2649 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			2649 lines
		
	
	
		
			106 KiB
		
	
	
	
		
			C++
		
	
	
	
| //====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
 | |
| //
 | |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | |
| // See https://llvm.org/LICENSE.txt for license information.
 | |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| /// \file
 | |
| ///
 | |
| /// Provide a pass which mitigates speculative execution attacks which operate
 | |
| /// by speculating incorrectly past some predicate (a type check, bounds check,
 | |
| /// or other condition) to reach a load with invalid inputs and leak the data
 | |
| /// accessed by that load using a side channel out of the speculative domain.
 | |
| ///
 | |
| /// For details on the attacks, see the first variant in both the Project Zero
 | |
| /// writeup and the Spectre paper:
 | |
| /// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
 | |
| /// https://spectreattack.com/spectre.pdf
 | |
| ///
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "X86InstrBuilder.h"
 | |
| #include "X86InstrInfo.h"
 | |
| #include "X86Subtarget.h"
 | |
| #include "llvm/ADT/ArrayRef.h"
 | |
| #include "llvm/ADT/DenseMap.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/ADT/ScopeExit.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include "llvm/ADT/SmallSet.h"
 | |
| #include "llvm/ADT/SmallVector.h"
 | |
| #include "llvm/ADT/SparseBitVector.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/CodeGen/MachineBasicBlock.h"
 | |
| #include "llvm/CodeGen/MachineConstantPool.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/CodeGen/MachineModuleInfo.h"
 | |
| #include "llvm/CodeGen/MachineOperand.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/MachineSSAUpdater.h"
 | |
| #include "llvm/CodeGen/TargetInstrInfo.h"
 | |
| #include "llvm/CodeGen/TargetRegisterInfo.h"
 | |
| #include "llvm/CodeGen/TargetSchedule.h"
 | |
| #include "llvm/CodeGen/TargetSubtargetInfo.h"
 | |
| #include "llvm/IR/DebugLoc.h"
 | |
| #include "llvm/MC/MCSchedule.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define PASS_KEY "x86-slh"
 | |
| #define DEBUG_TYPE PASS_KEY
 | |
| 
 | |
| STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced");
 | |
| STATISTIC(NumBranchesUntraced, "Number of branches unable to trace");
 | |
| STATISTIC(NumAddrRegsHardened,
 | |
|           "Number of address mode used registers hardaned");
 | |
| STATISTIC(NumPostLoadRegsHardened,
 | |
|           "Number of post-load register values hardened");
 | |
| STATISTIC(NumCallsOrJumpsHardened,
 | |
|           "Number of calls or jumps requiring extra hardening");
 | |
| STATISTIC(NumInstsInserted, "Number of instructions inserted");
 | |
| STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");
 | |
| 
 | |
| static cl::opt<bool> EnableSpeculativeLoadHardening(
 | |
|     "x86-speculative-load-hardening",
 | |
|     cl::desc("Force enable speculative load hardening"), cl::init(false),
 | |
|     cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> HardenEdgesWithLFENCE(
 | |
|     PASS_KEY "-lfence",
 | |
|     cl::desc(
 | |
|         "Use LFENCE along each conditional edge to harden against speculative "
 | |
|         "loads rather than conditional movs and poisoned pointers."),
 | |
|     cl::init(false), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> EnablePostLoadHardening(
 | |
|     PASS_KEY "-post-load",
 | |
|     cl::desc("Harden the value loaded *after* it is loaded by "
 | |
|              "flushing the loaded bits to 1. This is hard to do "
 | |
|              "in general but can be done easily for GPRs."),
 | |
|     cl::init(true), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> FenceCallAndRet(
 | |
|     PASS_KEY "-fence-call-and-ret",
 | |
|     cl::desc("Use a full speculation fence to harden both call and ret edges "
 | |
|              "rather than a lighter weight mitigation."),
 | |
|     cl::init(false), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> HardenInterprocedurally(
 | |
|     PASS_KEY "-ip",
 | |
|     cl::desc("Harden interprocedurally by passing our state in and out of "
 | |
|              "functions in the high bits of the stack pointer."),
 | |
|     cl::init(true), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool>
 | |
|     HardenLoads(PASS_KEY "-loads",
 | |
|                 cl::desc("Sanitize loads from memory. When disable, no "
 | |
|                          "significant security is provided."),
 | |
|                 cl::init(true), cl::Hidden);
 | |
| 
 | |
| static cl::opt<bool> HardenIndirectCallsAndJumps(
 | |
|     PASS_KEY "-indirect",
 | |
|     cl::desc("Harden indirect calls and jumps against using speculatively "
 | |
|              "stored attacker controlled addresses. This is designed to "
 | |
|              "mitigate Spectre v1.2 style attacks."),
 | |
|     cl::init(true), cl::Hidden);
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| class X86SpeculativeLoadHardeningPass : public MachineFunctionPass {
 | |
| public:
 | |
|   X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) {
 | |
|     initializeX86SpeculativeLoadHardeningPassPass(
 | |
|         *PassRegistry::getPassRegistry());
 | |
|   }
 | |
| 
 | |
|   StringRef getPassName() const override {
 | |
|     return "X86 speculative load hardening";
 | |
|   }
 | |
|   bool runOnMachineFunction(MachineFunction &MF) override;
 | |
|   void getAnalysisUsage(AnalysisUsage &AU) const override;
 | |
| 
 | |
|   /// Pass identification, replacement for typeid.
 | |
|   static char ID;
 | |
| 
 | |
| private:
 | |
|   /// The information about a block's conditional terminators needed to trace
 | |
|   /// our predicate state through the exiting edges.
 | |
|   struct BlockCondInfo {
 | |
|     MachineBasicBlock *MBB;
 | |
| 
 | |
|     // We mostly have one conditional branch, and in extremely rare cases have
 | |
|     // two. Three and more are so rare as to be unimportant for compile time.
 | |
|     SmallVector<MachineInstr *, 2> CondBrs;
 | |
| 
 | |
|     MachineInstr *UncondBr;
 | |
|   };
 | |
| 
 | |
|   /// Manages the predicate state traced through the program.
 | |
|   struct PredState {
 | |
|     unsigned InitialReg;
 | |
|     unsigned PoisonReg;
 | |
| 
 | |
|     const TargetRegisterClass *RC;
 | |
|     MachineSSAUpdater SSA;
 | |
| 
 | |
|     PredState(MachineFunction &MF, const TargetRegisterClass *RC)
 | |
|         : RC(RC), SSA(MF) {}
 | |
|   };
 | |
| 
 | |
|   const X86Subtarget *Subtarget;
 | |
|   MachineRegisterInfo *MRI;
 | |
|   const X86InstrInfo *TII;
 | |
|   const TargetRegisterInfo *TRI;
 | |
| 
 | |
|   Optional<PredState> PS;
 | |
| 
 | |
|   void hardenEdgesWithLFENCE(MachineFunction &MF);
 | |
| 
 | |
|   SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF);
 | |
| 
 | |
|   SmallVector<MachineInstr *, 16>
 | |
|   tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos);
 | |
| 
 | |
|   void unfoldCallAndJumpLoads(MachineFunction &MF);
 | |
| 
 | |
|   SmallVector<MachineInstr *, 16>
 | |
|   tracePredStateThroughIndirectBranches(MachineFunction &MF);
 | |
| 
 | |
|   void tracePredStateThroughBlocksAndHarden(MachineFunction &MF);
 | |
| 
 | |
|   unsigned saveEFLAGS(MachineBasicBlock &MBB,
 | |
|                       MachineBasicBlock::iterator InsertPt, DebugLoc Loc);
 | |
|   void restoreEFLAGS(MachineBasicBlock &MBB,
 | |
|                      MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
 | |
|                      unsigned OFReg);
 | |
| 
 | |
|   void mergePredStateIntoSP(MachineBasicBlock &MBB,
 | |
|                             MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
 | |
|                             unsigned PredStateReg);
 | |
|   unsigned extractPredStateFromSP(MachineBasicBlock &MBB,
 | |
|                                   MachineBasicBlock::iterator InsertPt,
 | |
|                                   DebugLoc Loc);
 | |
| 
 | |
|   void
 | |
|   hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO,
 | |
|                  MachineOperand &IndexMO,
 | |
|                  SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
 | |
|   MachineInstr *
 | |
|   sinkPostLoadHardenedInst(MachineInstr &MI,
 | |
|                            SmallPtrSetImpl<MachineInstr *> &HardenedInstrs);
 | |
|   bool canHardenRegister(unsigned Reg);
 | |
|   unsigned hardenValueInRegister(unsigned Reg, MachineBasicBlock &MBB,
 | |
|                                  MachineBasicBlock::iterator InsertPt,
 | |
|                                  DebugLoc Loc);
 | |
|   unsigned hardenPostLoad(MachineInstr &MI);
 | |
|   void hardenReturnInstr(MachineInstr &MI);
 | |
|   void tracePredStateThroughCall(MachineInstr &MI);
 | |
|   void hardenIndirectCallOrJumpInstr(
 | |
|       MachineInstr &MI,
 | |
|       SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
 | |
| };
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| char X86SpeculativeLoadHardeningPass::ID = 0;
 | |
| 
 | |
| void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
 | |
|     AnalysisUsage &AU) const {
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB,
 | |
|                                     MachineBasicBlock &Succ, int SuccCount,
 | |
|                                     MachineInstr *Br, MachineInstr *&UncondBr,
 | |
|                                     const X86InstrInfo &TII) {
 | |
|   assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!");
 | |
| 
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
| 
 | |
|   MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
 | |
| 
 | |
|   // We have to insert the new block immediately after the current one as we
 | |
|   // don't know what layout-successor relationships the successor has and we
 | |
|   // may not be able to (and generally don't want to) try to fix those up.
 | |
|   MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
 | |
| 
 | |
|   // Update the branch instruction if necessary.
 | |
|   if (Br) {
 | |
|     assert(Br->getOperand(0).getMBB() == &Succ &&
 | |
|            "Didn't start with the right target!");
 | |
|     Br->getOperand(0).setMBB(&NewMBB);
 | |
| 
 | |
|     // If this successor was reached through a branch rather than fallthrough,
 | |
|     // we might have *broken* fallthrough and so need to inject a new
 | |
|     // unconditional branch.
 | |
|     if (!UncondBr) {
 | |
|       MachineBasicBlock &OldLayoutSucc =
 | |
|           *std::next(MachineFunction::iterator(&NewMBB));
 | |
|       assert(MBB.isSuccessor(&OldLayoutSucc) &&
 | |
|              "Without an unconditional branch, the old layout successor should "
 | |
|              "be an actual successor!");
 | |
|       auto BrBuilder =
 | |
|           BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc);
 | |
|       // Update the unconditional branch now that we've added one.
 | |
|       UncondBr = &*BrBuilder;
 | |
|     }
 | |
| 
 | |
|     // Insert unconditional "jump Succ" instruction in the new block if
 | |
|     // necessary.
 | |
|     if (!NewMBB.isLayoutSuccessor(&Succ)) {
 | |
|       SmallVector<MachineOperand, 4> Cond;
 | |
|       TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc());
 | |
|     }
 | |
|   } else {
 | |
|     assert(!UncondBr &&
 | |
|            "Cannot have a branchless successor and an unconditional branch!");
 | |
|     assert(NewMBB.isLayoutSuccessor(&Succ) &&
 | |
|            "A non-branch successor must have been a layout successor before "
 | |
|            "and now is a layout successor of the new block.");
 | |
|   }
 | |
| 
 | |
|   // If this is the only edge to the successor, we can just replace it in the
 | |
|   // CFG. Otherwise we need to add a new entry in the CFG for the new
 | |
|   // successor.
 | |
|   if (SuccCount == 1) {
 | |
|     MBB.replaceSuccessor(&Succ, &NewMBB);
 | |
|   } else {
 | |
|     MBB.splitSuccessor(&Succ, &NewMBB);
 | |
|   }
 | |
| 
 | |
|   // Hook up the edge from the new basic block to the old successor in the CFG.
 | |
|   NewMBB.addSuccessor(&Succ);
 | |
| 
 | |
|   // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
 | |
|   for (MachineInstr &MI : Succ) {
 | |
|     if (!MI.isPHI())
 | |
|       break;
 | |
|     for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
 | |
|          OpIdx += 2) {
 | |
|       MachineOperand &OpV = MI.getOperand(OpIdx);
 | |
|       MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
 | |
|       assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
 | |
|       if (OpMBB.getMBB() != &MBB)
 | |
|         continue;
 | |
| 
 | |
|       // If this is the last edge to the succesor, just replace MBB in the PHI
 | |
|       if (SuccCount == 1) {
 | |
|         OpMBB.setMBB(&NewMBB);
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // Otherwise, append a new pair of operands for the new incoming edge.
 | |
|       MI.addOperand(MF, OpV);
 | |
|       MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Inherit live-ins from the successor
 | |
|   for (auto &LI : Succ.liveins())
 | |
|     NewMBB.addLiveIn(LI);
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "  Split edge from '" << MBB.getName() << "' to '"
 | |
|                     << Succ.getName() << "'.\n");
 | |
|   return NewMBB;
 | |
| }
 | |
| 
 | |
| /// Removing duplicate PHI operands to leave the PHI in a canonical and
 | |
| /// predictable form.
 | |
| ///
 | |
| /// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
 | |
| /// isn't what you might expect. We may have multiple entries in PHI nodes for
 | |
| /// a single predecessor. This makes CFG-updating extremely complex, so here we
 | |
| /// simplify all PHI nodes to a model even simpler than the IR's model: exactly
 | |
| /// one entry per predecessor, regardless of how many edges there are.
 | |
| static void canonicalizePHIOperands(MachineFunction &MF) {
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> Preds;
 | |
|   SmallVector<int, 4> DupIndices;
 | |
|   for (auto &MBB : MF)
 | |
|     for (auto &MI : MBB) {
 | |
|       if (!MI.isPHI())
 | |
|         break;
 | |
| 
 | |
|       // First we scan the operands of the PHI looking for duplicate entries
 | |
|       // a particular predecessor. We retain the operand index of each duplicate
 | |
|       // entry found.
 | |
|       for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
 | |
|            OpIdx += 2)
 | |
|         if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second)
 | |
|           DupIndices.push_back(OpIdx);
 | |
| 
 | |
|       // Now walk the duplicate indices, removing both the block and value. Note
 | |
|       // that these are stored as a vector making this element-wise removal
 | |
|       // :w
 | |
|       // potentially quadratic.
 | |
|       //
 | |
|       // FIXME: It is really frustrating that we have to use a quadratic
 | |
|       // removal algorithm here. There should be a better way, but the use-def
 | |
|       // updates required make that impossible using the public API.
 | |
|       //
 | |
|       // Note that we have to process these backwards so that we don't
 | |
|       // invalidate other indices with each removal.
 | |
|       while (!DupIndices.empty()) {
 | |
|         int OpIdx = DupIndices.pop_back_val();
 | |
|         // Remove both the block and value operand, again in reverse order to
 | |
|         // preserve indices.
 | |
|         MI.RemoveOperand(OpIdx + 1);
 | |
|         MI.RemoveOperand(OpIdx);
 | |
|       }
 | |
| 
 | |
|       Preds.clear();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Helper to scan a function for loads vulnerable to misspeculation that we
 | |
| /// want to harden.
 | |
| ///
 | |
| /// We use this to avoid making changes to functions where there is nothing we
 | |
| /// need to do to harden against misspeculation.
 | |
| static bool hasVulnerableLoad(MachineFunction &MF) {
 | |
|   for (MachineBasicBlock &MBB : MF) {
 | |
|     for (MachineInstr &MI : MBB) {
 | |
|       // Loads within this basic block after an LFENCE are not at risk of
 | |
|       // speculatively executing with invalid predicates from prior control
 | |
|       // flow. So break out of this block but continue scanning the function.
 | |
|       if (MI.getOpcode() == X86::LFENCE)
 | |
|         break;
 | |
| 
 | |
|       // Looking for loads only.
 | |
|       if (!MI.mayLoad())
 | |
|         continue;
 | |
| 
 | |
|       // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
 | |
|       if (MI.getOpcode() == X86::MFENCE)
 | |
|         continue;
 | |
| 
 | |
|       // We found a load.
