1196 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1196 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| /// \file
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| 
 | |
| #include "AMDGPU.h"
 | |
| #include "AMDGPUSubtarget.h"
 | |
| #include "SIInstrInfo.h"
 | |
| #include "SIMachineFunctionInfo.h"
 | |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
 | |
| #include "llvm/ADT/DepthFirstIterator.h"
 | |
| #include "llvm/CodeGen/LiveIntervals.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| 
 | |
| #define DEBUG_TYPE "si-fold-operands"
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| struct FoldCandidate {
 | |
|   MachineInstr *UseMI;
 | |
|   union {
 | |
|     MachineOperand *OpToFold;
 | |
|     uint64_t ImmToFold;
 | |
|     int FrameIndexToFold;
 | |
|   };
 | |
|   int ShrinkOpcode;
 | |
|   unsigned char UseOpNo;
 | |
|   MachineOperand::MachineOperandType Kind;
 | |
|   bool Commuted;
 | |
| 
 | |
|   FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
 | |
|                 bool Commuted_ = false,
 | |
|                 int ShrinkOp = -1) :
 | |
|     UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
 | |
|     Kind(FoldOp->getType()),
 | |
|     Commuted(Commuted_) {
 | |
|     if (FoldOp->isImm()) {
 | |
|       ImmToFold = FoldOp->getImm();
 | |
|     } else if (FoldOp->isFI()) {
 | |
|       FrameIndexToFold = FoldOp->getIndex();
 | |
|     } else {
 | |
|       assert(FoldOp->isReg());
 | |
|       OpToFold = FoldOp;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   bool isFI() const {
 | |
|     return Kind == MachineOperand::MO_FrameIndex;
 | |
|   }
 | |
| 
 | |
|   bool isImm() const {
 | |
|     return Kind == MachineOperand::MO_Immediate;
 | |
|   }
 | |
| 
 | |
|   bool isReg() const {
 | |
|     return Kind == MachineOperand::MO_Register;
 | |
|   }
 | |
| 
 | |
|   bool isCommuted() const {
 | |
|     return Commuted;
 | |
|   }
 | |
| 
 | |
|   bool needsShrink() const {
 | |
|     return ShrinkOpcode != -1;
 | |
|   }
 | |
| 
 | |
|   int getShrinkOpcode() const {
 | |
|     return ShrinkOpcode;
 | |
|   }
 | |
| };
 | |
| 
 | |
| class SIFoldOperands : public MachineFunctionPass {
 | |
| public:
 | |
|   static char ID;
 | |
|   MachineRegisterInfo *MRI;
 | |
|   const SIInstrInfo *TII;
 | |
|   const SIRegisterInfo *TRI;
 | |
|   const GCNSubtarget *ST;
 | |
| 
 | |
|   void foldOperand(MachineOperand &OpToFold,
 | |
|                    MachineInstr *UseMI,
 | |
|                    unsigned UseOpIdx,
 | |
|                    SmallVectorImpl<FoldCandidate> &FoldList,
 | |
|                    SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
 | |
| 
 | |
|   void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
 | |
| 
 | |
|   const MachineOperand *isClamp(const MachineInstr &MI) const;
 | |
|   bool tryFoldClamp(MachineInstr &MI);
 | |
| 
 | |
|   std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
 | |
|   bool tryFoldOMod(MachineInstr &MI);
 | |
| 
 | |
| public:
 | |
|   SIFoldOperands() : MachineFunctionPass(ID) {
 | |
|     initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   StringRef getPassName() const override { return "SI Fold Operands"; }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // End anonymous namespace.
 | |
| 
 | |
| INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
 | |
|                 "SI Fold Operands", false, false)
 | |
| 
 | |
| char SIFoldOperands::ID = 0;
 | |
| 
 | |
| char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
 | |
| 
 | |
| // Wrapper around isInlineConstant that understands special cases when
 | |
| // instruction types are replaced during operand folding.
 | |
| static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
 | |
|                                      const MachineInstr &UseMI,
 | |
|                                      unsigned OpNo,
 | |
|                                      const MachineOperand &OpToFold) {
 | |
|   if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
 | |
|     return true;
 | |
| 
 | |
|   unsigned Opc = UseMI.getOpcode();
 | |
|   switch (Opc) {
 | |
|   case AMDGPU::V_MAC_F32_e64:
 | |
|   case AMDGPU::V_MAC_F16_e64:
 | |
|   case AMDGPU::V_FMAC_F32_e64: {
 | |
|     // Special case for mac. Since this is replaced with mad when folded into
 | |
|     // src2, we need to check the legality for the final instruction.
 | |
|     int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
 | |
|     if (static_cast<int>(OpNo) == Src2Idx) {
 | |
|       bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64;
 | |
|       bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
 | |
| 
 | |
|       unsigned Opc = IsFMA ?
 | |
|         AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
 | |
|       const MCInstrDesc &MadDesc = TII->get(Opc);
 | |
|       return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
 | |
|     }
 | |
|     return false;
 | |
|   }
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createSIFoldOperandsPass() {
 | |
|   return new SIFoldOperands();
 | |
| }
 | |
| 
 | |
| static bool updateOperand(FoldCandidate &Fold,
 | |
|                           const SIInstrInfo &TII,
 | |
|                           const TargetRegisterInfo &TRI,
 | |
|                           const GCNSubtarget &ST) {
 | |
|   MachineInstr *MI = Fold.UseMI;
 | |
|   MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
 | |
|   assert(Old.isReg());
 | |
| 
 | |
|   if (Fold.isImm()) {
 | |
|     if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked &&
 | |
|         AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold),
 | |
|                                        ST.hasInv2PiInlineImm())) {
 | |
|       // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
 | |
|       // already set.
