2052 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2052 lines
		
	
	
		
			70 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file
 | 
						|
/// SI Machine Scheduler interface
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "SIMachineScheduler.h"
 | 
						|
#include "AMDGPU.h"
 | 
						|
#include "SIInstrInfo.h"
 | 
						|
#include "SIRegisterInfo.h"
 | 
						|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/CodeGen/LiveInterval.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervals.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineScheduler.h"
 | 
						|
#include "llvm/CodeGen/RegisterPressure.h"
 | 
						|
#include "llvm/CodeGen/SlotIndexes.h"
 | 
						|
#include "llvm/CodeGen/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "machine-scheduler"
 | 
						|
 | 
						|
// This scheduler implements a different scheduling algorithm than
 | 
						|
// GenericScheduler.
 | 
						|
//
 | 
						|
// There are several specific architecture behaviours that can't be modelled
 | 
						|
// for GenericScheduler:
 | 
						|
// . When accessing the result of an SGPR load instruction, you have to wait
 | 
						|
// for all the SGPR load instructions before your current instruction to
 | 
						|
// have finished.
 | 
						|
// . When accessing the result of an VGPR load instruction, you have to wait
 | 
						|
// for all the VGPR load instructions previous to the VGPR load instruction
 | 
						|
// you are interested in to finish.
 | 
						|
// . The less the register pressure, the best load latencies are hidden
 | 
						|
//
 | 
						|
// Moreover some specifities (like the fact a lot of instructions in the shader
 | 
						|
// have few dependencies) makes the generic scheduler have some unpredictable
 | 
						|
// behaviours. For example when register pressure becomes high, it can either
 | 
						|
// manage to prevent register pressure from going too high, or it can
 | 
						|
// increase register pressure even more than if it hadn't taken register
 | 
						|
// pressure into account.
 | 
						|
//
 | 
						|
// Also some other bad behaviours are generated, like loading at the beginning
 | 
						|
// of the shader a constant in VGPR you won't need until the end of the shader.
 | 
						|
//
 | 
						|
// The scheduling problem for SI can distinguish three main parts:
 | 
						|
// . Hiding high latencies (texture sampling, etc)
 | 
						|
// . Hiding low latencies (SGPR constant loading, etc)
 | 
						|
// . Keeping register usage low for better latency hiding and general
 | 
						|
//   performance
 | 
						|
//
 | 
						|
// Some other things can also affect performance, but are hard to predict
 | 
						|
// (cache usage, the fact the HW can issue several instructions from different
 | 
						|
// wavefronts if different types, etc)
 | 
						|
//
 | 
						|
// This scheduler tries to solve the scheduling problem by dividing it into
 | 
						|
// simpler sub-problems. It divides the instructions into blocks, schedules
 | 
						|
// locally inside the blocks where it takes care of low latencies, and then
 | 
						|
// chooses the order of the blocks by taking care of high latencies.
 | 
						|
// Dividing the instructions into blocks helps control keeping register
 | 
						|
// usage low.
 | 
						|
//
 | 
						|
// First the instructions are put into blocks.
 | 
						|
//   We want the blocks help control register usage and hide high latencies
 | 
						|
//   later. To help control register usage, we typically want all local
 | 
						|
//   computations, when for example you create a result that can be comsummed
 | 
						|
//   right away, to be contained in a block. Block inputs and outputs would
 | 
						|
//   typically be important results that are needed in several locations of
 | 
						|
//   the shader. Since we do want blocks to help hide high latencies, we want
 | 
						|
//   the instructions inside the block to have a minimal set of dependencies
 | 
						|
//   on high latencies. It will make it easy to pick blocks to hide specific
 | 
						|
//   high latencies.
 | 
						|
//   The block creation algorithm is divided into several steps, and several
 | 
						|
//   variants can be tried during the scheduling process.
 | 
						|
//
 | 
						|
// Second the order of the instructions inside the blocks is chosen.
 | 
						|
//   At that step we do take into account only register usage and hiding
 | 
						|
//   low latency instructions
 | 
						|
//
 | 
						|
// Third the block order is chosen, there we try to hide high latencies
 | 
						|
// and keep register usage low.
 | 
						|
//
 | 
						|
// After the third step, a pass is done to improve the hiding of low
 | 
						|
// latencies.
 | 
						|
//
 | 
						|
// Actually when talking about 'low latency' or 'high latency' it includes
 | 
						|
// both the latency to get the cache (or global mem) data go to the register,
 | 
						|
// and the bandwidth limitations.
 | 
						|
// Increasing the number of active wavefronts helps hide the former, but it
 | 
						|
// doesn't solve the latter, thus why even if wavefront count is high, we have
 | 
						|
// to try have as many instructions hiding high latencies as possible.
 | 
						|
// The OpenCL doc says for example latency of 400 cycles for a global mem access,
 | 
						|
// which is hidden by 10 instructions if the wavefront count is 10.
 | 
						|
 | 
						|
// Some figures taken from AMD docs:
 | 
						|
// Both texture and constant L1 caches are 4-way associative with 64 bytes
 | 
						|
// lines.
 | 
						|
// Constant cache is shared with 4 CUs.
 | 
						|
// For texture sampling, the address generation unit receives 4 texture
 | 
						|
// addresses per cycle, thus we could expect texture sampling latency to be
 | 
						|
// equivalent to 4 instructions in the very best case (a VGPR is 64 work items,
 | 
						|
// instructions in a wavefront group are executed every 4 cycles),
 | 
						|
// or 16 instructions if the other wavefronts associated to the 3 other VALUs
 | 
						|
// of the CU do texture sampling too. (Don't take these figures too seriously,
 | 
						|
// as I'm not 100% sure of the computation)
 | 
						|
// Data exports should get similar latency.
 | 
						|
// For constant loading, the cache is shader with 4 CUs.
 | 
						|
// The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit"
 | 
						|
// I guess if the other CU don't read the cache, it can go up to 64B/cycle.
 | 
						|
// It means a simple s_buffer_load should take one instruction to hide, as
 | 
						|
// well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same
 | 
						|
// cache line.
 | 
						|
//
 | 
						|
// As of today the driver doesn't preload the constants in cache, thus the
 | 
						|
// first loads get extra latency. The doc says global memory access can be
 | 
						|
// 300-600 cycles. We do not specially take that into account when scheduling
 | 
						|
// As we expect the driver to be able to preload the constants soon.
 | 
						|
 | 
						|
// common code //
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
 | 
						|
static const char *getReasonStr(SIScheduleCandReason Reason) {
 | 
						|
  switch (Reason) {
 | 
						|
  case NoCand:         return "NOCAND";
 | 
						|
  case RegUsage:       return "REGUSAGE";
 | 
						|
  case Latency:        return "LATENCY";
 | 
						|
  case Successor:      return "SUCCESSOR";
 | 
						|
  case Depth:          return "DEPTH";
 | 
						|
  case NodeOrder:      return "ORDER";
 | 
						|
  }
 | 
						|
  llvm_unreachable("Unknown reason!");
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
namespace SISched {
 | 
						|
static bool tryLess(int TryVal, int CandVal,
 | 
						|
                    SISchedulerCandidate &TryCand,
 | 
						|
                    SISchedulerCandidate &Cand,
 | 
						|
                    SIScheduleCandReason Reason) {
 | 
						|
  if (TryVal < CandVal) {
 | 
						|
    TryCand.Reason = Reason;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (TryVal > CandVal) {
 | 
						|
    if (Cand.Reason > Reason)
 | 
						|
      Cand.Reason = Reason;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  Cand.setRepeat(Reason);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool tryGreater(int TryVal, int CandVal,
 | 
						|
                       SISchedulerCandidate &TryCand,
 | 
						|
                       SISchedulerCandidate &Cand,
 | 
						|
                       SIScheduleCandReason Reason) {
 | 
						|
  if (TryVal > CandVal) {
 | 
						|
    TryCand.Reason = Reason;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (TryVal < CandVal) {
 | 
						|
    if (Cand.Reason > Reason)
 | 
						|
      Cand.Reason = Reason;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  Cand.setRepeat(Reason);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
} // end namespace SISched
 | 
						|
} // end namespace llvm
 | 
						|
 | 
						|
// SIScheduleBlock //
 | 
						|
 | 
						|
void SIScheduleBlock::addUnit(SUnit *SU) {
 | 
						|
  NodeNum2Index[SU->NodeNum] = SUnits.size();
 | 
						|
  SUnits.push_back(SU);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) {
 | 
						|
 | 
						|
  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
 | 
						|
  dbgs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand,
 | 
						|
                                          SISchedCandidate &TryCand) {
 | 
						|
  // Initialize the candidate if needed.
 | 
						|
  if (!Cand.isValid()) {
 | 
						|
    TryCand.Reason = NodeOrder;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Cand.SGPRUsage > 60 &&
 | 
						|
      SISched::tryLess(TryCand.SGPRUsage, Cand.SGPRUsage,
 | 
						|
                       TryCand, Cand, RegUsage))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Schedule low latency instructions as top as possible.
 | 
						|
  // Order of priority is:
 | 
						|
  // . Low latency instructions which do not depend on other low latency
 | 
						|
  //   instructions we haven't waited for
 | 
						|
  // . Other instructions which do not depend on low latency instructions
 | 
						|
  //   we haven't waited for
 | 
						|
  // . Low latencies
 | 
						|
  // . All other instructions
 | 
						|
  // Goal is to get: low latency instructions - independent instructions
 | 
						|
  //     - (eventually some more low latency instructions)
 | 
						|
  //     - instructions that depend on the first low latency instructions.
 | 
						|
  // If in the block there is a lot of constant loads, the SGPR usage
 | 
						|
  // could go quite high, thus above the arbitrary limit of 60 will encourage
 | 
						|
  // use the already loaded constants (in order to release some SGPRs) before
 | 
						|
  // loading more.
 | 
						|
  if (SISched::tryLess(TryCand.HasLowLatencyNonWaitedParent,
 | 
						|
                       Cand.HasLowLatencyNonWaitedParent,
 | 
						|
                       TryCand, Cand, SIScheduleCandReason::Depth))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (SISched::tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency,
 | 
						|
                          TryCand, Cand, SIScheduleCandReason::Depth))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (TryCand.IsLowLatency &&
 | 
						|
      SISched::tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset,
 | 
						|
                       TryCand, Cand, SIScheduleCandReason::Depth))
 | 
						|
    return;
 | 
						|
 | 
						|
  if (SISched::tryLess(TryCand.VGPRUsage, Cand.VGPRUsage,
 | 
						|
                       TryCand, Cand, RegUsage))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Fall through to original instruction order.