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // No loads found.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
 | |
|     MachineFunction &MF) {
 | |
|   LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
 | |
|                     << " **********\n");
 | |
| 
 | |
|   // Only run if this pass is forced enabled or we detect the relevant function
 | |
|   // attribute requesting SLH.
 | |
|   if (!EnableSpeculativeLoadHardening &&
 | |
|       !MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
 | |
|     return false;
 | |
| 
 | |
|   Subtarget = &MF.getSubtarget<X86Subtarget>();
 | |
|   MRI = &MF.getRegInfo();
 | |
|   TII = Subtarget->getInstrInfo();
 | |
|   TRI = Subtarget->getRegisterInfo();
 | |
| 
 | |
|   // FIXME: Support for 32-bit.
 | |
|   PS.emplace(MF, &X86::GR64_NOSPRegClass);
 | |
| 
 | |
|   if (MF.begin() == MF.end())
 | |
|     // Nothing to do for a degenerate empty function...
 | |
|     return false;
 | |
| 
 | |
|   // We support an alternative hardening technique based on a debug flag.
 | |
|   if (HardenEdgesWithLFENCE) {
 | |
|     hardenEdgesWithLFENCE(MF);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Create a dummy debug loc to use for all the generated code here.
 | |
|   DebugLoc Loc;
 | |
| 
 | |
|   MachineBasicBlock &Entry = *MF.begin();
 | |
|   auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin());
 | |
| 
 | |
|   // Do a quick scan to see if we have any checkable loads.
 | |
|   bool HasVulnerableLoad = hasVulnerableLoad(MF);
 | |
| 
 | |
|   // See if we have any conditional branching blocks that we will need to trace
 | |
|   // predicate state through.
 | |
|   SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF);
 | |
| 
 | |
|   // If we have no interesting conditions or loads, nothing to do here.
 | |
|   if (!HasVulnerableLoad && Infos.empty())
 | |
|     return true;
 | |
| 
 | |
|   // The poison value is required to be an all-ones value for many aspects of
 | |
|   // this mitigation.
 | |
|   const int PoisonVal = -1;
 | |
|   PS->PoisonReg = MRI->createVirtualRegister(PS->RC);
 | |
|   BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg)
 | |
|       .addImm(PoisonVal);
 | |
|   ++NumInstsInserted;
 | |
| 
 | |
|   // If we have loads being hardened and we've asked for call and ret edges to
 | |
|   // get a full fence-based mitigation, inject that fence.
 | |
|   if (HasVulnerableLoad && FenceCallAndRet) {
 | |
|     // We need to insert an LFENCE at the start of the function to suspend any
 | |
|     // incoming misspeculation from the caller. This helps two-fold: the caller
 | |
|     // may not have been protected as this code has been, and this code gets to
 | |
|     // not take any specific action to protect across calls.
 | |
|     // FIXME: We could skip this for functions which unconditionally return
 | |
|     // a constant.
 | |
|     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE));
 | |
|     ++NumInstsInserted;
 | |
|     ++NumLFENCEsInserted;
 | |
|   }
 | |
| 
 | |
|   // If we guarded the entry with an LFENCE and have no conditionals to protect
 | |
|   // in blocks, then we're done.
 | |
|   if (FenceCallAndRet && Infos.empty())
 | |
|     // We may have changed the function's code at this point to insert fences.
 | |
|     return true;
 | |
| 
 | |
|   // For every basic block in the function which can b
 | |
|   if (HardenInterprocedurally && !FenceCallAndRet) {
 | |
|     // Set up the predicate state by extracting it from the incoming stack
 | |
|     // pointer so we pick up any misspeculation in our caller.
 | |
|     PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc);
 | |
|   } else {
 | |
|     // Otherwise, just build the predicate state itself by zeroing a register
 | |
|     // as we don't need any initial state.
 | |
|     PS->InitialReg = MRI->createVirtualRegister(PS->RC);
 | |
|     unsigned PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass);
 | |
|     auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0),
 | |
|                          PredStateSubReg);
 | |
|     ++NumInstsInserted;
 | |
|     MachineOperand *ZeroEFLAGSDefOp =
 | |
|         ZeroI->findRegisterDefOperand(X86::EFLAGS);
 | |
|     assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&
 | |
|            "Must have an implicit def of EFLAGS!");
 | |
|     ZeroEFLAGSDefOp->setIsDead(true);
 | |
|     BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG),
 | |
|             PS->InitialReg)
 | |
|         .addImm(0)
 | |
|         .addReg(PredStateSubReg)
 | |
|         .addImm(X86::sub_32bit);
 | |
|   }
 | |
| 
 | |
|   // We're going to need to trace predicate state throughout the function's
 | |
|   // CFG. Prepare for this by setting up our initial state of PHIs with unique
 | |
|   // predecessor entries and all the initial predicate state.
 | |
|   canonicalizePHIOperands(MF);
 | |
| 
 | |
|   // Track the updated values in an SSA updater to rewrite into SSA form at the
 | |
|   // end.
 | |
|   PS->SSA.Initialize(PS->InitialReg);
 | |
|   PS->SSA.AddAvailableValue(&Entry, PS->InitialReg);
 | |
| 
 | |
|   // Trace through the CFG.
 | |
|   auto CMovs = tracePredStateThroughCFG(MF, Infos);
 | |
| 
 | |
|   // We may also enter basic blocks in this function via exception handling
 | |
|   // control flow. Here, if we are hardening interprocedurally, we need to
 | |
|   // re-capture the predicate state from the throwing code. In the Itanium ABI,
 | |
|   // the throw will always look like a call to __cxa_throw and will have the
 | |
|   // predicate state in the stack pointer, so extract fresh predicate state from
 | |
|   // the stack pointer and make it available in SSA.
 | |
|   // FIXME: Handle non-itanium ABI EH models.
 | |
|   if (HardenInterprocedurally) {
 | |
|     for (MachineBasicBlock &MBB : MF) {
 | |
|       assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!");
 | |
|       assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
 | |
|       assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
 | |
|       if (!MBB.isEHPad())
 | |
|         continue;
 | |
|       PS->SSA.AddAvailableValue(
 | |
|           &MBB,
 | |
|           extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc));
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (HardenIndirectCallsAndJumps) {
 | |
|     // If we are going to harden calls and jumps we need to unfold their memory
 | |
|     // operands.
 | |
|     unfoldCallAndJumpLoads(MF);
 | |
| 
 | |
|     // Then we trace predicate state through the indirect branches.
 | |
|     auto IndirectBrCMovs = tracePredStateThroughIndirectBranches(MF);
 | |
|     CMovs.append(IndirectBrCMovs.begin(), IndirectBrCMovs.end());
 | |
|   }
 | |
| 
 | |
|   // Now that we have the predicate state available at the start of each block
 | |
|   // in the CFG, trace it through each block, hardening vulnerable instructions
 | |
|   // as we go.
 | |
|   tracePredStateThroughBlocksAndHarden(MF);
 | |
| 
 | |
|   // Now rewrite all the uses of the pred state using the SSA updater to insert
 | |
|   // PHIs connecting the state between blocks along the CFG edges.
 | |
|   for (MachineInstr *CMovI : CMovs)
 | |
|     for (MachineOperand &Op : CMovI->operands()) {
 | |
|       if (!Op.isReg() || Op.getReg() != PS->InitialReg)
 | |
|         continue;
 | |
| 
 | |
|       PS->SSA.RewriteUse(Op);
 | |
|     }
 | |
| 
 | |
|   LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();
 | |
|              dbgs() << "\n"; MF.verify(this));
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// Implements the naive hardening approach of putting an LFENCE after every
 | |
| /// potentially mis-predicted control flow construct.
 | |
| ///
 | |
| /// We include this as an alternative mostly for the purpose of comparison. The
 | |
| /// performance impact of this is expected to be extremely severe and not
 | |
| /// practical for any real-world users.
 | |
| void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
 | |
|     MachineFunction &MF) {
 | |
|   // First, we scan the function looking for blocks that are reached along edges
 | |
|   // that we might want to harden.
 | |
|   SmallSetVector<MachineBasicBlock *, 8> Blocks;
 | |
|   for (MachineBasicBlock &MBB : MF) {
 | |
|     // If there are no or only one successor, nothing to do here.
 | |
|     if (MBB.succ_size() <= 1)
 | |
|       continue;
 | |
| 
 | |
|     // Skip blocks unless their terminators start with a branch. Other
 | |
|     // terminators don't seem interesting for guarding against misspeculation.
 | |
|     auto TermIt = MBB.getFirstTerminator();
 | |
|     if (TermIt == MBB.end() || !TermIt->isBranch())
 | |
|       continue;
 | |
| 
 | |
|     // Add all the non-EH-pad succossors to the blocks we want to harden. We
 | |
|     // skip EH pads because there isn't really a condition of interest on
 | |
|     // entering.
 | |
|     for (MachineBasicBlock *SuccMBB : MBB.successors())
 | |
|       if (!SuccMBB->isEHPad())
 | |
|         Blocks.insert(SuccMBB);
 | |
|   }
 | |
| 
 | |
|   for (MachineBasicBlock *MBB : Blocks) {
 | |
|     auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin());
 | |
|     BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE));
 | |
|     ++NumInstsInserted;
 | |
|     ++NumLFENCEsInserted;
 | |
|   }
 | |
| }
 | |
| 
 | |
| SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16>
 | |
| X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) {
 | |
|   SmallVector<BlockCondInfo, 16> Infos;
 | |
| 
 | |
|   // Walk the function and build up a summary for each block's conditions that
 | |
|   // we need to trace through.
 | |
|   for (MachineBasicBlock &MBB : MF) {
 | |
|     // If there are no or only one successor, nothing to do here.
 | |
|     if (MBB.succ_size() <= 1)
 | |
|       continue;
 | |
| 
 | |
|     // We want to reliably handle any conditional branch terminators in the
 | |
|     // MBB, so we manually analyze the branch. We can handle all of the
 | |
|     // permutations here, including ones that analyze branch cannot.
 | |
|     //
 | |
|     // The approach is to walk backwards across the terminators, resetting at
 | |
|     // any unconditional non-indirect branch, and track all conditional edges
 | |
|     // to basic blocks as well as the fallthrough or unconditional successor
 | |
|     // edge. For each conditional edge, we track the target and the opposite
 | |
|     // condition code in order to inject a "no-op" cmov into that successor
 | |
|     // that will harden the predicate. For the fallthrough/unconditional
 | |
|     // edge, we inject a separate cmov for each conditional branch with
 | |
|     // matching condition codes. This effectively implements an "and" of the
 | |
|     // condition flags, even if there isn't a single condition flag that would
 | |
|     // directly implement that. We don't bother trying to optimize either of
 | |
|     // these cases because if such an optimization is possible, LLVM should
 | |
|     // have optimized the conditional *branches* in that way already to reduce
 | |
|     // instruction count. This late, we simply assume the minimal number of
 | |
|     // branch instructions is being emitted and use that to guide our cmov
 | |
|     // insertion.
 | |
| 
 | |
|     BlockCondInfo Info = {&MBB, {}, nullptr};
 | |
| 
 | |
|     // Now walk backwards through the terminators and build up successors they
 | |
|     // reach and the conditions.
 | |
|     for (MachineInstr &MI : llvm::reverse(MBB)) {
 | |
|       // Once we've handled all the terminators, we're done.
 | |
|       if (!MI.isTerminator())
 | |
|         break;
 | |
| 
 | |
|       // If we see a non-branch terminator, we can't handle anything so bail.
 | |
|       if (!MI.isBranch()) {
 | |
|         Info.CondBrs.clear();
 | |
|         break;
 | |
|       }
 | |
| 
 | |
|       // If we see an unconditional branch, reset our state, clear any
 | |
|       // fallthrough, and set this is the "else" successor.
 | |
|       if (MI.getOpcode() == X86::JMP_1) {
 | |
|         Info.CondBrs.clear();
 | |
|         Info.UncondBr = &MI;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // If we get an invalid condition, we have an indirect branch or some
 | |
|       // other unanalyzable "fallthrough" case. We model this as a nullptr for
 | |
|       // the destination so we can still guard any conditional successors.
 | |
|       // Consider code sequences like:
 | |
|       // ```
 | |
|       //   jCC L1
 | |
|       //   jmpq *%rax
 | |
|       // ```
 | |
|       // We still want to harden the edge to `L1`.
 | |
|       if (X86::getCondFromBranch(MI) == X86::COND_INVALID) {
 | |
|         Info.CondBrs.clear();
 | |
|         Info.UncondBr = &MI;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // We have a vanilla conditional branch, add it to our list.
 | |
|       Info.CondBrs.push_back(&MI);
 | |
|     }
 | |
|     if (Info.CondBrs.empty()) {
 | |
|       ++NumBranchesUntraced;
 | |
|       LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
 | |
|                  MBB.dump());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     Infos.push_back(Info);
 | |
|   }
 | |
| 
 | |
|   return Infos;
 | |
| }
 | |
| 
 | |
| /// Trace the predicate state through the CFG, instrumenting each conditional
 | |
| /// branch such that misspeculation through an edge will poison the predicate
 | |
| /// state.
 | |
| ///
 | |
| /// Returns the list of inserted CMov instructions so that they can have their
 | |
| /// uses of the predicate state rewritten into proper SSA form once it is
 | |
| /// complete.
 | |
| SmallVector<MachineInstr *, 16>
 | |
| X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
 | |
|     MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) {
 | |
|   // Collect the inserted cmov instructions so we can rewrite their uses of the
 | |
|   // predicate state into SSA form.
 | |
|   SmallVector<MachineInstr *, 16> CMovs;
 | |
| 
 | |
|   // Now walk all of the basic blocks looking for ones that end in conditional
 | |
|   // jumps where we need to update this register along each edge.
 | |
|   for (const BlockCondInfo &Info : Infos) {
 | |
|     MachineBasicBlock &MBB = *Info.MBB;
 | |
|     const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs;
 | |
|     MachineInstr *UncondBr = Info.UncondBr;
 | |
| 
 | |
|     LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()
 | |
|                       << "\n");
 | |
|     ++NumCondBranchesTraced;
 | |
| 
 | |
|     // Compute the non-conditional successor as either the target of any
 | |
|     // unconditional branch or the layout successor.
 | |
|     MachineBasicBlock *UncondSucc =
 | |
|         UncondBr ? (UncondBr->getOpcode() == X86::JMP_1
 | |
|                         ? UncondBr->getOperand(0).getMBB()
 | |
|                         : nullptr)
 | |
|                  : &*std::next(MachineFunction::iterator(&MBB));
 | |
| 
 | |
|     // Count how many edges there are to any given successor.
 | |
|     SmallDenseMap<MachineBasicBlock *, int> SuccCounts;
 | |
|     if (UncondSucc)
 | |
|       ++SuccCounts[UncondSucc];
 | |
|     for (auto *CondBr : CondBrs)
 | |
|       ++SuccCounts[CondBr->getOperand(0).getMBB()];
 | |
| 
 | |
|     // A lambda to insert cmov instructions into a block checking all of the
 | |
|     // condition codes in a sequence.
