1766 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1766 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- AMDGPULibCalls.cpp -------------------------------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// This file does AMD library function optimizations.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "amdgpu-simplifylib"
 | |
| 
 | |
| #include "AMDGPU.h"
 | |
| #include "AMDGPULibFunc.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/Loads.h"
 | |
| #include "llvm/ADT/StringSet.h"
 | |
| #include "llvm/ADT/StringRef.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DerivedTypes.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IRBuilder.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/ValueSymbolTable.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include <vector>
 | |
| #include <cmath>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| static cl::opt<bool> EnablePreLink("amdgpu-prelink",
 | |
|   cl::desc("Enable pre-link mode optimizations"),
 | |
|   cl::init(false),
 | |
|   cl::Hidden);
 | |
| 
 | |
| static cl::list<std::string> UseNative("amdgpu-use-native",
 | |
|   cl::desc("Comma separated list of functions to replace with native, or all"),
 | |
|   cl::CommaSeparated, cl::ValueOptional,
 | |
|   cl::Hidden);
 | |
| 
 | |
| #define MATH_PI     3.14159265358979323846264338327950288419716939937511
 | |
| #define MATH_E      2.71828182845904523536028747135266249775724709369996
 | |
| #define MATH_SQRT2  1.41421356237309504880168872420969807856967187537695
 | |
| 
 | |
| #define MATH_LOG2E     1.4426950408889634073599246810018921374266459541529859
 | |
| #define MATH_LOG10E    0.4342944819032518276511289189166050822943970058036665
 | |
| // Value of log2(10)
 | |
| #define MATH_LOG2_10   3.3219280948873623478703194294893901758648313930245806
 | |
| // Value of 1 / log2(10)
 | |
| #define MATH_RLOG2_10  0.3010299956639811952137388947244930267681898814621085
 | |
| // Value of 1 / M_LOG2E_F = 1 / log2(e)
 | |
| #define MATH_RLOG2_E   0.6931471805599453094172321214581765680755001343602552
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| class AMDGPULibCalls {
 | |
| private:
 | |
| 
 | |
|   typedef llvm::AMDGPULibFunc FuncInfo;
 | |
| 
 | |
|   // -fuse-native.
 | |
|   bool AllNative = false;
 | |
| 
 | |
|   bool useNativeFunc(const StringRef F) const;
 | |
| 
 | |
|   // Return a pointer (pointer expr) to the function if function defintion with
 | |
|   // "FuncName" exists. It may create a new function prototype in pre-link mode.
 | |
|   FunctionCallee getFunction(Module *M, const FuncInfo &fInfo);
 | |
| 
 | |
|   // Replace a normal function with its native version.
 | |
|   bool replaceWithNative(CallInst *CI, const FuncInfo &FInfo);
 | |
| 
 | |
|   bool parseFunctionName(const StringRef& FMangledName,
 | |
|                          FuncInfo *FInfo=nullptr /*out*/);
 | |
| 
 | |
|   bool TDOFold(CallInst *CI, const FuncInfo &FInfo);
 | |
| 
 | |
|   /* Specialized optimizations */
 | |
| 
 | |
|   // recip (half or native)
 | |
|   bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
 | |
| 
 | |
|   // divide (half or native)
 | |
|   bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
 | |
| 
 | |
|   // pow/powr/pown
 | |
|   bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
 | |
| 
 | |
|   // rootn
 | |
|   bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
 | |
| 
 | |
|   // fma/mad
 | |
|   bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
 | |
| 
 | |
|   // -fuse-native for sincos
 | |
|   bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo);
 | |
| 
 | |
|   // evaluate calls if calls' arguments are constants.
 | |
|   bool evaluateScalarMathFunc(FuncInfo &FInfo, double& Res0,
 | |
|     double& Res1, Constant *copr0, Constant *copr1, Constant *copr2);
 | |
|   bool evaluateCall(CallInst *aCI, FuncInfo &FInfo);
 | |
| 
 | |
|   // exp
 | |
|   bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
 | |
| 
 | |
|   // exp2
 | |
|   bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
 | |
| 
 | |
|   // exp10
 | |
|   bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
 | |
| 
 | |
|   // log
 | |
|   bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
 | |
| 
 | |
|   // log2
 | |
|   bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
 | |
| 
 | |
|   // log10
 | |
|   bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
 | |
| 
 | |
|   // sqrt
 | |
|   bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo);
 | |
| 
 | |
|   // sin/cos
 | |
|   bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA);
 | |
| 
 | |
|   // __read_pipe/__write_pipe
 | |
|   bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, FuncInfo &FInfo);
 | |
| 
 | |
|   // Get insertion point at entry.
 | |
|   BasicBlock::iterator getEntryIns(CallInst * UI);
 | |
|   // Insert an Alloc instruction.
 | |
|   AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix);
 | |
|   // Get a scalar native builtin signle argument FP function
 | |
|   FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo);
 | |
| 
 | |
| protected:
 | |
|   CallInst *CI;
 | |
| 
 | |
|   bool isUnsafeMath(const CallInst *CI) const;
 | |
| 
 | |
|   void replaceCall(Value *With) {
 | |
|     CI->replaceAllUsesWith(With);
 | |
|     CI->eraseFromParent();
 | |
|   }
 | |
| 
 | |
| public:
 | |
|   bool fold(CallInst *CI, AliasAnalysis *AA = nullptr);
 | |
| 
 | |
|   void initNativeFuncs();
 | |
| 
 | |
|   // Replace a normal math function call with that native version
 | |
|   bool useNative(CallInst *CI);
 | |
| };
 | |
| 
 | |
| } // end llvm namespace
 | |
| 
 | |
| namespace {
 | |
| 
 | |
|   class AMDGPUSimplifyLibCalls : public FunctionPass {
 | |
| 
 | |
|   AMDGPULibCalls Simplifier;
 | |
| 
 | |
|   const TargetOptions Options;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
| 
 | |
|     AMDGPUSimplifyLibCalls(const TargetOptions &Opt = TargetOptions())
 | |
|       : FunctionPass(ID), Options(Opt) {
 | |
|       initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry());
 | |
|     }
 | |
| 
 | |
|     void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|       AU.addRequired<AAResultsWrapperPass>();
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &M) override;
 | |
|   };
 | |
| 
 | |
|   class AMDGPUUseNativeCalls : public FunctionPass {
 | |
| 
 | |
|   AMDGPULibCalls Simplifier;
 | |
| 
 | |
|   public:
 | |
|     static char ID; // Pass identification
 | |
| 
 | |
|     AMDGPUUseNativeCalls() : FunctionPass(ID) {
 | |
|       initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry());
 | |
|       Simplifier.initNativeFuncs();
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) override;
 | |
|   };
 | |
| 
 | |
| } // end anonymous namespace.
 | |
| 
 | |
| char AMDGPUSimplifyLibCalls::ID = 0;
 | |
| char AMDGPUUseNativeCalls::ID = 0;
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
 | |
|                       "Simplify well-known AMD library calls", false, false)
 | |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
 | |
| INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib",
 | |
|                     "Simplify well-known AMD library calls", false, false)
 | |
| 
 | |
| INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative",
 | |
|                 "Replace builtin math calls with that native versions.",
 | |
|                 false, false)
 | |
| 
 | |
| template <typename IRB>
 | |
| static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg,
 | |
|                               const Twine &Name = "") {
 | |
|   CallInst *R = B.CreateCall(Callee, Arg, Name);
 | |
|   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
 | |
|     R->setCallingConv(F->getCallingConv());
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| template <typename IRB>
 | |
| static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1,
 | |
|                                Value *Arg2, const Twine &Name = "") {
 | |
|   CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name);
 | |
|   if (Function *F = dyn_cast<Function>(Callee.getCallee()))
 | |
|     R->setCallingConv(F->getCallingConv());
 | |
|   return R;
 | |
| }
 | |
| 
 | |
| //  Data structures for table-driven optimizations.
