1235 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1235 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- Inliner.cpp - Code common to all inliners --------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the mechanics required to implement inlining without
 | 
						|
// missing any calls and updating the call graph.  The decisions of which calls
 | 
						|
// are profitable to inline are implemented elsewhere.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/IPO/Inliner.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/None.h"
 | 
						|
#include "llvm/ADT/Optional.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/StringRef.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/AssumptionCache.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/CGSCCPassManager.h"
 | 
						|
#include "llvm/Analysis/CallGraph.h"
 | 
						|
#include "llvm/Analysis/InlineCost.h"
 | 
						|
#include "llvm/Analysis/LazyCallGraph.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/ProfileSummaryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/IR/Attributes.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DebugLoc.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/Instruction.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Metadata.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/PassManager.h"
 | 
						|
#include "llvm/IR/User.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Casting.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/ImportedFunctionsInliningStatistics.h"
 | 
						|
#include "llvm/Transforms/Utils/ModuleUtils.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cassert>
 | 
						|
#include <functional>
 | 
						|
#include <sstream>
 | 
						|
#include <tuple>
 | 
						|
#include <utility>
 | 
						|
#include <vector>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "inline"
 | 
						|
 | 
						|
STATISTIC(NumInlined, "Number of functions inlined");
 | 
						|
STATISTIC(NumCallsDeleted, "Number of call sites deleted, not inlined");
 | 
						|
STATISTIC(NumDeleted, "Number of functions deleted because all callers found");
 | 
						|
STATISTIC(NumMergedAllocas, "Number of allocas merged together");
 | 
						|
 | 
						|
// This weirdly named statistic tracks the number of times that, when attempting
 | 
						|
// to inline a function A into B, we analyze the callers of B in order to see
 | 
						|
// if those would be more profitable and blocked inline steps.
 | 
						|
STATISTIC(NumCallerCallersAnalyzed, "Number of caller-callers analyzed");
 | 
						|
 | 
						|
/// Flag to disable manual alloca merging.
 | 
						|
///
 | 
						|
/// Merging of allocas was originally done as a stack-size saving technique
 | 
						|
/// prior to LLVM's code generator having support for stack coloring based on
 | 
						|
/// lifetime markers. It is now in the process of being removed. To experiment
 | 
						|
/// with disabling it and relying fully on lifetime marker based stack
 | 
						|
/// coloring, you can pass this flag to LLVM.
 | 
						|
static cl::opt<bool>
 | 
						|
    DisableInlinedAllocaMerging("disable-inlined-alloca-merging",
 | 
						|
                                cl::init(false), cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
enum class InlinerFunctionImportStatsOpts {
 | 
						|
  No = 0,
 | 
						|
  Basic = 1,
 | 
						|
  Verbose = 2,
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
static cl::opt<InlinerFunctionImportStatsOpts> InlinerFunctionImportStats(
 | 
						|
    "inliner-function-import-stats",
 | 
						|
    cl::init(InlinerFunctionImportStatsOpts::No),
 | 
						|
    cl::values(clEnumValN(InlinerFunctionImportStatsOpts::Basic, "basic",
 | 
						|
                          "basic statistics"),
 | 
						|
               clEnumValN(InlinerFunctionImportStatsOpts::Verbose, "verbose",
 | 
						|
                          "printing of statistics for each inlined function")),
 | 
						|
    cl::Hidden, cl::desc("Enable inliner stats for imported functions"));
 | 
						|
 | 
						|
/// Flag to add inline messages as callsite attributes 'inline-remark'.
 | 
						|
static cl::opt<bool>
 | 
						|
    InlineRemarkAttribute("inline-remark-attribute", cl::init(false),
 | 
						|
                          cl::Hidden,
 | 
						|
                          cl::desc("Enable adding inline-remark attribute to"
 | 
						|
                                   " callsites processed by inliner but decided"
 | 
						|
                                   " to be not inlined"));
 | 
						|
 | 
						|
LegacyInlinerBase::LegacyInlinerBase(char &ID) : CallGraphSCCPass(ID) {}
 | 
						|
 | 
						|
LegacyInlinerBase::LegacyInlinerBase(char &ID, bool InsertLifetime)
 | 
						|
    : CallGraphSCCPass(ID), InsertLifetime(InsertLifetime) {}
 | 
						|
 | 
						|
/// For this class, we declare that we require and preserve the call graph.
 | 
						|
/// If the derived class implements this method, it should
 | 
						|
/// always explicitly call the implementation here.
 | 
						|
void LegacyInlinerBase::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<AssumptionCacheTracker>();
 | 
						|
  AU.addRequired<ProfileSummaryInfoWrapperPass>();
 | 
						|
  AU.addRequired<TargetLibraryInfoWrapperPass>();
 | 
						|
  getAAResultsAnalysisUsage(AU);
 | 
						|
  CallGraphSCCPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
using InlinedArrayAllocasTy = DenseMap<ArrayType *, std::vector<AllocaInst *>>;
 | 
						|
 | 
						|
/// Look at all of the allocas that we inlined through this call site.  If we
 | 
						|
/// have already inlined other allocas through other calls into this function,
 | 
						|
/// then we know that they have disjoint lifetimes and that we can merge them.
 | 
						|
///
 | 
						|
/// There are many heuristics possible for merging these allocas, and the
 | 
						|
/// different options have different tradeoffs.  One thing that we *really*
 | 
						|
/// don't want to hurt is SRoA: once inlining happens, often allocas are no
 | 
						|
/// longer address taken and so they can be promoted.
 | 
						|
///
 | 
						|
/// Our "solution" for that is to only merge allocas whose outermost type is an
 | 
						|
/// array type.  These are usually not promoted because someone is using a
 | 
						|
/// variable index into them.  These are also often the most important ones to
 | 
						|
/// merge.
 | 
						|
///
 | 
						|
/// A better solution would be to have real memory lifetime markers in the IR
 | 
						|
/// and not have the inliner do any merging of allocas at all.  This would
 | 
						|
/// allow the backend to do proper stack slot coloring of all allocas that
 | 
						|
/// *actually make it to the backend*, which is really what we want.
 | 
						|
///
 | 
						|
/// Because we don't have this information, we do this simple and useful hack.
 | 
						|
static void mergeInlinedArrayAllocas(
 | 
						|
    Function *Caller, InlineFunctionInfo &IFI,
 | 
						|
    InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory) {
 | 
						|
  SmallPtrSet<AllocaInst *, 16> UsedAllocas;
 | 
						|
 | 
						|
  // When processing our SCC, check to see if CS was inlined from some other
 | 
						|
  // call site.  For example, if we're processing "A" in this code:
 | 
						|
  //   A() { B() }
 | 
						|
  //   B() { x = alloca ... C() }
 | 
						|
  //   C() { y = alloca ... }
 | 
						|
  // Assume that C was not inlined into B initially, and so we're processing A
 | 
						|
  // and decide to inline B into A.  Doing this makes an alloca available for
 | 
						|
  // reuse and makes a callsite (C) available for inlining.  When we process
 | 
						|
  // the C call site we don't want to do any alloca merging between X and Y
 | 
						|
  // because their scopes are not disjoint.  We could make this smarter by
 | 
						|
  // keeping track of the inline history for each alloca in the
 | 
						|
  // InlinedArrayAllocas but this isn't likely to be a significant win.
 | 
						|
  if (InlineHistory != -1) // Only do merging for top-level call sites in SCC.
 | 
						|
    return;
 | 
						|
 | 
						|
  // Loop over all the allocas we have so far and see if they can be merged with
 | 
						|
  // a previously inlined alloca.  If not, remember that we had it.