 | |
|     auto BuildCheckingBlockForSuccAndConds =
 | |
|         [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount,
 | |
|             MachineInstr *Br, MachineInstr *&UncondBr,
 | |
|             ArrayRef<X86::CondCode> Conds) {
 | |
|           // First, we split the edge to insert the checking block into a safe
 | |
|           // location.
 | |
|           auto &CheckingMBB =
 | |
|               (SuccCount == 1 && Succ.pred_size() == 1)
 | |
|                   ? Succ
 | |
|                   : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII);
 | |
| 
 | |
|           bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS);
 | |
|           if (!LiveEFLAGS)
 | |
|             CheckingMBB.addLiveIn(X86::EFLAGS);
 | |
| 
 | |
|           // Now insert the cmovs to implement the checks.
 | |
|           auto InsertPt = CheckingMBB.begin();
 | |
|           assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&
 | |
|                  "Should never have a PHI in the initial checking block as it "
 | |
|                  "always has a single predecessor!");
 | |
| 
 | |
|           // We will wire each cmov to each other, but need to start with the
 | |
|           // incoming pred state.
 | |
|           unsigned CurStateReg = PS->InitialReg;
 | |
| 
 | |
|           for (X86::CondCode Cond : Conds) {
 | |
|             int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
 | |
|             auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
 | |
| 
 | |
|             unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
 | |
|             // Note that we intentionally use an empty debug location so that
 | |
|             // this picks up the preceding location.
 | |
|             auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(),
 | |
|                                  TII->get(CMovOp), UpdatedStateReg)
 | |
|                              .addReg(CurStateReg)
 | |
|                              .addReg(PS->PoisonReg)
 | |
|                              .addImm(Cond);
 | |
|             // If this is the last cmov and the EFLAGS weren't originally
 | |
|             // live-in, mark them as killed.
 | |
|             if (!LiveEFLAGS && Cond == Conds.back())
 | |
|               CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
 | |
| 
 | |
|             ++NumInstsInserted;
 | |
|             LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump();
 | |
|                        dbgs() << "\n");
 | |
| 
 | |
|             // The first one of the cmovs will be using the top level
 | |
|             // `PredStateReg` and need to get rewritten into SSA form.
 | |
|             if (CurStateReg == PS->InitialReg)
 | |
|               CMovs.push_back(&*CMovI);
 | |
| 
 | |
|             // The next cmov should start from this one's def.
 | |
|             CurStateReg = UpdatedStateReg;
 | |
|           }
 | |
| 
 | |
|           // And put the last one into the available values for SSA form of our
 | |
|           // predicate state.
 | |
|           PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg);
 | |
|         };
 | |
| 
 | |
|     std::vector<X86::CondCode> UncondCodeSeq;
 | |
|     for (auto *CondBr : CondBrs) {
 | |
|       MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB();
 | |
|       int &SuccCount = SuccCounts[&Succ];
 | |
| 
 | |
|       X86::CondCode Cond = X86::getCondFromBranch(*CondBr);
 | |
|       X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond);
 | |
|       UncondCodeSeq.push_back(Cond);
 | |
| 
 | |
|       BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr,
 | |
|                                         {InvCond});
 | |
| 
 | |
|       // Decrement the successor count now that we've split one of the edges.
 | |
|       // We need to keep the count of edges to the successor accurate in order
 | |
|       // to know above when to *replace* the successor in the CFG vs. just
 | |
|       // adding the new successor.
 | |
|       --SuccCount;
 | |
|     }
 | |
| 
 | |
|     // Since we may have split edges and changed the number of successors,
 | |
|     // normalize the probabilities. This avoids doing it each time we split an
 | |
|     // edge.
 | |
|     MBB.normalizeSuccProbs();
 | |
| 
 | |
|     // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
 | |
|     // need to intersect the other condition codes. We can do this by just
 | |
|     // doing a cmov for each one.
 | |
|     if (!UncondSucc)
 | |
|       // If we have no fallthrough to protect (perhaps it is an indirect jump?)
 | |
|       // just skip this and continue.
 | |
|       continue;
 | |
| 
 | |
|     assert(SuccCounts[UncondSucc] == 1 &&
 | |
|            "We should never have more than one edge to the unconditional "
 | |
|            "successor at this point because every other edge must have been "
 | |
|            "split above!");
 | |
| 
 | |
|     // Sort and unique the codes to minimize them.
 | |
|     llvm::sort(UncondCodeSeq);
 | |
|     UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()),
 | |
|                         UncondCodeSeq.end());
 | |
| 
 | |
|     // Build a checking version of the successor.
 | |
|     BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1,
 | |
|                                       UncondBr, UncondBr, UncondCodeSeq);
 | |
|   }
 | |
| 
 | |
|   return CMovs;
 | |
| }
 | |
| 
 | |
| /// Compute the register class for the unfolded load.
 | |
| ///
 | |
| /// FIXME: This should probably live in X86InstrInfo, potentially by adding
 | |
| /// a way to unfold into a newly created vreg rather than requiring a register
 | |
| /// input.
 | |
| static const TargetRegisterClass *
 | |
| getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII,
 | |
|                            unsigned Opcode) {
 | |
|   unsigned Index;
 | |
|   unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold(
 | |
|       Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index);
 | |
|   const MCInstrDesc &MCID = TII.get(UnfoldedOpc);
 | |
|   return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF);
 | |
| }
 | |
| 
 | |
| void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
 | |
|     MachineFunction &MF) {
 | |
|   for (MachineBasicBlock &MBB : MF)
 | |
|     for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) {
 | |
|       // Grab a reference and increment the iterator so we can remove this
 | |
|       // instruction if needed without disturbing the iteration.
 | |
|       MachineInstr &MI = *MII++;
 | |
| 
 | |
|       // Must either be a call or a branch.
 | |
|       if (!MI.isCall() && !MI.isBranch())
 | |
|         continue;
 | |
|       // We only care about loading variants of these instructions.
 | |
|       if (!MI.mayLoad())
 | |
|         continue;
 | |
| 
 | |
|       switch (MI.getOpcode()) {
 | |
|       default: {
 | |
|         LLVM_DEBUG(
 | |
|             dbgs() << "ERROR: Found an unexpected loading branch or call "
 | |
|                       "instruction:\n";
 | |
|             MI.dump(); dbgs() << "\n");
 | |
|         report_fatal_error("Unexpected loading branch or call!");
 | |
|       }
 | |
| 
 | |
|       case X86::FARCALL16m:
 | |
|       case X86::FARCALL32m:
 | |
|       case X86::FARCALL64:
 | |
|       case X86::FARJMP16m:
 | |
|       case X86::FARJMP32m:
 | |
|       case X86::FARJMP64:
 | |
|         // We cannot mitigate far jumps or calls, but we also don't expect them
 | |
|         // to be vulnerable to Spectre v1.2 style attacks.
 | |
|         continue;
 | |
| 
 | |
|       case X86::CALL16m:
 | |
|       case X86::CALL16m_NT:
 | |
|       case X86::CALL32m:
 | |
|       case X86::CALL32m_NT:
 | |
|       case X86::CALL64m:
 | |
|       case X86::CALL64m_NT:
 | |
|       case X86::JMP16m:
 | |
|       case X86::JMP16m_NT:
 | |
|       case X86::JMP32m:
 | |
|       case X86::JMP32m_NT:
 | |
|       case X86::JMP64m:
 | |
|       case X86::JMP64m_NT:
 | |
|       case X86::TAILJMPm64:
 | |
|       case X86::TAILJMPm64_REX:
 | |
|       case X86::TAILJMPm:
 | |
|       case X86::TCRETURNmi64:
 | |
|       case X86::TCRETURNmi: {
 | |
|         // Use the generic unfold logic now that we know we're dealing with
 | |
|         // expected instructions.
 | |
|         // FIXME: We don't have test coverage for all of these!
 | |
|         auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode());
 | |
|         if (!UnfoldedRC) {
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                          << "ERROR: Unable to unfold load from instruction:\n";
 | |
|                      MI.dump(); dbgs() << "\n");
 | |
|           report_fatal_error("Unable to unfold load!");
 | |
|         }
 | |
|         unsigned Reg = MRI->createVirtualRegister(UnfoldedRC);
 | |
|         SmallVector<MachineInstr *, 2> NewMIs;
 | |
|         // If we were able to compute an unfolded reg class, any failure here
 | |
|         // is just a programming error so just assert.
 | |
|         bool Unfolded =
 | |
|             TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true,
 | |
|                                      /*UnfoldStore*/ false, NewMIs);
 | |
|         (void)Unfolded;
 | |
|         assert(Unfolded &&
 | |
|                "Computed unfolded register class but failed to unfold");
 | |
|         // Now stitch the new instructions into place and erase the old one.
 | |
|         for (auto *NewMI : NewMIs)
 | |
|           MBB.insert(MI.getIterator(), NewMI);
 | |
|         MI.eraseFromParent();
 | |
|         LLVM_DEBUG({
 | |
|           dbgs() << "Unfolded load successfully into:\n";
 | |
|           for (auto *NewMI : NewMIs) {
 | |
|             NewMI->dump();
 | |
|             dbgs() << "\n";
 | |
|           }
 | |
|         });
 | |
|         continue;
 | |
|       }
 | |
|       }
 | |
|       llvm_unreachable("Escaped switch with default!");
 | |
|     }
 | |
| }
 | |
| 
 | |
| /// Trace the predicate state through indirect branches, instrumenting them to
 | |
| /// poison the state if a target is reached that does not match the expected
 | |
| /// target.
 | |
| ///
 | |
| /// This is designed to mitigate Spectre variant 1 attacks where an indirect
 | |
| /// branch is trained to predict a particular target and then mispredicts that
 | |
| /// target in a way that can leak data. Despite using an indirect branch, this
 | |
| /// is really a variant 1 style attack: it does not steer execution to an
 | |
| /// arbitrary or attacker controlled address, and it does not require any
 | |
| /// special code executing next to the victim. This attack can also be mitigated
 | |
| /// through retpolines, but those require either replacing indirect branches
 | |
| /// with conditional direct branches or lowering them through a device that
 | |
| /// blocks speculation. This mitigation can replace these retpoline-style
 | |
| /// mitigations for jump tables and other indirect branches within a function
 | |
| /// when variant 2 isn't a risk while allowing limited speculation. Indirect
 | |
| /// calls, however, cannot be mitigated through this technique without changing
 | |
| /// the ABI in a fundamental way.
 | |
| SmallVector<MachineInstr *, 16>
 | |
| X86SpeculativeLoadHardeningPass::tracePredStateThroughIndirectBranches(
 | |
|     MachineFunction &MF) {
 | |
|   // We use the SSAUpdater to insert PHI nodes for the target addresses of
 | |
|   // indirect branches. We don't actually need the full power of the SSA updater
 | |
|   // in this particular case as we always have immediately available values, but
 | |
|   // this avoids us having to re-implement the PHI construction logic.
 | |
|   MachineSSAUpdater TargetAddrSSA(MF);
 | |
|   TargetAddrSSA.Initialize(MRI->createVirtualRegister(&X86::GR64RegClass));
 | |
| 
 | |
|   // Track which blocks were terminated with an indirect branch.
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> IndirectTerminatedMBBs;
 | |
| 
 | |
|   // We need to know what blocks end up reached via indirect branches. We
 | |
|   // expect this to be a subset of those whose address is taken and so track it
 | |
|   // directly via the CFG.
 | |
|   SmallPtrSet<MachineBasicBlock *, 4> IndirectTargetMBBs;
 | |
| 
 | |
|   // Walk all the blocks which end in an indirect branch and make the
 | |
|   // target address available.
 | |
|   for (MachineBasicBlock &MBB : MF) {
 | |
|     // Find the last terminator.
 | |
|     auto MII = MBB.instr_rbegin();
 | |
|     while (MII != MBB.instr_rend() && MII->isDebugInstr())
 | |
|       ++MII;
 | |
|     if (MII == MBB.instr_rend())
 | |
|       continue;
 | |
|     MachineInstr &TI = *MII;
 | |
|     if (!TI.isTerminator() || !TI.isBranch())
 | |
|       // No terminator or non-branch terminator.
 | |
|       continue;
 | |
| 
 | |
|     unsigned TargetReg;
 | |
| 
 | |
|     switch (TI.getOpcode()) {
 | |
|     default:
 | |
|       // Direct branch or conditional branch (leading to fallthrough).
 | |
|       continue;
 | |
| 
 | |
|     case X86::FARJMP16m:
 | |
|     case X86::FARJMP32m:
 | |
|     case X86::FARJMP64:
 | |
|       // We cannot mitigate far jumps or calls, but we also don't expect them
 | |
|       // to be vulnerable to Spectre v1.2 or v2 (self trained) style attacks.
 | |
|       continue;
 | |
| 
 | |
|     case X86::JMP16m:
 | |
|     case X86::JMP16m_NT:
 | |
|     case X86::JMP32m:
 | |
|     case X86::JMP32m_NT:
 | |
|     case X86::JMP64m:
 | |
|     case X86::JMP64m_NT:
 | |
|       // Mostly as documentation.
 | |
|       report_fatal_error("Memory operand jumps should have been unfolded!");
 | |
| 
 | |
|     case X86::JMP16r:
 | |
|       report_fatal_error(
 | |
|           "Support for 16-bit indirect branches is not implemented.");
 | |
|     case X86::JMP32r:
 | |
|       report_fatal_error(
 | |
|           "Support for 32-bit indirect branches is not implemented.");
 | |
| 
 | |
|     case X86::JMP64r:
 | |
|       TargetReg = TI.getOperand(0).getReg();
 | |
|     }
 | |
| 
 | |
|     // We have definitely found an indirect  branch. Verify that there are no
 | |
|     // preceding conditional branches as we don't yet support that.
 | |
|     if (llvm::any_of(MBB.terminators(), [&](MachineInstr &OtherTI) {
 | |
|           return !OtherTI.isDebugInstr() && &OtherTI != &TI;
 | |
|         })) {
 | |
|       LLVM_DEBUG({
 | |
|         dbgs() << "ERROR: Found other terminators in a block with an indirect "
 | |
|                   "branch! This is not yet supported! Terminator sequence:\n";
 | |
|         for (MachineInstr &MI : MBB.terminators()) {
 | |
|           MI.dump();
 | |
|           dbgs() << '\n';
 | |
|         }
 | |
|       });
 | |
|       report_fatal_error("Unimplemented terminator sequence!");
 | |
|     }
 | |
| 
 | |
|     // Make the target register an available value for this block.
 | |
|     TargetAddrSSA.AddAvailableValue(&MBB, TargetReg);
 | |
|     IndirectTerminatedMBBs.insert(&MBB);
 | |
| 
 | |
|     // Add all the successors to our target candidates.
 | |
|     for (MachineBasicBlock *Succ : MBB.successors())
 | |
|       IndirectTargetMBBs.insert(Succ);
 | |
|   }
 | |
| 
 | |
|   // Keep track of the cmov instructions we insert so we can return them.
 | |
|   SmallVector<MachineInstr *, 16> CMovs;
 | |
| 
 | |
|   // If we didn't find any indirect branches with targets, nothing to do here.
 | |
|   if (IndirectTargetMBBs.empty())
 | |
|     return CMovs;
 | |
| 
 | |
|   // We found indirect branches and targets that need to be instrumented to
 | |
|   // harden loads within them. Walk the blocks of the function (to get a stable
 | |
|   // ordering) and instrument each target of an indirect branch.