 | |
|       unsigned Opcode = MI->getOpcode();
 | |
|       int OpNo = MI->getOperandNo(&Old);
 | |
|       int ModIdx = -1;
 | |
|       if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
 | |
|         ModIdx = AMDGPU::OpName::src0_modifiers;
 | |
|       else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
 | |
|         ModIdx = AMDGPU::OpName::src1_modifiers;
 | |
|       else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
 | |
|         ModIdx = AMDGPU::OpName::src2_modifiers;
 | |
|       assert(ModIdx != -1);
 | |
|       ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
 | |
|       MachineOperand &Mod = MI->getOperand(ModIdx);
 | |
|       unsigned Val = Mod.getImm();
 | |
|       if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1))
 | |
|         return false;
 | |
|       // Only apply the following transformation if that operand requries
 | |
|       // a packed immediate.
 | |
|       switch (TII.get(Opcode).OpInfo[OpNo].OperandType) {
 | |
|       case AMDGPU::OPERAND_REG_IMM_V2FP16:
 | |
|       case AMDGPU::OPERAND_REG_IMM_V2INT16:
 | |
|       case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
 | |
|       case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
 | |
|         // If upper part is all zero we do not need op_sel_hi.
 | |
|         if (!isUInt<16>(Fold.ImmToFold)) {
 | |
|           if (!(Fold.ImmToFold & 0xffff)) {
 | |
|             Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
 | |
|             Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
 | |
|             Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
 | |
|             return true;
 | |
|           }
 | |
|           Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
 | |
|           Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
 | |
|           return true;
 | |
|         }
 | |
|         break;
 | |
|       default:
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if ((Fold.isImm() || Fold.isFI()) && Fold.needsShrink()) {
 | |
|     MachineBasicBlock *MBB = MI->getParent();
 | |
|     auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI);
 | |
|     if (Liveness != MachineBasicBlock::LQR_Dead)
 | |
|       return false;
 | |
| 
 | |
|     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
 | |
|     int Op32 = Fold.getShrinkOpcode();
 | |
|     MachineOperand &Dst0 = MI->getOperand(0);
 | |
|     MachineOperand &Dst1 = MI->getOperand(1);
 | |
|     assert(Dst0.isDef() && Dst1.isDef());
 | |
| 
 | |
|     bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());
 | |
| 
 | |
|     const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
 | |
|     unsigned NewReg0 = MRI.createVirtualRegister(Dst0RC);
 | |
| 
 | |
|     MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);
 | |
| 
 | |
|     if (HaveNonDbgCarryUse) {
 | |
|       BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
 | |
|         .addReg(AMDGPU::VCC, RegState::Kill);
 | |
|     }
 | |
| 
 | |
|     // Keep the old instruction around to avoid breaking iterators, but
 | |
|     // replace it with a dummy instruction to remove uses.
 | |
|     //
 | |
|     // FIXME: We should not invert how this pass looks at operands to avoid
 | |
|     // this. Should track set of foldable movs instead of looking for uses
 | |
|     // when looking at a use.
 | |
|     Dst0.setReg(NewReg0);
 | |
|     for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
 | |
|       MI->RemoveOperand(I);
 | |
|     MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF));
 | |
| 
 | |
|     if (Fold.isCommuted())
 | |
|       TII.commuteInstruction(*Inst32, false);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   assert(!Fold.needsShrink() && "not handled");
 | |
| 
 | |
|   if (Fold.isImm()) {
 | |
|     Old.ChangeToImmediate(Fold.ImmToFold);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (Fold.isFI()) {
 | |
|     Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   MachineOperand *New = Fold.OpToFold;
 | |
|   if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
 | |
|       TargetRegisterInfo::isVirtualRegister(New->getReg())) {
 | |
|     Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
 | |
| 
 | |
|     Old.setIsUndef(New->isUndef());
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // FIXME: Handle physical registers.
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
 | |
|                               const MachineInstr *MI) {
 | |
|   for (auto Candidate : FoldList) {
 | |
|     if (Candidate.UseMI == MI)
 | |
|       return true;
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
 | |
|                              MachineInstr *MI, unsigned OpNo,
 | |
|                              MachineOperand *OpToFold,
 | |
|                              const SIInstrInfo *TII) {
 | |
|   if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
 | |
| 
 | |
|     // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
 | |
|     unsigned Opc = MI->getOpcode();
 | |
|     if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
 | |
|          Opc == AMDGPU::V_FMAC_F32_e64) &&
 | |
|         (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
 | |
|       bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64;
 | |
|       bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
 | |
|       unsigned NewOpc = IsFMA ?
 | |
|         AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
 | |
| 
 | |
|       // Check if changing this to a v_mad_{f16, f32} instruction will allow us
 | |
|       // to fold the operand.
 | |
|       MI->setDesc(TII->get(NewOpc));
 | |
|       bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
 | |
|       if (FoldAsMAD) {
 | |
|         MI->untieRegOperand(OpNo);
 | |
|         return true;
 | |
|       }
 | |
|       MI->setDesc(TII->get(Opc));
 | |
|     }
 | |
| 
 | |
|     // Special case for s_setreg_b32
 | |
|     if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
 | |
|       MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
 | |
|       FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // If we are already folding into another operand of MI, then
 | |
|     // we can't commute the instruction, otherwise we risk making the
 | |
|     // other fold illegal.
