 | |
|   ConstantInt *One = Builder.getInt32(1);
 | |
|   ConstantInt *MinusOne = Builder.getInt32(~0);
 | |
| 
 | |
|   Value *Sign = nullptr;
 | |
|   if (IsSigned) {
 | |
|     ConstantInt *K31 = Builder.getInt32(31);
 | |
|     Value *LHSign = Builder.CreateAShr(Num, K31);
 | |
|     Value *RHSign = Builder.CreateAShr(Den, K31);
 | |
|     // Remainder sign is the same as LHS
 | |
|     Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign;
 | |
| 
 | |
|     Num = Builder.CreateAdd(Num, LHSign);
 | |
|     Den = Builder.CreateAdd(Den, RHSign);
 | |
| 
 | |
|     Num = Builder.CreateXor(Num, LHSign);
 | |
|     Den = Builder.CreateXor(Den, RHSign);
 | |
|   }
 | |
| 
 | |
|   // RCP =  URECIP(Den) = 2^32 / Den + e
 | |
|   // e is rounding error.
 | |
|   Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty);
 | |
|   Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32);
 | |
|   Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000));
 | |
|   Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1);
 | |
|   Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty);
 | |
| 
 | |
|   // RCP_LO, RCP_HI = mul(RCP, Den) */
 | |
|   Value *RCP_LO, *RCP_HI;
 | |
|   std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den);
 | |
| 
 | |
|   // NEG_RCP_LO = -RCP_LO
 | |
|   Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO);
 | |
| 
 | |
|   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
 | |
|   Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero);
 | |
|   Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO);
 | |
| 
 | |
|   // Calculate the rounding error from the URECIP instruction
 | |
|   // E = mulhu(ABS_RCP_LO, RCP)
 | |
|   Value *E = getMulHu(Builder, ABS_RCP_LO, RCP);
 | |
| 
 | |
|   // RCP_A_E = RCP + E
 | |
|   Value *RCP_A_E = Builder.CreateAdd(RCP, E);
 | |
| 
 | |
|   // RCP_S_E = RCP - E
 | |
|   Value *RCP_S_E = Builder.CreateSub(RCP, E);
 | |
| 
 | |
|   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
 | |
|   Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E);
 | |
| 
 | |
|   // Quotient = mulhu(Tmp0, Num)
 | |
|   Value *Quotient = getMulHu(Builder, Tmp0, Num);
 | |
| 
 | |
|   // Num_S_Remainder = Quotient * Den
 | |
|   Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den);
 | |
| 
 | |
|   // Remainder = Num - Num_S_Remainder
 | |
|   Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder);
 | |
| 
 | |
|   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
 | |
|   Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den);
 | |
|   Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero);
 | |
| 
 | |
|   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
 | |
|   Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder);
 | |
|   Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC,
 | |
|                                                   MinusOne, Zero);
 | |
| 
 | |
|   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
 | |
|   Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero);
 | |
|   Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero);
 | |
| 
 | |
|   Value *Res;
 | |
|   if (IsDiv) {
 | |
|     // Quotient_A_One = Quotient + 1
 | |
|     Value *Quotient_A_One = Builder.CreateAdd(Quotient, One);
 | |
| 
 | |
|     // Quotient_S_One = Quotient - 1
 | |
|     Value *Quotient_S_One = Builder.CreateSub(Quotient, One);
 | |
| 
 | |
|     // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
 | |
|     Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One);
 | |
| 
 | |
|     // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
 | |
|     Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One);
 | |
|   } else {
 | |
|     // Remainder_S_Den = Remainder - Den
 | |
|     Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den);
 | |
| 
 | |
|     // Remainder_A_Den = Remainder + Den
 | |
|     Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den);
 | |
| 
 | |
|     // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
 | |
|     Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den);
 | |
| 
 | |
|     // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
 | |
|     Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den);
 | |
|   }
 | |
| 
 | |
|   if (IsSigned) {
 | |
|     Res = Builder.CreateXor(Res, Sign);
 | |
|     Res = Builder.CreateSub(Res, Sign);
 | |
|   }
 | |
| 
 | |
|   Res = Builder.CreateTrunc(Res, Ty);
 | |
| 
 | |
|   return Res;
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
 | |
|   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
 | |
|       DA->isUniform(&I) && promoteUniformOpToI32(I))
 | |
|     return true;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   Instruction::BinaryOps Opc = I.getOpcode();
 | |
|   Type *Ty = I.getType();
 | |
|   Value *NewDiv = nullptr;
 | |
|   if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
 | |