 | |
|   for (MachineBasicBlock &MBB : MF) {
 | |
|     // Skip the blocks that aren't candidate targets.
 | |
|     if (!IndirectTargetMBBs.count(&MBB))
 | |
|       continue;
 | |
| 
 | |
|     // We don't expect EH pads to ever be reached via an indirect branch. If
 | |
|     // this is desired for some reason, we could simply skip them here rather
 | |
|     // than asserting.
 | |
|     assert(!MBB.isEHPad() &&
 | |
|            "Unexpected EH pad as target of an indirect branch!");
 | |
| 
 | |
|     // We should never end up threading EFLAGS into a block to harden
 | |
|     // conditional jumps as there would be an additional successor via the
 | |
|     // indirect branch. As a consequence, all such edges would be split before
 | |
|     // reaching here, and the inserted block will handle the EFLAGS-based
 | |
|     // hardening.
 | |
|     assert(!MBB.isLiveIn(X86::EFLAGS) &&
 | |
|            "Cannot check within a block that already has live-in EFLAGS!");
 | |
| 
 | |
|     // We can't handle having non-indirect edges into this block unless this is
 | |
|     // the only successor and we can synthesize the necessary target address.
 | |
|     for (MachineBasicBlock *Pred : MBB.predecessors()) {
 | |
|       // If we've already handled this by extracting the target directly,
 | |
|       // nothing to do.
 | |
|       if (IndirectTerminatedMBBs.count(Pred))
 | |
|         continue;
 | |
| 
 | |
|       // Otherwise, we have to be the only successor. We generally expect this
 | |
|       // to be true as conditional branches should have had a critical edge
 | |
|       // split already. We don't however need to worry about EH pad successors
 | |
|       // as they'll happily ignore the target and their hardening strategy is
 | |
|       // resilient to all ways in which they could be reached speculatively.
 | |
|       if (!llvm::all_of(Pred->successors(), [&](MachineBasicBlock *Succ) {
 | |
|             return Succ->isEHPad() || Succ == &MBB;
 | |
|           })) {
 | |
|         LLVM_DEBUG({
 | |
|           dbgs() << "ERROR: Found conditional entry to target of indirect "
 | |
|                     "branch!\n";
 | |
|           Pred->dump();
 | |
|           MBB.dump();
 | |
|         });
 | |
|         report_fatal_error("Cannot harden a conditional entry to a target of "
 | |
|                            "an indirect branch!");
 | |
|       }
 | |
| 
 | |
|       // Now we need to compute the address of this block and install it as a
 | |
|       // synthetic target in the predecessor. We do this at the bottom of the
 | |
|       // predecessor.
 | |
|       auto InsertPt = Pred->getFirstTerminator();
 | |
|       unsigned TargetReg = MRI->createVirtualRegister(&X86::GR64RegClass);
 | |
|       if (MF.getTarget().getCodeModel() == CodeModel::Small &&
 | |
|           !Subtarget->isPositionIndependent()) {
 | |
|         // Directly materialize it into an immediate.
 | |
|         auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(),
 | |
|                              TII->get(X86::MOV64ri32), TargetReg)
 | |
|                          .addMBB(&MBB);
 | |
|         ++NumInstsInserted;
 | |
|         (void)AddrI;
 | |
|         LLVM_DEBUG(dbgs() << "  Inserting mov: "; AddrI->dump();
 | |
|                    dbgs() << "\n");
 | |
|       } else {
 | |
|         auto AddrI = BuildMI(*Pred, InsertPt, DebugLoc(), TII->get(X86::LEA64r),
 | |
|                              TargetReg)
 | |
|                          .addReg(/*Base*/ X86::RIP)
 | |
|                          .addImm(/*Scale*/ 1)
 | |
|                          .addReg(/*Index*/ 0)
 | |
|                          .addMBB(&MBB)
 | |
|                          .addReg(/*Segment*/ 0);
 | |
|         ++NumInstsInserted;
 | |
|         (void)AddrI;
 | |
|         LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump();
 | |
|                    dbgs() << "\n");
 | |
|       }
 | |
|       // And make this available.
 | |
|       TargetAddrSSA.AddAvailableValue(Pred, TargetReg);
 | |
|     }
 | |
| 
 | |
|     // Materialize the needed SSA value of the target. Note that we need the
 | |
|     // middle of the block as this block might at the bottom have an indirect
 | |
|     // branch back to itself. We can do this here because at this point, every
 | |
|     // predecessor of this block has an available value. This is basically just
 | |
|     // automating the construction of a PHI node for this target.
 | |
|     unsigned TargetReg = TargetAddrSSA.GetValueInMiddleOfBlock(&MBB);
 | |
| 
 | |
|     // Insert a comparison of the incoming target register with this block's
 | |
|     // address. This also requires us to mark the block as having its address
 | |
|     // taken explicitly.
 | |
|     MBB.setHasAddressTaken();
 | |
|     auto InsertPt = MBB.SkipPHIsLabelsAndDebug(MBB.begin());
 | |
|     if (MF.getTarget().getCodeModel() == CodeModel::Small &&
 | |
|         !Subtarget->isPositionIndependent()) {
 | |
|       // Check directly against a relocated immediate when we can.
 | |
|       auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64ri32))
 | |
|                         .addReg(TargetReg, RegState::Kill)
 | |
|                         .addMBB(&MBB);
 | |
|       ++NumInstsInserted;
 | |
|       (void)CheckI;
 | |
|       LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
 | |
|     } else {
 | |
|       // Otherwise compute the address into a register first.
 | |
|       unsigned AddrReg = MRI->createVirtualRegister(&X86::GR64RegClass);
 | |
|       auto AddrI =
 | |
|           BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::LEA64r), AddrReg)
 | |
|               .addReg(/*Base*/ X86::RIP)
 | |
|               .addImm(/*Scale*/ 1)
 | |
|               .addReg(/*Index*/ 0)
 | |
|               .addMBB(&MBB)
 | |
|               .addReg(/*Segment*/ 0);
 | |
|       ++NumInstsInserted;
 | |
|       (void)AddrI;
 | |
|       LLVM_DEBUG(dbgs() << "  Inserting lea: "; AddrI->dump(); dbgs() << "\n");
 | |
|       auto CheckI = BuildMI(MBB, InsertPt, DebugLoc(), TII->get(X86::CMP64rr))
 | |
|                         .addReg(TargetReg, RegState::Kill)
 | |
|                         .addReg(AddrReg, RegState::Kill);
 | |
|       ++NumInstsInserted;
 | |
|       (void)CheckI;
 | |
|       LLVM_DEBUG(dbgs() << "  Inserting cmp: "; CheckI->dump(); dbgs() << "\n");
 | |
|     }
 | |
| 
 | |
|     // Now cmov over the predicate if the comparison wasn't equal.
 | |
|     int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
 | |
|     auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
 | |
|     unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
 | |
|     auto CMovI =
 | |
|         BuildMI(MBB, InsertPt, DebugLoc(), TII->get(CMovOp), UpdatedStateReg)
 | |
|             .addReg(PS->InitialReg)
 | |
|             .addReg(PS->PoisonReg)
 | |
|             .addImm(X86::COND_NE);
 | |
|     CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
 | |
|     ++NumInstsInserted;
 | |
|     LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
 | |
|     CMovs.push_back(&*CMovI);
 | |
| 
 | |
|     // And put the new value into the available values for SSA form of our
 | |
|     // predicate state.
 | |
|     PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
 | |
|   }
 | |
| 
 | |
|   // Return all the newly inserted cmov instructions of the predicate state.
 | |
|   return CMovs;
 | |
| }
 | |
| 
 | |
| /// Returns true if the instruction has no behavior (specified or otherwise)
 | |
| /// that is based on the value of any of its register operands
 | |
| ///
 | |
| /// A classical example of something that is inherently not data invariant is an
 | |
| /// indirect jump -- the destination is loaded into icache based on the bits set
 | |
| /// in the jump destination register.
 | |
| ///
 | |
| /// FIXME: This should become part of our instruction tables.
 | |
| static bool isDataInvariant(MachineInstr &MI) {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     // By default, assume that the instruction is not data invariant.
 | |
|     return false;
 | |
| 
 | |
|     // Some target-independent operations that trivially lower to data-invariant
 | |
|     // instructions.
 | |
|   case TargetOpcode::COPY:
 | |
|   case TargetOpcode::INSERT_SUBREG:
 | |
|   case TargetOpcode::SUBREG_TO_REG:
 | |
|     return true;
 | |
| 
 | |
|   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
 | |
|   // However, they set flags and are perhaps the most surprisingly constant
 | |
|   // time operations so we call them out here separately.
 | |
|   case X86::IMUL16rr:
 | |
|   case X86::IMUL16rri8:
 | |
|   case X86::IMUL16rri:
 | |
|   case X86::IMUL32rr:
 | |
|   case X86::IMUL32rri8:
 | |
|   case X86::IMUL32rri:
 | |
|   case X86::IMUL64rr:
 | |
|   case X86::IMUL64rri32:
 | |
|   case X86::IMUL64rri8:
 | |
| 
 | |
|   // Bit scanning and counting instructions that are somewhat surprisingly
 | |
|   // constant time as they scan across bits and do other fairly complex
 | |
|   // operations like popcnt, but are believed to be constant time on x86.
 | |
|   // However, these set flags.
 | |
|   case X86::BSF16rr:
 | |
|   case X86::BSF32rr:
 | |
|   case X86::BSF64rr:
 | |
|   case X86::BSR16rr:
 | |
|   case X86::BSR32rr:
 | |
|   case X86::BSR64rr:
 | |
|   case X86::LZCNT16rr:
 | |
|   case X86::LZCNT32rr:
 | |
|   case X86::LZCNT64rr:
 | |
|   case X86::POPCNT16rr:
 | |
|   case X86::POPCNT32rr:
 | |
|   case X86::POPCNT64rr:
 | |
|   case X86::TZCNT16rr:
 | |
|   case X86::TZCNT32rr:
 | |
|   case X86::TZCNT64rr:
 | |
| 
 | |
|   // Bit manipulation instructions are effectively combinations of basic
 | |
|   // arithmetic ops, and should still execute in constant time. These also
 | |
|   // set flags.
 | |
|   case X86::BLCFILL32rr:
 | |
|   case X86::BLCFILL64rr:
 | |
|   case X86::BLCI32rr:
 | |
|   case X86::BLCI64rr:
 | |
|   case X86::BLCIC32rr:
 | |
|   case X86::BLCIC64rr:
 | |
|   case X86::BLCMSK32rr:
 | |
|   case X86::BLCMSK64rr:
 | |
|   case X86::BLCS32rr:
 | |
|   case X86::BLCS64rr:
 | |
|   case X86::BLSFILL32rr:
 | |
|   case X86::BLSFILL64rr:
 | |
|   case X86::BLSI32rr:
 | |
|   case X86::BLSI64rr:
 | |
|   case X86::BLSIC32rr:
 | |
|   case X86::BLSIC64rr:
 | |
|   case X86::BLSMSK32rr:
 | |
|   case X86::BLSMSK64rr:
 | |
|   case X86::BLSR32rr:
 | |
|   case X86::BLSR64rr:
 | |
|   case X86::TZMSK32rr:
 | |
|   case X86::TZMSK64rr:
 | |
| 
 | |
|   // Bit extracting and clearing instructions should execute in constant time,
 | |
|   // and set flags.
 | |
|   case X86::BEXTR32rr:
 | |
|   case X86::BEXTR64rr:
 | |
|   case X86::BEXTRI32ri:
 | |
|   case X86::BEXTRI64ri:
 | |
|   case X86::BZHI32rr:
 | |
|   case X86::BZHI64rr:
 | |
| 
 | |
|   // Shift and rotate.
 | |
|   case X86::ROL8r1:  case X86::ROL16r1:  case X86::ROL32r1:  case X86::ROL64r1:
 | |
|   case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL:
 | |
|   case X86::ROL8ri:  case X86::ROL16ri:  case X86::ROL32ri:  case X86::ROL64ri:
 | |
|   case X86::ROR8r1:  case X86::ROR16r1:  case X86::ROR32r1:  case X86::ROR64r1:
 | |
|   case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL:
 | |
|   case X86::ROR8ri:  case X86::ROR16ri:  case X86::ROR32ri:  case X86::ROR64ri:
 | |
|   case X86::SAR8r1:  case X86::SAR16r1:  case X86::SAR32r1:  case X86::SAR64r1:
 | |
|   case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL:
 | |
|   case X86::SAR8ri:  case X86::SAR16ri:  case X86::SAR32ri:  case X86::SAR64ri:
 | |
|   case X86::SHL8r1:  case X86::SHL16r1:  case X86::SHL32r1:  case X86::SHL64r1:
 | |
|   case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL:
 | |
|   case X86::SHL8ri:  case X86::SHL16ri:  case X86::SHL32ri:  case X86::SHL64ri:
 | |
|   case X86::SHR8r1:  case X86::SHR16r1:  case X86::SHR32r1:  case X86::SHR64r1:
 | |
|   case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL:
 | |
|   case X86::SHR8ri:  case X86::SHR16ri:  case X86::SHR32ri:  case X86::SHR64ri:
 | |
|   case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL:
 | |
|   case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8:
 | |
|   case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL:
 | |
|   case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8:
 | |
| 
 | |
|   // Basic arithmetic is constant time on the input but does set flags.
 | |
|   case X86::ADC8rr:   case X86::ADC8ri:
 | |
|   case X86::ADC16rr:  case X86::ADC16ri:   case X86::ADC16ri8:
 | |
|   case X86::ADC32rr:  case X86::ADC32ri:   case X86::ADC32ri8:
 | |
|   case X86::ADC64rr:  case X86::ADC64ri8:  case X86::ADC64ri32:
 | |
|   case X86::ADD8rr:   case X86::ADD8ri:
 | |
|   case X86::ADD16rr:  case X86::ADD16ri:   case X86::ADD16ri8:
 | |
|   case X86::ADD32rr:  case X86::ADD32ri:   case X86::ADD32ri8:
 | |
|   case X86::ADD64rr:  case X86::ADD64ri8:  case X86::ADD64ri32:
 | |
|   case X86::AND8rr:   case X86::AND8ri:
 | |
|   case X86::AND16rr:  case X86::AND16ri:   case X86::AND16ri8:
 | |
|   case X86::AND32rr:  case X86::AND32ri:   case X86::AND32ri8:
 | |
|   case X86::AND64rr:  case X86::AND64ri8:  case X86::AND64ri32:
 | |
|   case X86::OR8rr:    case X86::OR8ri:
 | |
|   case X86::OR16rr:   case X86::OR16ri:    case X86::OR16ri8:
 | |
|   case X86::OR32rr:   case X86::OR32ri:    case X86::OR32ri8:
 | |
|   case X86::OR64rr:   case X86::OR64ri8:   case X86::OR64ri32:
 | |
|   case X86::SBB8rr:   case X86::SBB8ri:
 | |
|   case X86::SBB16rr:  case X86::SBB16ri:   case X86::SBB16ri8:
 | |
|   case X86::SBB32rr:  case X86::SBB32ri:   case X86::SBB32ri8:
 | |
|   case X86::SBB64rr:  case X86::SBB64ri8:  case X86::SBB64ri32:
 | |
|   case X86::SUB8rr:   case X86::SUB8ri:
 | |
|   case X86::SUB16rr:  case X86::SUB16ri:   case X86::SUB16ri8:
 | |
|   case X86::SUB32rr:  case X86::SUB32ri:   case X86::SUB32ri8:
 | |
|   case X86::SUB64rr:  case X86::SUB64ri8:  case X86::SUB64ri32:
 | |
|   case X86::XOR8rr:   case X86::XOR8ri:
 | |
|   case X86::XOR16rr:  case X86::XOR16ri:   case X86::XOR16ri8:
 | |
|   case X86::XOR32rr:  case X86::XOR32ri:   case X86::XOR32ri8:
 | |
|   case X86::XOR64rr:  case X86::XOR64ri8:  case X86::XOR64ri32:
 | |
|   // Arithmetic with just 32-bit and 64-bit variants and no immediates.