 | 
						|
  if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
 | 
						|
    TryCand.Reason = NodeOrder;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SUnit* SIScheduleBlock::pickNode() {
 | 
						|
  SISchedCandidate TopCand;
 | 
						|
 | 
						|
  for (SUnit* SU : TopReadySUs) {
 | 
						|
    SISchedCandidate TryCand;
 | 
						|
    std::vector<unsigned> pressure;
 | 
						|
    std::vector<unsigned> MaxPressure;
 | 
						|
    // Predict register usage after this instruction.
 | 
						|
    TryCand.SU = SU;
 | 
						|
    TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure);
 | 
						|
    TryCand.SGPRUsage = pressure[DAG->getSGPRSetID()];
 | 
						|
    TryCand.VGPRUsage = pressure[DAG->getVGPRSetID()];
 | 
						|
    TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum];
 | 
						|
    TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum];
 | 
						|
    TryCand.HasLowLatencyNonWaitedParent =
 | 
						|
      HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]];
 | 
						|
    tryCandidateTopDown(TopCand, TryCand);
 | 
						|
    if (TryCand.Reason != NoCand)
 | 
						|
      TopCand.setBest(TryCand);
 | 
						|
  }
 | 
						|
 | 
						|
  return TopCand.SU;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Schedule something valid.
 | 
						|
void SIScheduleBlock::fastSchedule() {
 | 
						|
  TopReadySUs.clear();
 | 
						|
  if (Scheduled)
 | 
						|
    undoSchedule();
 | 
						|
 | 
						|
  for (SUnit* SU : SUnits) {
 | 
						|
    if (!SU->NumPredsLeft)
 | 
						|
      TopReadySUs.push_back(SU);
 | 
						|
  }
 | 
						|
 | 
						|
  while (!TopReadySUs.empty()) {
 | 
						|
    SUnit *SU = TopReadySUs[0];
 | 
						|
    ScheduledSUnits.push_back(SU);
 | 
						|
    nodeScheduled(SU);
 | 
						|
  }
 | 
						|
 | 
						|
  Scheduled = true;
 | 
						|
}
 | 
						|
 | 
						|
// Returns if the register was set between first and last.
 | 
						|
static bool isDefBetween(unsigned Reg,
 | 
						|
                           SlotIndex First, SlotIndex Last,
 | 
						|
                           const MachineRegisterInfo *MRI,
 | 
						|
                           const LiveIntervals *LIS) {
 | 
						|
  for (MachineRegisterInfo::def_instr_iterator
 | 
						|
       UI = MRI->def_instr_begin(Reg),
 | 
						|
       UE = MRI->def_instr_end(); UI != UE; ++UI) {
 | 
						|
    const MachineInstr* MI = &*UI;
 | 
						|
    if (MI->isDebugValue())
 | 
						|
      continue;
 | 
						|
    SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot();
 | 
						|
    if (InstSlot >= First && InstSlot <= Last)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock,
 | 
						|
                                      MachineBasicBlock::iterator EndBlock) {
 | 
						|
  IntervalPressure Pressure, BotPressure;
 | 
						|
  RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure);
 | 
						|
  LiveIntervals *LIS = DAG->getLIS();
 | 
						|
  MachineRegisterInfo *MRI = DAG->getMRI();
 | 
						|
  DAG->initRPTracker(TopRPTracker);
 | 
						|
  DAG->initRPTracker(BotRPTracker);
 | 
						|
  DAG->initRPTracker(RPTracker);
 | 
						|
 | 
						|
  // Goes though all SU. RPTracker captures what had to be alive for the SUs
 | 
						|
  // to execute, and what is still alive at the end.
 | 
						|
  for (SUnit* SU : ScheduledSUnits) {
 | 
						|
    RPTracker.setPos(SU->getInstr());
 | 
						|
    RPTracker.advance();
 | 
						|
  }
 | 
						|
 | 
						|
  // Close the RPTracker to finalize live ins/outs.
 | 
						|
  RPTracker.closeRegion();
 | 
						|
 | 
						|
  // Initialize the live ins and live outs.
 | 
						|
  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
 | 
						|
  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
 | 
						|
 | 
						|
  // Do not Track Physical Registers, because it messes up.
 | 
						|
  for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) {
 | 
						|
    if (TargetRegisterInfo::isVirtualRegister(RegMaskPair.RegUnit))
 | 
						|
      LiveInRegs.insert(RegMaskPair.RegUnit);
 | 
						|
  }
 | 
						|
  LiveOutRegs.clear();
 | 
						|
  // There is several possibilities to distinguish:
 | 
						|
  // 1) Reg is not input to any instruction in the block, but is output of one
 | 
						|
  // 2) 1) + read in the block and not needed after it
 | 
						|
  // 3) 1) + read in the block but needed in another block
 | 
						|
  // 4) Reg is input of an instruction but another block will read it too
 | 
						|
  // 5) Reg is input of an instruction and then rewritten in the block.
 | 
						|
  //    result is not read in the block (implies used in another block)
 | 
						|
  // 6) Reg is input of an instruction and then rewritten in the block.
 | 
						|
  //    result is read in the block and not needed in another block
 | 
						|
  // 7) Reg is input of an instruction and then rewritten in the block.
 | 
						|
  //    result is read in the block but also needed in another block
 | 
						|
  // LiveInRegs will contains all the regs in situation 4, 5, 6, 7
 | 
						|
  // We want LiveOutRegs to contain only Regs whose content will be read after
 | 
						|
  // in another block, and whose content was written in the current block,
 | 
						|
  // that is we want it to get 1, 3, 5, 7
 | 
						|
  // Since we made the MIs of a block to be packed all together before
 | 
						|
  // scheduling, then the LiveIntervals were correct, and the RPTracker was
 | 
						|
  // able to correctly handle 5 vs 6, 2 vs 3.
 | 
						|
  // (Note: This is not sufficient for RPTracker to not do mistakes for case 4)
 | 
						|
  // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7
 | 
						|
  // Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7
 | 
						|
  // The use of findDefBetween removes the case 4.
 | 
						|
  for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) {
 | 
						|
    unsigned Reg = RegMaskPair.RegUnit;
 | 
						|
    if (TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
        isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(),
 | 
						|
                     LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI,
 | 
						|
                     LIS)) {
 | 
						|
      LiveOutRegs.insert(Reg);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Pressure = sum_alive_registers register size
 | 
						|
  // Internally llvm will represent some registers as big 128 bits registers
 | 
						|
  // for example, but they actually correspond to 4 actual 32 bits registers.
 | 
						|
  // Thus Pressure is not equal to num_alive_registers * constant.
 | 
						|
  LiveInPressure = TopPressure.MaxSetPressure;
 | 
						|
  LiveOutPressure = BotPressure.MaxSetPressure;
 | 
						|
 | 
						|
  // Prepares TopRPTracker for top down scheduling.
 | 
						|
  TopRPTracker.closeTop();
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock,
 | 
						|
                               MachineBasicBlock::iterator EndBlock) {
 | 
						|
  if (!Scheduled)
 | 
						|
    fastSchedule();
 | 
						|
 | 
						|
  // PreScheduling phase to set LiveIn and LiveOut.
 | 
						|
  initRegPressure(BeginBlock, EndBlock);
 | 
						|
  undoSchedule();
 | 
						|
 | 
						|
  // Schedule for real now.
 | 
						|
 | 
						|
  TopReadySUs.clear();
 | 
						|
 | 
						|
  for (SUnit* SU : SUnits) {
 | 
						|
    if (!SU->NumPredsLeft)
 | 
						|
      TopReadySUs.push_back(SU);
 | 
						|
  }
 | 
						|
 | 
						|
  while (!TopReadySUs.empty()) {
 | 
						|
    SUnit *SU = pickNode();
 | 
						|
    ScheduledSUnits.push_back(SU);
 | 
						|
    TopRPTracker.setPos(SU->getInstr());
 | 
						|
    TopRPTracker.advance();
 | 
						|
    nodeScheduled(SU);
 | 
						|
  }
 | 
						|
 | 
						|
  // TODO: compute InternalAdditionnalPressure.
 | 
						|
  InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size());
 | 
						|
 | 
						|
  // Check everything is right.
 | 
						|
#ifndef NDEBUG
 | 
						|
  assert(SUnits.size() == ScheduledSUnits.size() &&
 | 
						|
            TopReadySUs.empty());
 | 
						|
  for (SUnit* SU : SUnits) {
 | 
						|
    assert(SU->isScheduled &&
 | 
						|
              SU->NumPredsLeft == 0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  Scheduled = true;
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlock::undoSchedule() {
 | 
						|
  for (SUnit* SU : SUnits) {
 | 
						|
    SU->isScheduled = false;
 | 
						|
    for (SDep& Succ : SU->Succs) {
 | 
						|
      if (BC->isSUInBlock(Succ.getSUnit(), ID))
 | 
						|
        undoReleaseSucc(SU, &Succ);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
 | 
						|
  ScheduledSUnits.clear();
 | 
						|
  Scheduled = false;
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) {
 | 
						|
  SUnit *SuccSU = SuccEdge->getSUnit();
 | 
						|
 | 
						|
  if (SuccEdge->isWeak()) {
 | 
						|
    ++SuccSU->WeakPredsLeft;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  ++SuccSU->NumPredsLeft;
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) {
 | 
						|
  SUnit *SuccSU = SuccEdge->getSUnit();
 | 
						|
 | 
						|
  if (SuccEdge->isWeak()) {
 | 
						|
    --SuccSU->WeakPredsLeft;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (SuccSU->NumPredsLeft == 0) {
 | 
						|
    dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
    DAG->dumpNode(*SuccSU);
 | 
						|
    dbgs() << " has been released too many times!\n";
 | 
						|
    llvm_unreachable(nullptr);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  --SuccSU->NumPredsLeft;
 | 
						|
}
 | 
						|
 | 
						|
/// Release Successors of the SU that are in the block or not.
 | 
						|
void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) {
 | 
						|
  for (SDep& Succ : SU->Succs) {
 | 
						|
    SUnit *SuccSU = Succ.getSUnit();
 | 
						|
 | 
						|
    if (SuccSU->NodeNum >= DAG->SUnits.size())
 | 
						|
        continue;
 | 
						|
 | 
						|
    if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock)
 | 
						|
      continue;
 | 
						|
 | 
						|
    releaseSucc(SU, &Succ);
 | 
						|
    if (SuccSU->NumPredsLeft == 0 && InOrOutBlock)
 | 
						|
      TopReadySUs.push_back(SuccSU);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlock::nodeScheduled(SUnit *SU) {
 | 
						|
  // Is in TopReadySUs
 | 
						|
  assert (!SU->NumPredsLeft);
 | 
						|
  std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU);
 | 
						|
  if (I == TopReadySUs.end()) {
 | 
						|
    dbgs() << "Data Structure Bug in SI Scheduler\n";
 | 
						|
    llvm_unreachable(nullptr);
 | 
						|
  }
 | 
						|
  TopReadySUs.erase(I);
 | 
						|
 | 
						|
  releaseSuccessors(SU, true);
 | 
						|
  // Scheduling this node will trigger a wait,
 | 
						|
  // thus propagate to other instructions that they do not need to wait either.