|        Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
 | |
|       Ty->getScalarSizeInBits() <= 32) {
 | |
|     Value *Num = I.getOperand(0);
 | |
|     Value *Den = I.getOperand(1);
 | |
|     IRBuilder<> Builder(&I);
 | |
|     Builder.SetCurrentDebugLocation(I.getDebugLoc());
 | |
| 
 | |
|     if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
 | |
|       NewDiv = UndefValue::get(VT);
 | |
| 
 | |
|       for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
 | |
|         Value *NumEltN = Builder.CreateExtractElement(Num, N);
 | |
|         Value *DenEltN = Builder.CreateExtractElement(Den, N);
 | |
|         Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
 | |
|         if (!NewElt)
 | |
|           NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
 | |
|         NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
 | |
|       }
 | |
|     } else {
 | |
|       NewDiv = expandDivRem32(Builder, I, Num, Den);
 | |
|     }
 | |
| 
 | |
|     if (NewDiv) {
 | |
|       I.replaceAllUsesWith(NewDiv);
 | |
|       I.eraseFromParent();
 | |
|       Changed = true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
 | |
|   if (!WidenLoads)
 | |
|     return false;
 | |
| 
 | |
|   if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
 | |
|        I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
 | |
|       canWidenScalarExtLoad(I)) {
 | |
|     IRBuilder<> Builder(&I);
 | |
|     Builder.SetCurrentDebugLocation(I.getDebugLoc());
 | |
| 
 | |
|     Type *I32Ty = Builder.getInt32Ty();
 | |
|     Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
 | |
|     Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
 | |
|     LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
 | |
|     WidenLoad->copyMetadata(I);
 | |
| 
 | |
|     // If we have range metadata, we need to convert the type, and not make
 | |
|     // assumptions about the high bits.
 | |
|     if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
 | |
|       ConstantInt *Lower =
 | |
|         mdconst::extract<ConstantInt>(Range->getOperand(0));
 | |
| 
 | |
|       if (Lower->getValue().isNullValue()) {
 | |
|         WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
 | |
|       } else {
 | |
|         Metadata *LowAndHigh[] = {
 | |
|           ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
 | |
|           // Don't make assumptions about the high bits.
 | |
|           ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
 | |
|         };
 | |
| 
 | |
|         WidenLoad->setMetadata(LLVMContext::MD_range,
 | |
|                                MDNode::get(Mod->getContext(), LowAndHigh));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
 | |
|     Type *IntNTy = Builder.getIntNTy(TySize);
 | |
|     Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
 | |
|     Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
 | |
|     I.replaceAllUsesWith(ValOrig);
 | |
|     I.eraseFromParent();
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
 | |
|       DA->isUniform(&I))
 | |
|     Changed |= promoteUniformOpToI32(I);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
 | |
|       DA->isUniform(&I))
 | |
|     Changed |= promoteUniformOpToI32(I);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
 | |
|   switch (I.getIntrinsicID()) {
 | |
|   case Intrinsic::bitreverse:
 | |
|     return visitBitreverseIntrinsicInst(I);
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
 | |
|       DA->isUniform(&I))
 | |
|     Changed |= promoteUniformBitreverseToI32(I);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
 | |
|   Mod = &M;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
 | |
|   if (skipFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
 | |
|   if (!TPC)
 | |
|     return false;
 | |
| 
 | |
|   const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
 | |
|   ST = &TM.getSubtarget<GCNSubtarget>(F);
 | |
|   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
 | |
|   DA = &getAnalysis<LegacyDivergenceAnalysis>();
 | |
|   HasUnsafeFPMath = hasUnsafeFPMath(F);
 | |
| 
 | |
|   bool MadeChange = false;
 | |
| 
 | |
|   for (BasicBlock &BB : F) {
 | |
|     BasicBlock::iterator Next;
 | |
|     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) {
 | |
|       Next = std::next(I);
 | |
|       MadeChange |= visit(*I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return MadeChange;
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
 | |
|                       "AMDGPU IR optimizations", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
 | |
| INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
 | |
| INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
 | |
|                     false, false)
 | |
| 
 | |
| char AMDGPUCodeGenPrepare::ID = 0;
 | |
| 
 | |
| FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
 | |
|   return new AMDGPUCodeGenPrepare();
 | |
| }
 |