 | |
|   case X86::ADCX32rr: case X86::ADCX64rr:
 | |
|   case X86::ADOX32rr: case X86::ADOX64rr:
 | |
|   case X86::ANDN32rr: case X86::ANDN64rr:
 | |
|   // Unary arithmetic operations.
 | |
|   case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r:
 | |
|   case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r:
 | |
|   case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
 | |
|     // Check whether the EFLAGS implicit-def is dead. We assume that this will
 | |
|     // always find the implicit-def because this code should only be reached
 | |
|     // for instructions that do in fact implicitly def this.
 | |
|     if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
 | |
|       // If we would clobber EFLAGS that are used, just bail for now.
 | |
|       LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: ";
 | |
|                  MI.dump(); dbgs() << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, fallthrough to handle these the same as instructions that
 | |
|     // don't set EFLAGS.
 | |
|     LLVM_FALLTHROUGH;
 | |
| 
 | |
|   // Unlike other arithmetic, NOT doesn't set EFLAGS.
 | |
|   case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r:
 | |
| 
 | |
|   // Various move instructions used to zero or sign extend things. Note that we
 | |
|   // intentionally don't support the _NOREX variants as we can't handle that
 | |
|   // register constraint anyways.
 | |
|   case X86::MOVSX16rr8:
 | |
|   case X86::MOVSX32rr8: case X86::MOVSX32rr16:
 | |
|   case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32:
 | |
|   case X86::MOVZX16rr8:
 | |
|   case X86::MOVZX32rr8: case X86::MOVZX32rr16:
 | |
|   case X86::MOVZX64rr8: case X86::MOVZX64rr16:
 | |
|   case X86::MOV32rr:
 | |
| 
 | |
|   // Arithmetic instructions that are both constant time and don't set flags.
 | |
|   case X86::RORX32ri:
 | |
|   case X86::RORX64ri:
 | |
|   case X86::SARX32rr:
 | |
|   case X86::SARX64rr:
 | |
|   case X86::SHLX32rr:
 | |
|   case X86::SHLX64rr:
 | |
|   case X86::SHRX32rr:
 | |
|   case X86::SHRX64rr:
 | |
| 
 | |
|   // LEA doesn't actually access memory, and its arithmetic is constant time.
 | |
|   case X86::LEA16r:
 | |
|   case X86::LEA32r:
 | |
|   case X86::LEA64_32r:
 | |
|   case X86::LEA64r:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Returns true if the instruction has no behavior (specified or otherwise)
 | |
| /// that is based on the value loaded from memory or the value of any
 | |
| /// non-address register operands.
 | |
| ///
 | |
| /// For example, if the latency of the instruction is dependent on the
 | |
| /// particular bits set in any of the registers *or* any of the bits loaded from
 | |
| /// memory.
 | |
| ///
 | |
| /// A classical example of something that is inherently not data invariant is an
 | |
| /// indirect jump -- the destination is loaded into icache based on the bits set
 | |
| /// in the jump destination register.
 | |
| ///
 | |
| /// FIXME: This should become part of our instruction tables.
 | |
| static bool isDataInvariantLoad(MachineInstr &MI) {
 | |
|   switch (MI.getOpcode()) {
 | |
|   default:
 | |
|     // By default, assume that the load will immediately leak.
 | |
|     return false;
 | |
| 
 | |
|   // On x86 it is believed that imul is constant time w.r.t. the loaded data.
 | |
|   // However, they set flags and are perhaps the most surprisingly constant
 | |
|   // time operations so we call them out here separately.
 | |
|   case X86::IMUL16rm:
 | |
|   case X86::IMUL16rmi8:
 | |
|   case X86::IMUL16rmi:
 | |
|   case X86::IMUL32rm:
 | |
|   case X86::IMUL32rmi8:
 | |
|   case X86::IMUL32rmi:
 | |
|   case X86::IMUL64rm:
 | |
|   case X86::IMUL64rmi32:
 | |
|   case X86::IMUL64rmi8:
 | |
| 
 | |
|   // Bit scanning and counting instructions that are somewhat surprisingly
 | |
|   // constant time as they scan across bits and do other fairly complex
 | |
|   // operations like popcnt, but are believed to be constant time on x86.
 | |
|   // However, these set flags.
 | |
|   case X86::BSF16rm:
 | |
|   case X86::BSF32rm:
 | |
|   case X86::BSF64rm:
 | |
|   case X86::BSR16rm:
 | |
|   case X86::BSR32rm:
 | |
|   case X86::BSR64rm:
 | |
|   case X86::LZCNT16rm:
 | |
|   case X86::LZCNT32rm:
 | |
|   case X86::LZCNT64rm:
 | |
|   case X86::POPCNT16rm:
 | |
|   case X86::POPCNT32rm:
 | |
|   case X86::POPCNT64rm:
 | |
|   case X86::TZCNT16rm:
 | |
|   case X86::TZCNT32rm:
 | |
|   case X86::TZCNT64rm:
 | |
| 
 | |
|   // Bit manipulation instructions are effectively combinations of basic
 | |
|   // arithmetic ops, and should still execute in constant time. These also
 | |
|   // set flags.
 | |
|   case X86::BLCFILL32rm:
 | |
|   case X86::BLCFILL64rm:
 | |
|   case X86::BLCI32rm:
 | |
|   case X86::BLCI64rm:
 | |
|   case X86::BLCIC32rm:
 | |
|   case X86::BLCIC64rm:
 | |
|   case X86::BLCMSK32rm:
 | |
|   case X86::BLCMSK64rm:
 | |
|   case X86::BLCS32rm:
 | |
|   case X86::BLCS64rm:
 | |
|   case X86::BLSFILL32rm:
 | |
|   case X86::BLSFILL64rm:
 | |
|   case X86::BLSI32rm:
 | |
|   case X86::BLSI64rm:
 | |
|   case X86::BLSIC32rm:
 | |
|   case X86::BLSIC64rm:
 | |
|   case X86::BLSMSK32rm:
 | |
|   case X86::BLSMSK64rm:
 | |
|   case X86::BLSR32rm:
 | |
|   case X86::BLSR64rm:
 | |
|   case X86::TZMSK32rm:
 | |
|   case X86::TZMSK64rm:
 | |
| 
 | |
|   // Bit extracting and clearing instructions should execute in constant time,
 | |
|   // and set flags.
 | |
|   case X86::BEXTR32rm:
 | |
|   case X86::BEXTR64rm:
 | |
|   case X86::BEXTRI32mi:
 | |
|   case X86::BEXTRI64mi:
 | |
|   case X86::BZHI32rm:
 | |
|   case X86::BZHI64rm:
 | |
| 
 | |
|   // Basic arithmetic is constant time on the input but does set flags.
 | |
|   case X86::ADC8rm:
 | |
|   case X86::ADC16rm:
 | |
|   case X86::ADC32rm:
 | |
|   case X86::ADC64rm:
 | |
|   case X86::ADCX32rm:
 | |
|   case X86::ADCX64rm:
 | |
|   case X86::ADD8rm:
 | |
|   case X86::ADD16rm:
 | |
|   case X86::ADD32rm:
 | |
|   case X86::ADD64rm:
 | |
|   case X86::ADOX32rm:
 | |
|   case X86::ADOX64rm:
 | |
|   case X86::AND8rm:
 | |
|   case X86::AND16rm:
 | |
|   case X86::AND32rm:
 | |
|   case X86::AND64rm:
 | |
|   case X86::ANDN32rm:
 | |
|   case X86::ANDN64rm:
 | |
|   case X86::OR8rm:
 | |
|   case X86::OR16rm:
 | |
|   case X86::OR32rm:
 | |
|   case X86::OR64rm:
 | |
|   case X86::SBB8rm:
 | |
|   case X86::SBB16rm:
 | |
|   case X86::SBB32rm:
 | |
|   case X86::SBB64rm:
 | |
|   case X86::SUB8rm:
 | |
|   case X86::SUB16rm:
 | |
|   case X86::SUB32rm:
 | |
|   case X86::SUB64rm:
 | |
|   case X86::XOR8rm:
 | |
|   case X86::XOR16rm:
 | |
|   case X86::XOR32rm:
 | |
|   case X86::XOR64rm:
 | |
|     // Check whether the EFLAGS implicit-def is dead. We assume that this will
 | |
|     // always find the implicit-def because this code should only be reached
 | |
|     // for instructions that do in fact implicitly def this.
 | |
|     if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
 | |
|       // If we would clobber EFLAGS that are used, just bail for now.
 | |
|       LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: ";
 | |
|                  MI.dump(); dbgs() << "\n");
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, fallthrough to handle these the same as instructions that
 | |
|     // don't set EFLAGS.
 | |
|     LLVM_FALLTHROUGH;
 | |
| 
 | |
|   // Integer multiply w/o affecting flags is still believed to be constant
 | |
|   // time on x86. Called out separately as this is among the most surprising
 | |
|   // instructions to exhibit that behavior.
 | |
|   case X86::MULX32rm:
 | |
|   case X86::MULX64rm:
 | |
| 
 | |
|   // Arithmetic instructions that are both constant time and don't set flags.
 | |
|   case X86::RORX32mi:
 | |
|   case X86::RORX64mi:
 | |
|   case X86::SARX32rm:
 | |
|   case X86::SARX64rm:
 | |
|   case X86::SHLX32rm:
 | |
|   case X86::SHLX64rm:
 | |
|   case X86::SHRX32rm:
 | |
|   case X86::SHRX64rm:
 | |
| 
 | |
|   // Conversions are believed to be constant time and don't set flags.
 | |
|   case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm:
 | |
|   case X86::CVTTSD2SIrm:   case X86::VCVTTSD2SIrm:   case X86::VCVTTSD2SIZrm:
 | |
|   case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm:
 | |
|   case X86::CVTTSS2SIrm:   case X86::VCVTTSS2SIrm:   case X86::VCVTTSS2SIZrm:
 | |
|   case X86::CVTSI2SDrm:    case X86::VCVTSI2SDrm:    case X86::VCVTSI2SDZrm:
 | |
|   case X86::CVTSI2SSrm:    case X86::VCVTSI2SSrm:    case X86::VCVTSI2SSZrm:
 | |
|   case X86::CVTSI642SDrm:  case X86::VCVTSI642SDrm:  case X86::VCVTSI642SDZrm:
 | |
|   case X86::CVTSI642SSrm:  case X86::VCVTSI642SSrm:  case X86::VCVTSI642SSZrm:
 | |
|   case X86::CVTSS2SDrm:    case X86::VCVTSS2SDrm:    case X86::VCVTSS2SDZrm:
 | |
|   case X86::CVTSD2SSrm:    case X86::VCVTSD2SSrm:    case X86::VCVTSD2SSZrm:
 | |
|   // AVX512 added unsigned integer conversions.
 | |
|   case X86::VCVTTSD2USI64Zrm:
 | |
|   case X86::VCVTTSD2USIZrm:
 | |
|   case X86::VCVTTSS2USI64Zrm:
 | |
|   case X86::VCVTTSS2USIZrm:
 | |
|   case X86::VCVTUSI2SDZrm:
 | |
|   case X86::VCVTUSI642SDZrm:
 | |
|   case X86::VCVTUSI2SSZrm:
 | |
|   case X86::VCVTUSI642SSZrm:
 | |
| 
 | |
|   // Loads to register don't set flags.
 | |
|   case X86::MOV8rm:
 | |
|   case X86::MOV8rm_NOREX:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV32rm:
 | |
|   case X86::MOV64rm:
 | |
|   case X86::MOVSX16rm8:
 | |
|   case X86::MOVSX32rm16:
 | |
|   case X86::MOVSX32rm8:
 | |
|   case X86::MOVSX32rm8_NOREX:
 | |
|   case X86::MOVSX64rm16:
 | |
|   case X86::MOVSX64rm32:
 | |
|   case X86::MOVSX64rm8:
 | |
|   case X86::MOVZX16rm8:
 | |
|   case X86::MOVZX32rm16:
 | |
|   case X86::MOVZX32rm8:
 | |
|   case X86::MOVZX32rm8_NOREX:
 | |
|   case X86::MOVZX64rm16:
 | |
|   case X86::MOVZX64rm8:
 | |
|     return true;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
 | |
|                          const TargetRegisterInfo &TRI) {
 | |
|   // Check if EFLAGS are alive by seeing if there is a def of them or they
 | |
|   // live-in, and then seeing if that def is in turn used.
 | |
|   for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) {
 | |
|     if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
 | |
|       // If the def is dead, then EFLAGS is not live.
 | |
|       if (DefOp->isDead())
 | |
|         return false;
 | |
| 
 | |
|       // Otherwise we've def'ed it, and it is live.
 | |
|       return true;
 | |
|     }
 | |
|     // While at this instruction, also check if we use and kill EFLAGS
 | |
|     // which means it isn't live.
 | |
|     if (MI.killsRegister(X86::EFLAGS, &TRI))
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // If we didn't find anything conclusive (neither definitely alive or
 | |
|   // definitely dead) return whether it lives into the block.
 | |
|   return MBB.isLiveIn(X86::EFLAGS);
 | |
| }
 | |
| 
 | |
| /// Trace the predicate state through each of the blocks in the function,
 | |
| /// hardening everything necessary along the way.
 | |
| ///
 | |
| /// We call this routine once the initial predicate state has been established
 | |
| /// for each basic block in the function in the SSA updater. This routine traces
 | |
| /// it through the instructions within each basic block, and for non-returning
 | |
| /// blocks informs the SSA updater about the final state that lives out of the
 | |
| /// block. Along the way, it hardens any vulnerable instruction using the
 | |
| /// currently valid predicate state. We have to do these two things together
 | |
| /// because the SSA updater only works across blocks. Within a block, we track
 | |
| /// the current predicate state directly and update it as it changes.
 | |
| ///
 | |
| /// This operates in two passes over each block. First, we analyze the loads in
 | |
| /// the block to determine which strategy will be used to harden them: hardening
 | |
| /// the address or hardening the loaded value when loaded into a register
 | |
| /// amenable to hardening. We have to process these first because the two
 | |
| /// strategies may interact -- later hardening may change what strategy we wish
 | |
| /// to use. We also will analyze data dependencies between loads and avoid
 | |
| /// hardening those loads that are data dependent on a load with a hardened
 | |
| /// address. We also skip hardening loads already behind an LFENCE as that is
 | |
| /// sufficient to harden them against misspeculation.
 | |
| ///
 | |
| /// Second, we actively trace the predicate state through the block, applying
 | |
| /// the hardening steps we determined necessary in the first pass as we go.
 | |
| ///
 | |
| /// These two passes are applied to each basic block. We operate one block at a
 | |
| /// time to simplify reasoning about reachability and sequencing.
 | |
| void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
 | |
|     MachineFunction &MF) {
 | |
|   SmallPtrSet<MachineInstr *, 16> HardenPostLoad;
 | |
|   SmallPtrSet<MachineInstr *, 16> HardenLoadAddr;
 | |
| 
 | |
|   SmallSet<unsigned, 16> HardenedAddrRegs;
 | |
| 
 | |
|   SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg;
 | |
| 
 | |
|   // Track the set of load-dependent registers through the basic block. Because
 | |
|   // the values of these registers have an existing data dependency on a loaded
 | |
|   // value which we would have checked, we can omit any checks on them.