 | |
| //  FuncTbl works for both f32 and f64 functions with 1 input argument
 | |
| 
 | |
| struct TableEntry {
 | |
|   double   result;
 | |
|   double   input;
 | |
| };
 | |
| 
 | |
| /* a list of {result, input} */
 | |
| static const TableEntry tbl_acos[] = {
 | |
|   {MATH_PI/2.0, 0.0},
 | |
|   {MATH_PI/2.0, -0.0},
 | |
|   {0.0, 1.0},
 | |
|   {MATH_PI, -1.0}
 | |
| };
 | |
| static const TableEntry tbl_acosh[] = {
 | |
|   {0.0, 1.0}
 | |
| };
 | |
| static const TableEntry tbl_acospi[] = {
 | |
|   {0.5, 0.0},
 | |
|   {0.5, -0.0},
 | |
|   {0.0, 1.0},
 | |
|   {1.0, -1.0}
 | |
| };
 | |
| static const TableEntry tbl_asin[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0},
 | |
|   {MATH_PI/2.0, 1.0},
 | |
|   {-MATH_PI/2.0, -1.0}
 | |
| };
 | |
| static const TableEntry tbl_asinh[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_asinpi[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0},
 | |
|   {0.5, 1.0},
 | |
|   {-0.5, -1.0}
 | |
| };
 | |
| static const TableEntry tbl_atan[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0},
 | |
|   {MATH_PI/4.0, 1.0},
 | |
|   {-MATH_PI/4.0, -1.0}
 | |
| };
 | |
| static const TableEntry tbl_atanh[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_atanpi[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0},
 | |
|   {0.25, 1.0},
 | |
|   {-0.25, -1.0}
 | |
| };
 | |
| static const TableEntry tbl_cbrt[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0},
 | |
|   {1.0, 1.0},
 | |
|   {-1.0, -1.0},
 | |
| };
 | |
| static const TableEntry tbl_cos[] = {
 | |
|   {1.0, 0.0},
 | |
|   {1.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_cosh[] = {
 | |
|   {1.0, 0.0},
 | |
|   {1.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_cospi[] = {
 | |
|   {1.0, 0.0},
 | |
|   {1.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_erfc[] = {
 | |
|   {1.0, 0.0},
 | |
|   {1.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_erf[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_exp[] = {
 | |
|   {1.0, 0.0},
 | |
|   {1.0, -0.0},
 | |
|   {MATH_E, 1.0}
 | |
| };
 | |
| static const TableEntry tbl_exp2[] = {
 | |
|   {1.0, 0.0},
 | |
|   {1.0, -0.0},
 | |
|   {2.0, 1.0}
 | |
| };
 | |
| static const TableEntry tbl_exp10[] = {
 | |
|   {1.0, 0.0},
 | |
|   {1.0, -0.0},
 | |
|   {10.0, 1.0}
 | |
| };
 | |
| static const TableEntry tbl_expm1[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_log[] = {
 | |
|   {0.0, 1.0},
 | |
|   {1.0, MATH_E}
 | |
| };
 | |
| static const TableEntry tbl_log2[] = {
 | |
|   {0.0, 1.0},
 | |
|   {1.0, 2.0}
 | |
| };
 | |
| static const TableEntry tbl_log10[] = {
 | |
|   {0.0, 1.0},
 | |
|   {1.0, 10.0}
 | |
| };
 | |
| static const TableEntry tbl_rsqrt[] = {
 | |
|   {1.0, 1.0},
 | |
|   {1.0/MATH_SQRT2, 2.0}
 | |
| };
 | |
| static const TableEntry tbl_sin[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_sinh[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_sinpi[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_sqrt[] = {
 | |
|   {0.0, 0.0},
 | |
|   {1.0, 1.0},
 | |
|   {MATH_SQRT2, 2.0}
 | |
| };
 | |
| static const TableEntry tbl_tan[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_tanh[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_tanpi[] = {
 | |
|   {0.0, 0.0},
 | |
|   {-0.0, -0.0}
 | |
| };
 | |
| static const TableEntry tbl_tgamma[] = {
 | |
|   {1.0, 1.0},
 | |
|   {1.0, 2.0},
 | |
|   {2.0, 3.0},
 | |
|   {6.0, 4.0}
 | |
| };
 | |
| 
 | |
| static bool HasNative(AMDGPULibFunc::EFuncId id) {
 | |
|   switch(id) {
 | |
|   case AMDGPULibFunc::EI_DIVIDE:
 | |
|   case AMDGPULibFunc::EI_COS:
 | |
|   case AMDGPULibFunc::EI_EXP:
 | |
|   case AMDGPULibFunc::EI_EXP2:
 | |
|   case AMDGPULibFunc::EI_EXP10:
 | |
|   case AMDGPULibFunc::EI_LOG:
 | |
|   case AMDGPULibFunc::EI_LOG2:
 | |
|   case AMDGPULibFunc::EI_LOG10:
 | |
|   case AMDGPULibFunc::EI_POWR:
 | |
|   case AMDGPULibFunc::EI_RECIP:
 | |
|   case AMDGPULibFunc::EI_RSQRT:
 | |
|   case AMDGPULibFunc::EI_SIN:
 | |
|   case AMDGPULibFunc::EI_SINCOS:
 | |
|   case AMDGPULibFunc::EI_SQRT:
 | |
|   case AMDGPULibFunc::EI_TAN:
 | |
|     return true;
 | |
|   default:;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| struct TableRef {
 | |
|   size_t size;
 | |
|   const TableEntry *table; // variable size: from 0 to (size - 1)
 | |
| 
 | |
|   TableRef() : size(0), table(nullptr) {}
 | |
| 
 | |
|   template <size_t N>
 | |
|   TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {}
 | |
| };
 | |
| 
 | |
| static TableRef getOptTable(AMDGPULibFunc::EFuncId id) {
 | |
|   switch(id) {
 | |
|   case AMDGPULibFunc::EI_ACOS:    return TableRef(tbl_acos);
 | |
|   case AMDGPULibFunc::EI_ACOSH:   return TableRef(tbl_acosh);
 | |
|   case AMDGPULibFunc::EI_ACOSPI:  return TableRef(tbl_acospi);
 | |
|   case AMDGPULibFunc::EI_ASIN:    return TableRef(tbl_asin);
 | |
|   case AMDGPULibFunc::EI_ASINH:   return TableRef(tbl_asinh);
 | |
|   case AMDGPULibFunc::EI_ASINPI:  return TableRef(tbl_asinpi);
 | |
|   case AMDGPULibFunc::EI_ATAN:    return TableRef(tbl_atan);
 | |
|   case AMDGPULibFunc::EI_ATANH:   return TableRef(tbl_atanh);
 | |
|   case AMDGPULibFunc::EI_ATANPI:  return TableRef(tbl_atanpi);
 | |
|   case AMDGPULibFunc::EI_CBRT:    return TableRef(tbl_cbrt);
 | |
|   case AMDGPULibFunc::EI_NCOS:
 | |
|   case AMDGPULibFunc::EI_COS:     return TableRef(tbl_cos);
 | |
|   case AMDGPULibFunc::EI_COSH:    return TableRef(tbl_cosh);
 | |
|   case AMDGPULibFunc::EI_COSPI:   return TableRef(tbl_cospi);
 | |
|   case AMDGPULibFunc::EI_ERFC:    return TableRef(tbl_erfc);
 | |
|   case AMDGPULibFunc::EI_ERF:     return TableRef(tbl_erf);
 | |
|   case AMDGPULibFunc::EI_EXP:     return TableRef(tbl_exp);
 | |
|   case AMDGPULibFunc::EI_NEXP2:
 | |
|   case AMDGPULibFunc::EI_EXP2:    return TableRef(tbl_exp2);
 | |
|   case AMDGPULibFunc::EI_EXP10:   return TableRef(tbl_exp10);
 | |
|   case AMDGPULibFunc::EI_EXPM1:   return TableRef(tbl_expm1);
 | |
|   case AMDGPULibFunc::EI_LOG:     return TableRef(tbl_log);
 | |
|   case AMDGPULibFunc::EI_NLOG2:
 | |
|   case AMDGPULibFunc::EI_LOG2:    return TableRef(tbl_log2);
 | |
|   case AMDGPULibFunc::EI_LOG10:   return TableRef(tbl_log10);
 | |
|   case AMDGPULibFunc::EI_NRSQRT:
 | |
|   case AMDGPULibFunc::EI_RSQRT:   return TableRef(tbl_rsqrt);
 | |
|   case AMDGPULibFunc::EI_NSIN:
 | |
|   case AMDGPULibFunc::EI_SIN:     return TableRef(tbl_sin);
 | |
|   case AMDGPULibFunc::EI_SINH:    return TableRef(tbl_sinh);
 | |
|   case AMDGPULibFunc::EI_SINPI:   return TableRef(tbl_sinpi);
 | |
|   case AMDGPULibFunc::EI_NSQRT:
 | |
|   case AMDGPULibFunc::EI_SQRT:    return TableRef(tbl_sqrt);
 | |
|   case AMDGPULibFunc::EI_TAN:     return TableRef(tbl_tan);
 | |
|   case AMDGPULibFunc::EI_TANH:    return TableRef(tbl_tanh);
 | |
|   case AMDGPULibFunc::EI_TANPI:   return TableRef(tbl_tanpi);
 | |
|   case AMDGPULibFunc::EI_TGAMMA:  return TableRef(tbl_tgamma);
 | |
|   default:;
 | |
|   }
 | |
|   return TableRef();
 | |
| }
 | |
| 
 | |
| static inline int getVecSize(const AMDGPULibFunc& FInfo) {
 | |
|   return FInfo.getLeads()[0].VectorSize;
 | |
| }
 | |
| 
 | |
| static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) {
 | |
|   return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType;
 | |
| }
 | |
| 
 | |
| FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) {
 | |
|   // If we are doing PreLinkOpt, the function is external. So it is safe to
 | |
|   // use getOrInsertFunction() at this stage.