 | |
|     if (isUseMIInFoldList(FoldList, MI))
 | |
|       return false;
 | |
| 
 | |
|     unsigned CommuteOpNo = OpNo;
 | |
| 
 | |
|     // Operand is not legal, so try to commute the instruction to
 | |
|     // see if this makes it possible to fold.
 | |
|     unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
 | |
|     unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
 | |
|     bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
 | |
| 
 | |
|     if (CanCommute) {
 | |
|       if (CommuteIdx0 == OpNo)
 | |
|         CommuteOpNo = CommuteIdx1;
 | |
|       else if (CommuteIdx1 == OpNo)
 | |
|         CommuteOpNo = CommuteIdx0;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // One of operands might be an Imm operand, and OpNo may refer to it after
 | |
|     // the call of commuteInstruction() below. Such situations are avoided
 | |
|     // here explicitly as OpNo must be a register operand to be a candidate
 | |
|     // for memory folding.
 | |
|     if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
 | |
|                        !MI->getOperand(CommuteIdx1).isReg()))
 | |
|       return false;
 | |
| 
 | |
|     if (!CanCommute ||
 | |
|         !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
 | |
|       return false;
 | |
| 
 | |
|     if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
 | |
|       if ((Opc == AMDGPU::V_ADD_I32_e64 ||
 | |
|            Opc == AMDGPU::V_SUB_I32_e64 ||
 | |
|            Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME
 | |
|           (OpToFold->isImm() || OpToFold->isFI())) {
 | |
|         MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
 | |
| 
 | |
|         // Verify the other operand is a VGPR, otherwise we would violate the
 | |
|         // constant bus restriction.
 | |
|         unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
 | |
|         MachineOperand &OtherOp = MI->getOperand(OtherIdx);
 | |
|         if (!OtherOp.isReg() ||
 | |
|             !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
 | |
|           return false;
 | |
| 
 | |
|         assert(MI->getOperand(1).isDef());
 | |
| 
 | |
|         // Make sure to get the 32-bit version of the commuted opcode.
 | |
|         unsigned MaybeCommutedOpc = MI->getOpcode();
 | |
|         int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
 | |
| 
 | |
|         FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true,
 | |
|                                          Op32));
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // If the use operand doesn't care about the value, this may be an operand only
 | |
| // used for register indexing, in which case it is unsafe to fold.
 | |
| static bool isUseSafeToFold(const SIInstrInfo *TII,
 | |
|                             const MachineInstr &MI,
 | |
|                             const MachineOperand &UseMO) {
 | |
|   return !UseMO.isUndef() && !TII->isSDWA(MI);
 | |
|   //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
 | |
| }
 | |
| 
 | |
| void SIFoldOperands::foldOperand(
 | |
|   MachineOperand &OpToFold,
 | |
|   MachineInstr *UseMI,
 | |
|   unsigned UseOpIdx,
 | |
|   SmallVectorImpl<FoldCandidate> &FoldList,
 | |
|   SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
 | |
|   const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
 | |
| 
 | |
|   if (!isUseSafeToFold(TII, *UseMI, UseOp))
 | |
|     return;
 | |
| 
 | |
|   // FIXME: Fold operands with subregs.
 | |
|   if (UseOp.isReg() && OpToFold.isReg()) {
 | |
|     if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
 | |
|       return;
 | |
| 
 | |
|     // Don't fold subregister extracts into tied operands, only if it is a full
 | |
|     // copy since a subregister use tied to a full register def doesn't really
 | |
|     // make sense. e.g. don't fold:
 | |
|     //
 | |
|     // %1 = COPY %0:sub1
 | |
|     // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0>
 | |
|     //
 | |
|     //  into
 | |
|     // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0>
 | |
|     if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   // Special case for REG_SEQUENCE: We can't fold literals into
 | |
|   // REG_SEQUENCE instructions, so we have to fold them into the
 | |
|   // uses of REG_SEQUENCE.
 | |
|   if (UseMI->isRegSequence()) {
 | |
|     unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
 | |
|     unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
 | |
| 
 | |
|     for (MachineRegisterInfo::use_iterator
 | |
|            RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
 | |
|          RSUse != RSE; ++RSUse) {
 | |
| 
 | |
|       MachineInstr *RSUseMI = RSUse->getParent();
 | |
|       if (RSUse->getSubReg() != RegSeqDstSubReg)
 | |
|         continue;
 | |
| 
 | |
|       foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
 | |
|                   CopiesToReplace);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   bool FoldingImm = OpToFold.isImm();
 | |
| 
 | |
|   if (FoldingImm && UseMI->isCopy()) {
 | |
|     unsigned DestReg = UseMI->getOperand(0).getReg();
 | |
|     const TargetRegisterClass *DestRC
 | |
|       = TargetRegisterInfo::isVirtualRegister(DestReg) ?
 | |
|       MRI->getRegClass(DestReg) :
 | |
|       TRI->getPhysRegClass(DestReg);
 | |
| 
 | |
|     unsigned SrcReg  = UseMI->getOperand(1).getReg();
 | |
|     if (TargetRegisterInfo::isVirtualRegister(DestReg) &&
 | |
|       TargetRegisterInfo::isVirtualRegister(SrcReg)) {
 | |
|       const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg);
 | |
|       if (TRI->isSGPRClass(SrcRC) && TRI->hasVGPRs(DestRC)) {
 | |
|         MachineRegisterInfo::use_iterator NextUse;
 | |
|         SmallVector<FoldCandidate, 4> CopyUses;
 | |
|         for (MachineRegisterInfo::use_iterator
 | |
|           Use = MRI->use_begin(DestReg), E = MRI->use_end();
 | |
|           Use != E; Use = NextUse) {
 | |
|           NextUse = std::next(Use);
 | |
|           FoldCandidate FC = FoldCandidate(Use->getParent(),
 | |
|            Use.getOperandNo(), &UseMI->getOperand(1));
 | |
|           CopyUses.push_back(FC);
 | |
|        }
 | |
|         for (auto & F : CopyUses) {
 | |
|           foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo,
 | |
|            FoldList, CopiesToReplace);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // In order to fold immediates into copies, we need to change the
 | |
|     // copy to a MOV.