 | |
|   SparseBitVector<> LoadDepRegs;
 | |
| 
 | |
|   for (MachineBasicBlock &MBB : MF) {
 | |
|     // The first pass over the block: collect all the loads which can have their
 | |
|     // loaded value hardened and all the loads that instead need their address
 | |
|     // hardened. During this walk we propagate load dependence for address
 | |
|     // hardened loads and also look for LFENCE to stop hardening wherever
 | |
|     // possible. When deciding whether or not to harden the loaded value or not,
 | |
|     // we check to see if any registers used in the address will have been
 | |
|     // hardened at this point and if so, harden any remaining address registers
 | |
|     // as that often successfully re-uses hardened addresses and minimizes
 | |
|     // instructions.
 | |
|     //
 | |
|     // FIXME: We should consider an aggressive mode where we continue to keep as
 | |
|     // many loads value hardened even when some address register hardening would
 | |
|     // be free (due to reuse).
 | |
|     //
 | |
|     // Note that we only need this pass if we are actually hardening loads.
 | |
|     if (HardenLoads)
 | |
|       for (MachineInstr &MI : MBB) {
 | |
|         // We naively assume that all def'ed registers of an instruction have
 | |
|         // a data dependency on all of their operands.
 | |
|         // FIXME: Do a more careful analysis of x86 to build a conservative
 | |
|         // model here.
 | |
|         if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) {
 | |
|               return Op.isReg() && LoadDepRegs.test(Op.getReg());
 | |
|             }))
 | |
|           for (MachineOperand &Def : MI.defs())
 | |
|             if (Def.isReg())
 | |
|               LoadDepRegs.set(Def.getReg());
 | |
| 
 | |
|         // Both Intel and AMD are guiding that they will change the semantics of
 | |
|         // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
 | |
|         // no more need to guard things in this block.
 | |
|         if (MI.getOpcode() == X86::LFENCE)
 | |
|           break;
 | |
| 
 | |
|         // If this instruction cannot load, nothing to do.
 | |
|         if (!MI.mayLoad())
 | |
|           continue;
 | |
| 
 | |
|         // Some instructions which "load" are trivially safe or unimportant.
 | |
|         if (MI.getOpcode() == X86::MFENCE)
 | |
|           continue;
 | |
| 
 | |
|         // Extract the memory operand information about this instruction.
 | |
|         // FIXME: This doesn't handle loading pseudo instructions which we often
 | |
|         // could handle with similarly generic logic. We probably need to add an
 | |
|         // MI-layer routine similar to the MC-layer one we use here which maps
 | |
|         // pseudos much like this maps real instructions.
 | |
|         const MCInstrDesc &Desc = MI.getDesc();
 | |
|         int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
 | |
|         if (MemRefBeginIdx < 0) {
 | |
|           LLVM_DEBUG(dbgs()
 | |
|                          << "WARNING: unable to harden loading instruction: ";
 | |
|                      MI.dump());
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         MemRefBeginIdx += X86II::getOperandBias(Desc);
 | |
| 
 | |
|         MachineOperand &BaseMO =
 | |
|             MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
 | |
|         MachineOperand &IndexMO =
 | |
|             MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
 | |
| 
 | |
|         // If we have at least one (non-frame-index, non-RIP) register operand,
 | |
|         // and neither operand is load-dependent, we need to check the load.
 | |
|         unsigned BaseReg = 0, IndexReg = 0;
 | |
|         if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP &&
 | |
|             BaseMO.getReg() != X86::NoRegister)
 | |
|           BaseReg = BaseMO.getReg();
 | |
|         if (IndexMO.getReg() != X86::NoRegister)
 | |
|           IndexReg = IndexMO.getReg();
 | |
| 
 | |
|         if (!BaseReg && !IndexReg)
 | |
|           // No register operands!
 | |
|           continue;
 | |
| 
 | |
|         // If any register operand is dependent, this load is dependent and we
 | |
|         // needn't check it.
 | |
|         // FIXME: Is this true in the case where we are hardening loads after
 | |
|         // they complete? Unclear, need to investigate.
 | |
|         if ((BaseReg && LoadDepRegs.test(BaseReg)) ||
 | |
|             (IndexReg && LoadDepRegs.test(IndexReg)))
 | |
|           continue;
 | |
| 
 | |
|         // If post-load hardening is enabled, this load is compatible with
 | |
|         // post-load hardening, and we aren't already going to harden one of the
 | |
|         // address registers, queue it up to be hardened post-load. Notably,
 | |
|         // even once hardened this won't introduce a useful dependency that
 | |
|         // could prune out subsequent loads.
 | |
|         if (EnablePostLoadHardening && isDataInvariantLoad(MI) &&
 | |
|             MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() &&
 | |
|             canHardenRegister(MI.getOperand(0).getReg()) &&
 | |
|             !HardenedAddrRegs.count(BaseReg) &&
 | |
|             !HardenedAddrRegs.count(IndexReg)) {
 | |
|           HardenPostLoad.insert(&MI);
 | |
|           HardenedAddrRegs.insert(MI.getOperand(0).getReg());
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Record this instruction for address hardening and record its register
 | |
|         // operands as being address-hardened.
 | |
|         HardenLoadAddr.insert(&MI);
 | |
|         if (BaseReg)
 | |
|           HardenedAddrRegs.insert(BaseReg);
 | |
|         if (IndexReg)
 | |
|           HardenedAddrRegs.insert(IndexReg);
 | |
| 
 | |
|         for (MachineOperand &Def : MI.defs())
 | |
|           if (Def.isReg())
 | |
|             LoadDepRegs.set(Def.getReg());
 | |
|       }
 | |
| 
 | |
|     // Now re-walk the instructions in the basic block, and apply whichever
 | |
|     // hardening strategy we have elected. Note that we do this in a second
 | |
|     // pass specifically so that we have the complete set of instructions for
 | |
|     // which we will do post-load hardening and can defer it in certain
 | |
|     // circumstances.
 | |
|     for (MachineInstr &MI : MBB) {
 | |
|       if (HardenLoads) {
 | |
|         // We cannot both require hardening the def of a load and its address.
 | |
|         assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&
 | |
|                "Requested to harden both the address and def of a load!");
 | |
| 
 | |
|         // Check if this is a load whose address needs to be hardened.
 | |
|         if (HardenLoadAddr.erase(&MI)) {
 | |
|           const MCInstrDesc &Desc = MI.getDesc();
 | |
|           int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
 | |
|           assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!");
 | |
| 
 | |
|           MemRefBeginIdx += X86II::getOperandBias(Desc);
 | |
| 
 | |
|           MachineOperand &BaseMO =
 | |
|               MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
 | |
|           MachineOperand &IndexMO =
 | |
|               MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
 | |
|           hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg);
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Test if this instruction is one of our post load instructions (and
 | |
|         // remove it from the set if so).
 | |
|         if (HardenPostLoad.erase(&MI)) {
 | |
|           assert(!MI.isCall() && "Must not try to post-load harden a call!");
 | |
| 
 | |
|           // If this is a data-invariant load, we want to try and sink any
 | |
|           // hardening as far as possible.
 | |
|           if (isDataInvariantLoad(MI)) {
 | |
|             // Sink the instruction we'll need to harden as far as we can down
 | |
|             // the graph.
 | |
|             MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad);
 | |
| 
 | |
|             // If we managed to sink this instruction, update everything so we
 | |
|             // harden that instruction when we reach it in the instruction
 | |
|             // sequence.
 | |
|             if (SunkMI != &MI) {
 | |
|               // If in sinking there was no instruction needing to be hardened,
 | |
|               // we're done.
 | |
|               if (!SunkMI)
 | |
|                 continue;
 | |
| 
 | |
|               // Otherwise, add this to the set of defs we harden.
 | |
|               HardenPostLoad.insert(SunkMI);
 | |
|               continue;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           unsigned HardenedReg = hardenPostLoad(MI);
 | |
| 
 | |
|           // Mark the resulting hardened register as such so we don't re-harden.
 | |
|           AddrRegToHardenedReg[HardenedReg] = HardenedReg;
 | |
| 
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Check for an indirect call or branch that may need its input hardened
 | |
|         // even if we couldn't find the specific load used, or were able to
 | |
|         // avoid hardening it for some reason. Note that here we cannot break
 | |
|         // out afterward as we may still need to handle any call aspect of this
 | |
|         // instruction.
 | |
|         if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps)
 | |
|           hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg);
 | |
|       }
 | |
| 
 | |
|       // After we finish hardening loads we handle interprocedural hardening if
 | |
|       // enabled and relevant for this instruction.
 | |
|       if (!HardenInterprocedurally)
 | |
|         continue;
 | |
|       if (!MI.isCall() && !MI.isReturn())
 | |
|         continue;
 | |
| 
 | |
|       // If this is a direct return (IE, not a tail call) just directly harden
 | |
|       // it.
 | |
|       if (MI.isReturn() && !MI.isCall()) {
 | |
|         hardenReturnInstr(MI);
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Otherwise we have a call. We need to handle transferring the predicate
 | |
|       // state into a call and recovering it after the call returns (unless this
 | |
|       // is a tail call).
 | |
|       assert(MI.isCall() && "Should only reach here for calls!");
 | |
|       tracePredStateThroughCall(MI);
 | |
|     }
 | |
| 
 | |
|     HardenPostLoad.clear();
 | |
|     HardenLoadAddr.clear();
 | |
|     HardenedAddrRegs.clear();
 | |
|     AddrRegToHardenedReg.clear();
 | |
| 
 | |
|     // Currently, we only track data-dependent loads within a basic block.
 | |
|     // FIXME: We should see if this is necessary or if we could be more
 | |
|     // aggressive here without opening up attack avenues.
 | |
|     LoadDepRegs.clear();
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Save EFLAGS into the returned GPR. This can in turn be restored with
 | |
| /// `restoreEFLAGS`.
 | |
| ///
 | |
| /// Note that LLVM can only lower very simple patterns of saved and restored
 | |
| /// EFLAGS registers. The restore should always be within the same basic block
 | |
| /// as the save so that no PHI nodes are inserted.
 | |
| unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
 | |
|     DebugLoc Loc) {
 | |
|   // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
 | |
|   // what instruction selection does.
 | |
|   unsigned Reg = MRI->createVirtualRegister(&X86::GR32RegClass);
 | |
|   // We directly copy the FLAGS register and rely on later lowering to clean
 | |
|   // this up into the appropriate setCC instructions.
 | |
|   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS);
 | |
|   ++NumInstsInserted;
 | |
|   return Reg;
 | |
| }
 | |
| 
 | |
| /// Restore EFLAGS from the provided GPR. This should be produced by
 | |
| /// `saveEFLAGS`.
 | |
| ///
 | |
| /// This must be done within the same basic block as the save in order to
 | |
| /// reliably lower.
 | |
| void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
 | |
|     unsigned Reg) {
 | |
|   BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg);
 | |
|   ++NumInstsInserted;
 | |
| }
 | |
| 
 | |
| /// Takes the current predicate state (in a register) and merges it into the
 | |
| /// stack pointer. The state is essentially a single bit, but we merge this in
 | |
| /// a way that won't form non-canonical pointers and also will be preserved
 | |
| /// across normal stack adjustments.
 | |
| void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
 | |
|     unsigned PredStateReg) {
 | |
|   unsigned TmpReg = MRI->createVirtualRegister(PS->RC);
 | |
|   // FIXME: This hard codes a shift distance based on the number of bits needed
 | |
|   // to stay canonical on 64-bit. We should compute this somehow and support
 | |
|   // 32-bit as part of that.
 | |
|   auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg)
 | |
|                     .addReg(PredStateReg, RegState::Kill)
 | |
|                     .addImm(47);
 | |
|   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
 | |
|   ++NumInstsInserted;
 | |
|   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP)
 | |
|                  .addReg(X86::RSP)
 | |
|                  .addReg(TmpReg, RegState::Kill);
 | |
|   OrI->addRegisterDead(X86::EFLAGS, TRI);
 | |
|   ++NumInstsInserted;
 | |
| }
 | |
| 
 | |
| /// Extracts the predicate state stored in the high bits of the stack pointer.
 | |
| unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
 | |
|     MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
 | |
|     DebugLoc Loc) {
 | |
|   unsigned PredStateReg = MRI->createVirtualRegister(PS->RC);
 | |
|   unsigned TmpReg = MRI->createVirtualRegister(PS->RC);
 | |
| 
 | |
|   // We know that the stack pointer will have any preserved predicate state in
 | |
|   // its high bit. We just want to smear this across the other bits. Turns out,
 | |
|   // this is exactly what an arithmetic right shift does.
 | |
|   BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg)
 | |
|       .addReg(X86::RSP);
 | |
|   auto ShiftI =
 | |
|       BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg)
 | |
|           .addReg(TmpReg, RegState::Kill)
 | |
|           .addImm(TRI->getRegSizeInBits(*PS->RC) - 1);
 | |
|   ShiftI->addRegisterDead(X86::EFLAGS, TRI);
 | |
|   ++NumInstsInserted;
 | |
| 
 | |
|   return PredStateReg;
 | |
| }
 | |
| 
 | |
| void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
 | |
|     MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO,
 | |
|     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
 | |
|   MachineBasicBlock &MBB = *MI.getParent();
 | |
|   DebugLoc Loc = MI.getDebugLoc();
 | |
| 
 | |
|   // Check if EFLAGS are alive by seeing if there is a def of them or they
 | |
|   // live-in, and then seeing if that def is in turn used.
 | |
|   bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI);
 | |
| 
 | |
|   SmallVector<MachineOperand *, 2> HardenOpRegs;
 | |
| 
 | |
|   if (BaseMO.isFI()) {
 | |
|     // A frame index is never a dynamically controllable load, so only
 | |
|     // harden it if we're covering fixed address loads as well.