 | |
| 
 | |
|   return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo)
 | |
|                        : AMDGPULibFunc::getFunction(M, fInfo);
 | |
| }
 | |
| 
 | |
| bool AMDGPULibCalls::parseFunctionName(const StringRef& FMangledName,
 | |
|                                     FuncInfo *FInfo) {
 | |
|   return AMDGPULibFunc::parse(FMangledName, *FInfo);
 | |
| }
 | |
| 
 | |
| bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const {
 | |
|   if (auto Op = dyn_cast<FPMathOperator>(CI))
 | |
|     if (Op->isFast())
 | |
|       return true;
 | |
|   const Function *F = CI->getParent()->getParent();
 | |
|   Attribute Attr = F->getFnAttribute("unsafe-fp-math");
 | |
|   return Attr.getValueAsString() == "true";
 | |
| }
 | |
| 
 | |
| bool AMDGPULibCalls::useNativeFunc(const StringRef F) const {
 | |
|   return AllNative ||
 | |
|          std::find(UseNative.begin(), UseNative.end(), F) != UseNative.end();
 | |
| }
 | |
| 
 | |
| void AMDGPULibCalls::initNativeFuncs() {
 | |
|   AllNative = useNativeFunc("all") ||
 | |
|               (UseNative.getNumOccurrences() && UseNative.size() == 1 &&
 | |
|                UseNative.begin()->empty());
 | |
| }
 | |
| 
 | |
| bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) {
 | |
|   bool native_sin = useNativeFunc("sin");
 | |
|   bool native_cos = useNativeFunc("cos");
 | |
| 
 | |
|   if (native_sin && native_cos) {
 | |
|     Module *M = aCI->getModule();
 | |
|     Value *opr0 = aCI->getArgOperand(0);
 | |
| 
 | |
|     AMDGPULibFunc nf;
 | |
|     nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType;
 | |
|     nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize;
 | |
| 
 | |
|     nf.setPrefix(AMDGPULibFunc::NATIVE);
 | |
|     nf.setId(AMDGPULibFunc::EI_SIN);
 | |
|     FunctionCallee sinExpr = getFunction(M, nf);
 | |
| 
 | |
|     nf.setPrefix(AMDGPULibFunc::NATIVE);
 | |
|     nf.setId(AMDGPULibFunc::EI_COS);
 | |
|     FunctionCallee cosExpr = getFunction(M, nf);
 | |
|     if (sinExpr && cosExpr) {
 | |
|       Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI);
 | |
|       Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI);
 | |
|       new StoreInst(cosval, aCI->getArgOperand(1), aCI);
 | |
| 
 | |
|       DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
 | |
|                                           << " with native version of sin/cos");
 | |
| 
 | |
|       replaceCall(sinval);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AMDGPULibCalls::useNative(CallInst *aCI) {
 | |
|   CI = aCI;
 | |
|   Function *Callee = aCI->getCalledFunction();
 | |
| 
 | |
|   FuncInfo FInfo;
 | |
|   if (!parseFunctionName(Callee->getName(), &FInfo) || !FInfo.isMangled() ||
 | |
|       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
 | |
|       getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) ||
 | |
|       !(AllNative || useNativeFunc(FInfo.getName()))) {
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS)
 | |
|     return sincosUseNative(aCI, FInfo);
 | |
| 
 | |
|   FInfo.setPrefix(AMDGPULibFunc::NATIVE);
 | |
|   FunctionCallee F = getFunction(aCI->getModule(), FInfo);
 | |
|   if (!F)
 | |
|     return false;
 | |
| 
 | |
|   aCI->setCalledFunction(F);
 | |
|   DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI
 | |
|                                       << " with native version");
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe
 | |
| // builtin, with appended type size and alignment arguments, where 2 or 4
 | |
| // indicates the original number of arguments. The library has optimized version
 | |
| // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same
 | |
| // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N
 | |
| // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ...,
 | |
| // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4.
 | |
| bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B,
 | |
|                                           FuncInfo &FInfo) {
 | |
|   auto *Callee = CI->getCalledFunction();
 | |
|   if (!Callee->isDeclaration())
 | |
|     return false;
 | |
| 
 | |
|   assert(Callee->hasName() && "Invalid read_pipe/write_pipe function");
 | |
|   auto *M = Callee->getParent();
 | |
|   auto &Ctx = M->getContext();
 | |
|   std::string Name = Callee->getName();
 | |
|   auto NumArg = CI->getNumArgOperands();
 | |
|   if (NumArg != 4 && NumArg != 6)
 | |
|     return false;
 | |
|   auto *PacketSize = CI->getArgOperand(NumArg - 2);
 | |
|   auto *PacketAlign = CI->getArgOperand(NumArg - 1);
 | |
|   if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign))
 | |
|     return false;
 | |
|   unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue();
 | |
|   unsigned Align = cast<ConstantInt>(PacketAlign)->getZExtValue();
 | |
|   if (Size != Align || !isPowerOf2_32(Size))
 | |
|     return false;
 | |
| 
 | |
|   Type *PtrElemTy;
 | |
|   if (Size <= 8)
 | |
|     PtrElemTy = Type::getIntNTy(Ctx, Size * 8);
 | |
|   else
 | |
|     PtrElemTy = VectorType::get(Type::getInt64Ty(Ctx), Size / 8);
 | |
|   unsigned PtrArgLoc = CI->getNumArgOperands() - 3;
 | |
|   auto PtrArg = CI->getArgOperand(PtrArgLoc);
 | |
|   unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace();
 | |
|   auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS);
 | |
| 
 | |
|   SmallVector<llvm::Type *, 6> ArgTys;
 | |
|   for (unsigned I = 0; I != PtrArgLoc; ++I)
 | |
|     ArgTys.push_back(CI->getArgOperand(I)->getType());
 | |
|   ArgTys.push_back(PtrTy);
 | |
| 
 | |
|   Name = Name + "_" + std::to_string(Size);
 | |
|   auto *FTy = FunctionType::get(Callee->getReturnType(),
 | |
|                                 ArrayRef<Type *>(ArgTys), false);
 | |
|   AMDGPULibFunc NewLibFunc(Name, FTy);
 | |
|   FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc);
 | |
|   if (!F)
 | |
|     return false;
 | |
| 
 | |
|   auto *BCast = B.CreatePointerCast(PtrArg, PtrTy);
 | |
|   SmallVector<Value *, 6> Args;
 | |
|   for (unsigned I = 0; I != PtrArgLoc; ++I)
 | |
|     Args.push_back(CI->getArgOperand(I));
 | |
|   Args.push_back(BCast);
 | |
| 
 | |
|   auto *NCI = B.CreateCall(F, Args);
 | |
|   NCI->setAttributes(CI->getAttributes());
 | |
|   CI->replaceAllUsesWith(NCI);
 | |
|   CI->dropAllReferences();
 | |
|   CI->eraseFromParent();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // This function returns false if no change; return true otherwise.