 | 
						|
  for (unsigned AllocaNo = 0, e = IFI.StaticAllocas.size(); AllocaNo != e;
 | 
						|
       ++AllocaNo) {
 | 
						|
    AllocaInst *AI = IFI.StaticAllocas[AllocaNo];
 | 
						|
 | 
						|
    // Don't bother trying to merge array allocations (they will usually be
 | 
						|
    // canonicalized to be an allocation *of* an array), or allocations whose
 | 
						|
    // type is not itself an array (because we're afraid of pessimizing SRoA).
 | 
						|
    ArrayType *ATy = dyn_cast<ArrayType>(AI->getAllocatedType());
 | 
						|
    if (!ATy || AI->isArrayAllocation())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Get the list of all available allocas for this array type.
 | 
						|
    std::vector<AllocaInst *> &AllocasForType = InlinedArrayAllocas[ATy];
 | 
						|
 | 
						|
    // Loop over the allocas in AllocasForType to see if we can reuse one.  Note
 | 
						|
    // that we have to be careful not to reuse the same "available" alloca for
 | 
						|
    // multiple different allocas that we just inlined, we use the 'UsedAllocas'
 | 
						|
    // set to keep track of which "available" allocas are being used by this
 | 
						|
    // function.  Also, AllocasForType can be empty of course!
 | 
						|
    bool MergedAwayAlloca = false;
 | 
						|
    for (AllocaInst *AvailableAlloca : AllocasForType) {
 | 
						|
      unsigned Align1 = AI->getAlignment(),
 | 
						|
               Align2 = AvailableAlloca->getAlignment();
 | 
						|
 | 
						|
      // The available alloca has to be in the right function, not in some other
 | 
						|
      // function in this SCC.
 | 
						|
      if (AvailableAlloca->getParent() != AI->getParent())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // If the inlined function already uses this alloca then we can't reuse
 | 
						|
      // it.
 | 
						|
      if (!UsedAllocas.insert(AvailableAlloca).second)
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Otherwise, we *can* reuse it, RAUW AI into AvailableAlloca and declare
 | 
						|
      // success!
 | 
						|
      LLVM_DEBUG(dbgs() << "    ***MERGED ALLOCA: " << *AI
 | 
						|
                        << "\n\t\tINTO: " << *AvailableAlloca << '\n');
 | 
						|
 | 
						|
      // Move affected dbg.declare calls immediately after the new alloca to
 | 
						|
      // avoid the situation when a dbg.declare precedes its alloca.
 | 
						|
      if (auto *L = LocalAsMetadata::getIfExists(AI))
 | 
						|
        if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
 | 
						|
          for (User *U : MDV->users())
 | 
						|
            if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
 | 
						|
              DDI->moveBefore(AvailableAlloca->getNextNode());
 | 
						|
 | 
						|
      AI->replaceAllUsesWith(AvailableAlloca);
 | 
						|
 | 
						|
      if (Align1 != Align2) {
 | 
						|
        if (!Align1 || !Align2) {
 | 
						|
          const DataLayout &DL = Caller->getParent()->getDataLayout();
 | 
						|
          unsigned TypeAlign = DL.getABITypeAlignment(AI->getAllocatedType());
 | 
						|
 | 
						|
          Align1 = Align1 ? Align1 : TypeAlign;
 | 
						|
          Align2 = Align2 ? Align2 : TypeAlign;
 | 
						|
        }
 | 
						|
 | 
						|
        if (Align1 > Align2)
 | 
						|
          AvailableAlloca->setAlignment(AI->getAlignment());
 | 
						|
      }
 | 
						|
 | 
						|
      AI->eraseFromParent();
 | 
						|
      MergedAwayAlloca = true;
 | 
						|
      ++NumMergedAllocas;
 | 
						|
      IFI.StaticAllocas[AllocaNo] = nullptr;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we already nuked the alloca, we're done with it.
 | 
						|
    if (MergedAwayAlloca)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If we were unable to merge away the alloca either because there are no
 | 
						|
    // allocas of the right type available or because we reused them all
 | 
						|
    // already, remember that this alloca came from an inlined function and mark
 | 
						|
    // it used so we don't reuse it for other allocas from this inline
 | 
						|
    // operation.
 | 
						|
    AllocasForType.push_back(AI);
 | 
						|
    UsedAllocas.insert(AI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If it is possible to inline the specified call site,
 | 
						|
/// do so and update the CallGraph for this operation.
 | 
						|
///
 | 
						|
/// This function also does some basic book-keeping to update the IR.  The
 | 
						|
/// InlinedArrayAllocas map keeps track of any allocas that are already
 | 
						|
/// available from other functions inlined into the caller.  If we are able to
 | 
						|
/// inline this call site we attempt to reuse already available allocas or add
 | 
						|
/// any new allocas to the set if not possible.
 | 
						|
static InlineResult InlineCallIfPossible(
 | 
						|
    CallSite CS, InlineFunctionInfo &IFI,
 | 
						|
    InlinedArrayAllocasTy &InlinedArrayAllocas, int InlineHistory,
 | 
						|
    bool InsertLifetime, function_ref<AAResults &(Function &)> &AARGetter,
 | 
						|
    ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
 | 
						|
  Function *Callee = CS.getCalledFunction();
 | 
						|
  Function *Caller = CS.getCaller();
 | 
						|
 | 
						|
  AAResults &AAR = AARGetter(*Callee);
 | 
						|
 | 
						|
  // Try to inline the function.  Get the list of static allocas that were
 | 
						|
  // inlined.
 | 
						|
  InlineResult IR = InlineFunction(CS, IFI, &AAR, InsertLifetime);
 | 
						|
  if (!IR)
 | 
						|
    return IR;
 | 
						|
 | 
						|
  if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
 | 
						|
    ImportedFunctionsStats.recordInline(*Caller, *Callee);
 | 
						|
 | 
						|
  AttributeFuncs::mergeAttributesForInlining(*Caller, *Callee);
 | 
						|
 | 
						|
  if (!DisableInlinedAllocaMerging)
 | 
						|
    mergeInlinedArrayAllocas(Caller, IFI, InlinedArrayAllocas, InlineHistory);
 | 
						|
 | 
						|
  return IR; // success
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if inlining of CS can block the caller from being
 | 
						|
/// inlined which is proved to be more beneficial. \p IC is the
 | 
						|
/// estimated inline cost associated with callsite \p CS.
 | 
						|
/// \p TotalSecondaryCost will be set to the estimated cost of inlining the
 | 
						|
/// caller if \p CS is suppressed for inlining.
 | 
						|
static bool
 | 
						|
shouldBeDeferred(Function *Caller, CallSite CS, InlineCost IC,
 | 
						|
                 int &TotalSecondaryCost,
 | 
						|
                 function_ref<InlineCost(CallSite CS)> GetInlineCost) {
 | 
						|
  // For now we only handle local or inline functions.
 | 
						|
  if (!Caller->hasLocalLinkage() && !Caller->hasLinkOnceODRLinkage())
 | 
						|
    return false;
 | 
						|
  // If the cost of inlining CS is non-positive, it is not going to prevent the
 | 
						|
  // caller from being inlined into its callers and hence we don't need to
 | 
						|
  // defer.
 | 
						|
  if (IC.getCost() <= 0)
 | 
						|
    return false;
 | 
						|
  // Try to detect the case where the current inlining candidate caller (call
 | 
						|
  // it B) is a static or linkonce-ODR function and is an inlining candidate
 | 
						|
  // elsewhere, and the current candidate callee (call it C) is large enough
 | 
						|
  // that inlining it into B would make B too big to inline later. In these
 | 
						|
  // circumstances it may be best not to inline C into B, but to inline B into
 | 
						|
  // its callers.
