1582 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1582 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
| //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// \file
 | |
| /// Insert wait instructions for memory reads and writes.
 | |
| ///
 | |
| /// Memory reads and writes are issued asynchronously, so we need to insert
 | |
| /// S_WAITCNT instructions when we want to access any of their results or
 | |
| /// overwrite any register that's used asynchronously.
 | |
| ///
 | |
| /// TODO: This pass currently keeps one timeline per hardware counter. A more
 | |
| /// finely-grained approach that keeps one timeline per event type could
 | |
| /// sometimes get away with generating weaker s_waitcnt instructions. For
 | |
| /// example, when both SMEM and LDS are in flight and we need to wait for
 | |
| /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
 | |
| /// but the pass will currently generate a conservative lgkmcnt(0) because
 | |
| /// multiple event types are in flight.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "AMDGPU.h"
 | |
| #include "AMDGPUSubtarget.h"
 | |
| #include "SIDefines.h"
 | |
| #include "SIInstrInfo.h"
 | |
| #include "SIMachineFunctionInfo.h"
 | |
| #include "SIRegisterInfo.h"
 | |
| #include "Utils/AMDGPUBaseInfo.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/DenseSet.h"
 | |
| #include "llvm/ADT/PostOrderIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineMemOperand.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/DebugCounter.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <memory>
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "si-insert-waitcnts"
 | |
| 
 | |
| DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
 | |
|               "Force emit s_waitcnt expcnt(0) instrs");
 | |
| DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
 | |
|               "Force emit s_waitcnt lgkmcnt(0) instrs");
 | |
| DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
 | |
|               "Force emit s_waitcnt vmcnt(0) instrs");
 | |
| 
 | |
| static cl::opt<bool> ForceEmitZeroFlag(
 | |
|   "amdgpu-waitcnt-forcezero",
 | |
|   cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
 | |
|   cl::init(false), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| template <typename EnumT>
 | |
| class enum_iterator
 | |
|     : public iterator_facade_base<enum_iterator<EnumT>,
 | |
|                                   std::forward_iterator_tag, const EnumT> {
 | |
|   EnumT Value;
 | |
| public:
 | |
|   enum_iterator() = default;
 | |
|   enum_iterator(EnumT Value) : Value(Value) {}
 | |
| 
 | |
|   enum_iterator &operator++() {
 | |
|     Value = static_cast<EnumT>(Value + 1);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; }
 | |
| 
 | |
|   EnumT operator*() const { return Value; }
 | |
| };
 | |
| 
 | |
| // Class of object that encapsulates latest instruction counter score
 | |
| // associated with the operand.  Used for determining whether
 | |
| // s_waitcnt instruction needs to be emited.
 | |
| 
 | |
| #define CNT_MASK(t) (1u << (t))
 | |
| 
 | |
| enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
 | |
| 
 | |
| iterator_range<enum_iterator<InstCounterType>> inst_counter_types() {
 | |
|   return make_range(enum_iterator<InstCounterType>(VM_CNT),
 | |
|                     enum_iterator<InstCounterType>(NUM_INST_CNTS));
 | |
| }
 | |
| 
 | |
| using RegInterval = std::pair<signed, signed>;
 | |
| 
 | |
| struct {
 | |
|   uint32_t VmcntMax;
 | |
|   uint32_t ExpcntMax;
 | |
|   uint32_t LgkmcntMax;
 | |
|   uint32_t VscntMax;
 | |
|   int32_t NumVGPRsMax;
 | |
|   int32_t NumSGPRsMax;
 | |
| } HardwareLimits;
 | |
| 
 | |
| struct {
 | |
|   unsigned VGPR0;
 | |
|   unsigned VGPRL;
 | |
|   unsigned SGPR0;
 | |
|   unsigned SGPRL;
 | |
| } RegisterEncoding;
 | |
| 
 | |
| enum WaitEventType {
 | |
|   VMEM_ACCESS,      // vector-memory read & write
 | |
|   VMEM_READ_ACCESS, // vector-memory read
 | |
|   VMEM_WRITE_ACCESS,// vector-memory write
 | |
|   LDS_ACCESS,       // lds read & write
 | |
|   GDS_ACCESS,       // gds read & write
 | |
|   SQ_MESSAGE,       // send message
 | |
|   SMEM_ACCESS,      // scalar-memory read & write
 | |
|   EXP_GPR_LOCK,     // export holding on its data src
 | |
|   GDS_GPR_LOCK,     // GDS holding on its data and addr src
 | |
|   EXP_POS_ACCESS,   // write to export position
 | |
|   EXP_PARAM_ACCESS, // write to export parameter
 | |
|   VMW_GPR_LOCK,     // vector-memory write holding on its data src
 | |
|   NUM_WAIT_EVENTS,
 | |
| };
 | |
| 
 | |
| static const uint32_t WaitEventMaskForInst[NUM_INST_CNTS] = {
 | |
|   (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
 | |
|   (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
 | |
|       (1 << SQ_MESSAGE),
 | |
|   (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
 | |
|       (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS),
 | |
|   (1 << VMEM_WRITE_ACCESS)
 | |
| };
 | |
| 
 | |
| // The mapping is:
 | |
| //  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
 | |
| //  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
 | |
| //  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
 | |
| // We reserve a fixed number of VGPR slots in the scoring tables for
 | |
| // special tokens like SCMEM_LDS (needed for buffer load to LDS).
 | |
| enum RegisterMapping {
 | |
|   SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
 | |
|   SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
 | |
|   NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
 | |
|   EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses.
 | |
|   NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
 | |
| };
 | |
| 
 | |
| void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
 | |
|   switch (T) {
 | |
|   case VM_CNT:
 | |
|     Wait.VmCnt = std::min(Wait.VmCnt, Count);
 | |
|     break;
 | |
|   case EXP_CNT:
 | |
|     Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
 | |
|     break;
 | |
|   case LGKM_CNT:
 | |
|     Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
 | |
|     break;
 | |
|   case VS_CNT:
 | |
|     Wait.VsCnt = std::min(Wait.VsCnt, Count);
 | |
|     break;
 | |
|   default:
 | |
|     llvm_unreachable("bad InstCounterType");
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This objects maintains the current score brackets of each wait counter, and
 | |
| // a per-register scoreboard for each wait counter.
 | |
| //
 | |
| // We also maintain the latest score for every event type that can change the
 | |
| // waitcnt in order to know if there are multiple types of events within
 | |
| // the brackets. When multiple types of event happen in the bracket,
 | |
| // wait count may get decreased out of order, therefore we need to put in
 | |
| // "s_waitcnt 0" before use.
 | |
| class WaitcntBrackets {
 | |
| public:
 | |
|   WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {
 | |
|     for (auto T : inst_counter_types())
 | |
|       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
 | |
|   }
 | |
| 
 | |
|   static uint32_t getWaitCountMax(InstCounterType T) {
 | |
|     switch (T) {
 | |
|     case VM_CNT:
 | |
|       return HardwareLimits.VmcntMax;
 | |
|     case LGKM_CNT:
 | |
|       return HardwareLimits.LgkmcntMax;
 | |
|     case EXP_CNT:
 | |
|       return HardwareLimits.ExpcntMax;
 | |
|     case VS_CNT:
 | |
|       return HardwareLimits.VscntMax;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   uint32_t getScoreLB(InstCounterType T) const {
 | |
|     assert(T < NUM_INST_CNTS);
 | |
|     if (T >= NUM_INST_CNTS)
 | |
|       return 0;
 | |
|     return ScoreLBs[T];
 | |
|   }
 | |
| 
 | |
|   uint32_t getScoreUB(InstCounterType T) const {
 | |
|     assert(T < NUM_INST_CNTS);
 | |
|     if (T >= NUM_INST_CNTS)
 | |
|       return 0;
 | |
|     return ScoreUBs[T];
 | |
|   }
 | |
| 
 | |
|   // Mapping from event to counter.