 | |
| bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) {
 | |
|   this->CI = CI;
 | |
|   Function *Callee = CI->getCalledFunction();
 | |
| 
 | |
|   // Ignore indirect calls.
 | |
|   if (Callee == 0) return false;
 | |
| 
 | |
|   FuncInfo FInfo;
 | |
|   if (!parseFunctionName(Callee->getName(), &FInfo))
 | |
|     return false;
 | |
| 
 | |
|   // Further check the number of arguments to see if they match.
 | |
|   if (CI->getNumArgOperands() != FInfo.getNumArgs())
 | |
|     return false;
 | |
| 
 | |
|   BasicBlock *BB = CI->getParent();
 | |
|   LLVMContext &Context = CI->getParent()->getContext();
 | |
|   IRBuilder<> B(Context);
 | |
| 
 | |
|   // Set the builder to the instruction after the call.
 | |
|   B.SetInsertPoint(BB, CI->getIterator());
 | |
| 
 | |
|   // Copy fast flags from the original call.
 | |
|   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI))
 | |
|     B.setFastMathFlags(FPOp->getFastMathFlags());
 | |
| 
 | |
|   if (TDOFold(CI, FInfo))
 | |
|     return true;
 | |
| 
 | |
|   // Under unsafe-math, evaluate calls if possible.
 | |
|   // According to Brian Sumner, we can do this for all f32 function calls
 | |
|   // using host's double function calls.
 | |
|   if (isUnsafeMath(CI) && evaluateCall(CI, FInfo))
 | |
|     return true;
 | |
| 
 | |
|   // Specilized optimizations for each function call
 | |
|   switch (FInfo.getId()) {
 | |
|   case AMDGPULibFunc::EI_RECIP:
 | |
|     // skip vector function
 | |
|     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
 | |
|              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
 | |
|             "recip must be an either native or half function");
 | |
|     return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo);
 | |
| 
 | |
|   case AMDGPULibFunc::EI_DIVIDE:
 | |
|     // skip vector function
 | |
|     assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE ||
 | |
|              FInfo.getPrefix() == AMDGPULibFunc::HALF) &&
 | |
|             "divide must be an either native or half function");
 | |
|     return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo);
 | |
| 
 | |
|   case AMDGPULibFunc::EI_POW:
 | |
|   case AMDGPULibFunc::EI_POWR:
 | |
|   case AMDGPULibFunc::EI_POWN:
 | |
|     return fold_pow(CI, B, FInfo);
 | |
| 
 | |
|   case AMDGPULibFunc::EI_ROOTN:
 | |
|     // skip vector function
 | |
|     return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo);
 | |
| 
 | |
|   case AMDGPULibFunc::EI_FMA:
 | |
|   case AMDGPULibFunc::EI_MAD:
 | |
|   case AMDGPULibFunc::EI_NFMA:
 | |
|     // skip vector function
 | |
|     return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo);
 | |
| 
 | |
|   case AMDGPULibFunc::EI_SQRT:
 | |
|     return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo);
 | |
|   case AMDGPULibFunc::EI_COS:
 | |
|   case AMDGPULibFunc::EI_SIN:
 | |
|     if ((getArgType(FInfo) == AMDGPULibFunc::F32 ||
 | |
|          getArgType(FInfo) == AMDGPULibFunc::F64)
 | |
|         && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX))
 | |
|       return fold_sincos(CI, B, AA);
 | |
| 
 | |
|     break;
 | |
|   case AMDGPULibFunc::EI_READ_PIPE_2:
 | |
|   case AMDGPULibFunc::EI_READ_PIPE_4:
 | |
|   case AMDGPULibFunc::EI_WRITE_PIPE_2:
 | |
|   case AMDGPULibFunc::EI_WRITE_PIPE_4:
 | |
|     return fold_read_write_pipe(CI, B, FInfo);
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) {
 | |
|   // Table-Driven optimization
 | |
|   const TableRef tr = getOptTable(FInfo.getId());
 | |
|   if (tr.size==0)
 | |
|     return false;
 | |
| 
 | |
|   int const sz = (int)tr.size;
 | |
|   const TableEntry * const ftbl = tr.table;
 | |
|   Value *opr0 = CI->getArgOperand(0);
 | |
| 
 | |
|   if (getVecSize(FInfo) > 1) {
 | |
|     if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) {
 | |
|       SmallVector<double, 0> DVal;
 | |
|       for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) {
 | |
|         ConstantFP *eltval = dyn_cast<ConstantFP>(
 | |
|                                CV->getElementAsConstant((unsigned)eltNo));
 | |
|         assert(eltval && "Non-FP arguments in math function!");
 | |
|         bool found = false;
 | |
|         for (int i=0; i < sz; ++i) {
 | |
|           if (eltval->isExactlyValue(ftbl[i].input)) {
 | |
|             DVal.push_back(ftbl[i].result);
 | |
|             found = true;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|         if (!found) {
 | |
|           // This vector constants not handled yet.
 | |
|           return false;
 | |
|         }
 | |
|       }
 | |
|       LLVMContext &context = CI->getParent()->getParent()->getContext();
 | |
|       Constant *nval;
 | |
|       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
 | |
|         SmallVector<float, 0> FVal;
 | |
|         for (unsigned i = 0; i < DVal.size(); ++i) {
 | |
|           FVal.push_back((float)DVal[i]);
 | |
|         }
 | |
|         ArrayRef<float> tmp(FVal);
 | |
|         nval = ConstantDataVector::get(context, tmp);
 | |
|       } else { // F64
 | |
|         ArrayRef<double> tmp(DVal);
 | |
|         nval = ConstantDataVector::get(context, tmp);
 | |
|       }
 | |
|       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
 | |
|       replaceCall(nval);
 | |
|       return true;
 | |
|     }
 | |
|   } else {
 | |
|     // Scalar version
 | |
|     if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
 | |
|       for (int i = 0; i < sz; ++i) {
 | |
|         if (CF->isExactlyValue(ftbl[i].input)) {
 | |
|           Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result);
 | |
|           LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
 | |
|           replaceCall(nval);
 | |
|           return true;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AMDGPULibCalls::replaceWithNative(CallInst *CI, const FuncInfo &FInfo) {
 | |
|   Module *M = CI->getModule();
 | |
|   if (getArgType(FInfo) != AMDGPULibFunc::F32 ||
 | |
|       FInfo.getPrefix() != AMDGPULibFunc::NOPFX ||
 | |
|       !HasNative(FInfo.getId()))
 | |
|     return false;
 | |
| 
 | |
|   AMDGPULibFunc nf = FInfo;
 | |
|   nf.setPrefix(AMDGPULibFunc::NATIVE);
 | |
|   if (FunctionCallee FPExpr = getFunction(M, nf)) {
 | |
|     LLVM_DEBUG(dbgs() << "AMDIC: " << *CI << " ---> ");
 | |
| 
 | |
|     CI->setCalledFunction(FPExpr);
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << *CI << '\n');
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //  [native_]half_recip(c) ==> 1.0/c
 | |
| bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B,
 | |
|                                 const FuncInfo &FInfo) {
 | |
|   Value *opr0 = CI->getArgOperand(0);
 | |
|   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) {
 | |
|     // Just create a normal div. Later, InstCombine will be able
 | |
|     // to compute the divide into a constant (avoid check float infinity
 | |
|     // or subnormal at this point).