 | 
						|
  if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]])
 | 
						|
    HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
 | 
						|
 | 
						|
  if (DAG->IsLowLatencySU[SU->NodeNum]) {
 | 
						|
     for (SDep& Succ : SU->Succs) {
 | 
						|
      std::map<unsigned, unsigned>::iterator I =
 | 
						|
        NodeNum2Index.find(Succ.getSUnit()->NodeNum);
 | 
						|
      if (I != NodeNum2Index.end())
 | 
						|
        HasLowLatencyNonWaitedParent[I->second] = 1;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  SU->isScheduled = true;
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlock::finalizeUnits() {
 | 
						|
  // We remove links from outside blocks to enable scheduling inside the block.
 | 
						|
  for (SUnit* SU : SUnits) {
 | 
						|
    releaseSuccessors(SU, false);
 | 
						|
    if (DAG->IsHighLatencySU[SU->NodeNum])
 | 
						|
      HighLatencyBlock = true;
 | 
						|
  }
 | 
						|
  HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0);
 | 
						|
}
 | 
						|
 | 
						|
// we maintain ascending order of IDs
 | 
						|
void SIScheduleBlock::addPred(SIScheduleBlock *Pred) {
 | 
						|
  unsigned PredID = Pred->getID();
 | 
						|
 | 
						|
  // Check if not already predecessor.
 | 
						|
  for (SIScheduleBlock* P : Preds) {
 | 
						|
    if (PredID == P->getID())
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  Preds.push_back(Pred);
 | 
						|
 | 
						|
  assert(none_of(Succs,
 | 
						|
                 [=](std::pair<SIScheduleBlock*,
 | 
						|
                     SIScheduleBlockLinkKind> S) {
 | 
						|
                   return PredID == S.first->getID();
 | 
						|
                    }) &&
 | 
						|
         "Loop in the Block Graph!");
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlock::addSucc(SIScheduleBlock *Succ,
 | 
						|
                              SIScheduleBlockLinkKind Kind) {
 | 
						|
  unsigned SuccID = Succ->getID();
 | 
						|
 | 
						|
  // Check if not already predecessor.
 | 
						|
  for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) {
 | 
						|
    if (SuccID == S.first->getID()) {
 | 
						|
      if (S.second == SIScheduleBlockLinkKind::NoData &&
 | 
						|
          Kind == SIScheduleBlockLinkKind::Data)
 | 
						|
        S.second = Kind;
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Succ->isHighLatencyBlock())
 | 
						|
    ++NumHighLatencySuccessors;
 | 
						|
  Succs.push_back(std::make_pair(Succ, Kind));
 | 
						|
 | 
						|
  assert(none_of(Preds,
 | 
						|
                 [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) &&
 | 
						|
         "Loop in the Block Graph!");
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
void SIScheduleBlock::printDebug(bool full) {
 | 
						|
  dbgs() << "Block (" << ID << ")\n";
 | 
						|
  if (!full)
 | 
						|
    return;
 | 
						|
 | 
						|
  dbgs() << "\nContains High Latency Instruction: "
 | 
						|
         << HighLatencyBlock << '\n';
 | 
						|
  dbgs() << "\nDepends On:\n";
 | 
						|
  for (SIScheduleBlock* P : Preds) {
 | 
						|
    P->printDebug(false);
 | 
						|
  }
 | 
						|
 | 
						|
  dbgs() << "\nSuccessors:\n";
 | 
						|
  for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) {
 | 
						|
    if (S.second == SIScheduleBlockLinkKind::Data)
 | 
						|
      dbgs() << "(Data Dep) ";
 | 
						|
    S.first->printDebug(false);
 | 
						|
  }
 | 
						|
 | 
						|
  if (Scheduled) {
 | 
						|
    dbgs() << "LiveInPressure " << LiveInPressure[DAG->getSGPRSetID()] << ' '
 | 
						|
           << LiveInPressure[DAG->getVGPRSetID()] << '\n';
 | 
						|
    dbgs() << "LiveOutPressure " << LiveOutPressure[DAG->getSGPRSetID()] << ' '
 | 
						|
           << LiveOutPressure[DAG->getVGPRSetID()] << "\n\n";
 | 
						|
    dbgs() << "LiveIns:\n";
 | 
						|
    for (unsigned Reg : LiveInRegs)
 | 
						|
      dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
 | 
						|
 | 
						|
    dbgs() << "\nLiveOuts:\n";
 | 
						|
    for (unsigned Reg : LiveOutRegs)
 | 
						|
      dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
 | 
						|
  }
 | 
						|
 | 
						|
  dbgs() << "\nInstructions:\n";
 | 
						|
  if (!Scheduled) {
 | 
						|
    for (const SUnit* SU : SUnits)
 | 
						|
      DAG->dumpNode(*SU);
 | 
						|
  } else {
 | 
						|
    for (const SUnit* SU : SUnits)
 | 
						|
      DAG->dumpNode(*SU);
 | 
						|
  }
 | 
						|
 | 
						|
  dbgs() << "///////////////////////\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// SIScheduleBlockCreator //
 | 
						|
 | 
						|
SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG) :
 | 
						|
DAG(DAG) {
 | 
						|
}
 | 
						|
 | 
						|
SIScheduleBlockCreator::~SIScheduleBlockCreator() = default;
 | 
						|
 | 
						|
SIScheduleBlocks
 | 
						|
SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) {
 | 
						|
  std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B =
 | 
						|
    Blocks.find(BlockVariant);
 | 
						|
  if (B == Blocks.end()) {
 | 
						|
    SIScheduleBlocks Res;
 | 
						|
    createBlocksForVariant(BlockVariant);
 | 
						|
    topologicalSort();
 | 
						|
    scheduleInsideBlocks();
 | 
						|
    fillStats();
 | 
						|
    Res.Blocks = CurrentBlocks;
 | 
						|
    Res.TopDownIndex2Block = TopDownIndex2Block;
 | 
						|
    Res.TopDownBlock2Index = TopDownBlock2Index;
 | 
						|
    Blocks[BlockVariant] = Res;
 | 
						|
    return Res;
 | 
						|
  } else {
 | 
						|
    return B->second;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) {
 | 
						|
  if (SU->NodeNum >= DAG->SUnits.size())
 | 
						|
    return false;
 | 
						|
  return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID;
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::colorHighLatenciesAlone() {
 | 
						|
  unsigned DAGSize = DAG->SUnits.size();
 | 
						|
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SUnit *SU = &DAG->SUnits[i];
 | 
						|
    if (DAG->IsHighLatencySU[SU->NodeNum]) {
 | 
						|
      CurrentColoring[SU->NodeNum] = NextReservedID++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) {
 | 
						|
  for (const auto &PredDep : SU.Preds) {
 | 
						|
    if (PredDep.getSUnit() == &FromSU &&
 | 
						|
        PredDep.getKind() == llvm::SDep::Data)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::colorHighLatenciesGroups() {
 | 
						|
  unsigned DAGSize = DAG->SUnits.size();
 | 
						|
  unsigned NumHighLatencies = 0;
 | 
						|
  unsigned GroupSize;
 | 
						|
  int Color = NextReservedID;
 | 
						|
  unsigned Count = 0;
 | 
						|
  std::set<unsigned> FormingGroup;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SUnit *SU = &DAG->SUnits[i];
 | 
						|
    if (DAG->IsHighLatencySU[SU->NodeNum])
 | 
						|
      ++NumHighLatencies;
 | 
						|
  }
 | 
						|
 | 
						|
  if (NumHighLatencies == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  if (NumHighLatencies <= 6)
 | 
						|
    GroupSize = 2;
 | 
						|
  else if (NumHighLatencies <= 12)
 | 
						|
    GroupSize = 3;
 | 
						|
  else
 | 
						|
    GroupSize = 4;
 | 
						|
 | 
						|
  for (unsigned SUNum : DAG->TopDownIndex2SU) {
 | 
						|
    const SUnit &SU = DAG->SUnits[SUNum];
 | 
						|
    if (DAG->IsHighLatencySU[SU.NodeNum]) {
 | 
						|
      unsigned CompatibleGroup = true;
 | 
						|
      int ProposedColor = Color;
 | 
						|
      std::vector<int> AdditionalElements;
 | 
						|
 | 
						|
      // We don't want to put in the same block
 | 
						|
      // two high latency instructions that depend
 | 
						|
      // on each other.
 | 
						|
      // One way would be to check canAddEdge
 | 
						|
      // in both directions, but that currently is not
 | 
						|
      // enough because there the high latency order is
 | 
						|
      // enforced (via links).
 | 
						|
      // Instead, look at the dependencies between the
 | 
						|
      // high latency instructions and deduce if it is
 | 
						|
      // a data dependency or not.
 | 
						|
      for (unsigned j : FormingGroup) {
 | 
						|
        bool HasSubGraph;
 | 
						|
        std::vector<int> SubGraph;
 | 
						|
        // By construction (topological order), if SU and
 | 
						|
        // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
 | 
						|
        // in the parent graph of SU.
 | 
						|
#ifndef NDEBUG
 | 
						|
        SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
 | 
						|
                                               HasSubGraph);
 | 
						|
        assert(!HasSubGraph);
 | 
						|
#endif
 | 
						|
        SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
 | 
						|
                                               HasSubGraph);
 | 
						|
        if (!HasSubGraph)
 | 
						|
          continue; // No dependencies between each other
 | 
						|
        else if (SubGraph.size() > 5) {
 | 
						|
          // Too many elements would be required to be added to the block.
 | 
						|
          CompatibleGroup = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          // Check the type of dependency
 | 
						|
          for (unsigned k : SubGraph) {
 | 
						|
            // If in the path to join the two instructions,
 | 
						|
            // there is another high latency instruction,
 | 
						|
            // or instructions colored for another block
 | 
						|
            // abort the merge.
 | 
						|
            if (DAG->IsHighLatencySU[k] ||
 | 
						|
                (CurrentColoring[k] != ProposedColor &&
 | 
						|
                 CurrentColoring[k] != 0)) {
 | 
						|
              CompatibleGroup = false;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
            // If one of the SU in the subgraph depends on the result of SU j,
 | 
						|
            // there'll be a data dependency.
 | 
						|
            if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) {
 | 
						|
              CompatibleGroup = false;
 | 
						|
              break;
 | 
						|
            }
 | 
						|
          }
 | 
						|
          if (!CompatibleGroup)
 | 
						|
            break;
 | 
						|
          // Same check for the SU
 | 
						|
          if (hasDataDependencyPred(SU, DAG->SUnits[j])) {
 | 
						|
            CompatibleGroup = false;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          // Add all the required instructions to the block
 | 
						|
          // These cannot live in another block (because they
 | 
						|
          // depend (order dependency) on one of the
 | 
						|
          // instruction in the block, and are required for the
 | 
						|
          // high latency instruction we add.