 | |
| 
 | |
|     unsigned MovOp = TII->getMovOpcode(DestRC);
 | |
|     if (MovOp == AMDGPU::COPY)
 | |
|       return;
 | |
| 
 | |
|     UseMI->setDesc(TII->get(MovOp));
 | |
|     CopiesToReplace.push_back(UseMI);
 | |
|   } else {
 | |
|     if (UseMI->isCopy() && OpToFold.isReg() &&
 | |
|         TargetRegisterInfo::isVirtualRegister(UseMI->getOperand(0).getReg()) &&
 | |
|         TargetRegisterInfo::isVirtualRegister(UseMI->getOperand(1).getReg()) &&
 | |
|         TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
 | |
|         TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()) &&
 | |
|         !UseMI->getOperand(1).getSubReg()) {
 | |
|       UseMI->getOperand(1).setReg(OpToFold.getReg());
 | |
|       UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
 | |
|       UseMI->getOperand(1).setIsKill(false);
 | |
|       CopiesToReplace.push_back(UseMI);
 | |
|       OpToFold.setIsKill(false);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     const MCInstrDesc &UseDesc = UseMI->getDesc();
 | |
| 
 | |
|     // Don't fold into target independent nodes.  Target independent opcodes
 | |
|     // don't have defined register classes.
 | |
|     if (UseDesc.isVariadic() ||
 | |
|         UseOp.isImplicit() ||
 | |
|         UseDesc.OpInfo[UseOpIdx].RegClass == -1)
 | |
|       return;
 | |
|   }
 | |
| 
 | |
|   if (!FoldingImm) {
 | |
|     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
 | |
| 
 | |
|     // FIXME: We could try to change the instruction from 64-bit to 32-bit
 | |
|     // to enable more folding opportunites.  The shrink operands pass
 | |
|     // already does this.
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
 | |
|   const TargetRegisterClass *FoldRC =
 | |
|     TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
 | |
| 
 | |
| 
 | |
|   // Split 64-bit constants into 32-bits for folding.
 | |
|   if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
 | |
|     unsigned UseReg = UseOp.getReg();
 | |
|     const TargetRegisterClass *UseRC
 | |
|       = TargetRegisterInfo::isVirtualRegister(UseReg) ?
 | |
|       MRI->getRegClass(UseReg) :
 | |
|       TRI->getPhysRegClass(UseReg);
 | |
| 
 | |
|     if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
 | |
|       return;
 | |
| 
 | |
|     APInt Imm(64, OpToFold.getImm());
 | |
|     if (UseOp.getSubReg() == AMDGPU::sub0) {
 | |
|       Imm = Imm.getLoBits(32);
 | |
|     } else {
 | |
|       assert(UseOp.getSubReg() == AMDGPU::sub1);
 | |
|       Imm = Imm.getHiBits(32);
 | |
|     }
 | |
| 
 | |
|     MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
 | |
|     tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
| 
 | |
| 
 | |
|   tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
 | |
| }
 | |
| 
 | |
| static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
 | |
|                                   uint32_t LHS, uint32_t RHS) {
 | |
|   switch (Opcode) {
 | |
|   case AMDGPU::V_AND_B32_e64:
 | |
|   case AMDGPU::V_AND_B32_e32:
 | |
|   case AMDGPU::S_AND_B32:
 | |
|     Result = LHS & RHS;
 | |
|     return true;
 | |
|   case AMDGPU::V_OR_B32_e64:
 | |
|   case AMDGPU::V_OR_B32_e32:
 | |
|   case AMDGPU::S_OR_B32:
 | |
|     Result = LHS | RHS;
 | |
|     return true;
 | |
|   case AMDGPU::V_XOR_B32_e64:
 | |
|   case AMDGPU::V_XOR_B32_e32:
 | |
|   case AMDGPU::S_XOR_B32:
 | |
|     Result = LHS ^ RHS;
 | |
|     return true;
 | |
|   case AMDGPU::V_LSHL_B32_e64:
 | |
|   case AMDGPU::V_LSHL_B32_e32:
 | |
|   case AMDGPU::S_LSHL_B32:
 | |
|     // The instruction ignores the high bits for out of bounds shifts.
 | |
|     Result = LHS << (RHS & 31);
 | |
|     return true;
 | |
|   case AMDGPU::V_LSHLREV_B32_e64:
 | |
|   case AMDGPU::V_LSHLREV_B32_e32:
 | |
|     Result = RHS << (LHS & 31);
 | |
|     return true;
 | |
|   case AMDGPU::V_LSHR_B32_e64:
 | |
|   case AMDGPU::V_LSHR_B32_e32:
 | |
|   case AMDGPU::S_LSHR_B32:
 | |
|     Result = LHS >> (RHS & 31);
 | |
|     return true;
 | |
|   case AMDGPU::V_LSHRREV_B32_e64:
 | |
|   case AMDGPU::V_LSHRREV_B32_e32:
 | |
|     Result = RHS >> (LHS & 31);
 | |
|     return true;
 | |
|   case AMDGPU::V_ASHR_I32_e64:
 | |
|   case AMDGPU::V_ASHR_I32_e32:
 | |
|   case AMDGPU::S_ASHR_I32:
 | |
|     Result = static_cast<int32_t>(LHS) >> (RHS & 31);
 | |
|     return true;
 | |
|   case AMDGPU::V_ASHRREV_I32_e64:
 | |
|   case AMDGPU::V_ASHRREV_I32_e32:
 | |
|     Result = static_cast<int32_t>(RHS) >> (LHS & 31);
 | |
|     return true;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static unsigned getMovOpc(bool IsScalar) {
 | |
|   return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
 | |
| }
 | |
| 
 | |
| /// Remove any leftover implicit operands from mutating the instruction. e.g.