 | |
|   InstCounterType eventCounter(WaitEventType E) {
 | |
|     if (WaitEventMaskForInst[VM_CNT] & (1 << E))
 | |
|       return VM_CNT;
 | |
|     if (WaitEventMaskForInst[LGKM_CNT] & (1 << E))
 | |
|       return LGKM_CNT;
 | |
|     if (WaitEventMaskForInst[VS_CNT] & (1 << E))
 | |
|       return VS_CNT;
 | |
|     assert(WaitEventMaskForInst[EXP_CNT] & (1 << E));
 | |
|     return EXP_CNT;
 | |
|   }
 | |
| 
 | |
|   uint32_t getRegScore(int GprNo, InstCounterType T) {
 | |
|     if (GprNo < NUM_ALL_VGPRS) {
 | |
|       return VgprScores[T][GprNo];
 | |
|     }
 | |
|     assert(T == LGKM_CNT);
 | |
|     return SgprScores[GprNo - NUM_ALL_VGPRS];
 | |
|   }
 | |
| 
 | |
|   void clear() {
 | |
|     memset(ScoreLBs, 0, sizeof(ScoreLBs));
 | |
|     memset(ScoreUBs, 0, sizeof(ScoreUBs));
 | |
|     PendingEvents = 0;
 | |
|     memset(MixedPendingEvents, 0, sizeof(MixedPendingEvents));
 | |
|     for (auto T : inst_counter_types())
 | |
|       memset(VgprScores[T], 0, sizeof(VgprScores[T]));
 | |
|     memset(SgprScores, 0, sizeof(SgprScores));
 | |
|   }
 | |
| 
 | |
|   bool merge(const WaitcntBrackets &Other);
 | |
| 
 | |
|   RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
 | |
|                              const MachineRegisterInfo *MRI,
 | |
|                              const SIRegisterInfo *TRI, unsigned OpNo,
 | |
|                              bool Def) const;
 | |
| 
 | |
|   int32_t getMaxVGPR() const { return VgprUB; }
 | |
|   int32_t getMaxSGPR() const { return SgprUB; }
 | |
| 
 | |
|   bool counterOutOfOrder(InstCounterType T) const;
 | |
|   bool simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
 | |
|   bool simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
 | |
|   void determineWait(InstCounterType T, uint32_t ScoreToWait,
 | |
|                      AMDGPU::Waitcnt &Wait) const;
 | |
|   void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
 | |
|   void applyWaitcnt(InstCounterType T, unsigned Count);
 | |
|   void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
 | |
|                      const MachineRegisterInfo *MRI, WaitEventType E,
 | |
|                      MachineInstr &MI);
 | |
| 
 | |
|   bool hasPending() const { return PendingEvents != 0; }
 | |
|   bool hasPendingEvent(WaitEventType E) const {
 | |
|     return PendingEvents & (1 << E);
 | |
|   }
 | |
| 
 | |
|   bool hasPendingFlat() const {
 | |
|     return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
 | |
|              LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
 | |
|             (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
 | |
|              LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
 | |
|   }
 | |
| 
 | |
|   void setPendingFlat() {
 | |
|     LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
 | |
|     LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
 | |
|   }
 | |
| 
 | |
|   void print(raw_ostream &);
 | |
|   void dump() { print(dbgs()); }
 | |
| 
 | |
| private:
 | |
|   struct MergeInfo {
 | |
|     uint32_t OldLB;
 | |
|     uint32_t OtherLB;
 | |
|     uint32_t MyShift;
 | |
|     uint32_t OtherShift;
 | |
|   };
 | |
|   static bool mergeScore(const MergeInfo &M, uint32_t &Score,
 | |
|                          uint32_t OtherScore);
 | |
| 
 | |
|   void setScoreLB(InstCounterType T, uint32_t Val) {
 | |
|     assert(T < NUM_INST_CNTS);
 | |
|     if (T >= NUM_INST_CNTS)
 | |
|       return;
 | |
|     ScoreLBs[T] = Val;
 | |
|   }
 | |
| 
 | |
|   void setScoreUB(InstCounterType T, uint32_t Val) {
 | |
|     assert(T < NUM_INST_CNTS);
 | |
|     if (T >= NUM_INST_CNTS)
 | |
|       return;
 | |
|     ScoreUBs[T] = Val;
 | |
|     if (T == EXP_CNT) {
 | |
|       uint32_t UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT);
 | |
|       if (ScoreLBs[T] < UB && UB < ScoreUBs[T])
 | |
|         ScoreLBs[T] = UB;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void setRegScore(int GprNo, InstCounterType T, uint32_t Val) {
 | |
|     if (GprNo < NUM_ALL_VGPRS) {
 | |
|       if (GprNo > VgprUB) {
 | |
|         VgprUB = GprNo;
 | |
|       }
 | |
|       VgprScores[T][GprNo] = Val;
 | |
|     } else {
 | |
|       assert(T == LGKM_CNT);
 | |
|       if (GprNo - NUM_ALL_VGPRS > SgprUB) {
 | |
|         SgprUB = GprNo - NUM_ALL_VGPRS;
 | |
|       }
 | |
|       SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
 | |
|                    const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
 | |
|                    unsigned OpNo, uint32_t Val);
 | |
| 
 | |
|   const GCNSubtarget *ST = nullptr;
 | |
|   uint32_t ScoreLBs[NUM_INST_CNTS] = {0};
 | |
|   uint32_t ScoreUBs[NUM_INST_CNTS] = {0};
 | |
|   uint32_t PendingEvents = 0;
 | |
|   bool MixedPendingEvents[NUM_INST_CNTS] = {false};
 | |
|   // Remember the last flat memory operation.
 | |
|   uint32_t LastFlat[NUM_INST_CNTS] = {0};
 | |
|   // wait_cnt scores for every vgpr.
 | |
|   // Keep track of the VgprUB and SgprUB to make merge at join efficient.
 | |
|   int32_t VgprUB = 0;
 | |
|   int32_t SgprUB = 0;
 | |
|   uint32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS];
 | |
|   // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
 | |
|   uint32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0};
 | |
| };
 | |
| 
 | |
| class SIInsertWaitcnts : public MachineFunctionPass {
 | |
| private:
 | |
|   const GCNSubtarget *ST = nullptr;
 | |
|   const SIInstrInfo *TII = nullptr;
 | |
|   const SIRegisterInfo *TRI = nullptr;
 | |
|   const MachineRegisterInfo *MRI = nullptr;
 | |
|   AMDGPU::IsaVersion IV;
 | |
| 
 | |
|   DenseSet<MachineInstr *> TrackedWaitcntSet;
 | |
|   DenseSet<MachineInstr *> VCCZBugHandledSet;
 | |
| 
 | |
|   struct BlockInfo {
 | |
|     MachineBasicBlock *MBB;
 | |
|     std::unique_ptr<WaitcntBrackets> Incoming;
 | |
|     bool Dirty = true;
 | |
| 
 | |
|     explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {}
 | |
|   };
 | |
| 
 | |
|   std::vector<BlockInfo> BlockInfos; // by reverse post-order traversal index
 | |
|   DenseMap<MachineBasicBlock *, unsigned> RpotIdxMap;
 | |
| 
 | |
|   // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
 | |
|   // because of amdgpu-waitcnt-forcezero flag
 | |
|   bool ForceEmitZeroWaitcnts;
 | |
|   bool ForceEmitWaitcnt[NUM_INST_CNTS];
 | |
| 
 | |
| public:
 | |
|   static char ID;
 | |
| 
 | |
|   SIInsertWaitcnts() : MachineFunctionPass(ID) {
 | |
|     (void)ForceExpCounter;
 | |
|     (void)ForceLgkmCounter;
 | |
|     (void)ForceVMCounter;
 | |
|   }
 | |
| 
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
| 
 | |
|   StringRef getPassName() const override {
 | |
|     return "SI insert wait instructions";
 | |
|   }
 | |
| 
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override {
 | |
|     AU.setPreservesCFG();
 | |
|     MachineFunctionPass::getAnalysisUsage(AU);
 | |
|   }
 | |
| 
 | |
|   bool isForceEmitWaitcnt() const {
 | |
|     for (auto T : inst_counter_types())
 | |
|       if (ForceEmitWaitcnt[T])
 | |
|         return true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   void setForceEmitWaitcnt() {
 | |
| // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
 | |
| // For debug builds, get the debug counter info and adjust if need be
 | |
| #ifndef NDEBUG
 | |
|     if (DebugCounter::isCounterSet(ForceExpCounter) &&
 | |
|         DebugCounter::shouldExecute(ForceExpCounter)) {
 | |
|       ForceEmitWaitcnt[EXP_CNT] = true;
 | |
|     } else {
 | |
|       ForceEmitWaitcnt[EXP_CNT] = false;
 | |
|     }
 | |
| 
 | |
|     if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
 | |
|          DebugCounter::shouldExecute(ForceLgkmCounter)) {
 | |
|       ForceEmitWaitcnt[LGKM_CNT] = true;
 | |
|     } else {
 | |
|       ForceEmitWaitcnt[LGKM_CNT] = false;
 | |
|     }
 | |
| 
 | |
|     if (DebugCounter::isCounterSet(ForceVMCounter) &&
 | |
|         DebugCounter::shouldExecute(ForceVMCounter)) {
 | |
|       ForceEmitWaitcnt[VM_CNT] = true;
 | |
|     } else {
 | |
|       ForceEmitWaitcnt[VM_CNT] = false;
 | |
|     }
 | |
| #endif // NDEBUG
 | |
|   }
 | |
| 
 | |
|   bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
 | |
|   bool generateWaitcntInstBefore(MachineInstr &MI,
 | |
|                                  WaitcntBrackets &ScoreBrackets,
 | |
|                                  MachineInstr *OldWaitcntInstr);
 | |
|   void updateEventWaitcntAfter(MachineInstr &Inst,
 | |
|                                WaitcntBrackets *ScoreBrackets);
 | |
|   bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
 | |
|                             WaitcntBrackets &ScoreBrackets);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
 | |
|                                             const SIInstrInfo *TII,
 | |
|                                             const MachineRegisterInfo *MRI,
 | |
|                                             const SIRegisterInfo *TRI,
 | |
|                                             unsigned OpNo, bool Def) const {
 | |
|   const MachineOperand &Op = MI->getOperand(OpNo);
 | |
|   if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) ||
 | |
|       (Def && !Op.isDef()))
 | |
|     return {-1, -1};
 | |
| 
 | |
|   // A use via a PW operand does not need a waitcnt.