 | 
						|
  //
 | 
						|
  // This only applies to static and linkonce-ODR functions because those are
 | 
						|
  // expected to be available for inlining in the translation units where they
 | 
						|
  // are used. Thus we will always have the opportunity to make local inlining
 | 
						|
  // decisions. Importantly the linkonce-ODR linkage covers inline functions
 | 
						|
  // and templates in C++.
 | 
						|
  //
 | 
						|
  // FIXME: All of this logic should be sunk into getInlineCost. It relies on
 | 
						|
  // the internal implementation of the inline cost metrics rather than
 | 
						|
  // treating them as truly abstract units etc.
 | 
						|
  TotalSecondaryCost = 0;
 | 
						|
  // The candidate cost to be imposed upon the current function.
 | 
						|
  int CandidateCost = IC.getCost() - 1;
 | 
						|
  // If the caller has local linkage and can be inlined to all its callers, we
 | 
						|
  // can apply a huge negative bonus to TotalSecondaryCost.
 | 
						|
  bool ApplyLastCallBonus = Caller->hasLocalLinkage() && !Caller->hasOneUse();
 | 
						|
  // This bool tracks what happens if we DO inline C into B.
 | 
						|
  bool inliningPreventsSomeOuterInline = false;
 | 
						|
  for (User *U : Caller->users()) {
 | 
						|
    // If the caller will not be removed (either because it does not have a
 | 
						|
    // local linkage or because the LastCallToStaticBonus has been already
 | 
						|
    // applied), then we can exit the loop early.
 | 
						|
    if (!ApplyLastCallBonus && TotalSecondaryCost >= IC.getCost())
 | 
						|
      return false;
 | 
						|
    CallSite CS2(U);
 | 
						|
 | 
						|
    // If this isn't a call to Caller (it could be some other sort
 | 
						|
    // of reference) skip it.  Such references will prevent the caller
 | 
						|
    // from being removed.
 | 
						|
    if (!CS2 || CS2.getCalledFunction() != Caller) {
 | 
						|
      ApplyLastCallBonus = false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    InlineCost IC2 = GetInlineCost(CS2);
 | 
						|
    ++NumCallerCallersAnalyzed;
 | 
						|
    if (!IC2) {
 | 
						|
      ApplyLastCallBonus = false;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    if (IC2.isAlways())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // See if inlining of the original callsite would erase the cost delta of
 | 
						|
    // this callsite. We subtract off the penalty for the call instruction,
 | 
						|
    // which we would be deleting.
 | 
						|
    if (IC2.getCostDelta() <= CandidateCost) {
 | 
						|
      inliningPreventsSomeOuterInline = true;
 | 
						|
      TotalSecondaryCost += IC2.getCost();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // If all outer calls to Caller would get inlined, the cost for the last
 | 
						|
  // one is set very low by getInlineCost, in anticipation that Caller will
 | 
						|
  // be removed entirely.  We did not account for this above unless there
 | 
						|
  // is only one caller of Caller.
 | 
						|
  if (ApplyLastCallBonus)
 | 
						|
    TotalSecondaryCost -= InlineConstants::LastCallToStaticBonus;
 | 
						|
 | 
						|
  if (inliningPreventsSomeOuterInline && TotalSecondaryCost < IC.getCost())
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static std::basic_ostream<char> &operator<<(std::basic_ostream<char> &R,
 | 
						|
                                            const ore::NV &Arg) {
 | 
						|
  return R << Arg.Val;
 | 
						|
}
 | 
						|
 | 
						|
template <class RemarkT>
 | 
						|
RemarkT &operator<<(RemarkT &&R, const InlineCost &IC) {
 | 
						|
  using namespace ore;
 | 
						|
  if (IC.isAlways()) {
 | 
						|
    R << "(cost=always)";
 | 
						|
  } else if (IC.isNever()) {
 | 
						|
    R << "(cost=never)";
 | 
						|
  } else {
 | 
						|
    R << "(cost=" << ore::NV("Cost", IC.getCost())
 | 
						|
      << ", threshold=" << ore::NV("Threshold", IC.getThreshold()) << ")";
 | 
						|
  }
 | 
						|
  if (const char *Reason = IC.getReason())
 | 
						|
    R << ": " << ore::NV("Reason", Reason);
 | 
						|
  return R;
 | 
						|
}
 | 
						|
 | 
						|
static std::string inlineCostStr(const InlineCost &IC) {
 | 
						|
  std::stringstream Remark;
 | 
						|
  Remark << IC;
 | 
						|
  return Remark.str();
 | 
						|
}
 | 
						|
 | 
						|
/// Return the cost only if the inliner should attempt to inline at the given
 | 
						|
/// CallSite. If we return the cost, we will emit an optimisation remark later
 | 
						|
/// using that cost, so we won't do so from this function.
 | 
						|
static Optional<InlineCost>
 | 
						|
shouldInline(CallSite CS, function_ref<InlineCost(CallSite CS)> GetInlineCost,
 | 
						|
             OptimizationRemarkEmitter &ORE) {
 | 
						|
  using namespace ore;
 | 
						|
 | 
						|
  InlineCost IC = GetInlineCost(CS);
 | 
						|
  Instruction *Call = CS.getInstruction();
 | 
						|
  Function *Callee = CS.getCalledFunction();
 | 
						|
  Function *Caller = CS.getCaller();
 | 
						|
 | 
						|
  if (IC.isAlways()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC)
 | 
						|
                      << ", Call: " << *CS.getInstruction() << "\n");
 | 
						|
    return IC;
 | 
						|
  }
 | 
						|
 | 
						|
  if (IC.isNever()) {
 | 
						|
    LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC)
 | 
						|
                      << ", Call: " << *CS.getInstruction() << "\n");
 | 
						|
    ORE.emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call)
 | 
						|
             << NV("Callee", Callee) << " not inlined into "
 | 
						|
             << NV("Caller", Caller) << " because it should never be inlined "
 | 
						|
             << IC;
 | 
						|
    });
 | 
						|
    return IC;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!IC) {
 | 
						|
    LLVM_DEBUG(dbgs() << "    NOT Inlining " << inlineCostStr(IC)
 | 
						|
                      << ", Call: " << *CS.getInstruction() << "\n");
 | 
						|
    ORE.emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "TooCostly", Call)
 | 
						|
             << NV("Callee", Callee) << " not inlined into "
 | 
						|
             << NV("Caller", Caller) << " because too costly to inline " << IC;
 | 
						|
    });
 | 
						|
    return IC;
 | 
						|
  }
 | 
						|
 | 
						|
  int TotalSecondaryCost = 0;
 | 
						|
  if (shouldBeDeferred(Caller, CS, IC, TotalSecondaryCost, GetInlineCost)) {
 | 
						|
    LLVM_DEBUG(dbgs() << "    NOT Inlining: " << *CS.getInstruction()
 | 
						|
                      << " Cost = " << IC.getCost()
 | 
						|
                      << ", outer Cost = " << TotalSecondaryCost << '\n');
 | 
						|
    ORE.emit([&]() {
 | 
						|
      return OptimizationRemarkMissed(DEBUG_TYPE, "IncreaseCostInOtherContexts",
 | 
						|
                                      Call)
 | 
						|
             << "Not inlining. Cost of inlining " << NV("Callee", Callee)
 | 
						|
             << " increases the cost of inlining " << NV("Caller", Caller)
 | 
						|
             << " in other contexts";
 | 
						|
    });
 | 
						|
 | 
						|
    // IC does not bool() to false, so get an InlineCost that will.