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "  Skipping hardening base of explicit stack frame load: ";
 | |
|         MI.dump(); dbgs() << "\n");
 | |
|   } else if (BaseMO.getReg() == X86::RSP) {
 | |
|     // Some idempotent atomic operations are lowered directly to a locked
 | |
|     // OR with 0 to the top of stack(or slightly offset from top) which uses an
 | |
|     // explicit RSP register as the base.
 | |
|     assert(IndexMO.getReg() == X86::NoRegister &&
 | |
|            "Explicit RSP access with dynamic index!");
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "  Cannot harden base of explicit RSP offset in a load!");
 | |
|   } else if (BaseMO.getReg() == X86::RIP ||
 | |
|              BaseMO.getReg() == X86::NoRegister) {
 | |
|     // For both RIP-relative addressed loads or absolute loads, we cannot
 | |
|     // meaningfully harden them because the address being loaded has no
 | |
|     // dynamic component.
 | |
|     //
 | |
|     // FIXME: When using a segment base (like TLS does) we end up with the
 | |
|     // dynamic address being the base plus -1 because we can't mutate the
 | |
|     // segment register here. This allows the signed 32-bit offset to point at
 | |
|     // valid segment-relative addresses and load them successfully.
 | |
|     LLVM_DEBUG(
 | |
|         dbgs() << "  Cannot harden base of "
 | |
|                << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")
 | |
|                << " address in a load!");
 | |
|   } else {
 | |
|     assert(BaseMO.isReg() &&
 | |
|            "Only allowed to have a frame index or register base.");
 | |
|     HardenOpRegs.push_back(&BaseMO);
 | |
|   }
 | |
| 
 | |
|   if (IndexMO.getReg() != X86::NoRegister &&
 | |
|       (HardenOpRegs.empty() ||
 | |
|        HardenOpRegs.front()->getReg() != IndexMO.getReg()))
 | |
|     HardenOpRegs.push_back(&IndexMO);
 | |
| 
 | |
|   assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&
 | |
|          "Should have exactly one or two registers to harden!");
 | |
|   assert((HardenOpRegs.size() == 1 ||
 | |
|           HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&
 | |
|          "Should not have two of the same registers!");
 | |
| 
 | |
|   // Remove any registers that have alreaded been checked.
 | |
|   llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) {
 | |
|     // See if this operand's register has already been checked.
 | |
|     auto It = AddrRegToHardenedReg.find(Op->getReg());
 | |
|     if (It == AddrRegToHardenedReg.end())
 | |
|       // Not checked, so retain this one.
 | |
|       return false;
 | |
| 
 | |
|     // Otherwise, we can directly update this operand and remove it.
 | |
|     Op->setReg(It->second);
 | |
|     return true;
 | |
|   });
 | |
|   // If there are none left, we're done.
 | |
|   if (HardenOpRegs.empty())
 | |
|     return;
 | |
| 
 | |
|   // Compute the current predicate state.
 | |
|   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
 | |
| 
 | |
|   auto InsertPt = MI.getIterator();
 | |
| 
 | |
|   // If EFLAGS are live and we don't have access to instructions that avoid
 | |
|   // clobbering EFLAGS we need to save and restore them. This in turn makes
 | |
|   // the EFLAGS no longer live.
 | |
|   unsigned FlagsReg = 0;
 | |
|   if (EFLAGSLive && !Subtarget->hasBMI2()) {
 | |
|     EFLAGSLive = false;
 | |
|     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
 | |
|   }
 | |
| 
 | |
|   for (MachineOperand *Op : HardenOpRegs) {
 | |
|     unsigned OpReg = Op->getReg();
 | |
|     auto *OpRC = MRI->getRegClass(OpReg);
 | |
|     unsigned TmpReg = MRI->createVirtualRegister(OpRC);
 | |
| 
 | |
|     // If this is a vector register, we'll need somewhat custom logic to handle
 | |
|     // hardening it.
 | |
|     if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) ||
 | |
|                                  OpRC->hasSuperClassEq(&X86::VR256RegClass))) {
 | |
|       assert(Subtarget->hasAVX2() && "AVX2-specific register classes!");
 | |
|       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass);
 | |
| 
 | |
|       // Move our state into a vector register.
 | |
|       // FIXME: We could skip this at the cost of longer encodings with AVX-512
 | |
|       // but that doesn't seem likely worth it.
 | |
|       unsigned VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass);
 | |
|       auto MovI =
 | |
|           BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg)
 | |
|               .addReg(StateReg);
 | |
|       (void)MovI;
 | |
|       ++NumInstsInserted;
 | |
|       LLVM_DEBUG(dbgs() << "  Inserting mov: "; MovI->dump(); dbgs() << "\n");
 | |
| 
 | |
|       // Broadcast it across the vector register.
 | |
|       unsigned VBStateReg = MRI->createVirtualRegister(OpRC);
 | |
|       auto BroadcastI = BuildMI(MBB, InsertPt, Loc,
 | |
|                                 TII->get(Is128Bit ? X86::VPBROADCASTQrr
 | |
|                                                   : X86::VPBROADCASTQYrr),
 | |
|                                 VBStateReg)
 | |
|                             .addReg(VStateReg);
 | |
|       (void)BroadcastI;
 | |
|       ++NumInstsInserted;
 | |
|       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
 | |
|                  dbgs() << "\n");
 | |
| 
 | |
|       // Merge our potential poison state into the value with a vector or.
 | |
|       auto OrI =
 | |
|           BuildMI(MBB, InsertPt, Loc,
 | |
|                   TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg)
 | |
|               .addReg(VBStateReg)
 | |
|               .addReg(OpReg);
 | |
|       (void)OrI;
 | |
|       ++NumInstsInserted;
 | |
|       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
 | |
|     } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) ||
 | |
|                OpRC->hasSuperClassEq(&X86::VR256XRegClass) ||
 | |
|                OpRC->hasSuperClassEq(&X86::VR512RegClass)) {
 | |
|       assert(Subtarget->hasAVX512() && "AVX512-specific register classes!");
 | |
|       bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass);
 | |
|       bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass);
 | |
|       if (Is128Bit || Is256Bit)
 | |
|         assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!");
 | |
| 
 | |
|       // Broadcast our state into a vector register.
 | |
|       unsigned VStateReg = MRI->createVirtualRegister(OpRC);
 | |
|       unsigned BroadcastOp =
 | |
|           Is128Bit ? X86::VPBROADCASTQrZ128r
 | |
|                    : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr;
 | |
|       auto BroadcastI =
 | |
|           BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg)
 | |
|               .addReg(StateReg);
 | |
|       (void)BroadcastI;
 | |
|       ++NumInstsInserted;
 | |
|       LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
 | |
|                  dbgs() << "\n");
 | |
| 
 | |
|       // Merge our potential poison state into the value with a vector or.
 | |
|       unsigned OrOp = Is128Bit ? X86::VPORQZ128rr
 | |
|                                : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr;
 | |
|       auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg)
 | |
|                      .addReg(VStateReg)
 | |
|                      .addReg(OpReg);
 | |
|       (void)OrI;
 | |
|       ++NumInstsInserted;
 | |
|       LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
 | |
|     } else {
 | |
|       // FIXME: Need to support GR32 here for 32-bit code.
 | |
|       assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&
 | |
|              "Not a supported register class for address hardening!");
 | |
| 
 | |
|       if (!EFLAGSLive) {
 | |
|         // Merge our potential poison state into the value with an or.
 | |
|         auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg)
 | |
|                        .addReg(StateReg)
 | |
|                        .addReg(OpReg);
 | |
|         OrI->addRegisterDead(X86::EFLAGS, TRI);
 | |
|         ++NumInstsInserted;
 | |
|         LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
 | |
|       } else {
 | |
|         // We need to avoid touching EFLAGS so shift out all but the least
 | |
|         // significant bit using the instruction that doesn't update flags.
 | |
|         auto ShiftI =
 | |
|             BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg)
 | |
|                 .addReg(OpReg)
 | |
|                 .addReg(StateReg);
 | |
|         (void)ShiftI;
 | |
|         ++NumInstsInserted;
 | |
|         LLVM_DEBUG(dbgs() << "  Inserting shrx: "; ShiftI->dump();
 | |
|                    dbgs() << "\n");
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Record this register as checked and update the operand.
 | |
|     assert(!AddrRegToHardenedReg.count(Op->getReg()) &&
 | |
|            "Should not have checked this register yet!");
 | |
|     AddrRegToHardenedReg[Op->getReg()] = TmpReg;
 | |
|     Op->setReg(TmpReg);
 | |
|     ++NumAddrRegsHardened;
 | |
|   }
 | |
| 
 | |
|   // And restore the flags if needed.
 | |
|   if (FlagsReg)
 | |
|     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
 | |
| }
 | |
| 
 | |
| MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
 | |
|     MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) {
 | |
|   assert(isDataInvariantLoad(InitialMI) &&
 | |
|          "Cannot get here with a non-invariant load!");
 | |
| 
 | |
|   // See if we can sink hardening the loaded value.
 | |
|   auto SinkCheckToSingleUse =
 | |
|       [&](MachineInstr &MI) -> Optional<MachineInstr *> {
 | |
|     unsigned DefReg = MI.getOperand(0).getReg();
 | |
| 
 | |
|     // We need to find a single use which we can sink the check. We can
 | |
|     // primarily do this because many uses may already end up checked on their
 | |
|     // own.
 | |
|     MachineInstr *SingleUseMI = nullptr;
 | |
|     for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) {
 | |
|       // If we're already going to harden this use, it is data invariant and
 | |
|       // within our block.
 | |
|       if (HardenedInstrs.count(&UseMI)) {
 | |
|         if (!isDataInvariantLoad(UseMI)) {
 | |
|           // If we've already decided to harden a non-load, we must have sunk
 | |
|           // some other post-load hardened instruction to it and it must itself
 | |
|           // be data-invariant.
 | |
|           assert(isDataInvariant(UseMI) &&
 | |
|                  "Data variant instruction being hardened!");
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Otherwise, this is a load and the load component can't be data
 | |
|         // invariant so check how this register is being used.
 | |
|         const MCInstrDesc &Desc = UseMI.getDesc();
 | |
|         int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
 | |
|         assert(MemRefBeginIdx >= 0 &&
 | |
|                "Should always have mem references here!");
 | |
|         MemRefBeginIdx += X86II::getOperandBias(Desc);
 | |
| 
 | |
|         MachineOperand &BaseMO =
 | |
|             UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
 | |
|         MachineOperand &IndexMO =
 | |
|             UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
 | |
|         if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) ||
 | |
|             (IndexMO.isReg() && IndexMO.getReg() == DefReg))
 | |
|           // The load uses the register as part of its address making it not
 | |
|           // invariant.
 | |
|           return {};
 | |
| 
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (SingleUseMI)
 | |
|         // We already have a single use, this would make two. Bail.
 | |
|         return {};
 | |
| 
 | |
|       // If this single use isn't data invariant, isn't in this block, or has
 | |
|       // interfering EFLAGS, we can't sink the hardening to it.
 | |
|       if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent())
 | |
|         return {};
 | |
| 
 | |
|       // If this instruction defines multiple registers bail as we won't harden
 | |
|       // all of them.
 | |
|       if (UseMI.getDesc().getNumDefs() > 1)
 | |
|         return {};
 | |
| 
 | |
|       // If this register isn't a virtual register we can't walk uses of sanely,
 | |
|       // just bail. Also check that its register class is one of the ones we
 | |
|       // can harden.
 | |
|       unsigned UseDefReg = UseMI.getOperand(0).getReg();
 | |
|       if (!TRI->isVirtualRegister(UseDefReg) ||
 | |
|           !canHardenRegister(UseDefReg))
 | |
|         return {};
 | |
| 
 | |
|       SingleUseMI = &UseMI;
 | |
|     }
 | |
| 
 | |
|     // If SingleUseMI is still null, there is no use that needs its own
 | |
|     // checking. Otherwise, it is the single use that needs checking.
 | |
|     return {SingleUseMI};
 | |
|   };
 | |
| 
 | |
|   MachineInstr *MI = &InitialMI;
 | |
|   while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) {
 | |
|     // Update which MI we're checking now.
 | |
|     MI = *SingleUse;
 | |
|     if (!MI)
 | |
|       break;
 | |
|   }
 | |
| 
 | |
|   return MI;
 | |
| }
 | |
| 
 | |
| bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) {
 | |
|   auto *RC = MRI->getRegClass(Reg);
 | |
|   int RegBytes = TRI->getRegSizeInBits(*RC) / 8;
 | |
|   if (RegBytes > 8)
 | |
|     // We don't support post-load hardening of vectors.
 | |
|     return false;
 | |
| 
 | |
|   // If this register class is explicitly constrained to a class that doesn't
 | |
|   // require REX prefix, we may not be able to satisfy that constraint when
 | |
|   // emitting the hardening instructions, so bail out here.
 | |
|   // FIXME: This seems like a pretty lame hack. The way this comes up is when we
 | |
|   // end up both with a NOREX and REX-only register as operands to the hardening
 | |
|   // instructions. It would be better to fix that code to handle this situation
 | |
|   // rather than hack around it in this way.
 | |
|   const TargetRegisterClass *NOREXRegClasses[] = {
 | |
|       &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass,
 | |
|       &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass};
 | |
|   if (RC == NOREXRegClasses[Log2_32(RegBytes)])
 | |
|     return false;
 | |
| 
 | |
|   const TargetRegisterClass *GPRRegClasses[] = {
 | |
|       &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass,
 | |
|       &X86::GR64RegClass};
 | |
|   return RC->hasSuperClassEq(GPRRegClasses[Log2_32(RegBytes)]);
 | |
| }
 | |
| 
 | |
| /// Harden a value in a register.
 | |
| ///
 | |
| /// This is the low-level logic to fully harden a value sitting in a register
 | |
| /// against leaking during speculative execution.
 | |
| ///
 | |
| /// Unlike hardening an address that is used by a load, this routine is required
 | |
| /// to hide *all* incoming bits in the register.
 | |
| ///
 | |
| /// `Reg` must be a virtual register. Currently, it is required to be a GPR no
 | |
| /// larger than the predicate state register. FIXME: We should support vector
 | |
| /// registers here by broadcasting the predicate state.
 | |
| ///
 | |
| /// The new, hardened virtual register is returned. It will have the same
 | |
| /// register class as `Reg`.
 | |
| unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
 | |
|     unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
 | |
|     DebugLoc Loc) {
 | |
|   assert(canHardenRegister(Reg) && "Cannot harden this register!");
 | |
|   assert(TRI->isVirtualRegister(Reg) && "Cannot harden a physical register!");
 | |
| 
 | |
|   auto *RC = MRI->getRegClass(Reg);
 | |
|   int Bytes = TRI->getRegSizeInBits(*RC) / 8;
 | |
| 
 | |
|   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
 | |
| 
 | |
|   // FIXME: Need to teach this about 32-bit mode.
 | |
|   if (Bytes != 8) {
 | |
|     unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit};
 | |
|     unsigned SubRegImm = SubRegImms[Log2_32(Bytes)];
 | |
|     unsigned NarrowStateReg = MRI->createVirtualRegister(RC);
 | |
|     BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg)
 | |
|         .addReg(StateReg, 0, SubRegImm);
 | |
|     StateReg = NarrowStateReg;
 | |
|   }
 | |
| 
 | |
|   unsigned FlagsReg = 0;
 | |
|   if (isEFLAGSLive(MBB, InsertPt, *TRI))
 | |
|     FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
 | |
| 
 | |
|   unsigned NewReg = MRI->createVirtualRegister(RC);
 | |
|   unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr};
 | |
|   unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)];
 | |
|   auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg)
 | |
|                  .addReg(StateReg)
 | |
|                  .addReg(Reg);
 | |
|   OrI->addRegisterDead(X86::EFLAGS, TRI);
 | |
|   ++NumInstsInserted;
 | |
|   LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
 | |
| 
 | |
|   if (FlagsReg)
 | |
|     restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
 | |
| 
 | |
|   return NewReg;
 | |
| }
 | |
| 
 | |
| /// Harden a load by hardening the loaded value in the defined register.
 | |
| ///
 | |
| /// We can harden a non-leaking load into a register without touching the
 | |
| /// address by just hiding all of the loaded bits during misspeculation. We use
 | |
| /// an `or` instruction to do this because we set up our poison value as all
 | |
| /// ones. And the goal is just for the loaded bits to not be exposed to
 | |
| /// execution and coercing them to one is sufficient.
 | |
| ///
 | |
| /// Returns the newly hardened register.
 | |
| unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) {
 | |
|   MachineBasicBlock &MBB = *MI.getParent();
 | |
|   DebugLoc Loc = MI.getDebugLoc();
 | |
| 
 | |
|   auto &DefOp = MI.getOperand(0);
 | |
|   unsigned OldDefReg = DefOp.getReg();
 | |
|   auto *DefRC = MRI->getRegClass(OldDefReg);
 | |
| 
 | |
|   // Because we want to completely replace the uses of this def'ed value with
 | |
|   // the hardened value, create a dedicated new register that will only be used
 | |
|   // to communicate the unhardened value to the hardening.