 | |
|   // A partial write is not a WAW.
 | |
|   assert(!Op.getSubReg() || !Op.isUndef());
 | |
| 
 | |
|   RegInterval Result;
 | |
|   const MachineRegisterInfo &MRIA = *MRI;
 | |
| 
 | |
|   unsigned Reg = TRI->getEncodingValue(Op.getReg());
 | |
| 
 | |
|   if (TRI->isVGPR(MRIA, Op.getReg())) {
 | |
|     assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
 | |
|     Result.first = Reg - RegisterEncoding.VGPR0;
 | |
|     assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
 | |
|   } else if (TRI->isSGPRReg(MRIA, Op.getReg())) {
 | |
|     assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
 | |
|     Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
 | |
|     assert(Result.first >= NUM_ALL_VGPRS &&
 | |
|            Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
 | |
|   }
 | |
|   // TODO: Handle TTMP
 | |
|   // else if (TRI->isTTMP(MRIA, Reg.getReg())) ...
 | |
|   else
 | |
|     return {-1, -1};
 | |
| 
 | |
|   const MachineInstr &MIA = *MI;
 | |
|   const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo);
 | |
|   unsigned Size = TRI->getRegSizeInBits(*RC);
 | |
|   Result.second = Result.first + (Size / 32);
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| void WaitcntBrackets::setExpScore(const MachineInstr *MI,
 | |
|                                   const SIInstrInfo *TII,
 | |
|                                   const SIRegisterInfo *TRI,
 | |
|                                   const MachineRegisterInfo *MRI, unsigned OpNo,
 | |
|                                   uint32_t Val) {
 | |
|   RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false);
 | |
|   LLVM_DEBUG({
 | |
|     const MachineOperand &Opnd = MI->getOperand(OpNo);
 | |
|     assert(TRI->isVGPR(*MRI, Opnd.getReg()));
 | |
|   });
 | |
|   for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
 | |
|     setRegScore(RegNo, EXP_CNT, Val);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
 | |
|                                     const SIRegisterInfo *TRI,
 | |
|                                     const MachineRegisterInfo *MRI,
 | |
|                                     WaitEventType E, MachineInstr &Inst) {
 | |
|   const MachineRegisterInfo &MRIA = *MRI;
 | |
|   InstCounterType T = eventCounter(E);
 | |
|   uint32_t CurrScore = getScoreUB(T) + 1;
 | |
|   if (CurrScore == 0)
 | |
|     report_fatal_error("InsertWaitcnt score wraparound");
 | |
|   // PendingEvents and ScoreUB need to be update regardless if this event
 | |
|   // changes the score of a register or not.
 | |
|   // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
 | |
|   if (!hasPendingEvent(E)) {
 | |
|     if (PendingEvents & WaitEventMaskForInst[T])
 | |
|       MixedPendingEvents[T] = true;
 | |
|     PendingEvents |= 1 << E;
 | |
|   }
 | |
|   setScoreUB(T, CurrScore);
 | |
| 
 | |
|   if (T == EXP_CNT) {
 | |
|     // Put score on the source vgprs. If this is a store, just use those
 | |
|     // specific register(s).
 | |
|     if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
 | |
|       // All GDS operations must protect their address register (same as
 | |
|       // export.)
 | |
|       if (Inst.getOpcode() != AMDGPU::DS_APPEND &&
 | |
|           Inst.getOpcode() != AMDGPU::DS_CONSUME) {
 | |
|         setExpScore(
 | |
|             &Inst, TII, TRI, MRI,
 | |
|             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr),
 | |
|             CurrScore);
 | |
|       }
 | |
|       if (Inst.mayStore()) {
 | |
|         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
 | |
|                                        AMDGPU::OpName::data0) != -1) {
 | |
|           setExpScore(
 | |
|               &Inst, TII, TRI, MRI,
 | |
|               AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
 | |
|               CurrScore);
 | |
|         }
 | |
|         if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
 | |
|                                        AMDGPU::OpName::data1) != -1) {
 | |
|           setExpScore(&Inst, TII, TRI, MRI,
 | |
|                       AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
 | |
|                                                  AMDGPU::OpName::data1),
 | |
|                       CurrScore);
 | |
|         }
 | |
|       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_APPEND &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_CONSUME &&
 | |
|                  Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
 | |
|         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
 | |
|           const MachineOperand &Op = Inst.getOperand(I);
 | |
|           if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) {
 | |
|             setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     } else if (TII->isFLAT(Inst)) {
 | |
|       if (Inst.mayStore()) {
 | |
|         setExpScore(
 | |
|             &Inst, TII, TRI, MRI,
 | |
|             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
 | |
|             CurrScore);
 | |
|       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
 | |
|         setExpScore(
 | |
|             &Inst, TII, TRI, MRI,
 | |
|             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
 | |
|             CurrScore);
 | |
|       }
 | |
|     } else if (TII->isMIMG(Inst)) {
 | |
|       if (Inst.mayStore()) {
 | |
|         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
 | |
|       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
 | |
|         setExpScore(
 | |
|             &Inst, TII, TRI, MRI,
 | |
|             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
 | |
|             CurrScore);
 | |
|       }
 | |
|     } else if (TII->isMTBUF(Inst)) {
 | |
|       if (Inst.mayStore()) {
 | |
|         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
 | |
|       }
 | |
|     } else if (TII->isMUBUF(Inst)) {
 | |
|       if (Inst.mayStore()) {
 | |
|         setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
 | |
|       } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
 | |
|         setExpScore(
 | |
|             &Inst, TII, TRI, MRI,
 | |
|             AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
 | |
|             CurrScore);
 | |
|       }
 | |
|     } else {
 | |
|       if (TII->isEXP(Inst)) {
 | |
|         // For export the destination registers are really temps that
 | |
|         // can be used as the actual source after export patching, so
 | |
|         // we need to treat them like sources and set the EXP_CNT
 | |
|         // score.