 | |
|     Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0),
 | |
|                                opr0,
 | |
|                                "recip2div");
 | |
|     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n");
 | |
|     replaceCall(nval);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //  [native_]half_divide(x, c) ==> x/c
 | |
| bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B,
 | |
|                                  const FuncInfo &FInfo) {
 | |
|   Value *opr0 = CI->getArgOperand(0);
 | |
|   Value *opr1 = CI->getArgOperand(1);
 | |
|   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
 | |
|   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
 | |
| 
 | |
|   if ((CF0 && CF1) ||  // both are constants
 | |
|       (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32)))
 | |
|       // CF1 is constant && f32 divide
 | |
|   {
 | |
|     Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0),
 | |
|                                 opr1, "__div2recip");
 | |
|     Value *nval  = B.CreateFMul(opr0, nval1, "__div2mul");
 | |
|     replaceCall(nval);
 | |
|     return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| namespace llvm {
 | |
| static double log2(double V) {
 | |
| #if _XOPEN_SOURCE >= 600 || _ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L
 | |
|   return ::log2(V);
 | |
| #else
 | |
|   return log(V) / 0.693147180559945309417;
 | |
| #endif
 | |
| }
 | |
| }
 | |
| 
 | |
| bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B,
 | |
|                               const FuncInfo &FInfo) {
 | |
|   assert((FInfo.getId() == AMDGPULibFunc::EI_POW ||
 | |
|           FInfo.getId() == AMDGPULibFunc::EI_POWR ||
 | |
|           FInfo.getId() == AMDGPULibFunc::EI_POWN) &&
 | |
|          "fold_pow: encounter a wrong function call");
 | |
| 
 | |
|   Value *opr0, *opr1;
 | |
|   ConstantFP *CF;
 | |
|   ConstantInt *CINT;
 | |
|   ConstantAggregateZero *CZero;
 | |
|   Type *eltType;
 | |
| 
 | |
|   opr0 = CI->getArgOperand(0);
 | |
|   opr1 = CI->getArgOperand(1);
 | |
|   CZero = dyn_cast<ConstantAggregateZero>(opr1);
 | |
|   if (getVecSize(FInfo) == 1) {
 | |
|     eltType = opr0->getType();
 | |
|     CF = dyn_cast<ConstantFP>(opr1);
 | |
|     CINT = dyn_cast<ConstantInt>(opr1);
 | |
|   } else {
 | |
|     VectorType *VTy = dyn_cast<VectorType>(opr0->getType());
 | |
|     assert(VTy && "Oprand of vector function should be of vectortype");
 | |
|     eltType = VTy->getElementType();
 | |
|     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1);
 | |
| 
 | |
|     // Now, only Handle vector const whose elements have the same value.
 | |
|     CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr;
 | |
|     CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr;
 | |
|   }
 | |
| 
 | |
|   // No unsafe math , no constant argument, do nothing
 | |
|   if (!isUnsafeMath(CI) && !CF && !CINT && !CZero)
 | |
|     return false;
 | |
| 
 | |
|   // 0x1111111 means that we don't do anything for this call.
 | |
|   int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111);
 | |
| 
 | |
|   if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) {
 | |
|     //  pow/powr/pown(x, 0) == 1
 | |
|     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n");
 | |
|     Constant *cnval = ConstantFP::get(eltType, 1.0);
 | |
|     if (getVecSize(FInfo) > 1) {
 | |
|       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
 | |
|     }
 | |
|     replaceCall(cnval);
 | |
|     return true;
 | |
|   }
 | |
|   if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) {
 | |
|     // pow/powr/pown(x, 1.0) = x
 | |
|     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
 | |
|     replaceCall(opr0);
 | |
|     return true;
 | |
|   }
 | |
|   if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) {
 | |
|     // pow/powr/pown(x, 2.0) = x*x
 | |
|     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0
 | |
|                       << "\n");
 | |
|     Value *nval = B.CreateFMul(opr0, opr0, "__pow2");
 | |
|     replaceCall(nval);
 | |
|     return true;
 | |
|   }
 | |
|   if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) {
 | |
|     // pow/powr/pown(x, -1.0) = 1.0/x
 | |
|     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n");
 | |
|     Constant *cnval = ConstantFP::get(eltType, 1.0);
 | |
|     if (getVecSize(FInfo) > 1) {
 | |
|       cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
 | |
|     }
 | |
|     Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip");
 | |
|     replaceCall(nval);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   Module *M = CI->getModule();
 | |
|   if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) {
 | |
|     // pow[r](x, [-]0.5) = sqrt(x)
 | |
|     bool issqrt = CF->isExactlyValue(0.5);
 | |
|     if (FunctionCallee FPExpr =
 | |
|             getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT
 | |
|                                                 : AMDGPULibFunc::EI_RSQRT,
 | |
|                                          FInfo))) {
 | |
|       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
 | |
|                         << FInfo.getName().c_str() << "(" << *opr0 << ")\n");
 | |
|       Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt"
 | |
|                                                         : "__pow2rsqrt");
 | |
|       replaceCall(nval);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!isUnsafeMath(CI))
 | |
|     return false;
 | |
| 
 | |
|   // Unsafe Math optimization
 | |
| 
 | |
|   // Remember that ci_opr1 is set if opr1 is integral
 | |
|   if (CF) {
 | |
|     double dval = (getArgType(FInfo) == AMDGPULibFunc::F32)
 | |
|                     ? (double)CF->getValueAPF().convertToFloat()
 | |
|                     : CF->getValueAPF().convertToDouble();
 | |
|     int ival = (int)dval;
 | |
|     if ((double)ival == dval) {
 | |
|       ci_opr1 = ival;
 | |
|     } else
 | |
|       ci_opr1 = 0x11111111;
 | |
|   }
 | |
| 
 | |
|   // pow/powr/pown(x, c) = [1/](x*x*..x); where
 | |
|   //   trunc(c) == c && the number of x == c && |c| <= 12
 | |
|   unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1;
 | |
|   if (abs_opr1 <= 12) {
 | |
|     Constant *cnval;
 | |
|     Value *nval;
 | |
|     if (abs_opr1 == 0) {
 | |
|       cnval = ConstantFP::get(eltType, 1.0);
 | |
|       if (getVecSize(FInfo) > 1) {
 | |
|         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
 | |
|       }
 | |
|       nval = cnval;
 | |
|     } else {
 | |
|       Value *valx2 = nullptr;
 | |
|       nval = nullptr;
 | |
|       while (abs_opr1 > 0) {
 | |
|         valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0;
 | |
|         if (abs_opr1 & 1) {
 | |
|           nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2;
 | |
|         }
 | |
|         abs_opr1 >>= 1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (ci_opr1 < 0) {
 | |
|       cnval = ConstantFP::get(eltType, 1.0);
 | |
|       if (getVecSize(FInfo) > 1) {
 | |
|         cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval);
 | |
|       }
 | |
|       nval = B.CreateFDiv(cnval, nval, "__1powprod");
 | |
|     }
 | |
|     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
 | |
|                       << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0
 | |
|                       << ")\n");
 | |
|     replaceCall(nval);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // powr ---> exp2(y * log2(x))
 | |
|   // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31))
 | |
|   FunctionCallee ExpExpr =
 | |
|       getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo));
 | |
|   if (!ExpExpr)
 | |
|     return false;
 | |
| 
 | |
|   bool needlog = false;
 | |
|   bool needabs = false;
 | |
|   bool needcopysign = false;
 | |
|   Constant *cnval = nullptr;
 | |
|   if (getVecSize(FInfo) == 1) {
 | |
|     CF = dyn_cast<ConstantFP>(opr0);
 | |
| 
 | |
|     if (CF) {
 | |
|       double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
 | |
|                    ? (double)CF->getValueAPF().convertToFloat()
 | |
|                    : CF->getValueAPF().convertToDouble();
 | |
| 
 | |
|       V = log2(std::abs(V));
 | |
|       cnval = ConstantFP::get(eltType, V);
 | |
|       needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) &&
 | |
|                      CF->isNegative();
 | |
|     } else {
 | |
|       needlog = true;
 | |
|       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR &&
 | |
|                                (!CF || CF->isNegative());
 | |
|     }
 | |
|   } else {
 | |
|     ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0);
 | |
| 
 | |
|     if (!CDV) {
 | |
|       needlog = true;
 | |
|       needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR;
 | |
|     } else {
 | |
|       assert ((int)CDV->getNumElements() == getVecSize(FInfo) &&
 | |
|               "Wrong vector size detected");
 | |
| 
 | |
|       SmallVector<double, 0> DVal;
 | |
|       for (int i=0; i < getVecSize(FInfo); ++i) {
 | |
|         double V = (getArgType(FInfo) == AMDGPULibFunc::F32)
 | |
|                      ? (double)CDV->getElementAsFloat(i)
 | |
|                      : CDV->getElementAsDouble(i);
 | |
|         if (V < 0.0) needcopysign = true;
 | |
|         V = log2(std::abs(V));
 | |
|         DVal.push_back(V);
 | |
|       }
 | |
|       if (getArgType(FInfo) == AMDGPULibFunc::F32) {
 | |
|         SmallVector<float, 0> FVal;
 | |
|         for (unsigned i=0; i < DVal.size(); ++i) {
 | |
|           FVal.push_back((float)DVal[i]);
 | |
|         }
 | |
|         ArrayRef<float> tmp(FVal);
 | |
|         cnval = ConstantDataVector::get(M->getContext(), tmp);
 | |
|       } else {
 | |
|         ArrayRef<double> tmp(DVal);
 | |
|         cnval = ConstantDataVector::get(M->getContext(), tmp);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) {
 | |
|     // We cannot handle corner cases for a general pow() function, give up
 | |
|     // unless y is a constant integral value. Then proceed as if it were pown.