 | |
|   unsigned UnhardenedReg = MRI->createVirtualRegister(DefRC);
 | |
|   DefOp.setReg(UnhardenedReg);
 | |
| 
 | |
|   // Now harden this register's value, getting a hardened reg that is safe to
 | |
|   // use. Note that we insert the instructions to compute this *after* the
 | |
|   // defining instruction, not before it.
 | |
|   unsigned HardenedReg = hardenValueInRegister(
 | |
|       UnhardenedReg, MBB, std::next(MI.getIterator()), Loc);
 | |
| 
 | |
|   // Finally, replace the old register (which now only has the uses of the
 | |
|   // original def) with the hardened register.
 | |
|   MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg);
 | |
| 
 | |
|   ++NumPostLoadRegsHardened;
 | |
|   return HardenedReg;
 | |
| }
 | |
| 
 | |
| /// Harden a return instruction.
 | |
| ///
 | |
| /// Returns implicitly perform a load which we need to harden. Without hardening
 | |
| /// this load, an attacker my speculatively write over the return address to
 | |
| /// steer speculation of the return to an attacker controlled address. This is
 | |
| /// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
 | |
| /// this paper:
 | |
| /// https://people.csail.mit.edu/vlk/spectre11.pdf
 | |
| ///
 | |
| /// We can harden this by introducing an LFENCE that will delay any load of the
 | |
| /// return address until prior instructions have retired (and thus are not being
 | |
| /// speculated), or we can harden the address used by the implicit load: the
 | |
| /// stack pointer.
 | |
| ///
 | |
| /// If we are not using an LFENCE, hardening the stack pointer has an additional
 | |
| /// benefit: it allows us to pass the predicate state accumulated in this
 | |
| /// function back to the caller. In the absence of a BCBS attack on the return,
 | |
| /// the caller will typically be resumed and speculatively executed due to the
 | |
| /// Return Stack Buffer (RSB) prediction which is very accurate and has a high
 | |
| /// priority. It is possible that some code from the caller will be executed
 | |
| /// speculatively even during a BCBS-attacked return until the steering takes
 | |
| /// effect. Whenever this happens, the caller can recover the (poisoned)
 | |
| /// predicate state from the stack pointer and continue to harden loads.
 | |
| void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) {
 | |
|   MachineBasicBlock &MBB = *MI.getParent();
 | |
|   DebugLoc Loc = MI.getDebugLoc();
 | |
|   auto InsertPt = MI.getIterator();
 | |
| 
 | |
|   if (FenceCallAndRet)
 | |
|     // No need to fence here as we'll fence at the return site itself. That
 | |
|     // handles more cases than we can handle here.
 | |
|     return;
 | |
| 
 | |
|   // Take our predicate state, shift it to the high 17 bits (so that we keep
 | |
|   // pointers canonical) and merge it into RSP. This will allow the caller to
 | |
|   // extract it when we return (speculatively).
 | |
|   mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB));
 | |
| }
 | |
| 
 | |
| /// Trace the predicate state through a call.
 | |
| ///
 | |
| /// There are several layers of this needed to handle the full complexity of
 | |
| /// calls.
 | |
| ///
 | |
| /// First, we need to send the predicate state into the called function. We do
 | |
| /// this by merging it into the high bits of the stack pointer.
 | |
| ///
 | |
| /// For tail calls, this is all we need to do.
 | |
| ///
 | |
| /// For calls where we might return and resume the control flow, we need to
 | |
| /// extract the predicate state from the high bits of the stack pointer after
 | |
| /// control returns from the called function.
 | |
| ///
 | |
| /// We also need to verify that we intended to return to this location in the
 | |
| /// code. An attacker might arrange for the processor to mispredict the return
 | |
| /// to this valid but incorrect return address in the program rather than the
 | |
| /// correct one. See the paper on this attack, called "ret2spec" by the
 | |
| /// researchers, here:
 | |
| /// https://christian-rossow.de/publications/ret2spec-ccs2018.pdf
 | |
| ///
 | |
| /// The way we verify that we returned to the correct location is by preserving
 | |
| /// the expected return address across the call. One technique involves taking
 | |
| /// advantage of the red-zone to load the return address from `8(%rsp)` where it
 | |
| /// was left by the RET instruction when it popped `%rsp`. Alternatively, we can
 | |
| /// directly save the address into a register that will be preserved across the
 | |
| /// call. We compare this intended return address against the address
 | |
| /// immediately following the call (the observed return address). If these
 | |
| /// mismatch, we have detected misspeculation and can poison our predicate
 | |
| /// state.
 | |
| void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
 | |
|     MachineInstr &MI) {
 | |
|   MachineBasicBlock &MBB = *MI.getParent();
 | |
|   MachineFunction &MF = *MBB.getParent();
 | |
|   auto InsertPt = MI.getIterator();
 | |
|   DebugLoc Loc = MI.getDebugLoc();
 | |
| 
 | |
|   if (FenceCallAndRet) {
 | |
|     if (MI.isReturn())
 | |
|       // Tail call, we don't return to this function.
 | |
|       // FIXME: We should also handle noreturn calls.
 | |
|       return;
 | |
| 
 | |
|     // We don't need to fence before the call because the function should fence
 | |
|     // in its entry. However, we do need to fence after the call returns.
 | |
|     // Fencing before the return doesn't correctly handle cases where the return
 | |
|     // itself is mispredicted.
 | |
|     BuildMI(MBB, std::next(InsertPt), Loc, TII->get(X86::LFENCE));
 | |
|     ++NumInstsInserted;
 | |
|     ++NumLFENCEsInserted;
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // First, we transfer the predicate state into the called function by merging
 | |
|   // it into the stack pointer. This will kill the current def of the state.
 | |
|   unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
 | |
|   mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg);
 | |
| 
 | |
|   // If this call is also a return, it is a tail call and we don't need anything
 | |
|   // else to handle it so just return. Also, if there are no further
 | |
|   // instructions and no successors, this call does not return so we can also
 | |
|   // bail.
 | |
|   if (MI.isReturn() || (std::next(InsertPt) == MBB.end() && MBB.succ_empty()))
 | |
|     return;
 | |
| 
 | |
|   // Create a symbol to track the return address and attach it to the call
 | |
|   // machine instruction. We will lower extra symbols attached to call
 | |
|   // instructions as label immediately following the call.
 | |
|   MCSymbol *RetSymbol =
 | |
|       MF.getContext().createTempSymbol("slh_ret_addr",
 | |
|                                        /*AlwaysAddSuffix*/ true);
 | |
|   MI.setPostInstrSymbol(MF, RetSymbol);
 | |
| 
 | |
|   const TargetRegisterClass *AddrRC = &X86::GR64RegClass;
 | |
|   unsigned ExpectedRetAddrReg = 0;
 | |
| 
 | |
|   // If we have no red zones or if the function returns twice (possibly without
 | |
|   // using the `ret` instruction) like setjmp, we need to save the expected
 | |
|   // return address prior to the call.
 | |
|   if (!Subtarget->getFrameLowering()->has128ByteRedZone(MF) ||
 | |
|       MF.exposesReturnsTwice()) {
 | |
|     // If we don't have red zones, we need to compute the expected return
 | |
|     // address prior to the call and store it in a register that lives across
 | |
|     // the call.
 | |
|     //
 | |
|     // In some ways, this is doubly satisfying as a mitigation because it will
 | |
|     // also successfully detect stack smashing bugs in some cases (typically,
 | |
|     // when a callee-saved register is used and the callee doesn't push it onto
 | |
|     // the stack). But that isn't our primary goal, so we only use it as
 | |
|     // a fallback.
 | |
|     //
 | |
|     // FIXME: It isn't clear that this is reliable in the face of
 | |
|     // rematerialization in the register allocator. We somehow need to force
 | |
|     // that to not occur for this particular instruction, and instead to spill
 | |
|     // or otherwise preserve the value computed *prior* to the call.
 | |
|     //
 | |
|     // FIXME: It is even less clear why MachineCSE can't just fold this when we
 | |
|     // end up having to use identical instructions both before and after the
 | |
|     // call to feed the comparison.
 | |
|     ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
 | |
|     if (MF.getTarget().getCodeModel() == CodeModel::Small &&
 | |
|         !Subtarget->isPositionIndependent()) {
 | |
|       BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64ri32), ExpectedRetAddrReg)
 | |
|           .addSym(RetSymbol);
 | |
|     } else {
 | |
|       BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ExpectedRetAddrReg)
 | |
|           .addReg(/*Base*/ X86::RIP)
 | |
|           .addImm(/*Scale*/ 1)
 | |
|           .addReg(/*Index*/ 0)
 | |
|           .addSym(RetSymbol)
 | |
|           .addReg(/*Segment*/ 0);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Step past the call to handle when it returns.
 | |
|   ++InsertPt;
 | |
| 
 | |
|   // If we didn't pre-compute the expected return address into a register, then
 | |
|   // red zones are enabled and the return address is still available on the
 | |
|   // stack immediately after the call. As the very first instruction, we load it
 | |
|   // into a register.
 | |
|   if (!ExpectedRetAddrReg) {
 | |
|     ExpectedRetAddrReg = MRI->createVirtualRegister(AddrRC);
 | |
|     BuildMI(MBB, InsertPt, Loc, TII->get(X86::MOV64rm), ExpectedRetAddrReg)
 | |
|         .addReg(/*Base*/ X86::RSP)
 | |
|         .addImm(/*Scale*/ 1)
 | |
|         .addReg(/*Index*/ 0)
 | |
|         .addImm(/*Displacement*/ -8) // The stack pointer has been popped, so
 | |
|                                      // the return address is 8-bytes past it.
 | |
|         .addReg(/*Segment*/ 0);
 | |
|   }
 | |
| 
 | |
|   // Now we extract the callee's predicate state from the stack pointer.
 | |
|   unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc);
 | |
| 
 | |
|   // Test the expected return address against our actual address. If we can
 | |
|   // form this basic block's address as an immediate, this is easy. Otherwise
 | |
|   // we compute it.
 | |
|   if (MF.getTarget().getCodeModel() == CodeModel::Small &&
 | |
|       !Subtarget->isPositionIndependent()) {
 | |
|     // FIXME: Could we fold this with the load? It would require careful EFLAGS
 | |
|     // management.
 | |
|     BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64ri32))
 | |
|         .addReg(ExpectedRetAddrReg, RegState::Kill)
 | |
|         .addSym(RetSymbol);
 | |
|   } else {
 | |
|     unsigned ActualRetAddrReg = MRI->createVirtualRegister(AddrRC);
 | |
|     BuildMI(MBB, InsertPt, Loc, TII->get(X86::LEA64r), ActualRetAddrReg)
 | |
|         .addReg(/*Base*/ X86::RIP)
 | |
|         .addImm(/*Scale*/ 1)
 | |
|         .addReg(/*Index*/ 0)
 | |
|         .addSym(RetSymbol)
 | |
|         .addReg(/*Segment*/ 0);
 | |
|     BuildMI(MBB, InsertPt, Loc, TII->get(X86::CMP64rr))
 | |
|         .addReg(ExpectedRetAddrReg, RegState::Kill)
 | |
|         .addReg(ActualRetAddrReg, RegState::Kill);
 | |
|   }
 | |
| 
 | |
|   // Now conditionally update the predicate state we just extracted if we ended
 | |
|   // up at a different return address than expected.
 | |
|   int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
 | |
|   auto CMovOp = X86::getCMovOpcode(PredStateSizeInBytes);
 | |
| 
 | |
|   unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
 | |
|   auto CMovI = BuildMI(MBB, InsertPt, Loc, TII->get(CMovOp), UpdatedStateReg)
 | |
|                    .addReg(NewStateReg, RegState::Kill)
 | |
|                    .addReg(PS->PoisonReg)
 | |
|                    .addImm(X86::COND_NE);
 | |
|   CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
 | |
|   ++NumInstsInserted;
 | |
|   LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump(); dbgs() << "\n");
 | |
| 
 | |
|   PS->SSA.AddAvailableValue(&MBB, UpdatedStateReg);
 | |
| }
 | |
| 
 | |
| /// An attacker may speculatively store over a value that is then speculatively
 | |
| /// loaded and used as the target of an indirect call or jump instruction. This
 | |
| /// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
 | |
| /// in this paper:
 | |
| /// https://people.csail.mit.edu/vlk/spectre11.pdf
 | |
| ///
 | |
| /// When this happens, the speculative execution of the call or jump will end up
 | |
| /// being steered to this attacker controlled address. While most such loads
 | |
| /// will be adequately hardened already, we want to ensure that they are
 | |
| /// definitively treated as needing post-load hardening. While address hardening
 | |
| /// is sufficient to prevent secret data from leaking to the attacker, it may
 | |
| /// not be sufficient to prevent an attacker from steering speculative
 | |
| /// execution. We forcibly unfolded all relevant loads above and so will always
 | |
| /// have an opportunity to post-load harden here, we just need to scan for cases
 | |
| /// not already flagged and add them.
 | |
| void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
 | |
|     MachineInstr &MI,
 | |
|     SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
 | |
|   switch (MI.getOpcode()) {
 | |
|   case X86::FARCALL16m:
 | |
|   case X86::FARCALL32m:
 | |
|   case X86::FARCALL64:
 | |
|   case X86::FARJMP16m:
 | |
|   case X86::FARJMP32m:
 | |
|   case X86::FARJMP64:
 | |
|     // We don't need to harden either far calls or far jumps as they are
 | |
|     // safe from Spectre.
 | |
|     return;
 | |
| 
 | |
|   default:
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // We should never see a loading instruction at this point, as those should
 | |
|   // have been unfolded.
 | |
|   assert(!MI.mayLoad() && "Found a lingering loading instruction!");
 | |
| 
 | |
|   // If the first operand isn't a register, this is a branch or call
 | |
|   // instruction with an immediate operand which doesn't need to be hardened.
 | |
|   if (!MI.getOperand(0).isReg())
 | |
|     return;
 | |
| 
 | |
|   // For all of these, the target register is the first operand of the
 | |
|   // instruction.
 | |
|   auto &TargetOp = MI.getOperand(0);
 | |
|   unsigned OldTargetReg = TargetOp.getReg();
 | |
| 
 | |
|   // Try to lookup a hardened version of this register. We retain a reference
 | |
|   // here as we want to update the map to track any newly computed hardened
 | |
|   // register.
 | |
|   unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg];
 | |
| 
 | |
|   // If we don't have a hardened register yet, compute one. Otherwise, just use
 | |
|   // the already hardened register.
 | |
|   //
 | |
|   // FIXME: It is a little suspect that we use partially hardened registers that
 | |
|   // only feed addresses. The complexity of partial hardening with SHRX
 | |
|   // continues to pile up. Should definitively measure its value and consider
 | |
|   // eliminating it.
 | |
|   if (!HardenedTargetReg)
 | |
|     HardenedTargetReg = hardenValueInRegister(
 | |
|         OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc());
 | |
| 
 | |
|   // Set the target operand to the hardened register.
 | |
|   TargetOp.setReg(HardenedTargetReg);
 | |
| 
 | |
|   ++NumCallsOrJumpsHardened;
 | |
| }
 | |
| 
 | |
| INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, PASS_KEY,
 | |
|                       "X86 speculative load hardener", false, false)
 | |
| INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, PASS_KEY,
 | |
|                     "X86 speculative load hardener", false, false)
 | |
| 
 | |
| FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() {
 | |
|   return new X86SpeculativeLoadHardeningPass();
 | |
| }
 |