 | 
						|
          AdditionalElements.insert(AdditionalElements.end(),
 | 
						|
                                    SubGraph.begin(), SubGraph.end());
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (CompatibleGroup) {
 | 
						|
        FormingGroup.insert(SU.NodeNum);
 | 
						|
        for (unsigned j : AdditionalElements)
 | 
						|
          CurrentColoring[j] = ProposedColor;
 | 
						|
        CurrentColoring[SU.NodeNum] = ProposedColor;
 | 
						|
        ++Count;
 | 
						|
      }
 | 
						|
      // Found one incompatible instruction,
 | 
						|
      // or has filled a big enough group.
 | 
						|
      // -> start a new one.
 | 
						|
      if (!CompatibleGroup) {
 | 
						|
        FormingGroup.clear();
 | 
						|
        Color = ++NextReservedID;
 | 
						|
        ProposedColor = Color;
 | 
						|
        FormingGroup.insert(SU.NodeNum);
 | 
						|
        CurrentColoring[SU.NodeNum] = ProposedColor;
 | 
						|
        Count = 0;
 | 
						|
      } else if (Count == GroupSize) {
 | 
						|
        FormingGroup.clear();
 | 
						|
        Color = ++NextReservedID;
 | 
						|
        ProposedColor = Color;
 | 
						|
        Count = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::colorComputeReservedDependencies() {
 | 
						|
  unsigned DAGSize = DAG->SUnits.size();
 | 
						|
  std::map<std::set<unsigned>, unsigned> ColorCombinations;
 | 
						|
 | 
						|
  CurrentTopDownReservedDependencyColoring.clear();
 | 
						|
  CurrentBottomUpReservedDependencyColoring.clear();
 | 
						|
 | 
						|
  CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0);
 | 
						|
  CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0);
 | 
						|
 | 
						|
  // Traverse TopDown, and give different colors to SUs depending
 | 
						|
  // on which combination of High Latencies they depend on.
 | 
						|
 | 
						|
  for (unsigned SUNum : DAG->TopDownIndex2SU) {
 | 
						|
    SUnit *SU = &DAG->SUnits[SUNum];
 | 
						|
    std::set<unsigned> SUColors;
 | 
						|
 | 
						|
    // Already given.
 | 
						|
    if (CurrentColoring[SU->NodeNum]) {
 | 
						|
      CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
 | 
						|
        CurrentColoring[SU->NodeNum];
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
   for (SDep& PredDep : SU->Preds) {
 | 
						|
      SUnit *Pred = PredDep.getSUnit();
 | 
						|
      if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
 | 
						|
        continue;
 | 
						|
      if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0)
 | 
						|
        SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]);
 | 
						|
    }
 | 
						|
    // Color 0 by default.
 | 
						|
    if (SUColors.empty())
 | 
						|
      continue;
 | 
						|
    // Same color than parents.
 | 
						|
    if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
 | 
						|
      CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
 | 
						|
        *SUColors.begin();
 | 
						|
    else {
 | 
						|
      std::map<std::set<unsigned>, unsigned>::iterator Pos =
 | 
						|
        ColorCombinations.find(SUColors);
 | 
						|
      if (Pos != ColorCombinations.end()) {
 | 
						|
          CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second;
 | 
						|
      } else {
 | 
						|
        CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
 | 
						|
          NextNonReservedID;
 | 
						|
        ColorCombinations[SUColors] = NextNonReservedID++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ColorCombinations.clear();
 | 
						|
 | 
						|
  // Same as before, but BottomUp.
 | 
						|
 | 
						|
  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | 
						|
    SUnit *SU = &DAG->SUnits[SUNum];
 | 
						|
    std::set<unsigned> SUColors;
 | 
						|
 | 
						|
    // Already given.
 | 
						|
    if (CurrentColoring[SU->NodeNum]) {
 | 
						|
      CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
 | 
						|
        CurrentColoring[SU->NodeNum];
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    for (SDep& SuccDep : SU->Succs) {
 | 
						|
      SUnit *Succ = SuccDep.getSUnit();
 | 
						|
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | 
						|
        continue;
 | 
						|
      if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0)
 | 
						|
        SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]);
 | 
						|
    }
 | 
						|
    // Keep color 0.
 | 
						|
    if (SUColors.empty())
 | 
						|
      continue;
 | 
						|
    // Same color than parents.
 | 
						|
    if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
 | 
						|
      CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
 | 
						|
        *SUColors.begin();
 | 
						|
    else {
 | 
						|
      std::map<std::set<unsigned>, unsigned>::iterator Pos =
 | 
						|
        ColorCombinations.find(SUColors);
 | 
						|
      if (Pos != ColorCombinations.end()) {
 | 
						|
        CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second;
 | 
						|
      } else {
 | 
						|
        CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
 | 
						|
          NextNonReservedID;
 | 
						|
        ColorCombinations[SUColors] = NextNonReservedID++;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::colorAccordingToReservedDependencies() {
 | 
						|
  unsigned DAGSize = DAG->SUnits.size();
 | 
						|
  std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations;
 | 
						|
 | 
						|
  // Every combination of colors given by the top down
 | 
						|
  // and bottom up Reserved node dependency
 | 
						|
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SUnit *SU = &DAG->SUnits[i];
 | 
						|
    std::pair<unsigned, unsigned> SUColors;
 | 
						|
 | 
						|
    // High latency instructions: already given.
 | 
						|
    if (CurrentColoring[SU->NodeNum])
 | 
						|
      continue;
 | 
						|
 | 
						|
    SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum];
 | 
						|
    SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum];
 | 
						|
 | 
						|
    std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos =
 | 
						|
      ColorCombinations.find(SUColors);
 | 
						|
    if (Pos != ColorCombinations.end()) {
 | 
						|
      CurrentColoring[SU->NodeNum] = Pos->second;
 | 
						|
    } else {
 | 
						|
      CurrentColoring[SU->NodeNum] = NextNonReservedID;
 | 
						|
      ColorCombinations[SUColors] = NextNonReservedID++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::colorEndsAccordingToDependencies() {
 | 
						|
  unsigned DAGSize = DAG->SUnits.size();
 | 
						|
  std::vector<int> PendingColoring = CurrentColoring;
 | 
						|
 | 
						|
  assert(DAGSize >= 1 &&
 | 
						|
         CurrentBottomUpReservedDependencyColoring.size() == DAGSize &&
 | 
						|
         CurrentTopDownReservedDependencyColoring.size() == DAGSize);
 | 
						|
  // If there is no reserved block at all, do nothing. We don't want
 | 
						|
  // everything in one block.
 | 
						|
  if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(),
 | 
						|
                        CurrentBottomUpReservedDependencyColoring.end()) == 0 &&
 | 
						|
      *std::max_element(CurrentTopDownReservedDependencyColoring.begin(),
 | 
						|
                        CurrentTopDownReservedDependencyColoring.end()) == 0)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | 
						|
    SUnit *SU = &DAG->SUnits[SUNum];
 | 
						|
    std::set<unsigned> SUColors;
 | 
						|
    std::set<unsigned> SUColorsPending;
 | 
						|
 | 
						|
    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 ||
 | 
						|
        CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (SDep& SuccDep : SU->Succs) {
 | 
						|
      SUnit *Succ = SuccDep.getSUnit();
 | 
						|
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | 
						|
        continue;
 | 
						|
      if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 ||
 | 
						|
          CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0)
 | 
						|
        SUColors.insert(CurrentColoring[Succ->NodeNum]);
 | 
						|
      SUColorsPending.insert(PendingColoring[Succ->NodeNum]);
 | 
						|
    }
 | 
						|
    // If there is only one child/parent block, and that block
 | 
						|
    // is not among the ones we are removing in this path, then
 | 
						|
    // merge the instruction to that block
 | 
						|
    if (SUColors.size() == 1 && SUColorsPending.size() == 1)
 | 
						|
      PendingColoring[SU->NodeNum] = *SUColors.begin();
 | 
						|
    else // TODO: Attribute new colors depending on color
 | 
						|
         // combination of children.
 | 
						|
      PendingColoring[SU->NodeNum] = NextNonReservedID++;
 | 
						|
  }
 | 
						|
  CurrentColoring = PendingColoring;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() {
 | 
						|
  unsigned DAGSize = DAG->SUnits.size();
 | 
						|
  unsigned PreviousColor;
 | 
						|
  std::set<unsigned> SeenColors;
 | 
						|
 | 
						|
  if (DAGSize <= 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  PreviousColor = CurrentColoring[0];
 | 
						|
 | 
						|
  for (unsigned i = 1, e = DAGSize; i != e; ++i) {
 | 
						|
    SUnit *SU = &DAG->SUnits[i];
 | 
						|
    unsigned CurrentColor = CurrentColoring[i];
 | 
						|
    unsigned PreviousColorSave = PreviousColor;
 | 
						|
    assert(i == SU->NodeNum);
 | 
						|
 | 
						|
    if (CurrentColor != PreviousColor)
 | 
						|
      SeenColors.insert(PreviousColor);
 | 
						|
    PreviousColor = CurrentColor;
 | 
						|
 | 
						|
    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (SeenColors.find(CurrentColor) == SeenColors.end())
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (PreviousColorSave != CurrentColor)
 | 
						|
      CurrentColoring[i] = NextNonReservedID++;
 | 
						|
    else
 | 
						|
      CurrentColoring[i] = CurrentColoring[i-1];
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() {
 | 
						|
  unsigned DAGSize = DAG->SUnits.size();
 | 
						|
 | 
						|
  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | 
						|
    SUnit *SU = &DAG->SUnits[SUNum];
 | 
						|
    std::set<unsigned> SUColors;
 | 
						|
 | 
						|
    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // No predecessor: Vgpr constant loading.