 | |
| /// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
 | |
| /// anymore.
 | |
| static void stripExtraCopyOperands(MachineInstr &MI) {
 | |
|   const MCInstrDesc &Desc = MI.getDesc();
 | |
|   unsigned NumOps = Desc.getNumOperands() +
 | |
|                     Desc.getNumImplicitUses() +
 | |
|                     Desc.getNumImplicitDefs();
 | |
| 
 | |
|   for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
 | |
|     MI.RemoveOperand(I);
 | |
| }
 | |
| 
 | |
| static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
 | |
|   MI.setDesc(NewDesc);
 | |
|   stripExtraCopyOperands(MI);
 | |
| }
 | |
| 
 | |
| static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
 | |
|                                                MachineOperand &Op) {
 | |
|   if (Op.isReg()) {
 | |
|     // If this has a subregister, it obviously is a register source.
 | |
|     if (Op.getSubReg() != AMDGPU::NoSubRegister ||
 | |
|         !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
 | |
|       return &Op;
 | |
| 
 | |
|     MachineInstr *Def = MRI.getVRegDef(Op.getReg());
 | |
|     if (Def && Def->isMoveImmediate()) {
 | |
|       MachineOperand &ImmSrc = Def->getOperand(1);
 | |
|       if (ImmSrc.isImm())
 | |
|         return &ImmSrc;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return &Op;
 | |
| }
 | |
| 
 | |
| // Try to simplify operations with a constant that may appear after instruction
 | |
| // selection.
 | |
| // TODO: See if a frame index with a fixed offset can fold.
 | |
| static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
 | |
|                               const SIInstrInfo *TII,
 | |
|                               MachineInstr *MI,
 | |
|                               MachineOperand *ImmOp) {
 | |
|   unsigned Opc = MI->getOpcode();
 | |
|   if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
 | |
|       Opc == AMDGPU::S_NOT_B32) {
 | |
|     MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
 | |
|     mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
 | |
|   if (Src1Idx == -1)
 | |
|     return false;
 | |
| 
 | |
|   int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
 | |
|   MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
 | |
|   MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
 | |
| 
 | |
|   if (!Src0->isImm() && !Src1->isImm())
 | |
|     return false;
 | |
| 
 | |
|   if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) {
 | |
|     if (Src0->isImm() && Src0->getImm() == 0) {
 | |
|       // v_lshl_or_b32 0, X, Y -> copy Y
 | |
|       // v_lshl_or_b32 0, X, K -> v_mov_b32 K
 | |
|       bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg();
 | |
|       MI->RemoveOperand(Src1Idx);
 | |
|       MI->RemoveOperand(Src0Idx);
 | |
| 
 | |
|       MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32));
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // and k0, k1 -> v_mov_b32 (k0 & k1)
 | |
|   // or k0, k1 -> v_mov_b32 (k0 | k1)
 | |
|   // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
 | |
|   if (Src0->isImm() && Src1->isImm()) {
 | |
|     int32_t NewImm;
 | |
|     if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
 | |
|       return false;
 | |
| 
 | |
|     const SIRegisterInfo &TRI = TII->getRegisterInfo();
 | |
|     bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
 | |
| 
 | |
|     // Be careful to change the right operand, src0 may belong to a different
 | |
|     // instruction.