 | |
|         for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
 | |
|           MachineOperand &DefMO = Inst.getOperand(I);
 | |
|           if (DefMO.isReg() && DefMO.isDef() &&
 | |
|               TRI->isVGPR(MRIA, DefMO.getReg())) {
 | |
|             setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
 | |
|                         CurrScore);
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
 | |
|         MachineOperand &MO = Inst.getOperand(I);
 | |
|         if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) {
 | |
|           setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| #if 0 // TODO: check if this is handled by MUBUF code above.
 | |
|   } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
 | |
|        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
 | |
|        Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
 | |
|     MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
 | |
|     unsigned OpNo;//TODO: find the OpNo for this operand;
 | |
|     RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false);
 | |
|     for (signed RegNo = Interval.first; RegNo < Interval.second;
 | |
|     ++RegNo) {
 | |
|       setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
 | |
|     }
 | |
| #endif
 | |
|   } else {
 | |
|     // Match the score to the destination registers.
 | |
|     for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
 | |
|       RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true);
 | |
|       if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS)
 | |
|         continue;
 | |
|       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
 | |
|         setRegScore(RegNo, T, CurrScore);
 | |
|       }
 | |
|     }
 | |
|     if (TII->isDS(Inst) && Inst.mayStore()) {
 | |
|       setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void WaitcntBrackets::print(raw_ostream &OS) {
 | |
|   OS << '\n';
 | |
|   for (auto T : inst_counter_types()) {
 | |
|     uint32_t LB = getScoreLB(T);
 | |
|     uint32_t UB = getScoreUB(T);
 | |
| 
 | |
|     switch (T) {
 | |
|     case VM_CNT:
 | |
|       OS << "    VM_CNT(" << UB - LB << "): ";
 | |
|       break;
 | |
|     case LGKM_CNT:
 | |
|       OS << "    LGKM_CNT(" << UB - LB << "): ";
 | |
|       break;
 | |
|     case EXP_CNT:
 | |
|       OS << "    EXP_CNT(" << UB - LB << "): ";
 | |
|       break;
 | |
|     case VS_CNT:
 | |
|       OS << "    VS_CNT(" << UB - LB << "): ";
 | |
|       break;
 | |
|     default:
 | |
|       OS << "    UNKNOWN(" << UB - LB << "): ";
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     if (LB < UB) {
 | |
|       // Print vgpr scores.
 | |
|       for (int J = 0; J <= getMaxVGPR(); J++) {
 | |
|         uint32_t RegScore = getRegScore(J, T);
 | |
|         if (RegScore <= LB)
 | |
|           continue;
 | |
|         uint32_t RelScore = RegScore - LB - 1;
 | |
|         if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
 | |
|           OS << RelScore << ":v" << J << " ";
 | |
|         } else {
 | |
|           OS << RelScore << ":ds ";
 | |
|         }
 | |
|       }
 | |
|       // Also need to print sgpr scores for lgkm_cnt.
 | |
|       if (T == LGKM_CNT) {
 | |
|         for (int J = 0; J <= getMaxSGPR(); J++) {
 | |
|           uint32_t RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
 | |
|           if (RegScore <= LB)
 | |
|             continue;
 | |
|           uint32_t RelScore = RegScore - LB - 1;
 | |
|           OS << RelScore << ":s" << J << " ";
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     OS << '\n';
 | |
|   }
 | |
|   OS << '\n';
 | |
| }
 | |
| 
 | |
| /// Simplify the waitcnt, in the sense of removing redundant counts, and return
 | |
| /// whether a waitcnt instruction is needed at all.
 | |
| bool WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
 | |
|   return simplifyWaitcnt(VM_CNT, Wait.VmCnt) |
 | |
|          simplifyWaitcnt(EXP_CNT, Wait.ExpCnt) |
 | |
|          simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt) |
 | |
|          simplifyWaitcnt(VS_CNT, Wait.VsCnt);
 | |
| }
 | |
| 
 | |
| bool WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
 | |
|                                       unsigned &Count) const {
 | |
|   const uint32_t LB = getScoreLB(T);
 | |
|   const uint32_t UB = getScoreUB(T);
 | |
|   if (Count < UB && UB - Count > LB)
 | |
|     return true;
 | |
| 
 | |
|   Count = ~0u;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void WaitcntBrackets::determineWait(InstCounterType T, uint32_t ScoreToWait,
 | |
|                                     AMDGPU::Waitcnt &Wait) const {
 | |
|   // If the score of src_operand falls within the bracket, we need an
 | |
|   // s_waitcnt instruction.
 | |
|   const uint32_t LB = getScoreLB(T);
 | |
|   const uint32_t UB = getScoreUB(T);
 | |
|   if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
 | |
|     if ((T == VM_CNT || T == LGKM_CNT) &&
 | |
|         hasPendingFlat() &&
 | |
|         !ST->hasFlatLgkmVMemCountInOrder()) {
 | |
|       // If there is a pending FLAT operation, and this is a VMem or LGKM
 | |
|       // waitcnt and the target can report early completion, then we need
 | |
|       // to force a waitcnt 0.
 | |
|       addWait(Wait, T, 0);
 | |
|     } else if (counterOutOfOrder(T)) {
 | |
|       // Counter can get decremented out-of-order when there
 | |
|       // are multiple types event in the bracket. Also emit an s_wait counter
 | |
|       // with a conservative value of 0 for the counter.
 | |
|       addWait(Wait, T, 0);
 | |
|     } else {
 | |
|       addWait(Wait, T, UB - ScoreToWait);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
 | |
|   applyWaitcnt(VM_CNT, Wait.VmCnt);
 | |
|   applyWaitcnt(EXP_CNT, Wait.ExpCnt);
 | |
|   applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
 | |
|   applyWaitcnt(VS_CNT, Wait.VsCnt);
 | |
| }
 | |
| 
 | |
| void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
 | |
|   const uint32_t UB = getScoreUB(T);
 | |
|   if (Count >= UB)
 | |
|     return;
 | |
|   if (Count != 0) {
 | |
|     if (counterOutOfOrder(T))
 | |
|       return;
 | |
|     setScoreLB(T, std::max(getScoreLB(T), UB - Count));
 | |
|   } else {
 | |
|     setScoreLB(T, UB);
 | |
|     MixedPendingEvents[T] = false;
 | |
|     PendingEvents &= ~WaitEventMaskForInst[T];
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Where there are multiple types of event in the bracket of a counter,
 | |
| // the decrement may go out of order.
 | |
| bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
 | |
|   // Scalar memory read always can go out of order.
 | |
|   if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
 | |
|     return true;
 | |
|   return MixedPendingEvents[T];
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
 | |
|                       false)
 | |
| INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
 | |
|                     false)
 | |
| 
 | |
| char SIInsertWaitcnts::ID = 0;
 | |
| 
 | |
| char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
 | |
| 
 | |
| FunctionPass *llvm::createSIInsertWaitcntsPass() {
 | |
|   return new SIInsertWaitcnts();
 | |
| }
 | |
| 
 | |
| static bool readsVCCZ(const MachineInstr &MI) {
 | |
|   unsigned Opc = MI.getOpcode();
 | |
|   return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
 | |
|          !MI.getOperand(1).isUndef();
 | |
| }
 | |
| 
 | |
| ///  Generate s_waitcnt instruction to be placed before cur_Inst.
 | |
| ///  Instructions of a given type are returned in order,
 | |
| ///  but instructions of different types can complete out of order.
 | |
| ///  We rely on this in-order completion
 | |
| ///  and simply assign a score to the memory access instructions.
 | |
| ///  We keep track of the active "score bracket" to determine
 | |
| ///  if an access of a memory read requires an s_waitcnt
 | |
| ///  and if so what the value of each counter is.
 | |
| ///  The "score bracket" is bound by the lower bound and upper bound
 | |
| ///  scores (*_score_LB and *_score_ub respectively).