 | |
|     if (getVecSize(FInfo) == 1) {
 | |
|       if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) {
 | |
|         double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
 | |
|                    ? (double)CF->getValueAPF().convertToFloat()
 | |
|                    : CF->getValueAPF().convertToDouble();
 | |
|         if (y != (double)(int64_t)y)
 | |
|           return false;
 | |
|       } else
 | |
|         return false;
 | |
|     } else {
 | |
|       if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) {
 | |
|         for (int i=0; i < getVecSize(FInfo); ++i) {
 | |
|           double y = (getArgType(FInfo) == AMDGPULibFunc::F32)
 | |
|                      ? (double)CDV->getElementAsFloat(i)
 | |
|                      : CDV->getElementAsDouble(i);
 | |
|           if (y != (double)(int64_t)y)
 | |
|             return false;
 | |
|         }
 | |
|       } else
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Value *nval;
 | |
|   if (needabs) {
 | |
|     FunctionCallee AbsExpr =
 | |
|         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo));
 | |
|     if (!AbsExpr)
 | |
|       return false;
 | |
|     nval = CreateCallEx(B, AbsExpr, opr0, "__fabs");
 | |
|   } else {
 | |
|     nval = cnval ? cnval : opr0;
 | |
|   }
 | |
|   if (needlog) {
 | |
|     FunctionCallee LogExpr =
 | |
|         getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo));
 | |
|     if (!LogExpr)
 | |
|       return false;
 | |
|     nval = CreateCallEx(B,LogExpr, nval, "__log2");
 | |
|   }
 | |
| 
 | |
|   if (FInfo.getId() == AMDGPULibFunc::EI_POWN) {
 | |
|     // convert int(32) to fp(f32 or f64)
 | |
|     opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F");
 | |
|   }
 | |
|   nval = B.CreateFMul(opr1, nval, "__ylogx");
 | |
|   nval = CreateCallEx(B,ExpExpr, nval, "__exp2");
 | |
| 
 | |
|   if (needcopysign) {
 | |
|     Value *opr_n;
 | |
|     Type* rTy = opr0->getType();
 | |
|     Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty();
 | |
|     Type *nTy = nTyS;
 | |
|     if (const VectorType *vTy = dyn_cast<VectorType>(rTy))
 | |
|       nTy = VectorType::get(nTyS, vTy->getNumElements());
 | |
|     unsigned size = nTy->getScalarSizeInBits();
 | |
|     opr_n = CI->getArgOperand(1);
 | |
|     if (opr_n->getType()->isIntegerTy())
 | |
|       opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou");
 | |
|     else
 | |
|       opr_n = B.CreateFPToSI(opr1, nTy, "__ytou");
 | |
| 
 | |
|     Value *sign = B.CreateShl(opr_n, size-1, "__yeven");
 | |
|     sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign");
 | |
|     nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign);
 | |
|     nval = B.CreateBitCast(nval, opr0->getType());
 | |
|   }
 | |
| 
 | |
|   LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
 | |
|                     << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n");
 | |
|   replaceCall(nval);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B,
 | |
|                                 const FuncInfo &FInfo) {
 | |
|   Value *opr0 = CI->getArgOperand(0);
 | |
|   Value *opr1 = CI->getArgOperand(1);
 | |
| 
 | |
|   ConstantInt *CINT = dyn_cast<ConstantInt>(opr1);
 | |
|   if (!CINT) {
 | |
|     return false;
 | |
|   }
 | |
|   int ci_opr1 = (int)CINT->getSExtValue();
 | |
|   if (ci_opr1 == 1) {  // rootn(x, 1) = x
 | |
|     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n");
 | |
|     replaceCall(opr0);
 | |
|     return true;
 | |
|   }
 | |
|   if (ci_opr1 == 2) {  // rootn(x, 2) = sqrt(x)
 | |
|     std::vector<const Type*> ParamsTys;
 | |
|     ParamsTys.push_back(opr0->getType());
 | |
|     Module *M = CI->getModule();
 | |
|     if (FunctionCallee FPExpr =
 | |
|             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
 | |
|       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n");
 | |
|       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt");
 | |
|       replaceCall(nval);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x)
 | |
|     Module *M = CI->getModule();
 | |
|     if (FunctionCallee FPExpr =
 | |
|             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) {
 | |
|       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n");
 | |
|       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt");
 | |
|       replaceCall(nval);
 | |
|       return true;
 | |
|     }
 | |
|   } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x
 | |
|     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n");
 | |
|     Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0),
 | |
|                                opr0,
 | |
|                                "__rootn2div");
 | |
|     replaceCall(nval);
 | |
|     return true;
 | |
|   } else if (ci_opr1 == -2) {  // rootn(x, -2) = rsqrt(x)
 | |
|     std::vector<const Type*> ParamsTys;
 | |
|     ParamsTys.push_back(opr0->getType());
 | |
|     Module *M = CI->getModule();
 | |
|     if (FunctionCallee FPExpr =
 | |
|             getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) {
 | |
|       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0
 | |
|                         << ")\n");
 | |
|       Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt");
 | |
|       replaceCall(nval);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B,
 | |
|                                   const FuncInfo &FInfo) {
 | |
|   Value *opr0 = CI->getArgOperand(0);
 | |
|   Value *opr1 = CI->getArgOperand(1);
 | |
|   Value *opr2 = CI->getArgOperand(2);
 | |
| 
 | |
|   ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0);
 | |
|   ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1);
 | |
|   if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) {
 | |
|     // fma/mad(a, b, c) = c if a=0 || b=0
 | |
|     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n");
 | |
|     replaceCall(opr2);
 | |
|     return true;
 | |
|   }
 | |
|   if (CF0 && CF0->isExactlyValue(1.0f)) {
 | |
|     // fma/mad(a, b, c) = b+c if a=1
 | |
|     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2
 | |
|                       << "\n");
 | |
|     Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd");
 | |
|     replaceCall(nval);
 | |
|     return true;
 | |
|   }
 | |
|   if (CF1 && CF1->isExactlyValue(1.0f)) {
 | |
|     // fma/mad(a, b, c) = a+c if b=1
 | |
|     LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2
 | |
|                       << "\n");
 | |
|     Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd");
 | |
|     replaceCall(nval);
 | |
|     return true;
 | |
|   }
 | |
|   if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) {
 | |
|     if (CF->isZero()) {
 | |
|       // fma/mad(a, b, c) = a*b if c=0
 | |
|       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * "
 | |
|                         << *opr1 << "\n");
 | |
|       Value *nval = B.CreateFMul(opr0, opr1, "fmamul");
 | |
|       replaceCall(nval);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Get a scalar native builtin signle argument FP function
 | |
| FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M,
 | |
|                                                  const FuncInfo &FInfo) {
 | |
|   if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()))
 | |
|     return nullptr;
 | |
|   FuncInfo nf = FInfo;
 | |
|   nf.setPrefix(AMDGPULibFunc::NATIVE);
 | |
|   return getFunction(M, nf);
 | |
| }
 | |
| 
 | |
| // fold sqrt -> native_sqrt (x)
 | |
| bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B,
 | |
|                                const FuncInfo &FInfo) {
 | |
|   if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) &&
 | |
|       (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) {
 | |
|     if (FunctionCallee FPExpr = getNativeFunction(
 | |
|             CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) {
 | |
|       Value *opr0 = CI->getArgOperand(0);
 | |
|       LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> "
 | |
|                         << "sqrt(" << *opr0 << ")\n");
 | |
|       Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt");
 | |
|       replaceCall(nval);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // fold sin, cos -> sincos.