 | 
						|
    // This will not be inspected to make an error message.
 | 
						|
    return None;
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << "    Inlining " << inlineCostStr(IC)
 | 
						|
                    << ", Call: " << *CS.getInstruction() << '\n');
 | 
						|
  return IC;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the specified inline history ID
 | 
						|
/// indicates an inline history that includes the specified function.
 | 
						|
static bool InlineHistoryIncludes(
 | 
						|
    Function *F, int InlineHistoryID,
 | 
						|
    const SmallVectorImpl<std::pair<Function *, int>> &InlineHistory) {
 | 
						|
  while (InlineHistoryID != -1) {
 | 
						|
    assert(unsigned(InlineHistoryID) < InlineHistory.size() &&
 | 
						|
           "Invalid inline history ID");
 | 
						|
    if (InlineHistory[InlineHistoryID].first == F)
 | 
						|
      return true;
 | 
						|
    InlineHistoryID = InlineHistory[InlineHistoryID].second;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool LegacyInlinerBase::doInitialization(CallGraph &CG) {
 | 
						|
  if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
 | 
						|
    ImportedFunctionsStats.setModuleInfo(CG.getModule());
 | 
						|
  return false; // No changes to CallGraph.
 | 
						|
}
 | 
						|
 | 
						|
bool LegacyInlinerBase::runOnSCC(CallGraphSCC &SCC) {
 | 
						|
  if (skipSCC(SCC))
 | 
						|
    return false;
 | 
						|
  return inlineCalls(SCC);
 | 
						|
}
 | 
						|
 | 
						|
static void emit_inlined_into(OptimizationRemarkEmitter &ORE, DebugLoc &DLoc,
 | 
						|
                              const BasicBlock *Block, const Function &Callee,
 | 
						|
                              const Function &Caller, const InlineCost &IC) {
 | 
						|
  ORE.emit([&]() {
 | 
						|
    bool AlwaysInline = IC.isAlways();
 | 
						|
    StringRef RemarkName = AlwaysInline ? "AlwaysInline" : "Inlined";
 | 
						|
    return OptimizationRemark(DEBUG_TYPE, RemarkName, DLoc, Block)
 | 
						|
           << ore::NV("Callee", &Callee) << " inlined into "
 | 
						|
           << ore::NV("Caller", &Caller) << " with " << IC;
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
static void setInlineRemark(CallSite &CS, StringRef message) {
 | 
						|
  if (!InlineRemarkAttribute)
 | 
						|
    return;
 | 
						|
 | 
						|
  Attribute attr = Attribute::get(CS->getContext(), "inline-remark", message);
 | 
						|
  CS.addAttribute(AttributeList::FunctionIndex, attr);
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
inlineCallsImpl(CallGraphSCC &SCC, CallGraph &CG,
 | 
						|
                std::function<AssumptionCache &(Function &)> GetAssumptionCache,
 | 
						|
                ProfileSummaryInfo *PSI, TargetLibraryInfo &TLI,
 | 
						|
                bool InsertLifetime,
 | 
						|
                function_ref<InlineCost(CallSite CS)> GetInlineCost,
 | 
						|
                function_ref<AAResults &(Function &)> AARGetter,
 | 
						|
                ImportedFunctionsInliningStatistics &ImportedFunctionsStats) {
 | 
						|
  SmallPtrSet<Function *, 8> SCCFunctions;
 | 
						|
  LLVM_DEBUG(dbgs() << "Inliner visiting SCC:");
 | 
						|
  for (CallGraphNode *Node : SCC) {
 | 
						|
    Function *F = Node->getFunction();
 | 
						|
    if (F)
 | 
						|
      SCCFunctions.insert(F);
 | 
						|
    LLVM_DEBUG(dbgs() << " " << (F ? F->getName() : "INDIRECTNODE"));
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan through and identify all call sites ahead of time so that we only
 | 
						|
  // inline call sites in the original functions, not call sites that result
 | 
						|
  // from inlining other functions.
 | 
						|
  SmallVector<std::pair<CallSite, int>, 16> CallSites;
 | 
						|
 | 
						|
  // When inlining a callee produces new call sites, we want to keep track of
 | 
						|
  // the fact that they were inlined from the callee.  This allows us to avoid
 | 
						|
  // infinite inlining in some obscure cases.  To represent this, we use an
 | 
						|
  // index into the InlineHistory vector.
 | 
						|
  SmallVector<std::pair<Function *, int>, 8> InlineHistory;
 | 
						|
 | 
						|
  for (CallGraphNode *Node : SCC) {
 | 
						|
    Function *F = Node->getFunction();
 | 
						|
    if (!F || F->isDeclaration())
 | 
						|
      continue;
 | 
						|
 | 
						|
    OptimizationRemarkEmitter ORE(F);
 | 
						|
    for (BasicBlock &BB : *F)
 | 
						|
      for (Instruction &I : BB) {
 | 
						|
        CallSite CS(cast<Value>(&I));
 | 
						|
        // If this isn't a call, or it is a call to an intrinsic, it can
 | 
						|
        // never be inlined.
 | 
						|
        if (!CS || isa<IntrinsicInst>(I))
 | 
						|
          continue;
 | 
						|
 | 
						|
        // If this is a direct call to an external function, we can never inline
 | 
						|
        // it.  If it is an indirect call, inlining may resolve it to be a
 | 
						|
        // direct call, so we keep it.
 | 
						|
        if (Function *Callee = CS.getCalledFunction())
 | 
						|
          if (Callee->isDeclaration()) {
 | 
						|
            using namespace ore;
 | 
						|
 | 
						|
            setInlineRemark(CS, "unavailable definition");
 | 
						|
            ORE.emit([&]() {
 | 
						|
              return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
 | 
						|
                     << NV("Callee", Callee) << " will not be inlined into "
 | 
						|
                     << NV("Caller", CS.getCaller())
 | 
						|
                     << " because its definition is unavailable"
 | 
						|
                     << setIsVerbose();
 | 
						|
            });
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
 | 
						|
        CallSites.push_back(std::make_pair(CS, -1));
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  LLVM_DEBUG(dbgs() << ": " << CallSites.size() << " call sites.\n");
 | 
						|
 | 
						|
  // If there are no calls in this function, exit early.
 | 
						|
  if (CallSites.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now that we have all of the call sites, move the ones to functions in the
 | 
						|
  // current SCC to the end of the list.
 | 
						|
  unsigned FirstCallInSCC = CallSites.size();
 | 
						|
  for (unsigned i = 0; i < FirstCallInSCC; ++i)
 | 
						|
    if (Function *F = CallSites[i].first.getCalledFunction())
 | 
						|
      if (SCCFunctions.count(F))
 | 
						|
        std::swap(CallSites[i--], CallSites[--FirstCallInSCC]);
 | 
						|
 | 
						|
  InlinedArrayAllocasTy InlinedArrayAllocas;
 | 
						|
  InlineFunctionInfo InlineInfo(&CG, &GetAssumptionCache, PSI);
 | 
						|
 | 
						|
  // Now that we have all of the call sites, loop over them and inline them if
 | 
						|
  // it looks profitable to do so.
 | 
						|
  bool Changed = false;
 | 
						|
  bool LocalChange;
 | 
						|
  do {
 | 
						|
    LocalChange = false;
 | 
						|
    // Iterate over the outer loop because inlining functions can cause indirect
 | 
						|
    // calls to become direct calls.
 | 
						|
    // CallSites may be modified inside so ranged for loop can not be used.