 | |
| bool SIInsertWaitcnts::generateWaitcntInstBefore(
 | |
|     MachineInstr &MI, WaitcntBrackets &ScoreBrackets,
 | |
|     MachineInstr *OldWaitcntInstr) {
 | |
|   setForceEmitWaitcnt();
 | |
|   bool IsForceEmitWaitcnt = isForceEmitWaitcnt();
 | |
| 
 | |
|   if (MI.isDebugInstr())
 | |
|     return false;
 | |
| 
 | |
|   AMDGPU::Waitcnt Wait;
 | |
| 
 | |
|   // See if this instruction has a forced S_WAITCNT VM.
 | |
|   // TODO: Handle other cases of NeedsWaitcntVmBefore()
 | |
|   if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
 | |
|       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
 | |
|       MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
 | |
|       MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
 | |
|       MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
 | |
|     Wait.VmCnt = 0;
 | |
|   }
 | |
| 
 | |
|   // All waits must be resolved at call return.
 | |
|   // NOTE: this could be improved with knowledge of all call sites or
 | |
|   //   with knowledge of the called routines.
 | |
|   if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
 | |
|       MI.getOpcode() == AMDGPU::S_SETPC_B64_return) {
 | |
|     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
 | |
|   }
 | |
|   // Resolve vm waits before gs-done.
 | |
|   else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
 | |
|             MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
 | |
|            ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
 | |
|             AMDGPU::SendMsg::ID_GS_DONE)) {
 | |
|     Wait.VmCnt = 0;
 | |
|   }
 | |
| #if 0 // TODO: the following blocks of logic when we have fence.
 | |
|   else if (MI.getOpcode() == SC_FENCE) {
 | |
|     const unsigned int group_size =
 | |
|       context->shader_info->GetMaxThreadGroupSize();
 | |
|     // group_size == 0 means thread group size is unknown at compile time
 | |
|     const bool group_is_multi_wave =
 | |
|       (group_size == 0 || group_size > target_info->GetWaveFrontSize());
 | |
|     const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
 | |
| 
 | |
|     for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
 | |
|       SCRegType src_type = Inst->GetSrcType(i);
 | |
|       switch (src_type) {
 | |
|         case SCMEM_LDS:
 | |
|           if (group_is_multi_wave ||
 | |
|             context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
 | |
|             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
 | |
|                                ScoreBrackets->getScoreUB(LGKM_CNT));
 | |
|             // LDS may have to wait for VM_CNT after buffer load to LDS
 | |
|             if (target_info->HasBufferLoadToLDS()) {
 | |
|               EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
 | |
|                                  ScoreBrackets->getScoreUB(VM_CNT));
 | |
|             }
 | |
|           }
 | |
|           break;
 | |
| 
 | |
|         case SCMEM_GDS:
 | |
|           if (group_is_multi_wave || fence_is_global) {
 | |
|             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
 | |
|               ScoreBrackets->getScoreUB(EXP_CNT));
 | |
|             EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
 | |
|               ScoreBrackets->getScoreUB(LGKM_CNT));
 | |
|           }
 | |
|           break;
 | |
| 
 | |
|         case SCMEM_UAV:
 | |
|         case SCMEM_TFBUF:
 | |
|         case SCMEM_RING:
 | |
|         case SCMEM_SCATTER:
 | |
|           if (group_is_multi_wave || fence_is_global) {
 | |
|             EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
 | |
|               ScoreBrackets->getScoreUB(EXP_CNT));
 | |
|             EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
 | |
|               ScoreBrackets->getScoreUB(VM_CNT));
 | |
|           }
 | |
|           break;
 | |
| 
 | |
|         case SCMEM_SCRATCH:
 | |
|         default:
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   // Export & GDS instructions do not read the EXEC mask until after the export
 | |
|   // is granted (which can occur well after the instruction is issued).
 | |
|   // The shader program must flush all EXP operations on the export-count
 | |
|   // before overwriting the EXEC mask.
 | |
|   else {
 | |
|     if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
 | |
|       // Export and GDS are tracked individually, either may trigger a waitcnt
 | |
|       // for EXEC.
 | |
|       if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
 | |
|           ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
 | |
|           ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
 | |
|           ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
 | |
|         Wait.ExpCnt = 0;
 | |
|       }
 | |
|     }
 | |
| 
 | |
| #if 0 // TODO: the following code to handle CALL.
 | |
|     // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT.
 | |
|     // However, there is a problem with EXP_CNT, because the call cannot
 | |
|     // easily tell if a register is used in the function, and if it did, then
 | |
|     // the referring instruction would have to have an S_WAITCNT, which is
 | |
|     // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs
 | |
|     // before the call.
 | |
|     if (MI.getOpcode() == SC_CALL) {
 | |
|       if (ScoreBrackets->getScoreUB(EXP_CNT) >
 | |
|         ScoreBrackets->getScoreLB(EXP_CNT)) {
 | |
|         ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
 | |
|         EmitWaitcnt |= CNT_MASK(EXP_CNT);
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // FIXME: Should not be relying on memoperands.
 | |
|     // Look at the source operands of every instruction to see if
 | |
|     // any of them results from a previous memory operation that affects
 | |
|     // its current usage. If so, an s_waitcnt instruction needs to be
 | |
|     // emitted.
 | |
|     // If the source operand was defined by a load, add the s_waitcnt
 | |
|     // instruction.
 | |
|     for (const MachineMemOperand *Memop : MI.memoperands()) {
 | |
|       unsigned AS = Memop->getAddrSpace();
 | |
|       if (AS != AMDGPUAS::LOCAL_ADDRESS)
 | |
|         continue;
 | |
|       unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
 | |
|       // VM_CNT is only relevant to vgpr or LDS.
 | |
|       ScoreBrackets.determineWait(
 | |
|           VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
 | |
|     }
 | |
| 
 | |
|     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
 | |
|       const MachineOperand &Op = MI.getOperand(I);
 | |
|       const MachineRegisterInfo &MRIA = *MRI;
 | |
|       RegInterval Interval =
 | |
|           ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, false);
 | |
|       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
 | |
|         if (TRI->isVGPR(MRIA, Op.getReg())) {
 | |
|           // VM_CNT is only relevant to vgpr or LDS.
 | |
|           ScoreBrackets.determineWait(
 | |
|               VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
 | |
|         }
 | |
|         ScoreBrackets.determineWait(
 | |
|             LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
 | |
|       }
 | |
|     }
 | |
|     // End of for loop that looks at all source operands to decide vm_wait_cnt
 | |
|     // and lgk_wait_cnt.
 | |
| 
 | |
|     // Two cases are handled for destination operands:
 | |
|     // 1) If the destination operand was defined by a load, add the s_waitcnt
 | |
|     // instruction to guarantee the right WAW order.
 | |
|     // 2) If a destination operand that was used by a recent export/store ins,
 | |
|     // add s_waitcnt on exp_cnt to guarantee the WAR order.
 | |
|     if (MI.mayStore()) {
 | |
|       // FIXME: Should not be relying on memoperands.
 | |
|       for (const MachineMemOperand *Memop : MI.memoperands()) {
 | |
|         unsigned AS = Memop->getAddrSpace();
 | |
|         if (AS != AMDGPUAS::LOCAL_ADDRESS)
 | |
|           continue;
 | |
|         unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
 | |
|         ScoreBrackets.determineWait(
 | |
|             VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
 | |
|         ScoreBrackets.determineWait(
 | |
|             EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
 | |
|       }
 | |
|     }
 | |
|     for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
 | |
|       MachineOperand &Def = MI.getOperand(I);
 | |
|       const MachineRegisterInfo &MRIA = *MRI;
 | |
|       RegInterval Interval =
 | |
|           ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I, true);
 | |
|       for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
 | |
|         if (TRI->isVGPR(MRIA, Def.getReg())) {
 | |
|           ScoreBrackets.determineWait(
 | |
|               VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
 | |
|           ScoreBrackets.determineWait(
 | |
|               EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
 | |
|         }
 | |
|         ScoreBrackets.determineWait(
 | |
|             LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
 | |
|       }
 | |
|     } // End of for loop that looks at all dest operands.