 | |
| bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B,
 | |
|                                  AliasAnalysis *AA) {
 | |
|   AMDGPULibFunc fInfo;
 | |
|   if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo))
 | |
|     return false;
 | |
| 
 | |
|   assert(fInfo.getId() == AMDGPULibFunc::EI_SIN ||
 | |
|          fInfo.getId() == AMDGPULibFunc::EI_COS);
 | |
|   bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN;
 | |
| 
 | |
|   Value *CArgVal = CI->getArgOperand(0);
 | |
|   BasicBlock * const CBB = CI->getParent();
 | |
| 
 | |
|   int const MaxScan = 30;
 | |
| 
 | |
|   { // fold in load value.
 | |
|     LoadInst *LI = dyn_cast<LoadInst>(CArgVal);
 | |
|     if (LI && LI->getParent() == CBB) {
 | |
|       BasicBlock::iterator BBI = LI->getIterator();
 | |
|       Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA);
 | |
|       if (AvailableVal) {
 | |
|         CArgVal->replaceAllUsesWith(AvailableVal);
 | |
|         if (CArgVal->getNumUses() == 0)
 | |
|           LI->eraseFromParent();
 | |
|         CArgVal = CI->getArgOperand(0);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   Module *M = CI->getModule();
 | |
|   fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN);
 | |
|   std::string const PairName = fInfo.mangle();
 | |
| 
 | |
|   CallInst *UI = nullptr;
 | |
|   for (User* U : CArgVal->users()) {
 | |
|     CallInst *XI = dyn_cast_or_null<CallInst>(U);
 | |
|     if (!XI || XI == CI || XI->getParent() != CBB)
 | |
|       continue;
 | |
| 
 | |
|     Function *UCallee = XI->getCalledFunction();
 | |
|     if (!UCallee || !UCallee->getName().equals(PairName))
 | |
|       continue;
 | |
| 
 | |
|     BasicBlock::iterator BBI = CI->getIterator();
 | |
|     if (BBI == CI->getParent()->begin())
 | |
|       break;
 | |
|     --BBI;
 | |
|     for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) {
 | |
|       if (cast<Instruction>(BBI) == XI) {
 | |
|         UI = XI;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     if (UI) break;
 | |
|   }
 | |
| 
 | |
|   if (!UI) return false;
 | |
| 
 | |
|   // Merge the sin and cos.
 | |
| 
 | |
|   // for OpenCL 2.0 we have only generic implementation of sincos
 | |
|   // function.
 | |
|   AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo);
 | |
|   nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS);
 | |
|   FunctionCallee Fsincos = getFunction(M, nf);
 | |
|   if (!Fsincos) return false;
 | |
| 
 | |
|   BasicBlock::iterator ItOld = B.GetInsertPoint();
 | |
|   AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_");
 | |
|   B.SetInsertPoint(UI);
 | |
| 
 | |
|   Value *P = Alloc;
 | |
|   Type *PTy = Fsincos.getFunctionType()->getParamType(1);
 | |
|   // The allocaInst allocates the memory in private address space. This need
 | |
|   // to be bitcasted to point to the address space of cos pointer type.
 | |
|   // In OpenCL 2.0 this is generic, while in 1.2 that is private.
 | |
|   if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS)
 | |
|     P = B.CreateAddrSpaceCast(Alloc, PTy);
 | |
|   CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P);
 | |
| 
 | |
|   LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with "
 | |
|                     << *Call << "\n");
 | |
| 
 | |
|   if (!isSin) { // CI->cos, UI->sin
 | |
|     B.SetInsertPoint(&*ItOld);
 | |
|     UI->replaceAllUsesWith(&*Call);
 | |
|     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
 | |
|     CI->replaceAllUsesWith(Reload);
 | |
|     UI->eraseFromParent();
 | |
|     CI->eraseFromParent();
 | |
|   } else { // CI->sin, UI->cos
 | |
|     Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc);
 | |
|     UI->replaceAllUsesWith(Reload);
 | |
|     CI->replaceAllUsesWith(Call);
 | |
|     UI->eraseFromParent();
 | |
|     CI->eraseFromParent();
 | |
|   }
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Get insertion point at entry.
 | |
| BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) {
 | |
|   Function * Func = UI->getParent()->getParent();
 | |
|   BasicBlock * BB = &Func->getEntryBlock();
 | |
|   assert(BB && "Entry block not found!");
 | |
|   BasicBlock::iterator ItNew = BB->begin();
 | |
|   return ItNew;
 | |
| }
 | |
| 
 | |
| // Insert a AllocsInst at the beginning of function entry block.
 | |
| AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B,
 | |
|                                          const char *prefix) {
 | |
|   BasicBlock::iterator ItNew = getEntryIns(UI);
 | |
|   Function *UCallee = UI->getCalledFunction();
 | |
|   Type *RetType = UCallee->getReturnType();
 | |
|   B.SetInsertPoint(&*ItNew);
 | |
|   AllocaInst *Alloc = B.CreateAlloca(RetType, 0,
 | |
|     std::string(prefix) + UI->getName());
 | |
|   Alloc->setAlignment(UCallee->getParent()->getDataLayout()
 | |
|                        .getTypeAllocSize(RetType));
 | |
|   return Alloc;
 | |
| }
 | |
| 
 | |
| bool AMDGPULibCalls::evaluateScalarMathFunc(FuncInfo &FInfo,
 | |
|                                             double& Res0, double& Res1,
 | |
|                                             Constant *copr0, Constant *copr1,
 | |
|                                             Constant *copr2) {
 | |
|   // By default, opr0/opr1/opr3 holds values of float/double type.
 | |
|   // If they are not float/double, each function has to its
 | |
|   // operand separately.