 | 
						|
    for (unsigned CSi = 0; CSi != CallSites.size(); ++CSi) {
 | 
						|
      CallSite CS = CallSites[CSi].first;
 | 
						|
 | 
						|
      Function *Caller = CS.getCaller();
 | 
						|
      Function *Callee = CS.getCalledFunction();
 | 
						|
 | 
						|
      // We can only inline direct calls to non-declarations.
 | 
						|
      if (!Callee || Callee->isDeclaration())
 | 
						|
        continue;
 | 
						|
 | 
						|
      Instruction *Instr = CS.getInstruction();
 | 
						|
 | 
						|
      bool IsTriviallyDead = isInstructionTriviallyDead(Instr, &TLI);
 | 
						|
 | 
						|
      int InlineHistoryID;
 | 
						|
      if (!IsTriviallyDead) {
 | 
						|
        // If this call site was obtained by inlining another function, verify
 | 
						|
        // that the include path for the function did not include the callee
 | 
						|
        // itself.  If so, we'd be recursively inlining the same function,
 | 
						|
        // which would provide the same callsites, which would cause us to
 | 
						|
        // infinitely inline.
 | 
						|
        InlineHistoryID = CallSites[CSi].second;
 | 
						|
        if (InlineHistoryID != -1 &&
 | 
						|
            InlineHistoryIncludes(Callee, InlineHistoryID, InlineHistory)) {
 | 
						|
          setInlineRemark(CS, "recursive");
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // FIXME for new PM: because of the old PM we currently generate ORE and
 | 
						|
      // in turn BFI on demand.  With the new PM, the ORE dependency should
 | 
						|
      // just become a regular analysis dependency.
 | 
						|
      OptimizationRemarkEmitter ORE(Caller);
 | 
						|
 | 
						|
      Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
 | 
						|
      // If the policy determines that we should inline this function,
 | 
						|
      // delete the call instead.
 | 
						|
      if (!OIC.hasValue()) {
 | 
						|
        setInlineRemark(CS, "deferred");
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!OIC.getValue()) {
 | 
						|
        // shouldInline() call returned a negative inline cost that explains
 | 
						|
        // why this callsite should not be inlined.
 | 
						|
        setInlineRemark(CS, inlineCostStr(*OIC));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If this call site is dead and it is to a readonly function, we should
 | 
						|
      // just delete the call instead of trying to inline it, regardless of
 | 
						|
      // size.  This happens because IPSCCP propagates the result out of the
 | 
						|
      // call and then we're left with the dead call.
 | 
						|
      if (IsTriviallyDead) {
 | 
						|
        LLVM_DEBUG(dbgs() << "    -> Deleting dead call: " << *Instr << "\n");
 | 
						|
        // Update the call graph by deleting the edge from Callee to Caller.
 | 
						|
        setInlineRemark(CS, "trivially dead");
 | 
						|
        CG[Caller]->removeCallEdgeFor(*cast<CallBase>(CS.getInstruction()));
 | 
						|
        Instr->eraseFromParent();
 | 
						|
        ++NumCallsDeleted;
 | 
						|
      } else {
 | 
						|
        // Get DebugLoc to report. CS will be invalid after Inliner.
 | 
						|
        DebugLoc DLoc = CS->getDebugLoc();
 | 
						|
        BasicBlock *Block = CS.getParent();
 | 
						|
 | 
						|
        // Attempt to inline the function.
 | 
						|
        using namespace ore;
 | 
						|
 | 
						|
        InlineResult IR = InlineCallIfPossible(
 | 
						|
            CS, InlineInfo, InlinedArrayAllocas, InlineHistoryID,
 | 
						|
            InsertLifetime, AARGetter, ImportedFunctionsStats);
 | 
						|
        if (!IR) {
 | 
						|
          setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
 | 
						|
          ORE.emit([&]() {
 | 
						|
            return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc,
 | 
						|
                                            Block)
 | 
						|
                   << NV("Callee", Callee) << " will not be inlined into "
 | 
						|
                   << NV("Caller", Caller) << ": " << NV("Reason", IR.message);
 | 
						|
          });
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        ++NumInlined;
 | 
						|
 | 
						|
        emit_inlined_into(ORE, DLoc, Block, *Callee, *Caller, *OIC);
 | 
						|
 | 
						|
        // If inlining this function gave us any new call sites, throw them
 | 
						|
        // onto our worklist to process.  They are useful inline candidates.
 | 
						|
        if (!InlineInfo.InlinedCalls.empty()) {
 | 
						|
          // Create a new inline history entry for this, so that we remember
 | 
						|
          // that these new callsites came about due to inlining Callee.
 | 
						|
          int NewHistoryID = InlineHistory.size();
 | 
						|
          InlineHistory.push_back(std::make_pair(Callee, InlineHistoryID));
 | 
						|
 | 
						|
          for (Value *Ptr : InlineInfo.InlinedCalls)
 | 
						|
            CallSites.push_back(std::make_pair(CallSite(Ptr), NewHistoryID));
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If we inlined or deleted the last possible call site to the function,
 | 
						|
      // delete the function body now.
 | 
						|
      if (Callee && Callee->use_empty() && Callee->hasLocalLinkage() &&
 | 
						|
          // TODO: Can remove if in SCC now.
 | 
						|
          !SCCFunctions.count(Callee) &&
 | 
						|
          // The function may be apparently dead, but if there are indirect
 | 
						|
          // callgraph references to the node, we cannot delete it yet, this
 | 
						|
          // could invalidate the CGSCC iterator.
 | 
						|
          CG[Callee]->getNumReferences() == 0) {
 | 
						|
        LLVM_DEBUG(dbgs() << "    -> Deleting dead function: "
 | 
						|
                          << Callee->getName() << "\n");
 | 
						|
        CallGraphNode *CalleeNode = CG[Callee];
 | 
						|
 | 
						|
        // Remove any call graph edges from the callee to its callees.
 | 
						|
        CalleeNode->removeAllCalledFunctions();
 | 
						|
 | 
						|
        // Removing the node for callee from the call graph and delete it.
 | 
						|
        delete CG.removeFunctionFromModule(CalleeNode);
 | 
						|
        ++NumDeleted;
 | 
						|
      }
 | 
						|
 | 
						|
      // Remove this call site from the list.  If possible, use
 | 
						|
      // swap/pop_back for efficiency, but do not use it if doing so would
 | 
						|
      // move a call site to a function in this SCC before the
 | 
						|
      // 'FirstCallInSCC' barrier.
 | 
						|
      if (SCC.isSingular()) {
 | 
						|
        CallSites[CSi] = CallSites.back();
 | 
						|
        CallSites.pop_back();
 | 
						|
      } else {
 | 
						|
        CallSites.erase(CallSites.begin() + CSi);
 | 
						|
      }
 | 
						|
      --CSi;
 | 
						|
 | 
						|
      Changed = true;
 | 
						|
      LocalChange = true;
 | 
						|
    }
 | 
						|
  } while (LocalChange);
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool LegacyInlinerBase::inlineCalls(CallGraphSCC &SCC) {
 | 
						|
  CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
 | 
						|
  ACT = &getAnalysis<AssumptionCacheTracker>();
 | 
						|
  PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
 | 
						|
  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
 | 
						|
  auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
 | 
						|
    return ACT->getAssumptionCache(F);
 | 
						|
  };
 | 
						|
  return inlineCallsImpl(SCC, CG, GetAssumptionCache, PSI, TLI, InsertLifetime,
 | 
						|
                         [this](CallSite CS) { return getInlineCost(CS); },
 | 
						|
                         LegacyAARGetter(*this), ImportedFunctionsStats);
 | 
						|
}
 | 
						|
 | 
						|
/// Remove now-dead linkonce functions at the end of
 | 
						|
/// processing to avoid breaking the SCC traversal.