 | |
|   }
 | |
| 
 | |
|   // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
 | |
|   // occurs before the instruction. Doing it here prevents any additional
 | |
|   // S_WAITCNTs from being emitted if the instruction was marked as
 | |
|   // requiring a WAITCNT beforehand.
 | |
|   if (MI.getOpcode() == AMDGPU::S_BARRIER &&
 | |
|       !ST->hasAutoWaitcntBeforeBarrier()) {
 | |
|     Wait = Wait.combined(AMDGPU::Waitcnt::allZero(IV));
 | |
|   }
 | |
| 
 | |
|   // TODO: Remove this work-around, enable the assert for Bug 457939
 | |
|   //       after fixing the scheduler. Also, the Shader Compiler code is
 | |
|   //       independent of target.
 | |
|   if (readsVCCZ(MI) && ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS) {
 | |
|     if (ScoreBrackets.getScoreLB(LGKM_CNT) <
 | |
|             ScoreBrackets.getScoreUB(LGKM_CNT) &&
 | |
|         ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
 | |
|       Wait.LgkmCnt = 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Early-out if no wait is indicated.
 | |
|   if (!ScoreBrackets.simplifyWaitcnt(Wait) && !IsForceEmitWaitcnt) {
 | |
|     bool Modified = false;
 | |
|     if (OldWaitcntInstr) {
 | |
|       for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
 | |
|            &*II != &MI; II = NextI, ++NextI) {
 | |
|         if (II->isDebugInstr())
 | |
|           continue;
 | |
| 
 | |
|         if (TrackedWaitcntSet.count(&*II)) {
 | |
|           TrackedWaitcntSet.erase(&*II);
 | |
|           II->eraseFromParent();
 | |
|           Modified = true;
 | |
|         } else if (II->getOpcode() == AMDGPU::S_WAITCNT) {
 | |
|           int64_t Imm = II->getOperand(0).getImm();
 | |
|           ScoreBrackets.applyWaitcnt(AMDGPU::decodeWaitcnt(IV, Imm));
 | |
|         } else {
 | |
|           assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
 | |
|           assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
 | |
|           ScoreBrackets.applyWaitcnt(
 | |
|               AMDGPU::Waitcnt(0, 0, 0, II->getOperand(1).getImm()));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     return Modified;
 | |
|   }
 | |
| 
 | |
|   if (ForceEmitZeroWaitcnts)
 | |
|     Wait = AMDGPU::Waitcnt::allZero(IV);
 | |
| 
 | |
|   if (ForceEmitWaitcnt[VM_CNT])
 | |
|     Wait.VmCnt = 0;
 | |
|   if (ForceEmitWaitcnt[EXP_CNT])
 | |
|     Wait.ExpCnt = 0;
 | |
|   if (ForceEmitWaitcnt[LGKM_CNT])
 | |
|     Wait.LgkmCnt = 0;
 | |
|   if (ForceEmitWaitcnt[VS_CNT])
 | |
|     Wait.VsCnt = 0;
 | |
| 
 | |
|   ScoreBrackets.applyWaitcnt(Wait);
 | |
| 
 | |
|   AMDGPU::Waitcnt OldWait;
 | |
|   bool Modified = false;
 | |
| 
 | |
|   if (OldWaitcntInstr) {
 | |
|     for (auto II = OldWaitcntInstr->getIterator(), NextI = std::next(II);
 | |
|          &*II != &MI; II = NextI, NextI++) {
 | |
|       if (II->isDebugInstr())
 | |
|         continue;
 | |
| 
 | |
|       if (II->getOpcode() == AMDGPU::S_WAITCNT) {
 | |
|         unsigned IEnc = II->getOperand(0).getImm();
 | |
|         AMDGPU::Waitcnt IWait = AMDGPU::decodeWaitcnt(IV, IEnc);
 | |
|         OldWait = OldWait.combined(IWait);
 | |
|         if (!TrackedWaitcntSet.count(&*II))
 | |
|           Wait = Wait.combined(IWait);
 | |
|         unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait);
 | |
|         if (IEnc != NewEnc) {
 | |
|           II->getOperand(0).setImm(NewEnc);
 | |
|           Modified = true;
 | |
|         }
 | |
|         Wait.VmCnt = ~0u;
 | |
|         Wait.LgkmCnt = ~0u;
 | |
|         Wait.ExpCnt = ~0u;
 | |
|       } else {
 | |
|         assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
 | |
|         assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
 | |
| 
 | |
|         unsigned ICnt = II->getOperand(1).getImm();
 | |
|         OldWait.VsCnt = std::min(OldWait.VsCnt, ICnt);
 | |
|         if (!TrackedWaitcntSet.count(&*II))
 | |
|           Wait.VsCnt = std::min(Wait.VsCnt, ICnt);
 | |
|         if (Wait.VsCnt != ICnt) {
 | |
|           II->getOperand(1).setImm(Wait.VsCnt);
 | |
|           Modified = true;
 | |
|         }
 | |
|         Wait.VsCnt = ~0u;
 | |
|       }
 | |
| 
 | |
|       LLVM_DEBUG(dbgs() << "updateWaitcntInBlock\n"
 | |
|                         << "Old Instr: " << MI << '\n'
 | |
|                         << "New Instr: " << *II << '\n');
 | |
| 
 | |
|       if (!Wait.hasWait())
 | |
|         return Modified;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Wait.VmCnt != ~0u || Wait.LgkmCnt != ~0u || Wait.ExpCnt != ~0u) {
 | |
|     unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
 | |
|     auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
 | |
|                              MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
 | |
|                          .addImm(Enc);
 | |
|     TrackedWaitcntSet.insert(SWaitInst);
 | |
|     Modified = true;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n"
 | |
|                       << "Old Instr: " << MI << '\n'
 | |
|                       << "New Instr: " << *SWaitInst << '\n');
 | |
|   }
 | |
| 
 | |
|   if (Wait.VsCnt != ~0u) {
 | |
|     assert(ST->hasVscnt());
 | |
| 
 | |
|     auto SWaitInst =
 | |
|         BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
 | |
|                 TII->get(AMDGPU::S_WAITCNT_VSCNT))
 | |
|             .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
 | |
|             .addImm(Wait.VsCnt);
 | |
|     TrackedWaitcntSet.insert(SWaitInst);
 | |
|     Modified = true;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "insertWaitcntInBlock\n"
 | |
|                       << "Old Instr: " << MI << '\n'
 | |
|                       << "New Instr: " << *SWaitInst << '\n');
 | |
|   }
 | |
| 
 | |
|   return Modified;
 | |
| }
 | |
| 
 | |
| // This is a flat memory operation. Check to see if it has memory
 | |
| // tokens for both LDS and Memory, and if so mark it as a flat.
 | |
| bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
 | |
|   if (MI.memoperands_empty())
 | |
|     return true;
 | |
| 
 | |
|   for (const MachineMemOperand *Memop : MI.memoperands()) {
 | |
|     unsigned AS = Memop->getAddrSpace();
 | |
|     if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
 | |
|                                                WaitcntBrackets *ScoreBrackets) {
 | |
|   // Now look at the instruction opcode. If it is a memory access
 | |
|   // instruction, update the upper-bound of the appropriate counter's
 | |
|   // bracket and the destination operand scores.
 | |
|   // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
 | |
|   if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
 | |
|     if (TII->isAlwaysGDS(Inst.getOpcode()) ||
 | |
|         TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
 | |
|     } else {
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
 | |
|     }
 | |
|   } else if (TII->isFLAT(Inst)) {
 | |
|     assert(Inst.mayLoad() || Inst.mayStore());
 | |
| 
 | |
|     if (TII->usesVM_CNT(Inst)) {
 | |
|       if (!ST->hasVscnt())
 | |
|         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
 | |
|       else if (Inst.mayLoad() &&
 | |
|                AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1)
 | |
|         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
 | |
|       else
 | |
|         ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
 | |
|     }
 | |
| 
 | |
|     if (TII->usesLGKM_CNT(Inst)) {
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
 | |
| 
 | |
|       // This is a flat memory operation, so note it - it will require
 | |
|       // that both the VM and LGKM be flushed to zero if it is pending when
 | |
|       // a VM or LGKM dependency occurs.