 | 
						|
    // Low latency instructions usually have a predecessor (the address)
 | 
						|
    if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum])
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (SDep& SuccDep : SU->Succs) {
 | 
						|
      SUnit *Succ = SuccDep.getSUnit();
 | 
						|
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | 
						|
        continue;
 | 
						|
      SUColors.insert(CurrentColoring[Succ->NodeNum]);
 | 
						|
    }
 | 
						|
    if (SUColors.size() == 1)
 | 
						|
      CurrentColoring[SU->NodeNum] = *SUColors.begin();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() {
 | 
						|
  unsigned DAGSize = DAG->SUnits.size();
 | 
						|
 | 
						|
  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | 
						|
    SUnit *SU = &DAG->SUnits[SUNum];
 | 
						|
    std::set<unsigned> SUColors;
 | 
						|
 | 
						|
    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (SDep& SuccDep : SU->Succs) {
 | 
						|
       SUnit *Succ = SuccDep.getSUnit();
 | 
						|
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | 
						|
        continue;
 | 
						|
      SUColors.insert(CurrentColoring[Succ->NodeNum]);
 | 
						|
    }
 | 
						|
    if (SUColors.size() == 1)
 | 
						|
      CurrentColoring[SU->NodeNum] = *SUColors.begin();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() {
 | 
						|
  unsigned DAGSize = DAG->SUnits.size();
 | 
						|
 | 
						|
  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | 
						|
    SUnit *SU = &DAG->SUnits[SUNum];
 | 
						|
    std::set<unsigned> SUColors;
 | 
						|
 | 
						|
    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (SDep& SuccDep : SU->Succs) {
 | 
						|
       SUnit *Succ = SuccDep.getSUnit();
 | 
						|
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | 
						|
        continue;
 | 
						|
      SUColors.insert(CurrentColoring[Succ->NodeNum]);
 | 
						|
    }
 | 
						|
    if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize)
 | 
						|
      CurrentColoring[SU->NodeNum] = *SUColors.begin();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() {
 | 
						|
  unsigned DAGSize = DAG->SUnits.size();
 | 
						|
  std::map<unsigned, unsigned> ColorCount;
 | 
						|
 | 
						|
  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | 
						|
    SUnit *SU = &DAG->SUnits[SUNum];
 | 
						|
    unsigned color = CurrentColoring[SU->NodeNum];
 | 
						|
     ++ColorCount[color];
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | 
						|
    SUnit *SU = &DAG->SUnits[SUNum];
 | 
						|
    unsigned color = CurrentColoring[SU->NodeNum];
 | 
						|
    std::set<unsigned> SUColors;
 | 
						|
 | 
						|
    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (ColorCount[color] > 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (SDep& SuccDep : SU->Succs) {
 | 
						|
       SUnit *Succ = SuccDep.getSUnit();
 | 
						|
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | 
						|
        continue;
 | 
						|
      SUColors.insert(CurrentColoring[Succ->NodeNum]);
 | 
						|
    }
 | 
						|
    if (SUColors.size() == 1 && *SUColors.begin() != color) {
 | 
						|
      --ColorCount[color];
 | 
						|
      CurrentColoring[SU->NodeNum] = *SUColors.begin();
 | 
						|
      ++ColorCount[*SUColors.begin()];
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::cutHugeBlocks() {
 | 
						|
  // TODO
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::regroupNoUserInstructions() {
 | 
						|
  unsigned DAGSize = DAG->SUnits.size();
 | 
						|
  int GroupID = NextNonReservedID++;
 | 
						|
 | 
						|
  for (unsigned SUNum : DAG->BottomUpIndex2SU) {
 | 
						|
    SUnit *SU = &DAG->SUnits[SUNum];
 | 
						|
    bool hasSuccessor = false;
 | 
						|
 | 
						|
    if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (SDep& SuccDep : SU->Succs) {
 | 
						|
       SUnit *Succ = SuccDep.getSUnit();
 | 
						|
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | 
						|
        continue;
 | 
						|
      hasSuccessor = true;
 | 
						|
    }
 | 
						|
    if (!hasSuccessor)
 | 
						|
      CurrentColoring[SU->NodeNum] = GroupID;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::colorExports() {
 | 
						|
  unsigned ExportColor = NextNonReservedID++;
 | 
						|
  SmallVector<unsigned, 8> ExpGroup;
 | 
						|
 | 
						|
  // Put all exports together in a block.
 | 
						|
  // The block will naturally end up being scheduled last,
 | 
						|
  // thus putting exports at the end of the schedule, which
 | 
						|
  // is better for performance.
 | 
						|
  // However we must ensure, for safety, the exports can be put
 | 
						|
  // together in the same block without any other instruction.
 | 
						|
  // This could happen, for example, when scheduling after regalloc
 | 
						|
  // if reloading a spilled register from memory using the same
 | 
						|
  // register than used in a previous export.
 | 
						|
  // If that happens, do not regroup the exports.
 | 
						|
  for (unsigned SUNum : DAG->TopDownIndex2SU) {
 | 
						|
    const SUnit &SU = DAG->SUnits[SUNum];
 | 
						|
    if (SIInstrInfo::isEXP(*SU.getInstr())) {
 | 
						|
      // Check the EXP can be added to the group safely,
 | 
						|
      // ie without needing any other instruction.
 | 
						|
      // The EXP is allowed to depend on other EXP
 | 
						|
      // (they will be in the same group).
 | 
						|
      for (unsigned j : ExpGroup) {
 | 
						|
        bool HasSubGraph;
 | 
						|
        std::vector<int> SubGraph;
 | 
						|
        // By construction (topological order), if SU and
 | 
						|
        // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
 | 
						|
        // in the parent graph of SU.
 | 
						|
#ifndef NDEBUG
 | 
						|
        SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
 | 
						|
                                               HasSubGraph);
 | 
						|
        assert(!HasSubGraph);
 | 
						|
#endif
 | 
						|
        SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
 | 
						|
                                               HasSubGraph);
 | 
						|
        if (!HasSubGraph)
 | 
						|
          continue; // No dependencies between each other
 | 
						|
 | 
						|
        // SubGraph contains all the instructions required
 | 
						|
        // between EXP SUnits[j] and EXP SU.
 | 
						|
        for (unsigned k : SubGraph) {
 | 
						|
          if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr()))
 | 
						|
            // Other instructions than EXP would be required in the group.
 | 
						|
            // Abort the groupping.
 | 
						|
            return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      ExpGroup.push_back(SUNum);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // The group can be formed. Give the color.
 | 
						|
  for (unsigned j : ExpGroup)
 | 
						|
    CurrentColoring[j] = ExportColor;
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) {
 | 
						|
  unsigned DAGSize = DAG->SUnits.size();
 | 
						|
  std::map<unsigned,unsigned> RealID;
 | 
						|
 | 
						|
  CurrentBlocks.clear();
 | 
						|
  CurrentColoring.clear();
 | 
						|
  CurrentColoring.resize(DAGSize, 0);
 | 
						|
  Node2CurrentBlock.clear();
 | 
						|
 | 
						|
  // Restore links previous scheduling variant has overridden.
 | 
						|
  DAG->restoreSULinksLeft();
 | 
						|
 | 
						|
  NextReservedID = 1;
 | 
						|
  NextNonReservedID = DAGSize + 1;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Coloring the graph\n");
 | 
						|
 | 
						|
  if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped)
 | 
						|
    colorHighLatenciesGroups();
 | 
						|
  else
 | 
						|
    colorHighLatenciesAlone();
 | 
						|
  colorComputeReservedDependencies();
 | 
						|
  colorAccordingToReservedDependencies();
 | 
						|
  colorEndsAccordingToDependencies();
 | 
						|
  if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive)
 | 
						|
    colorForceConsecutiveOrderInGroup();
 | 
						|
  regroupNoUserInstructions();
 | 
						|
  colorMergeConstantLoadsNextGroup();
 | 
						|
  colorMergeIfPossibleNextGroupOnlyForReserved();
 | 
						|
  colorExports();
 | 
						|
 | 
						|
  // Put SUs of same color into same block
 | 
						|
  Node2CurrentBlock.resize(DAGSize, -1);
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SUnit *SU = &DAG->SUnits[i];
 | 
						|
    unsigned Color = CurrentColoring[SU->NodeNum];
 | 
						|
    if (RealID.find(Color) == RealID.end()) {
 | 
						|
      int ID = CurrentBlocks.size();
 | 
						|
      BlockPtrs.push_back(llvm::make_unique<SIScheduleBlock>(DAG, this, ID));
 | 
						|
      CurrentBlocks.push_back(BlockPtrs.rbegin()->get());
 | 
						|
      RealID[Color] = ID;
 | 
						|
    }
 | 
						|
    CurrentBlocks[RealID[Color]]->addUnit(SU);
 | 
						|
    Node2CurrentBlock[SU->NodeNum] = RealID[Color];
 | 
						|
  }
 | 
						|
 | 
						|
  // Build dependencies between blocks.
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SUnit *SU = &DAG->SUnits[i];
 | 
						|
    int SUID = Node2CurrentBlock[i];
 | 
						|
     for (SDep& SuccDep : SU->Succs) {
 | 
						|
       SUnit *Succ = SuccDep.getSUnit();
 | 
						|
      if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | 
						|
        continue;
 | 
						|
      if (Node2CurrentBlock[Succ->NodeNum] != SUID)
 | 
						|
        CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]],
 | 
						|
                                     SuccDep.isCtrl() ? NoData : Data);
 | 
						|
    }
 | 
						|
    for (SDep& PredDep : SU->Preds) {
 | 
						|
      SUnit *Pred = PredDep.getSUnit();
 | 
						|
      if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
 | 
						|
        continue;
 | 
						|
      if (Node2CurrentBlock[Pred->NodeNum] != SUID)
 | 
						|
        CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Free root and leafs of all blocks to enable scheduling inside them.
 | 
						|
  for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
 | 
						|
    SIScheduleBlock *Block = CurrentBlocks[i];
 | 
						|
    Block->finalizeUnits();
 | 
						|
  }
 | 
						|
  LLVM_DEBUG(dbgs() << "Blocks created:\n\n";
 | 
						|
             for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
 | 
						|
               SIScheduleBlock *Block = CurrentBlocks[i];
 | 
						|
               Block->printDebug(true);
 | 
						|
             });
 | 
						|
}
 | 
						|
 | 
						|
// Two functions taken from Codegen/MachineScheduler.cpp
 | 
						|
 | 
						|
/// Non-const version.
 | 
						|
static MachineBasicBlock::iterator
 | 
						|
nextIfDebug(MachineBasicBlock::iterator I,
 | 
						|
            MachineBasicBlock::const_iterator End) {
 | 
						|
  for (; I != End; ++I) {
 | 
						|
    if (!I->isDebugInstr())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::topologicalSort() {
 | 
						|
  unsigned DAGSize = CurrentBlocks.size();
 | 
						|
  std::vector<int> WorkList;
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Topological Sort\n");
 | 
						|
 | 
						|
  WorkList.reserve(DAGSize);
 | 
						|
  TopDownIndex2Block.resize(DAGSize);
 | 
						|
  TopDownBlock2Index.resize(DAGSize);
 | 
						|
  BottomUpIndex2Block.resize(DAGSize);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SIScheduleBlock *Block = CurrentBlocks[i];
 | 
						|
    unsigned Degree = Block->getSuccs().size();
 | 
						|
    TopDownBlock2Index[i] = Degree;
 | 
						|
    if (Degree == 0) {
 | 
						|
      WorkList.push_back(i);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  int Id = DAGSize;
 | 
						|
  while (!WorkList.empty()) {
 | 
						|
    int i = WorkList.back();
 | 
						|
    SIScheduleBlock *Block = CurrentBlocks[i];
 | 
						|
    WorkList.pop_back();
 | 
						|
    TopDownBlock2Index[i] = --Id;
 | 
						|
    TopDownIndex2Block[Id] = i;
 | 
						|
    for (SIScheduleBlock* Pred : Block->getPreds()) {
 | 
						|
      if (!--TopDownBlock2Index[Pred->getID()])
 | 
						|
        WorkList.push_back(Pred->getID());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Check correctness of the ordering.