 | 
						|
bool LegacyInlinerBase::doFinalization(CallGraph &CG) {
 | 
						|
  if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
 | 
						|
    ImportedFunctionsStats.dump(InlinerFunctionImportStats ==
 | 
						|
                                InlinerFunctionImportStatsOpts::Verbose);
 | 
						|
  return removeDeadFunctions(CG);
 | 
						|
}
 | 
						|
 | 
						|
/// Remove dead functions that are not included in DNR (Do Not Remove) list.
 | 
						|
bool LegacyInlinerBase::removeDeadFunctions(CallGraph &CG,
 | 
						|
                                            bool AlwaysInlineOnly) {
 | 
						|
  SmallVector<CallGraphNode *, 16> FunctionsToRemove;
 | 
						|
  SmallVector<Function *, 16> DeadFunctionsInComdats;
 | 
						|
 | 
						|
  auto RemoveCGN = [&](CallGraphNode *CGN) {
 | 
						|
    // Remove any call graph edges from the function to its callees.
 | 
						|
    CGN->removeAllCalledFunctions();
 | 
						|
 | 
						|
    // Remove any edges from the external node to the function's call graph
 | 
						|
    // node.  These edges might have been made irrelegant due to
 | 
						|
    // optimization of the program.
 | 
						|
    CG.getExternalCallingNode()->removeAnyCallEdgeTo(CGN);
 | 
						|
 | 
						|
    // Removing the node for callee from the call graph and delete it.
 | 
						|
    FunctionsToRemove.push_back(CGN);
 | 
						|
  };
 | 
						|
 | 
						|
  // Scan for all of the functions, looking for ones that should now be removed
 | 
						|
  // from the program.  Insert the dead ones in the FunctionsToRemove set.
 | 
						|
  for (const auto &I : CG) {
 | 
						|
    CallGraphNode *CGN = I.second.get();
 | 
						|
    Function *F = CGN->getFunction();
 | 
						|
    if (!F || F->isDeclaration())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Handle the case when this function is called and we only want to care
 | 
						|
    // about always-inline functions. This is a bit of a hack to share code
 | 
						|
    // between here and the InlineAlways pass.
 | 
						|
    if (AlwaysInlineOnly && !F->hasFnAttribute(Attribute::AlwaysInline))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the only remaining users of the function are dead constants, remove
 | 
						|
    // them.
 | 
						|
    F->removeDeadConstantUsers();
 | 
						|
 | 
						|
    if (!F->isDefTriviallyDead())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // It is unsafe to drop a function with discardable linkage from a COMDAT
 | 
						|
    // without also dropping the other members of the COMDAT.
 | 
						|
    // The inliner doesn't visit non-function entities which are in COMDAT
 | 
						|
    // groups so it is unsafe to do so *unless* the linkage is local.
 | 
						|
    if (!F->hasLocalLinkage()) {
 | 
						|
      if (F->hasComdat()) {
 | 
						|
        DeadFunctionsInComdats.push_back(F);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    RemoveCGN(CGN);
 | 
						|
  }
 | 
						|
  if (!DeadFunctionsInComdats.empty()) {
 | 
						|
    // Filter out the functions whose comdats remain alive.
 | 
						|
    filterDeadComdatFunctions(CG.getModule(), DeadFunctionsInComdats);
 | 
						|
    // Remove the rest.
 | 
						|
    for (Function *F : DeadFunctionsInComdats)
 | 
						|
      RemoveCGN(CG[F]);
 | 
						|
  }
 | 
						|
 | 
						|
  if (FunctionsToRemove.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Now that we know which functions to delete, do so.  We didn't want to do
 | 
						|
  // this inline, because that would invalidate our CallGraph::iterator
 | 
						|
  // objects. :(
 | 
						|
  //
 | 
						|
  // Note that it doesn't matter that we are iterating over a non-stable order
 | 
						|
  // here to do this, it doesn't matter which order the functions are deleted
 | 
						|
  // in.
 | 
						|
  array_pod_sort(FunctionsToRemove.begin(), FunctionsToRemove.end());
 | 
						|
  FunctionsToRemove.erase(
 | 
						|
      std::unique(FunctionsToRemove.begin(), FunctionsToRemove.end()),
 | 
						|
      FunctionsToRemove.end());
 | 
						|
  for (CallGraphNode *CGN : FunctionsToRemove) {
 | 
						|
    delete CG.removeFunctionFromModule(CGN);
 | 
						|
    ++NumDeleted;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
InlinerPass::~InlinerPass() {
 | 
						|
  if (ImportedFunctionsStats) {
 | 
						|
    assert(InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No);
 | 
						|
    ImportedFunctionsStats->dump(InlinerFunctionImportStats ==
 | 
						|
                                 InlinerFunctionImportStatsOpts::Verbose);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses InlinerPass::run(LazyCallGraph::SCC &InitialC,
 | 
						|
                                   CGSCCAnalysisManager &AM, LazyCallGraph &CG,
 | 
						|
                                   CGSCCUpdateResult &UR) {
 | 
						|
  const ModuleAnalysisManager &MAM =
 | 
						|
      AM.getResult<ModuleAnalysisManagerCGSCCProxy>(InitialC, CG).getManager();
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  assert(InitialC.size() > 0 && "Cannot handle an empty SCC!");
 | 
						|
  Module &M = *InitialC.begin()->getFunction().getParent();
 | 
						|
  ProfileSummaryInfo *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(M);
 | 
						|
 | 
						|
  if (!ImportedFunctionsStats &&
 | 
						|
      InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No) {
 | 
						|
    ImportedFunctionsStats =
 | 
						|
        llvm::make_unique<ImportedFunctionsInliningStatistics>();
 | 
						|
    ImportedFunctionsStats->setModuleInfo(M);
 | 
						|
  }
 | 
						|
 | 
						|
  // We use a single common worklist for calls across the entire SCC. We
 | 
						|
  // process these in-order and append new calls introduced during inlining to
 | 
						|
  // the end.
 | 
						|
  //
 | 
						|
  // Note that this particular order of processing is actually critical to
 | 
						|
  // avoid very bad behaviors. Consider *highly connected* call graphs where
 | 
						|
  // each function contains a small amonut of code and a couple of calls to
 | 
						|
  // other functions. Because the LLVM inliner is fundamentally a bottom-up
 | 
						|
  // inliner, it can handle gracefully the fact that these all appear to be
 | 
						|
  // reasonable inlining candidates as it will flatten things until they become
 | 
						|
  // too big to inline, and then move on and flatten another batch.
 | 
						|
  //
 | 
						|
  // However, when processing call edges *within* an SCC we cannot rely on this
 | 
						|
  // bottom-up behavior. As a consequence, with heavily connected *SCCs* of
 | 
						|
  // functions we can end up incrementally inlining N calls into each of
 | 
						|
  // N functions because each incremental inlining decision looks good and we
 | 
						|
  // don't have a topological ordering to prevent explosions.
 | 
						|
  //
 | 
						|
  // To compensate for this, we don't process transitive edges made immediate
 | 
						|
  // by inlining until we've done one pass of inlining across the entire SCC.
 | 
						|
  // Large, highly connected SCCs still lead to some amount of code bloat in
 | 
						|
  // this model, but it is uniformly spread across all the functions in the SCC
 | 
						|
  // and eventually they all become too large to inline, rather than
 | 
						|
  // incrementally maknig a single function grow in a super linear fashion.