 | |
|       if (mayAccessLDSThroughFlat(Inst))
 | |
|         ScoreBrackets->setPendingFlat();
 | |
|     }
 | |
|   } else if (SIInstrInfo::isVMEM(Inst) &&
 | |
|              // TODO: get a better carve out.
 | |
|              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
 | |
|              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
 | |
|              Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL &&
 | |
|              Inst.getOpcode() != AMDGPU::BUFFER_GL0_INV &&
 | |
|              Inst.getOpcode() != AMDGPU::BUFFER_GL1_INV) {
 | |
|     if (!ST->hasVscnt())
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
 | |
|     else if ((Inst.mayLoad() &&
 | |
|               AMDGPU::getAtomicRetOp(Inst.getOpcode()) == -1) ||
 | |
|              /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */
 | |
|              (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore()))
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
 | |
|     else if (Inst.mayStore())
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
 | |
| 
 | |
|     if (ST->vmemWriteNeedsExpWaitcnt() &&
 | |
|         (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
 | |
|     }
 | |
|   } else if (TII->isSMRD(Inst)) {
 | |
|     ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
 | |
|   } else {
 | |
|     switch (Inst.getOpcode()) {
 | |
|     case AMDGPU::S_SENDMSG:
 | |
|     case AMDGPU::S_SENDMSGHALT:
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
 | |
|       break;
 | |
|     case AMDGPU::EXP:
 | |
|     case AMDGPU::EXP_DONE: {
 | |
|       int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
 | |
|       if (Imm >= 32 && Imm <= 63)
 | |
|         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
 | |
|       else if (Imm >= 12 && Imm <= 15)
 | |
|         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
 | |
|       else
 | |
|         ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
 | |
|       break;
 | |
|     }
 | |
|     case AMDGPU::S_MEMTIME:
 | |
|     case AMDGPU::S_MEMREALTIME:
 | |
|       ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
 | |
|       break;
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool WaitcntBrackets::mergeScore(const MergeInfo &M, uint32_t &Score,
 | |
|                                  uint32_t OtherScore) {
 | |
|   uint32_t MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
 | |
|   uint32_t OtherShifted =
 | |
|       OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
 | |
|   Score = std::max(MyShifted, OtherShifted);
 | |
|   return OtherShifted > MyShifted;
 | |
| }
 | |
| 
 | |
| /// Merge the pending events and associater score brackets of \p Other into
 | |
| /// this brackets status.
 | |
| ///
 | |
| /// Returns whether the merge resulted in a change that requires tighter waits
 | |
| /// (i.e. the merged brackets strictly dominate the original brackets).
 | |
| bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
 | |
|   bool StrictDom = false;
 | |
| 
 | |
|   for (auto T : inst_counter_types()) {
 | |
|     // Merge event flags for this counter
 | |
|     const bool OldOutOfOrder = counterOutOfOrder(T);
 | |
|     const uint32_t OldEvents = PendingEvents & WaitEventMaskForInst[T];
 | |
|     const uint32_t OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
 | |
|     if (OtherEvents & ~OldEvents)
 | |
|       StrictDom = true;
 | |
|     if (Other.MixedPendingEvents[T] ||
 | |
|         (OldEvents && OtherEvents && OldEvents != OtherEvents))
 | |
|       MixedPendingEvents[T] = true;
 | |
|     PendingEvents |= OtherEvents;
 | |
| 
 | |
|     // Merge scores for this counter
 | |
|     const uint32_t MyPending = ScoreUBs[T] - ScoreLBs[T];
 | |
|     const uint32_t OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
 | |
|     MergeInfo M;
 | |
|     M.OldLB = ScoreLBs[T];
 | |
|     M.OtherLB = Other.ScoreLBs[T];
 | |
|     M.MyShift = OtherPending > MyPending ? OtherPending - MyPending : 0;
 | |
|     M.OtherShift = ScoreUBs[T] - Other.ScoreUBs[T] + M.MyShift;
 | |
| 
 | |
|     const uint32_t NewUB = ScoreUBs[T] + M.MyShift;
 | |
|     if (NewUB < ScoreUBs[T])
 | |
|       report_fatal_error("waitcnt score overflow");
 | |
|     ScoreUBs[T] = NewUB;
 | |
|     ScoreLBs[T] = std::min(M.OldLB + M.MyShift, M.OtherLB + M.OtherShift);
 | |
| 
 | |
|     StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);
 | |
| 
 | |
|     bool RegStrictDom = false;
 | |
|     for (int J = 0, E = std::max(getMaxVGPR(), Other.getMaxVGPR()) + 1; J != E;
 | |
|          J++) {
 | |
|       RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
 | |
|     }
 | |
| 
 | |
|     if (T == LGKM_CNT) {
 | |
|       for (int J = 0, E = std::max(getMaxSGPR(), Other.getMaxSGPR()) + 1;
 | |
|            J != E; J++) {
 | |
|         RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if (RegStrictDom && !OldOutOfOrder)
 | |
|       StrictDom = true;
 | |
|   }
 | |
| 
 | |
|   VgprUB = std::max(getMaxVGPR(), Other.getMaxVGPR());
 | |
|   SgprUB = std::max(getMaxSGPR(), Other.getMaxSGPR());
 | |
| 
 | |
|   return StrictDom;
 | |
| }
 | |
| 
 | |
| // Generate s_waitcnt instructions where needed.
 | |
| bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
 | |
|                                             MachineBasicBlock &Block,
 | |
|                                             WaitcntBrackets &ScoreBrackets) {
 | |
|   bool Modified = false;
 | |
| 
 | |
|   LLVM_DEBUG({
 | |
|     dbgs() << "*** Block" << Block.getNumber() << " ***";
 | |
|     ScoreBrackets.dump();
 | |
|   });
 | |
| 
 | |
|   // Walk over the instructions.
 | |
|   MachineInstr *OldWaitcntInstr = nullptr;
 | |
| 
 | |
|   for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end();
 | |
|        Iter != E;) {
 | |
|     MachineInstr &Inst = *Iter;
 | |
| 
 | |
|     // Track pre-existing waitcnts from earlier iterations.
 | |
|     if (Inst.getOpcode() == AMDGPU::S_WAITCNT ||
 | |
|         (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
 | |
|          Inst.getOperand(0).isReg() &&
 | |
|          Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) {
 | |
|       if (!OldWaitcntInstr)
 | |
|         OldWaitcntInstr = &Inst;
 | |
|       ++Iter;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     bool VCCZBugWorkAround = false;
 | |
|     if (readsVCCZ(Inst) &&
 | |
|         (!VCCZBugHandledSet.count(&Inst))) {
 | |
|       if (ScoreBrackets.getScoreLB(LGKM_CNT) <
 | |
|               ScoreBrackets.getScoreUB(LGKM_CNT) &&
 | |
|           ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
 | |
|         if (ST->getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS)
 | |
|           VCCZBugWorkAround = true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Generate an s_waitcnt instruction to be placed before
 | |
|     // cur_Inst, if needed.
 | |
|     Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr);
 | |
|     OldWaitcntInstr = nullptr;
 | |
| 
 | |
|     updateEventWaitcntAfter(Inst, &ScoreBrackets);
 | |
| 
 | |
| #if 0 // TODO: implement resource type check controlled by options with ub = LB.
 | |
|     // If this instruction generates a S_SETVSKIP because it is an
 | |
|     // indexed resource, and we are on Tahiti, then it will also force
 | |
|     // an S_WAITCNT vmcnt(0)
 | |
|     if (RequireCheckResourceType(Inst, context)) {
 | |
|       // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
 | |
|       ScoreBrackets->setScoreLB(VM_CNT,
 | |
|       ScoreBrackets->getScoreUB(VM_CNT));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     LLVM_DEBUG({
 | |
|       Inst.print(dbgs());
 | |
|       ScoreBrackets.dump();
 | |
|     });
 | |
| 
 | |
|     // Check to see if this is a GWS instruction. If so, and if this is CI or
 | |
|     // VI, then the generated code sequence will include an S_WAITCNT 0.