 | |
|     MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
 | |
|     MI->RemoveOperand(Src1Idx);
 | |
|     mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (!MI->isCommutable())
 | |
|     return false;
 | |
| 
 | |
|   if (Src0->isImm() && !Src1->isImm()) {
 | |
|     std::swap(Src0, Src1);
 | |
|     std::swap(Src0Idx, Src1Idx);
 | |
|   }
 | |
| 
 | |
|   int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
 | |
|   if (Opc == AMDGPU::V_OR_B32_e64 ||
 | |
|       Opc == AMDGPU::V_OR_B32_e32 ||
 | |
|       Opc == AMDGPU::S_OR_B32) {
 | |
|     if (Src1Val == 0) {
 | |
|       // y = or x, 0 => y = copy x
 | |
|       MI->RemoveOperand(Src1Idx);
 | |
|       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
 | |
|     } else if (Src1Val == -1) {
 | |
|       // y = or x, -1 => y = v_mov_b32 -1
 | |
|       MI->RemoveOperand(Src1Idx);
 | |
|       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
 | |
|     } else
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
 | |
|       MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
 | |
|       MI->getOpcode() == AMDGPU::S_AND_B32) {
 | |
|     if (Src1Val == 0) {
 | |
|       // y = and x, 0 => y = v_mov_b32 0
 | |
|       MI->RemoveOperand(Src0Idx);
 | |
|       mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
 | |
|     } else if (Src1Val == -1) {
 | |
|       // y = and x, -1 => y = copy x
 | |
|       MI->RemoveOperand(Src1Idx);
 | |
|       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
 | |
|       stripExtraCopyOperands(*MI);
 | |
|     } else
 | |
|       return false;
 | |
| 
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
 | |
|       MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
 | |
|       MI->getOpcode() == AMDGPU::S_XOR_B32) {
 | |
|     if (Src1Val == 0) {
 | |
|       // y = xor x, 0 => y = copy x
 | |
|       MI->RemoveOperand(Src1Idx);
 | |
|       mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| // Try to fold an instruction into a simpler one
 | |
| static bool tryFoldInst(const SIInstrInfo *TII,
 | |
|                         MachineInstr *MI) {
 | |
|   unsigned Opc = MI->getOpcode();
 | |
| 
 | |
|   if (Opc == AMDGPU::V_CNDMASK_B32_e32    ||
 | |
|       Opc == AMDGPU::V_CNDMASK_B32_e64    ||
 | |
|       Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
 | |
|     const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
 | |
|     const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
 | |
|     int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
 | |
|     int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
 | |
|     if (Src1->isIdenticalTo(*Src0) &&
 | |
|         (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) &&
 | |
|         (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) {
 | |
|       LLVM_DEBUG(dbgs() << "Folded " << *MI << " into ");
 | |
|       auto &NewDesc =
 | |
|           TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
 | |
|       int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
 | |
|       if (Src2Idx != -1)
 | |
|         MI->RemoveOperand(Src2Idx);
 | |
|       MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
 | |
|       if (Src1ModIdx != -1)
 | |
|         MI->RemoveOperand(Src1ModIdx);
 | |
|       if (Src0ModIdx != -1)
 | |
|         MI->RemoveOperand(Src0ModIdx);
 | |
|       mutateCopyOp(*MI, NewDesc);
 | |
|       LLVM_DEBUG(dbgs() << *MI << '\n');
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void SIFoldOperands::foldInstOperand(MachineInstr &MI,
 | |
|                                      MachineOperand &OpToFold) const {
 | |
|   // We need mutate the operands of new mov instructions to add implicit
 | |
|   // uses of EXEC, but adding them invalidates the use_iterator, so defer
 | |
|   // this.
 | |
|   SmallVector<MachineInstr *, 4> CopiesToReplace;
 | |
|   SmallVector<FoldCandidate, 4> FoldList;
 | |
|   MachineOperand &Dst = MI.getOperand(0);
 | |
| 
 | |
|   bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
 | |
|   if (FoldingImm) {
 | |
|     unsigned NumLiteralUses = 0;
 | |
|     MachineOperand *NonInlineUse = nullptr;
 | |
|     int NonInlineUseOpNo = -1;
 | |
| 
 | |
|     MachineRegisterInfo::use_iterator NextUse;
 | |
|     for (MachineRegisterInfo::use_iterator
 | |
|            Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
 | |
|          Use != E; Use = NextUse) {
 | |
|       NextUse = std::next(Use);
 | |
|       MachineInstr *UseMI = Use->getParent();
 | |
|       unsigned OpNo = Use.getOperandNo();
 | |
| 
 | |
|       // Folding the immediate may reveal operations that can be constant
 | |
|       // folded or replaced with a copy. This can happen for example after
 | |
|       // frame indices are lowered to constants or from splitting 64-bit
 | |
|       // constants.
 | |
|       //
 | |
|       // We may also encounter cases where one or both operands are
 | |
|       // immediates materialized into a register, which would ordinarily not
 | |
|       // be folded due to multiple uses or operand constraints.
 | |
| 
 | |
|       if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
 | |
|         LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n');
 | |
| 
 | |
|         // Some constant folding cases change the same immediate's use to a new
 | |
|         // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
 | |
|         // again. The same constant folded instruction could also have a second
 | |
|         // use operand.
 | |
|         NextUse = MRI->use_begin(Dst.getReg());
 | |
|         FoldList.clear();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Try to fold any inline immediate uses, and then only fold other
 | |
|       // constants if they have one use.
 | |
|       //
 | |
|       // The legality of the inline immediate must be checked based on the use
 | |
|       // operand, not the defining instruction, because 32-bit instructions
 | |
|       // with 32-bit inline immediate sources may be used to materialize
 | |
|       // constants used in 16-bit operands.
 | |
|       //
 | |
|       // e.g. it is unsafe to fold:
 | |
|       //  s_mov_b32 s0, 1.0    // materializes 0x3f800000
 | |
|       //  v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
 | |
| 
 | |
|       // Folding immediates with more than one use will increase program size.
 | |
|       // FIXME: This will also reduce register usage, which may be better
 | |
|       // in some cases. A better heuristic is needed.
 | |
|       if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
 | |
|         foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
 | |
|       } else {
 | |
|         if (++NumLiteralUses == 1) {
 | |
|           NonInlineUse = &*Use;
 | |
|           NonInlineUseOpNo = OpNo;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (NumLiteralUses == 1) {
 | |
|       MachineInstr *UseMI = NonInlineUse->getParent();
 | |
|       foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
 | |
|     }
 | |
|   } else {
 | |
|     // Folding register.
 | |
|     SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess;
 | |
|     for (MachineRegisterInfo::use_iterator
 | |
|            Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
 | |
|          Use != E; ++Use) {
 | |
|       UsesToProcess.push_back(Use);
 | |
|     }
 | |
|     for (auto U : UsesToProcess) {
 | |
|       MachineInstr *UseMI = U->getParent();
 | |
| 
 | |
|       foldOperand(OpToFold, UseMI, U.getOperandNo(),
 | |
|         FoldList, CopiesToReplace);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   MachineFunction *MF = MI.getParent()->getParent();
 | |
|   // Make sure we add EXEC uses to any new v_mov instructions created.