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SIScheduleBlock *Block = CurrentBlocks[i];
 | 
						|
    for (SIScheduleBlock* Pred : Block->getPreds()) {
 | 
						|
      assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] &&
 | 
						|
      "Wrong Top Down topological sorting");
 | 
						|
    }
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(),
 | 
						|
                                         TopDownIndex2Block.rend());
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::scheduleInsideBlocks() {
 | 
						|
  unsigned DAGSize = CurrentBlocks.size();
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "\nScheduling Blocks\n\n");
 | 
						|
 | 
						|
  // We do schedule a valid scheduling such that a Block corresponds
 | 
						|
  // to a range of instructions.
 | 
						|
  LLVM_DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n");
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SIScheduleBlock *Block = CurrentBlocks[i];
 | 
						|
    Block->fastSchedule();
 | 
						|
  }
 | 
						|
 | 
						|
  // Note: the following code, and the part restoring previous position
 | 
						|
  // is by far the most expensive operation of the Scheduler.
 | 
						|
 | 
						|
  // Do not update CurrentTop.
 | 
						|
  MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop();
 | 
						|
  std::vector<MachineBasicBlock::iterator> PosOld;
 | 
						|
  std::vector<MachineBasicBlock::iterator> PosNew;
 | 
						|
  PosOld.reserve(DAG->SUnits.size());
 | 
						|
  PosNew.reserve(DAG->SUnits.size());
 | 
						|
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    int BlockIndice = TopDownIndex2Block[i];
 | 
						|
    SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
 | 
						|
    std::vector<SUnit*> SUs = Block->getScheduledUnits();
 | 
						|
 | 
						|
    for (SUnit* SU : SUs) {
 | 
						|
      MachineInstr *MI = SU->getInstr();
 | 
						|
      MachineBasicBlock::iterator Pos = MI;
 | 
						|
      PosOld.push_back(Pos);
 | 
						|
      if (&*CurrentTopFastSched == MI) {
 | 
						|
        PosNew.push_back(Pos);
 | 
						|
        CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched,
 | 
						|
                                          DAG->getCurrentBottom());
 | 
						|
      } else {
 | 
						|
        // Update the instruction stream.
 | 
						|
        DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI);
 | 
						|
 | 
						|
        // Update LiveIntervals.
 | 
						|
        // Note: Moving all instructions and calling handleMove every time
 | 
						|
        // is the most cpu intensive operation of the scheduler.
 | 
						|
        // It would gain a lot if there was a way to recompute the
 | 
						|
        // LiveIntervals for the entire scheduling region.
 | 
						|
        DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true);
 | 
						|
        PosNew.push_back(CurrentTopFastSched);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now we have Block of SUs == Block of MI.
 | 
						|
  // We do the final schedule for the instructions inside the block.
 | 
						|
  // The property that all the SUs of the Block are grouped together as MI
 | 
						|
  // is used for correct reg usage tracking.
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    SIScheduleBlock *Block = CurrentBlocks[i];
 | 
						|
    std::vector<SUnit*> SUs = Block->getScheduledUnits();
 | 
						|
    Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr());
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Restoring MI Pos\n");
 | 
						|
  // Restore old ordering (which prevents a LIS->handleMove bug).
 | 
						|
  for (unsigned i = PosOld.size(), e = 0; i != e; --i) {
 | 
						|
    MachineBasicBlock::iterator POld = PosOld[i-1];
 | 
						|
    MachineBasicBlock::iterator PNew = PosNew[i-1];
 | 
						|
    if (PNew != POld) {
 | 
						|
      // Update the instruction stream.
 | 
						|
      DAG->getBB()->splice(POld, DAG->getBB(), PNew);
 | 
						|
 | 
						|
      // Update LiveIntervals.
 | 
						|
      DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
 | 
						|
    SIScheduleBlock *Block = CurrentBlocks[i];
 | 
						|
    Block->printDebug(true);
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockCreator::fillStats() {
 | 
						|
  unsigned DAGSize = CurrentBlocks.size();
 | 
						|
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    int BlockIndice = TopDownIndex2Block[i];
 | 
						|
    SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
 | 
						|
    if (Block->getPreds().empty())
 | 
						|
      Block->Depth = 0;
 | 
						|
    else {
 | 
						|
      unsigned Depth = 0;
 | 
						|
      for (SIScheduleBlock *Pred : Block->getPreds()) {
 | 
						|
        if (Depth < Pred->Depth + Pred->getCost())
 | 
						|
          Depth = Pred->Depth + Pred->getCost();
 | 
						|
      }
 | 
						|
      Block->Depth = Depth;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = DAGSize; i != e; ++i) {
 | 
						|
    int BlockIndice = BottomUpIndex2Block[i];
 | 
						|
    SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
 | 
						|
    if (Block->getSuccs().empty())
 | 
						|
      Block->Height = 0;
 | 
						|
    else {
 | 
						|
      unsigned Height = 0;
 | 
						|
      for (const auto &Succ : Block->getSuccs())
 | 
						|
        Height = std::max(Height, Succ.first->Height + Succ.first->getCost());
 | 
						|
      Block->Height = Height;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// SIScheduleBlockScheduler //
 | 
						|
 | 
						|
SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG,
 | 
						|
                                                   SISchedulerBlockSchedulerVariant Variant,
 | 
						|
                                                   SIScheduleBlocks  BlocksStruct) :
 | 
						|
  DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks),
 | 
						|
  LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0),
 | 
						|
  SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) {
 | 
						|
 | 
						|
  // Fill the usage of every output
 | 
						|
  // Warning: while by construction we always have a link between two blocks
 | 
						|
  // when one needs a result from the other, the number of users of an output
 | 
						|
  // is not the sum of child blocks having as input the same virtual register.
 | 
						|
  // Here is an example. A produces x and y. B eats x and produces x'.
 | 
						|
  // C eats x' and y. The register coalescer may have attributed the same
 | 
						|
  // virtual register to x and x'.
 | 
						|
  // To count accurately, we do a topological sort. In case the register is
 | 
						|
  // found for several parents, we increment the usage of the one with the
 | 
						|
  // highest topological index.
 | 
						|
  LiveOutRegsNumUsages.resize(Blocks.size());
 | 
						|
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | 
						|
    SIScheduleBlock *Block = Blocks[i];
 | 
						|
    for (unsigned Reg : Block->getInRegs()) {
 | 
						|
      bool Found = false;
 | 
						|
      int topoInd = -1;
 | 
						|
      for (SIScheduleBlock* Pred: Block->getPreds()) {
 | 
						|
        std::set<unsigned> PredOutRegs = Pred->getOutRegs();
 | 
						|
        std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
 | 
						|
 | 
						|
        if (RegPos != PredOutRegs.end()) {
 | 
						|
          Found = true;
 | 
						|
          if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) {
 | 
						|
            topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()];
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Found)
 | 
						|
        continue;
 | 
						|
 | 
						|
      int PredID = BlocksStruct.TopDownIndex2Block[topoInd];
 | 
						|
      ++LiveOutRegsNumUsages[PredID][Reg];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0);
 | 
						|
  BlockNumPredsLeft.resize(Blocks.size());
 | 
						|
  BlockNumSuccsLeft.resize(Blocks.size());
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | 
						|
    SIScheduleBlock *Block = Blocks[i];
 | 
						|
    BlockNumPredsLeft[i] = Block->getPreds().size();
 | 
						|
    BlockNumSuccsLeft[i] = Block->getSuccs().size();
 | 
						|
  }
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | 
						|
    SIScheduleBlock *Block = Blocks[i];
 | 
						|
    assert(Block->getID() == i);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  std::set<unsigned> InRegs = DAG->getInRegs();
 | 
						|
  addLiveRegs(InRegs);
 | 
						|
 | 
						|
  // Increase LiveOutRegsNumUsages for blocks
 | 
						|
  // producing registers consumed in another
 | 
						|
  // scheduling region.
 | 
						|
  for (unsigned Reg : DAG->getOutRegs()) {
 | 
						|
    for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | 
						|
      // Do reverse traversal
 | 
						|
      int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i];
 | 
						|
      SIScheduleBlock *Block = Blocks[ID];
 | 
						|
      const std::set<unsigned> &OutRegs = Block->getOutRegs();
 | 
						|
 | 
						|
      if (OutRegs.find(Reg) == OutRegs.end())
 | 
						|
        continue;
 | 
						|
 | 
						|
      ++LiveOutRegsNumUsages[ID][Reg];
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Fill LiveRegsConsumers for regs that were already
 | 
						|
  // defined before scheduling.
 | 
						|
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | 
						|
    SIScheduleBlock *Block = Blocks[i];
 | 
						|
    for (unsigned Reg : Block->getInRegs()) {
 | 
						|
      bool Found = false;
 | 
						|
      for (SIScheduleBlock* Pred: Block->getPreds()) {
 | 
						|
        std::set<unsigned> PredOutRegs = Pred->getOutRegs();
 | 
						|
        std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
 | 
						|
 | 
						|
        if (RegPos != PredOutRegs.end()) {
 | 
						|
          Found = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!Found)
 | 
						|
        ++LiveRegsConsumers[Reg];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
 | 
						|
    SIScheduleBlock *Block = Blocks[i];
 | 
						|
    if (BlockNumPredsLeft[i] == 0) {
 | 
						|
      ReadyBlocks.push_back(Block);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  while (SIScheduleBlock *Block = pickBlock()) {
 | 
						|
    BlocksScheduled.push_back(Block);
 | 
						|
    blockScheduled(Block);
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Block Order:"; for (SIScheduleBlock *Block
 | 
						|
                                            : BlocksScheduled) {
 | 
						|
    dbgs() << ' ' << Block->getID();
 | 
						|
  } dbgs() << '\n';);
 | 
						|
}
 | 
						|
 | 
						|
bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand,
 | 
						|
                                                   SIBlockSchedCandidate &TryCand) {
 | 
						|
  if (!Cand.isValid()) {
 | 
						|
    TryCand.Reason = NodeOrder;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to hide high latencies.
 | 
						|
  if (SISched::tryLess(TryCand.LastPosHighLatParentScheduled,
 | 
						|
                 Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency))
 | 
						|
    return true;
 | 
						|
  // Schedule high latencies early so you can hide them better.