 | 
						|
  SmallVector<std::pair<CallSite, int>, 16> Calls;
 | 
						|
 | 
						|
  FunctionAnalysisManager &FAM =
 | 
						|
      AM.getResult<FunctionAnalysisManagerCGSCCProxy>(InitialC, CG)
 | 
						|
          .getManager();
 | 
						|
 | 
						|
  // Populate the initial list of calls in this SCC.
 | 
						|
  for (auto &N : InitialC) {
 | 
						|
    auto &ORE =
 | 
						|
        FAM.getResult<OptimizationRemarkEmitterAnalysis>(N.getFunction());
 | 
						|
    // We want to generally process call sites top-down in order for
 | 
						|
    // simplifications stemming from replacing the call with the returned value
 | 
						|
    // after inlining to be visible to subsequent inlining decisions.
 | 
						|
    // FIXME: Using instructions sequence is a really bad way to do this.
 | 
						|
    // Instead we should do an actual RPO walk of the function body.
 | 
						|
    for (Instruction &I : instructions(N.getFunction()))
 | 
						|
      if (auto CS = CallSite(&I))
 | 
						|
        if (Function *Callee = CS.getCalledFunction()) {
 | 
						|
          if (!Callee->isDeclaration())
 | 
						|
            Calls.push_back({CS, -1});
 | 
						|
          else if (!isa<IntrinsicInst>(I)) {
 | 
						|
            using namespace ore;
 | 
						|
            setInlineRemark(CS, "unavailable definition");
 | 
						|
            ORE.emit([&]() {
 | 
						|
              return OptimizationRemarkMissed(DEBUG_TYPE, "NoDefinition", &I)
 | 
						|
                     << NV("Callee", Callee) << " will not be inlined into "
 | 
						|
                     << NV("Caller", CS.getCaller())
 | 
						|
                     << " because its definition is unavailable"
 | 
						|
                     << setIsVerbose();
 | 
						|
            });
 | 
						|
          }
 | 
						|
        }
 | 
						|
  }
 | 
						|
  if (Calls.empty())
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  // Capture updatable variables for the current SCC and RefSCC.
 | 
						|
  auto *C = &InitialC;
 | 
						|
  auto *RC = &C->getOuterRefSCC();
 | 
						|
 | 
						|
  // When inlining a callee produces new call sites, we want to keep track of
 | 
						|
  // the fact that they were inlined from the callee.  This allows us to avoid
 | 
						|
  // infinite inlining in some obscure cases.  To represent this, we use an
 | 
						|
  // index into the InlineHistory vector.
 | 
						|
  SmallVector<std::pair<Function *, int>, 16> InlineHistory;
 | 
						|
 | 
						|
  // Track a set vector of inlined callees so that we can augment the caller
 | 
						|
  // with all of their edges in the call graph before pruning out the ones that
 | 
						|
  // got simplified away.
 | 
						|
  SmallSetVector<Function *, 4> InlinedCallees;
 | 
						|
 | 
						|
  // Track the dead functions to delete once finished with inlining calls. We
 | 
						|
  // defer deleting these to make it easier to handle the call graph updates.
 | 
						|
  SmallVector<Function *, 4> DeadFunctions;
 | 
						|
 | 
						|
  // Loop forward over all of the calls. Note that we cannot cache the size as
 | 
						|
  // inlining can introduce new calls that need to be processed.
 | 
						|
  for (int i = 0; i < (int)Calls.size(); ++i) {
 | 
						|
    // We expect the calls to typically be batched with sequences of calls that
 | 
						|
    // have the same caller, so we first set up some shared infrastructure for
 | 
						|
    // this caller. We also do any pruning we can at this layer on the caller
 | 
						|
    // alone.
 | 
						|
    Function &F = *Calls[i].first.getCaller();
 | 
						|
    LazyCallGraph::Node &N = *CG.lookup(F);
 | 
						|
    if (CG.lookupSCC(N) != C)
 | 
						|
      continue;
 | 
						|
    if (F.hasOptNone()) {
 | 
						|
      setInlineRemark(Calls[i].first, "optnone attribute");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DEBUG(dbgs() << "Inlining calls in: " << F.getName() << "\n");
 | 
						|
 | 
						|
    // Get a FunctionAnalysisManager via a proxy for this particular node. We
 | 
						|
    // do this each time we visit a node as the SCC may have changed and as
 | 
						|
    // we're going to mutate this particular function we want to make sure the
 | 
						|
    // proxy is in place to forward any invalidation events. We can use the
 | 
						|
    // manager we get here for looking up results for functions other than this
 | 
						|
    // node however because those functions aren't going to be mutated by this
 | 
						|
    // pass.
 | 
						|
    FunctionAnalysisManager &FAM =
 | 
						|
        AM.getResult<FunctionAnalysisManagerCGSCCProxy>(*C, CG)
 | 
						|
            .getManager();
 | 
						|
 | 
						|
    // Get the remarks emission analysis for the caller.
 | 
						|
    auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
 | 
						|
 | 
						|
    std::function<AssumptionCache &(Function &)> GetAssumptionCache =
 | 
						|
        [&](Function &F) -> AssumptionCache & {
 | 
						|
      return FAM.getResult<AssumptionAnalysis>(F);
 | 
						|
    };
 | 
						|
    auto GetBFI = [&](Function &F) -> BlockFrequencyInfo & {
 | 
						|
      return FAM.getResult<BlockFrequencyAnalysis>(F);
 | 
						|
    };
 | 
						|
 | 
						|
    auto GetInlineCost = [&](CallSite CS) {
 | 
						|
      Function &Callee = *CS.getCalledFunction();
 | 
						|
      auto &CalleeTTI = FAM.getResult<TargetIRAnalysis>(Callee);
 | 
						|
      bool RemarksEnabled =
 | 
						|
          Callee.getContext().getDiagHandlerPtr()->isMissedOptRemarkEnabled(
 | 
						|
              DEBUG_TYPE);
 | 
						|
      return getInlineCost(cast<CallBase>(*CS.getInstruction()), Params,
 | 
						|
                           CalleeTTI, GetAssumptionCache, {GetBFI}, PSI,
 | 
						|
                           RemarksEnabled ? &ORE : nullptr);
 | 
						|
    };
 | 
						|
 | 
						|
    // Now process as many calls as we have within this caller in the sequnece.
 | 
						|
    // We bail out as soon as the caller has to change so we can update the
 | 
						|
    // call graph and prepare the context of that new caller.
 | 
						|
    bool DidInline = false;
 | 
						|
    for (; i < (int)Calls.size() && Calls[i].first.getCaller() == &F; ++i) {
 | 
						|
      int InlineHistoryID;
 | 
						|
      CallSite CS;
 | 
						|
      std::tie(CS, InlineHistoryID) = Calls[i];
 | 
						|
      Function &Callee = *CS.getCalledFunction();
 | 
						|
 | 
						|
      if (InlineHistoryID != -1 &&
 | 
						|
          InlineHistoryIncludes(&Callee, InlineHistoryID, InlineHistory)) {
 | 
						|
        setInlineRemark(CS, "recursive");
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Check if this inlining may repeat breaking an SCC apart that has
 | 
						|
      // already been split once before. In that case, inlining here may
 | 
						|
      // trigger infinite inlining, much like is prevented within the inliner
 | 
						|
      // itself by the InlineHistory above, but spread across CGSCC iterations
 | 
						|
      // and thus hidden from the full inline history.