 | |
|   for (MachineInstr *Copy : CopiesToReplace)
 | |
|     Copy->addImplicitDefUseOperands(*MF);
 | |
| 
 | |
|   for (FoldCandidate &Fold : FoldList) {
 | |
|     if (updateOperand(Fold, *TII, *TRI, *ST)) {
 | |
|       // Clear kill flags.
 | |
|       if (Fold.isReg()) {
 | |
|         assert(Fold.OpToFold && Fold.OpToFold->isReg());
 | |
|         // FIXME: Probably shouldn't bother trying to fold if not an
 | |
|         // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
 | |
|         // copies.
 | |
|         MRI->clearKillFlags(Fold.OpToFold->getReg());
 | |
|       }
 | |
|       LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
 | |
|                         << static_cast<int>(Fold.UseOpNo) << " of "
 | |
|                         << *Fold.UseMI << '\n');
 | |
|       tryFoldInst(TII, Fold.UseMI);
 | |
|     } else if (Fold.isCommuted()) {
 | |
|       // Restoring instruction's original operand order if fold has failed.
 | |
|       TII->commuteInstruction(*Fold.UseMI, false);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Clamp patterns are canonically selected to v_max_* instructions, so only
 | |
| // handle them.
 | |
| const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
 | |
|   unsigned Op = MI.getOpcode();
 | |
|   switch (Op) {
 | |
|   case AMDGPU::V_MAX_F32_e64:
 | |
|   case AMDGPU::V_MAX_F16_e64:
 | |
|   case AMDGPU::V_MAX_F64:
 | |
|   case AMDGPU::V_PK_MAX_F16: {
 | |
|     if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
 | |
|       return nullptr;
 | |
| 
 | |
|     // Make sure sources are identical.
 | |
|     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
 | |
|     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
 | |
|     if (!Src0->isReg() || !Src1->isReg() ||
 | |
|         Src0->getReg() != Src1->getReg() ||
 | |
|         Src0->getSubReg() != Src1->getSubReg() ||
 | |
|         Src0->getSubReg() != AMDGPU::NoSubRegister)
 | |
|       return nullptr;
 | |
| 
 | |
|     // Can't fold up if we have modifiers.
 | |
|     if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
 | |
|       return nullptr;
 | |
| 
 | |
|     unsigned Src0Mods
 | |
|       = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
 | |
|     unsigned Src1Mods
 | |
|       = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
 | |
| 
 | |
|     // Having a 0 op_sel_hi would require swizzling the output in the source
 | |
|     // instruction, which we can't do.
 | |
|     unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
 | |
|                                                       : 0u;
 | |
|     if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
 | |
|       return nullptr;
 | |
|     return Src0;
 | |
|   }
 | |
|   default:
 | |
|     return nullptr;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // We obviously have multiple uses in a clamp since the register is used twice
 | |
| // in the same instruction.
 | |
| static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
 | |
|   int Count = 0;
 | |
|   for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
 | |
|        I != E; ++I) {
 | |
|     if (++Count > 1)
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
 | |
| bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
 | |
|   const MachineOperand *ClampSrc = isClamp(MI);
 | |
|   if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
 | |
| 
 | |
|   // The type of clamp must be compatible.
 | |
|   if (TII->getClampMask(*Def) != TII->getClampMask(MI))
 | |
|     return false;
 | |
| 
 | |
|   MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
 | |
|   if (!DefClamp)
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def
 | |
|                     << '\n');
 | |
| 
 | |
|   // Clamp is applied after omod, so it is OK if omod is set.
 | |
|   DefClamp->setImm(1);
 | |
|   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
 | |
|   MI.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| static int getOModValue(unsigned Opc, int64_t Val) {
 | |
|   switch (Opc) {
 | |
|   case AMDGPU::V_MUL_F32_e64: {
 | |
|     switch (static_cast<uint32_t>(Val)) {
 | |
|     case 0x3f000000: // 0.5
 | |
|       return SIOutMods::DIV2;
 | |
|     case 0x40000000: // 2.0
 | |
|       return SIOutMods::MUL2;
 | |
|     case 0x40800000: // 4.0
 | |
|       return SIOutMods::MUL4;
 | |
|     default:
 | |
|       return SIOutMods::NONE;
 | |
|     }
 | |
|   }
 | |
|   case AMDGPU::V_MUL_F16_e64: {
 | |
|     switch (static_cast<uint16_t>(Val)) {
 | |
|     case 0x3800: // 0.5
 | |
|       return SIOutMods::DIV2;
 | |
|     case 0x4000: // 2.0
 | |
|       return SIOutMods::MUL2;
 | |
|     case 0x4400: // 4.0
 | |
|       return SIOutMods::MUL4;
 | |
|     default:
 | |
|       return SIOutMods::NONE;
 | |
|     }
 | |
|   }
 | |
|   default:
 | |
|     llvm_unreachable("invalid mul opcode");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // FIXME: Does this really not support denormals with f16?
 | |
| // FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
 | |
| // handled, so will anything other than that break?
 | |
| std::pair<const MachineOperand *, int>
 | |
| SIFoldOperands::isOMod(const MachineInstr &MI) const {
 | |
|   unsigned Op = MI.getOpcode();
 | |
|   switch (Op) {
 | |
|   case AMDGPU::V_MUL_F32_e64:
 | |
|   case AMDGPU::V_MUL_F16_e64: {
 | |
|     // If output denormals are enabled, omod is ignored.