 | |
|     // TODO: Are these the only GWS instructions?
 | |
|     if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT ||
 | |
|         Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V ||
 | |
|         Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR ||
 | |
|         Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P ||
 | |
|         Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) {
 | |
|       // TODO: && context->target_info->GwsRequiresMemViolTest() ) {
 | |
|       ScoreBrackets.applyWaitcnt(AMDGPU::Waitcnt::allZeroExceptVsCnt());
 | |
|     }
 | |
| 
 | |
|     // TODO: Remove this work-around after fixing the scheduler and enable the
 | |
|     // assert above.
 | |
|     if (VCCZBugWorkAround) {
 | |
|       // Restore the vccz bit.  Any time a value is written to vcc, the vcc
 | |
|       // bit is updated, so we can restore the bit by reading the value of
 | |
|       // vcc and then writing it back to the register.
 | |
|       BuildMI(Block, Inst, Inst.getDebugLoc(),
 | |
|               TII->get(AMDGPU::S_MOV_B64),
 | |
|               AMDGPU::VCC)
 | |
|           .addReg(AMDGPU::VCC);
 | |
|       VCCZBugHandledSet.insert(&Inst);
 | |
|       Modified = true;
 | |
|     }
 | |
| 
 | |
|     ++Iter;
 | |
|   }
 | |
| 
 | |
|   return Modified;
 | |
| }
 | |
| 
 | |
| bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
 | |
|   ST = &MF.getSubtarget<GCNSubtarget>();
 | |
|   TII = ST->getInstrInfo();
 | |
|   TRI = &TII->getRegisterInfo();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   IV = AMDGPU::getIsaVersion(ST->getCPU());
 | |
|   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
 | |
| 
 | |
|   ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
 | |
|   for (auto T : inst_counter_types())
 | |
|     ForceEmitWaitcnt[T] = false;
 | |
| 
 | |
|   HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
 | |
|   HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
 | |
|   HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
 | |
|   HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0;
 | |
| 
 | |
|   HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs();
 | |
|   HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs();
 | |
|   assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
 | |
|   assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
 | |
| 
 | |
|   RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
 | |
|   RegisterEncoding.VGPRL =
 | |
|       RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1;
 | |
|   RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
 | |
|   RegisterEncoding.SGPRL =
 | |
|       RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1;
 | |
| 
 | |
|   TrackedWaitcntSet.clear();
 | |
|   VCCZBugHandledSet.clear();
 | |
|   RpotIdxMap.clear();
 | |
|   BlockInfos.clear();
 | |
| 
 | |
|   // Keep iterating over the blocks in reverse post order, inserting and
 | |
|   // updating s_waitcnt where needed, until a fix point is reached.
 | |
|   for (MachineBasicBlock *MBB :
 | |
|        ReversePostOrderTraversal<MachineFunction *>(&MF)) {
 | |
|     RpotIdxMap[MBB] = BlockInfos.size();
 | |
|     BlockInfos.emplace_back(MBB);
 | |
|   }
 | |
| 
 | |
|   std::unique_ptr<WaitcntBrackets> Brackets;
 | |
|   bool Modified = false;
 | |
|   bool Repeat;
 | |
|   do {
 | |
|     Repeat = false;
 | |
| 
 | |
|     for (BlockInfo &BI : BlockInfos) {
 | |
|       if (!BI.Dirty)
 | |
|         continue;
 | |
| 
 | |
|       unsigned Idx = std::distance(&*BlockInfos.begin(), &BI);
 | |
| 
 | |
|       if (BI.Incoming) {
 | |
|         if (!Brackets)
 | |
|           Brackets = llvm::make_unique<WaitcntBrackets>(*BI.Incoming);
 | |
|         else
 | |
|           *Brackets = *BI.Incoming;
 | |
|       } else {
 | |
|         if (!Brackets)
 | |
|           Brackets = llvm::make_unique<WaitcntBrackets>(ST);
 | |
|         else
 | |
|           Brackets->clear();
 | |
|       }
 | |
| 
 | |
|       Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets);
 | |
|       BI.Dirty = false;
 | |
| 
 | |
|       if (Brackets->hasPending()) {
 | |
|         BlockInfo *MoveBracketsToSucc = nullptr;
 | |
|         for (MachineBasicBlock *Succ : BI.MBB->successors()) {
 | |
|           unsigned SuccIdx = RpotIdxMap[Succ];
 | |
|           BlockInfo &SuccBI = BlockInfos[SuccIdx];
 | |
|           if (!SuccBI.Incoming) {
 | |
|             SuccBI.Dirty = true;
 | |
|             if (SuccIdx <= Idx)
 | |
|               Repeat = true;
 | |
|             if (!MoveBracketsToSucc) {
 | |
|               MoveBracketsToSucc = &SuccBI;
 | |
|             } else {
 | |
|               SuccBI.Incoming = llvm::make_unique<WaitcntBrackets>(*Brackets);
 | |
|             }
 | |
|           } else if (SuccBI.Incoming->merge(*Brackets)) {
 | |
|             SuccBI.Dirty = true;
 | |
|             if (SuccIdx <= Idx)
 | |
|               Repeat = true;
 | |
|           }
 | |
|         }
 | |
|         if (MoveBracketsToSucc)
 | |
|           MoveBracketsToSucc->Incoming = std::move(Brackets);
 | |
|       }
 | |
|     }
 | |
|   } while (Repeat);
 | |
| 
 | |
|   SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
 | |
| 
 | |
|   bool HaveScalarStores = false;
 | |
| 
 | |
|   for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
 | |
|        ++BI) {
 | |
|     MachineBasicBlock &MBB = *BI;
 | |
| 
 | |
|     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
 | |
|          ++I) {
 | |
|       if (!HaveScalarStores && TII->isScalarStore(*I))
 | |
|         HaveScalarStores = true;
 | |
| 
 | |
|       if (I->getOpcode() == AMDGPU::S_ENDPGM ||
 | |
|           I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
 | |
|         EndPgmBlocks.push_back(&MBB);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (HaveScalarStores) {
 | |
|     // If scalar writes are used, the cache must be flushed or else the next
 | |
|     // wave to reuse the same scratch memory can be clobbered.
 | |
|     //
 | |
|     // Insert s_dcache_wb at wave termination points if there were any scalar
 | |
|     // stores, and only if the cache hasn't already been flushed. This could be
 | |
|     // improved by looking across blocks for flushes in postdominating blocks
 | |
|     // from the stores but an explicitly requested flush is probably very rare.
 | |
|     for (MachineBasicBlock *MBB : EndPgmBlocks) {
 | |
|       bool SeenDCacheWB = false;
 | |
| 
 | |
|       for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
 | |
|            ++I) {
 | |
|         if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
 | |
|           SeenDCacheWB = true;
 | |
|         else if (TII->isScalarStore(*I))
 | |
|           SeenDCacheWB = false;
 | |
| 
 | |
|         // FIXME: It would be better to insert this before a waitcnt if any.
 | |
|         if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
 | |
|              I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
 | |
|             !SeenDCacheWB) {
 | |
|           Modified = true;
 | |
|           BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (!MFI->isEntryFunction()) {
 | |
|     // Wait for any outstanding memory operations that the input registers may
 | |
|     // depend on. We can't track them and it's better to the wait after the
 | |
|     // costly call sequence.
 | |
| 
 | |
|     // TODO: Could insert earlier and schedule more liberally with operations
 | |
|     // that only use caller preserved registers.
 | |
|     MachineBasicBlock &EntryBB = MF.front();
 | |
|     if (ST->hasVscnt())
 | |
|       BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(),
 | |
|               TII->get(AMDGPU::S_WAITCNT_VSCNT))
 | |
|       .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
 | |
|       .addImm(0);
 | |
|     BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
 | |
|       .addImm(0);
 | |
| 
 | |
|     Modified = true;
 | |
|   }
 | |
| 
 | |
|   return Modified;
 | |
| }
 |