 | 
						|
  if (SISched::tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency,
 | 
						|
                          TryCand, Cand, Latency))
 | 
						|
    return true;
 | 
						|
  if (TryCand.IsHighLatency && SISched::tryGreater(TryCand.Height, Cand.Height,
 | 
						|
                                                   TryCand, Cand, Depth))
 | 
						|
    return true;
 | 
						|
  if (SISched::tryGreater(TryCand.NumHighLatencySuccessors,
 | 
						|
                          Cand.NumHighLatencySuccessors,
 | 
						|
                          TryCand, Cand, Successor))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand,
 | 
						|
                                                    SIBlockSchedCandidate &TryCand) {
 | 
						|
  if (!Cand.isValid()) {
 | 
						|
    TryCand.Reason = NodeOrder;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (SISched::tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0,
 | 
						|
                       TryCand, Cand, RegUsage))
 | 
						|
    return true;
 | 
						|
  if (SISched::tryGreater(TryCand.NumSuccessors > 0,
 | 
						|
                          Cand.NumSuccessors > 0,
 | 
						|
                          TryCand, Cand, Successor))
 | 
						|
    return true;
 | 
						|
  if (SISched::tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth))
 | 
						|
    return true;
 | 
						|
  if (SISched::tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff,
 | 
						|
                       TryCand, Cand, RegUsage))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() {
 | 
						|
  SIBlockSchedCandidate Cand;
 | 
						|
  std::vector<SIScheduleBlock*>::iterator Best;
 | 
						|
  SIScheduleBlock *Block;
 | 
						|
  if (ReadyBlocks.empty())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(),
 | 
						|
                        VregCurrentUsage, SregCurrentUsage);
 | 
						|
  if (VregCurrentUsage > maxVregUsage)
 | 
						|
    maxVregUsage = VregCurrentUsage;
 | 
						|
  if (SregCurrentUsage > maxSregUsage)
 | 
						|
    maxSregUsage = SregCurrentUsage;
 | 
						|
  LLVM_DEBUG(dbgs() << "Picking New Blocks\n"; dbgs() << "Available: ";
 | 
						|
             for (SIScheduleBlock *Block
 | 
						|
                  : ReadyBlocks) dbgs()
 | 
						|
             << Block->getID() << ' ';
 | 
						|
             dbgs() << "\nCurrent Live:\n";
 | 
						|
             for (unsigned Reg
 | 
						|
                  : LiveRegs) dbgs()
 | 
						|
             << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
 | 
						|
             dbgs() << '\n';
 | 
						|
             dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n';
 | 
						|
             dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';);
 | 
						|
 | 
						|
  Cand.Block = nullptr;
 | 
						|
  for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(),
 | 
						|
       E = ReadyBlocks.end(); I != E; ++I) {
 | 
						|
    SIBlockSchedCandidate TryCand;
 | 
						|
    TryCand.Block = *I;
 | 
						|
    TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock();
 | 
						|
    TryCand.VGPRUsageDiff =
 | 
						|
      checkRegUsageImpact(TryCand.Block->getInRegs(),
 | 
						|
                          TryCand.Block->getOutRegs())[DAG->getVGPRSetID()];
 | 
						|
    TryCand.NumSuccessors = TryCand.Block->getSuccs().size();
 | 
						|
    TryCand.NumHighLatencySuccessors =
 | 
						|
      TryCand.Block->getNumHighLatencySuccessors();
 | 
						|
    TryCand.LastPosHighLatParentScheduled =
 | 
						|
      (unsigned int) std::max<int> (0,
 | 
						|
         LastPosHighLatencyParentScheduled[TryCand.Block->getID()] -
 | 
						|
           LastPosWaitedHighLatency);
 | 
						|
    TryCand.Height = TryCand.Block->Height;
 | 
						|
    // Try not to increase VGPR usage too much, else we may spill.
 | 
						|
    if (VregCurrentUsage > 120 ||
 | 
						|
        Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) {
 | 
						|
      if (!tryCandidateRegUsage(Cand, TryCand) &&
 | 
						|
          Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage)
 | 
						|
        tryCandidateLatency(Cand, TryCand);
 | 
						|
    } else {
 | 
						|
      if (!tryCandidateLatency(Cand, TryCand))
 | 
						|
        tryCandidateRegUsage(Cand, TryCand);
 | 
						|
    }
 | 
						|
    if (TryCand.Reason != NoCand) {
 | 
						|
      Cand.setBest(TryCand);
 | 
						|
      Best = I;
 | 
						|
      LLVM_DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' '
 | 
						|
                        << getReasonStr(Cand.Reason) << '\n');
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "Picking: " << Cand.Block->getID() << '\n';
 | 
						|
             dbgs() << "Is a block with high latency instruction: "
 | 
						|
                    << (Cand.IsHighLatency ? "yes\n" : "no\n");
 | 
						|
             dbgs() << "Position of last high latency dependency: "
 | 
						|
                    << Cand.LastPosHighLatParentScheduled << '\n';
 | 
						|
             dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n';
 | 
						|
             dbgs() << '\n';);
 | 
						|
 | 
						|
  Block = Cand.Block;
 | 
						|
  ReadyBlocks.erase(Best);
 | 
						|
  return Block;
 | 
						|
}
 | 
						|
 | 
						|
// Tracking of currently alive registers to determine VGPR Usage.
 | 
						|
 | 
						|
void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) {
 | 
						|
  for (unsigned Reg : Regs) {
 | 
						|
    // For now only track virtual registers.
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
      continue;
 | 
						|
    // If not already in the live set, then add it.
 | 
						|
    (void) LiveRegs.insert(Reg);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block,
 | 
						|
                                       std::set<unsigned> &Regs) {
 | 
						|
  for (unsigned Reg : Regs) {
 | 
						|
    // For now only track virtual registers.
 | 
						|
    std::set<unsigned>::iterator Pos = LiveRegs.find(Reg);
 | 
						|
    assert (Pos != LiveRegs.end() && // Reg must be live.
 | 
						|
               LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() &&
 | 
						|
               LiveRegsConsumers[Reg] >= 1);
 | 
						|
    --LiveRegsConsumers[Reg];
 | 
						|
    if (LiveRegsConsumers[Reg] == 0)
 | 
						|
      LiveRegs.erase(Pos);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) {
 | 
						|
  for (const auto &Block : Parent->getSuccs()) {
 | 
						|
    if (--BlockNumPredsLeft[Block.first->getID()] == 0)
 | 
						|
      ReadyBlocks.push_back(Block.first);
 | 
						|
 | 
						|
    if (Parent->isHighLatencyBlock() &&
 | 
						|
        Block.second == SIScheduleBlockLinkKind::Data)
 | 
						|
      LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) {
 | 
						|
  decreaseLiveRegs(Block, Block->getInRegs());
 | 
						|
  addLiveRegs(Block->getOutRegs());
 | 
						|
  releaseBlockSuccs(Block);
 | 
						|
  for (std::map<unsigned, unsigned>::iterator RegI =
 | 
						|
       LiveOutRegsNumUsages[Block->getID()].begin(),
 | 
						|
       E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) {
 | 
						|
    std::pair<unsigned, unsigned> RegP = *RegI;
 | 
						|
    // We produce this register, thus it must not be previously alive.
 | 
						|
    assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() ||
 | 
						|
           LiveRegsConsumers[RegP.first] == 0);
 | 
						|
    LiveRegsConsumers[RegP.first] += RegP.second;
 | 
						|
  }
 | 
						|
  if (LastPosHighLatencyParentScheduled[Block->getID()] >
 | 
						|
        (unsigned)LastPosWaitedHighLatency)
 | 
						|
    LastPosWaitedHighLatency =
 | 
						|
      LastPosHighLatencyParentScheduled[Block->getID()];
 | 
						|
  ++NumBlockScheduled;
 | 
						|
}
 | 
						|
 | 
						|
std::vector<int>
 | 
						|
SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs,
 | 
						|
                                     std::set<unsigned> &OutRegs) {
 | 
						|
  std::vector<int> DiffSetPressure;
 | 
						|
  DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0);
 | 
						|
 | 
						|
  for (unsigned Reg : InRegs) {
 | 
						|
    // For now only track virtual registers.
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
      continue;
 | 
						|
    if (LiveRegsConsumers[Reg] > 1)
 | 
						|
      continue;
 | 
						|
    PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
 | 
						|
    for (; PSetI.isValid(); ++PSetI) {
 | 
						|
      DiffSetPressure[*PSetI] -= PSetI.getWeight();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned Reg : OutRegs) {
 | 
						|
    // For now only track virtual registers.
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
      continue;
 | 
						|
    PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
 | 
						|
    for (; PSetI.isValid(); ++PSetI) {
 | 
						|
      DiffSetPressure[*PSetI] += PSetI.getWeight();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return DiffSetPressure;
 | 
						|
}
 | 
						|
 | 
						|
// SIScheduler //
 | 
						|
 | 
						|
struct SIScheduleBlockResult
 | 
						|
SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant,
 | 
						|
                             SISchedulerBlockSchedulerVariant ScheduleVariant) {
 | 
						|
  SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant);
 | 
						|
  SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks);
 | 
						|
  std::vector<SIScheduleBlock*> ScheduledBlocks;
 | 
						|
  struct SIScheduleBlockResult Res;
 | 
						|
 | 
						|
  ScheduledBlocks = Scheduler.getBlocks();
 | 
						|
 | 
						|
  for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) {
 | 
						|
    SIScheduleBlock *Block = ScheduledBlocks[b];
 | 
						|
    std::vector<SUnit*> SUs = Block->getScheduledUnits();
 | 
						|
 | 
						|
    for (SUnit* SU : SUs)
 | 
						|
      Res.SUs.push_back(SU->NodeNum);
 | 
						|
  }
 | 
						|
 | 
						|
  Res.MaxSGPRUsage = Scheduler.getSGPRUsage();
 | 
						|
  Res.MaxVGPRUsage = Scheduler.getVGPRUsage();
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
// SIScheduleDAGMI //
 | 
						|
 | 
						|
SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) :
 | 
						|
  ScheduleDAGMILive(C, llvm::make_unique<GenericScheduler>(C)) {
 | 
						|
  SITII = static_cast<const SIInstrInfo*>(TII);
 | 
						|
  SITRI = static_cast<const SIRegisterInfo*>(TRI);
 | 
						|
 | 
						|
  VGPRSetID = SITRI->getVGPRPressureSet();
 | 
						|
  SGPRSetID = SITRI->getSGPRPressureSet();
 | 
						|
}
 | 
						|
 | 
						|
SIScheduleDAGMI::~SIScheduleDAGMI() = default;
 | 
						|
 | 
						|
// Code adapted from scheduleDAG.cpp
 | 
						|
// Does a topological sort over the SUs.