 | |
|     if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) ||
 | |
|         (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals()))
 | |
|       return std::make_pair(nullptr, SIOutMods::NONE);
 | |
| 
 | |
|     const MachineOperand *RegOp = nullptr;
 | |
|     const MachineOperand *ImmOp = nullptr;
 | |
|     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
 | |
|     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
 | |
|     if (Src0->isImm()) {
 | |
|       ImmOp = Src0;
 | |
|       RegOp = Src1;
 | |
|     } else if (Src1->isImm()) {
 | |
|       ImmOp = Src1;
 | |
|       RegOp = Src0;
 | |
|     } else
 | |
|       return std::make_pair(nullptr, SIOutMods::NONE);
 | |
| 
 | |
|     int OMod = getOModValue(Op, ImmOp->getImm());
 | |
|     if (OMod == SIOutMods::NONE ||
 | |
|         TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
 | |
|         TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
 | |
|         TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
 | |
|         TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
 | |
|       return std::make_pair(nullptr, SIOutMods::NONE);
 | |
| 
 | |
|     return std::make_pair(RegOp, OMod);
 | |
|   }
 | |
|   case AMDGPU::V_ADD_F32_e64:
 | |
|   case AMDGPU::V_ADD_F16_e64: {
 | |
|     // If output denormals are enabled, omod is ignored.
 | |
|     if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) ||
 | |
|         (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals()))
 | |
|       return std::make_pair(nullptr, SIOutMods::NONE);
 | |
| 
 | |
|     // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
 | |
|     const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
 | |
|     const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
 | |
| 
 | |
|     if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
 | |
|         Src0->getSubReg() == Src1->getSubReg() &&
 | |
|         !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
 | |
|         !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
 | |
|         !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
 | |
|         !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
 | |
|       return std::make_pair(Src0, SIOutMods::MUL2);
 | |
| 
 | |
|     return std::make_pair(nullptr, SIOutMods::NONE);
 | |
|   }
 | |
|   default:
 | |
|     return std::make_pair(nullptr, SIOutMods::NONE);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // FIXME: Does this need to check IEEE bit on function?
 | |
| bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
 | |
|   const MachineOperand *RegOp;
 | |
|   int OMod;
 | |
|   std::tie(RegOp, OMod) = isOMod(MI);
 | |
|   if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
 | |
|       RegOp->getSubReg() != AMDGPU::NoSubRegister ||
 | |
|       !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
 | |
|     return false;
 | |
| 
 | |
|   MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
 | |
|   MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
 | |
|   if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
 | |
|     return false;
 | |
| 
 | |
|   // Clamp is applied after omod. If the source already has clamp set, don't
 | |
|   // fold it.
 | |
|   if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
 | |
|     return false;
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
 | |
| 
 | |
|   DefOMod->setImm(OMod);
 | |
|   MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
 | |
|   MI.eraseFromParent();
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
 | |
|   if (skipFunction(MF.getFunction()))
 | |
|     return false;
 | |
| 
 | |
|   MRI = &MF.getRegInfo();
 | |
|   ST = &MF.getSubtarget<GCNSubtarget>();
 | |
|   TII = ST->getInstrInfo();
 | |
|   TRI = &TII->getRegisterInfo();
 | |
| 
 | |
|   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
 | |
| 
 | |
|   // omod is ignored by hardware if IEEE bit is enabled. omod also does not
 | |
|   // correctly handle signed zeros.
 | |
|   //
 | |
|   // FIXME: Also need to check strictfp
 | |
|   bool IsIEEEMode = MFI->getMode().IEEE;
 | |
|   bool HasNSZ = MFI->hasNoSignedZerosFPMath();
 | |
| 
 | |
|   for (MachineBasicBlock *MBB : depth_first(&MF)) {
 | |
|     MachineBasicBlock::iterator I, Next;
 | |
|     for (I = MBB->begin(); I != MBB->end(); I = Next) {
 | |
|       Next = std::next(I);
 | |
|       MachineInstr &MI = *I;
 | |
| 
 | |
|       tryFoldInst(TII, &MI);
 | |
| 
 | |
|       if (!TII->isFoldableCopy(MI)) {
 | |
|         // TODO: Omod might be OK if there is NSZ only on the source
 | |
|         // instruction, and not the omod multiply.
 | |
|         if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
 | |
|             !tryFoldOMod(MI))
 | |
|           tryFoldClamp(MI);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       MachineOperand &OpToFold = MI.getOperand(1);
 | |
|       bool FoldingImm = OpToFold.isImm() || OpToFold.isFI();
 | |
| 
 | |
|       // FIXME: We could also be folding things like TargetIndexes.
 | |
|       if (!FoldingImm && !OpToFold.isReg())
 | |
|         continue;
 | |
| 
 | |
|       if (OpToFold.isReg() &&
 | |
|           !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()))
 | |
|         continue;
 | |
| 
 | |
|       // Prevent folding operands backwards in the function. For example,
 | |
|       // the COPY opcode must not be replaced by 1 in this example:
 | |
|       //
 | |
|       //    %3 = COPY %vgpr0; VGPR_32:%3
 | |
|       //    ...
 | |
|       //    %vgpr0 = V_MOV_B32_e32 1, implicit %exec
 | |
|       MachineOperand &Dst = MI.getOperand(0);
 | |
|       if (Dst.isReg() &&
 | |
|           !TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
 | |
|         continue;
 | |
| 
 | |
|       foldInstOperand(MI, OpToFold);
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 |