 | |
|   double opr0=0.0, opr1=0.0, opr2=0.0;
 | |
|   ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0);
 | |
|   ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1);
 | |
|   ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2);
 | |
|   if (fpopr0) {
 | |
|     opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64)
 | |
|              ? fpopr0->getValueAPF().convertToDouble()
 | |
|              : (double)fpopr0->getValueAPF().convertToFloat();
 | |
|   }
 | |
| 
 | |
|   if (fpopr1) {
 | |
|     opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64)
 | |
|              ? fpopr1->getValueAPF().convertToDouble()
 | |
|              : (double)fpopr1->getValueAPF().convertToFloat();
 | |
|   }
 | |
| 
 | |
|   if (fpopr2) {
 | |
|     opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64)
 | |
|              ? fpopr2->getValueAPF().convertToDouble()
 | |
|              : (double)fpopr2->getValueAPF().convertToFloat();
 | |
|   }
 | |
| 
 | |
|   switch (FInfo.getId()) {
 | |
|   default : return false;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_ACOS:
 | |
|     Res0 = acos(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_ACOSH:
 | |
|     // acosh(x) == log(x + sqrt(x*x - 1))
 | |
|     Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0));
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_ACOSPI:
 | |
|     Res0 = acos(opr0) / MATH_PI;
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_ASIN:
 | |
|     Res0 = asin(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_ASINH:
 | |
|     // asinh(x) == log(x + sqrt(x*x + 1))
 | |
|     Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0));
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_ASINPI:
 | |
|     Res0 = asin(opr0) / MATH_PI;
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_ATAN:
 | |
|     Res0 = atan(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_ATANH:
 | |
|     // atanh(x) == (log(x+1) - log(x-1))/2;
 | |
|     Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0;
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_ATANPI:
 | |
|     Res0 = atan(opr0) / MATH_PI;
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_CBRT:
 | |
|     Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_COS:
 | |
|     Res0 = cos(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_COSH:
 | |
|     Res0 = cosh(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_COSPI:
 | |
|     Res0 = cos(MATH_PI * opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_EXP:
 | |
|     Res0 = exp(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_EXP2:
 | |
|     Res0 = pow(2.0, opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_EXP10:
 | |
|     Res0 = pow(10.0, opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_EXPM1:
 | |
|     Res0 = exp(opr0) - 1.0;
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_LOG:
 | |
|     Res0 = log(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_LOG2:
 | |
|     Res0 = log(opr0) / log(2.0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_LOG10:
 | |
|     Res0 = log(opr0) / log(10.0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_RSQRT:
 | |
|     Res0 = 1.0 / sqrt(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_SIN:
 | |
|     Res0 = sin(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_SINH:
 | |
|     Res0 = sinh(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_SINPI:
 | |
|     Res0 = sin(MATH_PI * opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_SQRT:
 | |
|     Res0 = sqrt(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_TAN:
 | |
|     Res0 = tan(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_TANH:
 | |
|     Res0 = tanh(opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_TANPI:
 | |
|     Res0 = tan(MATH_PI * opr0);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_RECIP:
 | |
|     Res0 = 1.0 / opr0;
 | |
|     return true;
 | |
| 
 | |
|   // two-arg functions
 | |
|   case AMDGPULibFunc::EI_DIVIDE:
 | |
|     Res0 = opr0 / opr1;
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_POW:
 | |
|   case AMDGPULibFunc::EI_POWR:
 | |
|     Res0 = pow(opr0, opr1);
 | |
|     return true;
 | |
| 
 | |
|   case AMDGPULibFunc::EI_POWN: {
 | |
|     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
 | |
|       double val = (double)iopr1->getSExtValue();
 | |
|       Res0 = pow(opr0, val);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   case AMDGPULibFunc::EI_ROOTN: {
 | |
|     if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) {
 | |
|       double val = (double)iopr1->getSExtValue();
 | |
|       Res0 = pow(opr0, 1.0 / val);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // with ptr arg
 | |
|   case AMDGPULibFunc::EI_SINCOS:
 | |
|     Res0 = sin(opr0);
 | |
|     Res1 = cos(opr0);
 | |
|     return true;
 | |
| 
 | |
|   // three-arg functions
 | |
|   case AMDGPULibFunc::EI_FMA:
 | |
|   case AMDGPULibFunc::EI_MAD:
 | |
|     Res0 = opr0 * opr1 + opr2;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool AMDGPULibCalls::evaluateCall(CallInst *aCI, FuncInfo &FInfo) {
 | |
|   int numArgs = (int)aCI->getNumArgOperands();
 | |
|   if (numArgs > 3)
 | |
|     return false;
 | |
| 
 | |
|   Constant *copr0 = nullptr;
 | |
|   Constant *copr1 = nullptr;
 | |
|   Constant *copr2 = nullptr;
 | |
|   if (numArgs > 0) {
 | |
|     if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   if (numArgs > 1) {
 | |
|     if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) {
 | |
|       if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS)
 | |
|         return false;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (numArgs > 2) {
 | |
|     if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // At this point, all arguments to aCI are constants.
 | |
| 
 | |
|   // max vector size is 16, and sincos will generate two results.
 | |
|   double DVal0[16], DVal1[16];
 | |
|   bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS);
 | |
|   if (getVecSize(FInfo) == 1) {
 | |
|     if (!evaluateScalarMathFunc(FInfo, DVal0[0],
 | |
|                                 DVal1[0], copr0, copr1, copr2)) {
 | |
|       return false;
 | |
|     }
 | |
|   } else {
 | |
|     ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0);
 | |
|     ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1);
 | |
|     ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2);
 | |
|     for (int i=0; i < getVecSize(FInfo); ++i) {
 | |
|       Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr;
 | |
|       Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr;
 | |
|       Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr;
 | |
|       if (!evaluateScalarMathFunc(FInfo, DVal0[i],
 | |
|                                   DVal1[i], celt0, celt1, celt2)) {
 | |
|         return false;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LLVMContext &context = CI->getParent()->getParent()->getContext();
 | |
|   Constant *nval0, *nval1;
 | |
|   if (getVecSize(FInfo) == 1) {
 | |
|     nval0 = ConstantFP::get(CI->getType(), DVal0[0]);
 | |
|     if (hasTwoResults)
 | |
|       nval1 = ConstantFP::get(CI->getType(), DVal1[0]);
 | |
|   } else {
 | |
|     if (getArgType(FInfo) == AMDGPULibFunc::F32) {
 | |
|       SmallVector <float, 0> FVal0, FVal1;
 | |
|       for (int i=0; i < getVecSize(FInfo); ++i)
 | |
|         FVal0.push_back((float)DVal0[i]);
 | |
|       ArrayRef<float> tmp0(FVal0);
 | |
|       nval0 = ConstantDataVector::get(context, tmp0);
 | |
|       if (hasTwoResults) {
 | |
|         for (int i=0; i < getVecSize(FInfo); ++i)
 | |
|           FVal1.push_back((float)DVal1[i]);
 | |
|         ArrayRef<float> tmp1(FVal1);
 | |
|         nval1 = ConstantDataVector::get(context, tmp1);
 | |
|       }
 | |
|     } else {
 | |
|       ArrayRef<double> tmp0(DVal0);
 | |
|       nval0 = ConstantDataVector::get(context, tmp0);
 | |
|       if (hasTwoResults) {
 | |
|         ArrayRef<double> tmp1(DVal1);
 | |
|         nval1 = ConstantDataVector::get(context, tmp1);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (hasTwoResults) {
 | |
|     // sincos
 | |
|     assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS &&
 | |
|            "math function with ptr arg not supported yet");
 | |
|     new StoreInst(nval1, aCI->getArgOperand(1), aCI);
 | |
|   }
 | |
| 
 | |
|   replaceCall(nval0);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Public interface to the Simplify LibCalls pass.
 | |
| FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetOptions &Opt) {
 | |
|   return new AMDGPUSimplifyLibCalls(Opt);
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createAMDGPUUseNativeCallsPass() {
 | |
|   return new AMDGPUUseNativeCalls();
 | |
| }
 | |
| 
 | |
| static bool setFastFlags(Function &F, const TargetOptions &Options) {
 | |
|   AttrBuilder B;
 | |
| 
 | |
|   if (Options.UnsafeFPMath || Options.NoInfsFPMath)
 | |
|     B.addAttribute("no-infs-fp-math", "true");
 | |
|   if (Options.UnsafeFPMath || Options.NoNaNsFPMath)
 | |
|     B.addAttribute("no-nans-fp-math", "true");
 | |
|   if (Options.UnsafeFPMath) {
 | |
|     B.addAttribute("less-precise-fpmad", "true");
 | |
|     B.addAttribute("unsafe-fp-math", "true");
 | |
|   }
 | |
| 
 | |
|   if (!B.hasAttributes())
 | |
|     return false;
 | |
| 
 | |
|   F.addAttributes(AttributeList::FunctionIndex, B);
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) {
 | |
|   if (skipFunction(F))
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "AMDIC: process function ";
 | |
|              F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';);
 | |
| 
 | |
|   if (!EnablePreLink)
 | |
|     Changed |= setFastFlags(F, Options);
 | |
| 
 | |
|   for (auto &BB : F) {
 | |
|     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
 | |
|       // Ignore non-calls.
 | |
|       CallInst *CI = dyn_cast<CallInst>(I);
 | |
|       ++I;
 | |
|       if (!CI) continue;
 | |
| 
 | |
|       // Ignore indirect calls.
 | |
|       Function *Callee = CI->getCalledFunction();
 | |
|       if (Callee == 0) continue;
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n";
 | |
|                  dbgs().flush());
 | |
|       if(Simplifier.fold(CI, AA))
 | |
|         Changed = true;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool AMDGPUUseNativeCalls::runOnFunction(Function &F) {
 | |
|   if (skipFunction(F) || UseNative.empty())
 | |
|     return false;
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (auto &BB : F) {
 | |
|     for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) {
 | |
|       // Ignore non-calls.
 | |
|       CallInst *CI = dyn_cast<CallInst>(I);
 | |
|       ++I;
 | |
|       if (!CI) continue;
 | |
| 
 | |
|       // Ignore indirect calls.
 | |
|       Function *Callee = CI->getCalledFunction();
 | |
|       if (Callee == 0) continue;
 | |
| 
 | |
|       if(Simplifier.useNative(CI))
 | |
|         Changed = true;
 | |
|     }
 | |
|   }
 | |
|   return Changed;
 | |
| }
 |