 | 
						|
// Both TopDown and BottomUp
 | 
						|
void SIScheduleDAGMI::topologicalSort() {
 | 
						|
  Topo.InitDAGTopologicalSorting();
 | 
						|
 | 
						|
  TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end());
 | 
						|
  BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend());
 | 
						|
}
 | 
						|
 | 
						|
// Move low latencies further from their user without
 | 
						|
// increasing SGPR usage (in general)
 | 
						|
// This is to be replaced by a better pass that would
 | 
						|
// take into account SGPR usage (based on VGPR Usage
 | 
						|
// and the corresponding wavefront count), that would
 | 
						|
// try to merge groups of loads if it make sense, etc
 | 
						|
void SIScheduleDAGMI::moveLowLatencies() {
 | 
						|
   unsigned DAGSize = SUnits.size();
 | 
						|
   int LastLowLatencyUser = -1;
 | 
						|
   int LastLowLatencyPos = -1;
 | 
						|
 | 
						|
   for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) {
 | 
						|
    SUnit *SU = &SUnits[ScheduledSUnits[i]];
 | 
						|
    bool IsLowLatencyUser = false;
 | 
						|
    unsigned MinPos = 0;
 | 
						|
 | 
						|
    for (SDep& PredDep : SU->Preds) {
 | 
						|
      SUnit *Pred = PredDep.getSUnit();
 | 
						|
      if (SITII->isLowLatencyInstruction(*Pred->getInstr())) {
 | 
						|
        IsLowLatencyUser = true;
 | 
						|
      }
 | 
						|
      if (Pred->NodeNum >= DAGSize)
 | 
						|
        continue;
 | 
						|
      unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum];
 | 
						|
      if (PredPos >= MinPos)
 | 
						|
        MinPos = PredPos + 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
 | 
						|
      unsigned BestPos = LastLowLatencyUser + 1;
 | 
						|
      if ((int)BestPos <= LastLowLatencyPos)
 | 
						|
        BestPos = LastLowLatencyPos + 1;
 | 
						|
      if (BestPos < MinPos)
 | 
						|
        BestPos = MinPos;
 | 
						|
      if (BestPos < i) {
 | 
						|
        for (unsigned u = i; u > BestPos; --u) {
 | 
						|
          ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
 | 
						|
          ScheduledSUnits[u] = ScheduledSUnits[u-1];
 | 
						|
        }
 | 
						|
        ScheduledSUnits[BestPos] = SU->NodeNum;
 | 
						|
        ScheduledSUnitsInv[SU->NodeNum] = BestPos;
 | 
						|
      }
 | 
						|
      LastLowLatencyPos = BestPos;
 | 
						|
      if (IsLowLatencyUser)
 | 
						|
        LastLowLatencyUser = BestPos;
 | 
						|
    } else if (IsLowLatencyUser) {
 | 
						|
      LastLowLatencyUser = i;
 | 
						|
    // Moves COPY instructions on which depends
 | 
						|
    // the low latency instructions too.
 | 
						|
    } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) {
 | 
						|
      bool CopyForLowLat = false;
 | 
						|
      for (SDep& SuccDep : SU->Succs) {
 | 
						|
        SUnit *Succ = SuccDep.getSUnit();
 | 
						|
        if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
 | 
						|
          continue;
 | 
						|
        if (SITII->isLowLatencyInstruction(*Succ->getInstr())) {
 | 
						|
          CopyForLowLat = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if (!CopyForLowLat)
 | 
						|
        continue;
 | 
						|
      if (MinPos < i) {
 | 
						|
        for (unsigned u = i; u > MinPos; --u) {
 | 
						|
          ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
 | 
						|
          ScheduledSUnits[u] = ScheduledSUnits[u-1];
 | 
						|
        }
 | 
						|
        ScheduledSUnits[MinPos] = SU->NodeNum;
 | 
						|
        ScheduledSUnitsInv[SU->NodeNum] = MinPos;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleDAGMI::restoreSULinksLeft() {
 | 
						|
  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
 | 
						|
    SUnits[i].isScheduled = false;
 | 
						|
    SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft;
 | 
						|
    SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft;
 | 
						|
    SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft;
 | 
						|
    SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Return the Vgpr and Sgpr usage corresponding to some virtual registers.
 | 
						|
template<typename _Iterator> void
 | 
						|
SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End,
 | 
						|
                                  unsigned &VgprUsage, unsigned &SgprUsage) {
 | 
						|
  VgprUsage = 0;
 | 
						|
  SgprUsage = 0;
 | 
						|
  for (_Iterator RegI = First; RegI != End; ++RegI) {
 | 
						|
    unsigned Reg = *RegI;
 | 
						|
    // For now only track virtual registers
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
      continue;
 | 
						|
    PSetIterator PSetI = MRI.getPressureSets(Reg);
 | 
						|
    for (; PSetI.isValid(); ++PSetI) {
 | 
						|
      if (*PSetI == VGPRSetID)
 | 
						|
        VgprUsage += PSetI.getWeight();
 | 
						|
      else if (*PSetI == SGPRSetID)
 | 
						|
        SgprUsage += PSetI.getWeight();
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void SIScheduleDAGMI::schedule()
 | 
						|
{
 | 
						|
  SmallVector<SUnit*, 8> TopRoots, BotRoots;
 | 
						|
  SIScheduleBlockResult Best, Temp;
 | 
						|
  LLVM_DEBUG(dbgs() << "Preparing Scheduling\n");
 | 
						|
 | 
						|
  buildDAGWithRegPressure();
 | 
						|
  LLVM_DEBUG(dump());
 | 
						|
 | 
						|
  topologicalSort();
 | 
						|
  findRootsAndBiasEdges(TopRoots, BotRoots);
 | 
						|
  // We reuse several ScheduleDAGMI and ScheduleDAGMILive
 | 
						|
  // functions, but to make them happy we must initialize
 | 
						|
  // the default Scheduler implementation (even if we do not
 | 
						|
  // run it)
 | 
						|
  SchedImpl->initialize(this);
 | 
						|
  initQueues(TopRoots, BotRoots);
 | 
						|
 | 
						|
  // Fill some stats to help scheduling.
 | 
						|
 | 
						|
  SUnitsLinksBackup = SUnits;
 | 
						|
  IsLowLatencySU.clear();
 | 
						|
  LowLatencyOffset.clear();
 | 
						|
  IsHighLatencySU.clear();
 | 
						|
 | 
						|
  IsLowLatencySU.resize(SUnits.size(), 0);
 | 
						|
  LowLatencyOffset.resize(SUnits.size(), 0);
 | 
						|
  IsHighLatencySU.resize(SUnits.size(), 0);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
 | 
						|
    SUnit *SU = &SUnits[i];
 | 
						|
    const MachineOperand *BaseLatOp;
 | 
						|
    int64_t OffLatReg;
 | 
						|
    if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
 | 
						|
      IsLowLatencySU[i] = 1;
 | 
						|
      if (SITII->getMemOperandWithOffset(*SU->getInstr(), BaseLatOp, OffLatReg,
 | 
						|
                                         TRI))
 | 
						|
        LowLatencyOffset[i] = OffLatReg;
 | 
						|
    } else if (SITII->isHighLatencyInstruction(*SU->getInstr()))
 | 
						|
      IsHighLatencySU[i] = 1;
 | 
						|
  }
 | 
						|
 | 
						|
  SIScheduler Scheduler(this);
 | 
						|
  Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone,
 | 
						|
                                   SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage);
 | 
						|
 | 
						|
  // if VGPR usage is extremely high, try other good performing variants
 | 
						|
  // which could lead to lower VGPR usage
 | 
						|
  if (Best.MaxVGPRUsage > 180) {
 | 
						|
    static const std::pair<SISchedulerBlockCreatorVariant,
 | 
						|
                           SISchedulerBlockSchedulerVariant>
 | 
						|
        Variants[] = {
 | 
						|
      { LatenciesAlone, BlockRegUsageLatency },
 | 
						|
//      { LatenciesAlone, BlockRegUsage },
 | 
						|
      { LatenciesGrouped, BlockLatencyRegUsage },
 | 
						|
//      { LatenciesGrouped, BlockRegUsageLatency },
 | 
						|
//      { LatenciesGrouped, BlockRegUsage },
 | 
						|
      { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
 | 
						|
//      { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
 | 
						|
//      { LatenciesAlonePlusConsecutive, BlockRegUsage }
 | 
						|
    };
 | 
						|
    for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
 | 
						|
      Temp = Scheduler.scheduleVariant(v.first, v.second);
 | 
						|
      if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
 | 
						|
        Best = Temp;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // if VGPR usage is still extremely high, we may spill. Try other variants
 | 
						|
  // which are less performing, but that could lead to lower VGPR usage.
 | 
						|
  if (Best.MaxVGPRUsage > 200) {
 | 
						|
    static const std::pair<SISchedulerBlockCreatorVariant,
 | 
						|
                           SISchedulerBlockSchedulerVariant>
 | 
						|
        Variants[] = {
 | 
						|
//      { LatenciesAlone, BlockRegUsageLatency },
 | 
						|
      { LatenciesAlone, BlockRegUsage },
 | 
						|
//      { LatenciesGrouped, BlockLatencyRegUsage },
 | 
						|
      { LatenciesGrouped, BlockRegUsageLatency },
 | 
						|
      { LatenciesGrouped, BlockRegUsage },
 | 
						|
//      { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
 | 
						|
      { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
 | 
						|
      { LatenciesAlonePlusConsecutive, BlockRegUsage }
 | 
						|
    };
 | 
						|
    for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
 | 
						|
      Temp = Scheduler.scheduleVariant(v.first, v.second);
 | 
						|
      if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
 | 
						|
        Best = Temp;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  ScheduledSUnits = Best.SUs;
 | 
						|
  ScheduledSUnitsInv.resize(SUnits.size());
 | 
						|
 | 
						|
  for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
 | 
						|
    ScheduledSUnitsInv[ScheduledSUnits[i]] = i;
 | 
						|
  }
 | 
						|
 | 
						|
  moveLowLatencies();
 | 
						|
 | 
						|
  // Tell the outside world about the result of the scheduling.
 | 
						|
 | 
						|
  assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
 | 
						|
  TopRPTracker.setPos(CurrentTop);
 | 
						|
 | 
						|
  for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(),
 | 
						|
       E = ScheduledSUnits.end(); I != E; ++I) {
 | 
						|
    SUnit *SU = &SUnits[*I];
 | 
						|
 | 
						|
    scheduleMI(SU, true);
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
 | 
						|
                      << *SU->getInstr());
 | 
						|
  }
 | 
						|
 | 
						|
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
 | 
						|
 | 
						|
  placeDebugValues();
 | 
						|
 | 
						|
  LLVM_DEBUG({
 | 
						|
    dbgs() << "*** Final schedule for "
 | 
						|
           << printMBBReference(*begin()->getParent()) << " ***\n";
 | 
						|
    dumpSchedule();
 | 
						|
    dbgs() << '\n';
 | 
						|
  });
 | 
						|
}
 |