 | 
						|
      if (CG.lookupSCC(*CG.lookup(Callee)) == C &&
 | 
						|
          UR.InlinedInternalEdges.count({&N, C})) {
 | 
						|
        LLVM_DEBUG(dbgs() << "Skipping inlining internal SCC edge from a node "
 | 
						|
                             "previously split out of this SCC by inlining: "
 | 
						|
                          << F.getName() << " -> " << Callee.getName() << "\n");
 | 
						|
        setInlineRemark(CS, "recursive SCC split");
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      Optional<InlineCost> OIC = shouldInline(CS, GetInlineCost, ORE);
 | 
						|
      // Check whether we want to inline this callsite.
 | 
						|
      if (!OIC.hasValue()) {
 | 
						|
        setInlineRemark(CS, "deferred");
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!OIC.getValue()) {
 | 
						|
        // shouldInline() call returned a negative inline cost that explains
 | 
						|
        // why this callsite should not be inlined.
 | 
						|
        setInlineRemark(CS, inlineCostStr(*OIC));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // Setup the data structure used to plumb customization into the
 | 
						|
      // `InlineFunction` routine.
 | 
						|
      InlineFunctionInfo IFI(
 | 
						|
          /*cg=*/nullptr, &GetAssumptionCache, PSI,
 | 
						|
          &FAM.getResult<BlockFrequencyAnalysis>(*(CS.getCaller())),
 | 
						|
          &FAM.getResult<BlockFrequencyAnalysis>(Callee));
 | 
						|
 | 
						|
      // Get DebugLoc to report. CS will be invalid after Inliner.
 | 
						|
      DebugLoc DLoc = CS->getDebugLoc();
 | 
						|
      BasicBlock *Block = CS.getParent();
 | 
						|
 | 
						|
      using namespace ore;
 | 
						|
 | 
						|
      InlineResult IR = InlineFunction(CS, IFI);
 | 
						|
      if (!IR) {
 | 
						|
        setInlineRemark(CS, std::string(IR) + "; " + inlineCostStr(*OIC));
 | 
						|
        ORE.emit([&]() {
 | 
						|
          return OptimizationRemarkMissed(DEBUG_TYPE, "NotInlined", DLoc, Block)
 | 
						|
                 << NV("Callee", &Callee) << " will not be inlined into "
 | 
						|
                 << NV("Caller", &F) << ": " << NV("Reason", IR.message);
 | 
						|
        });
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      DidInline = true;
 | 
						|
      InlinedCallees.insert(&Callee);
 | 
						|
 | 
						|
      ++NumInlined;
 | 
						|
 | 
						|
      emit_inlined_into(ORE, DLoc, Block, Callee, F, *OIC);
 | 
						|
 | 
						|
      // Add any new callsites to defined functions to the worklist.
 | 
						|
      if (!IFI.InlinedCallSites.empty()) {
 | 
						|
        int NewHistoryID = InlineHistory.size();
 | 
						|
        InlineHistory.push_back({&Callee, InlineHistoryID});
 | 
						|
        for (CallSite &CS : reverse(IFI.InlinedCallSites))
 | 
						|
          if (Function *NewCallee = CS.getCalledFunction())
 | 
						|
            if (!NewCallee->isDeclaration())
 | 
						|
              Calls.push_back({CS, NewHistoryID});
 | 
						|
      }
 | 
						|
 | 
						|
      if (InlinerFunctionImportStats != InlinerFunctionImportStatsOpts::No)
 | 
						|
        ImportedFunctionsStats->recordInline(F, Callee);
 | 
						|
 | 
						|
      // Merge the attributes based on the inlining.
 | 
						|
      AttributeFuncs::mergeAttributesForInlining(F, Callee);
 | 
						|
 | 
						|
      // For local functions, check whether this makes the callee trivially
 | 
						|
      // dead. In that case, we can drop the body of the function eagerly
 | 
						|
      // which may reduce the number of callers of other functions to one,
 | 
						|
      // changing inline cost thresholds.
 | 
						|
      if (Callee.hasLocalLinkage()) {
 | 
						|
        // To check this we also need to nuke any dead constant uses (perhaps
 | 
						|
        // made dead by this operation on other functions).
 | 
						|
        Callee.removeDeadConstantUsers();
 | 
						|
        if (Callee.use_empty() && !CG.isLibFunction(Callee)) {
 | 
						|
          Calls.erase(
 | 
						|
              std::remove_if(Calls.begin() + i + 1, Calls.end(),
 | 
						|
                             [&Callee](const std::pair<CallSite, int> &Call) {
 | 
						|
                               return Call.first.getCaller() == &Callee;
 | 
						|
                             }),
 | 
						|
              Calls.end());
 | 
						|
          // Clear the body and queue the function itself for deletion when we
 | 
						|
          // finish inlining and call graph updates.
 | 
						|
          // Note that after this point, it is an error to do anything other
 | 
						|
          // than use the callee's address or delete it.
 | 
						|
          Callee.dropAllReferences();
 | 
						|
          assert(find(DeadFunctions, &Callee) == DeadFunctions.end() &&
 | 
						|
                 "Cannot put cause a function to become dead twice!");
 | 
						|
          DeadFunctions.push_back(&Callee);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Back the call index up by one to put us in a good position to go around
 | 
						|
    // the outer loop.
 | 
						|
    --i;
 | 
						|
 | 
						|
    if (!DidInline)
 | 
						|
      continue;
 | 
						|
    Changed = true;
 | 
						|
 | 
						|
    // Add all the inlined callees' edges as ref edges to the caller. These are
 | 
						|
    // by definition trivial edges as we always have *some* transitive ref edge
 | 
						|
    // chain. While in some cases these edges are direct calls inside the
 | 
						|
    // callee, they have to be modeled in the inliner as reference edges as
 | 
						|
    // there may be a reference edge anywhere along the chain from the current
 | 
						|
    // caller to the callee that causes the whole thing to appear like
 | 
						|
    // a (transitive) reference edge that will require promotion to a call edge
 | 
						|
    // below.
 | 
						|
    for (Function *InlinedCallee : InlinedCallees) {
 | 
						|
      LazyCallGraph::Node &CalleeN = *CG.lookup(*InlinedCallee);
 | 
						|
      for (LazyCallGraph::Edge &E : *CalleeN)
 | 
						|
        RC->insertTrivialRefEdge(N, E.getNode());
 | 
						|
    }
 | 
						|
 | 
						|
    // At this point, since we have made changes we have at least removed
 | 
						|
    // a call instruction. However, in the process we do some incremental
 | 
						|
    // simplification of the surrounding code. This simplification can
 | 
						|
    // essentially do all of the same things as a function pass and we can
 | 
						|
    // re-use the exact same logic for updating the call graph to reflect the
 | 
						|
    // change.
 | 
						|
    LazyCallGraph::SCC *OldC = C;
 | 
						|
    C = &updateCGAndAnalysisManagerForFunctionPass(CG, *C, N, AM, UR);
 | 
						|
    LLVM_DEBUG(dbgs() << "Updated inlining SCC: " << *C << "\n");
 | 
						|
    RC = &C->getOuterRefSCC();
 | 
						|
 | 
						|
    // If this causes an SCC to split apart into multiple smaller SCCs, there
 | 
						|
    // is a subtle risk we need to prepare for. Other transformations may
 | 
						|
    // expose an "infinite inlining" opportunity later, and because of the SCC
 | 
						|
    // mutation, we will revisit this function and potentially re-inline. If we
 | 
						|
    // do, and that re-inlining also has the potentially to mutate the SCC
 | 
						|
    // structure, the infinite inlining problem can manifest through infinite
 | 
						|
    // SCC splits and merges. To avoid this, we capture the originating caller
 | 
						|
    // node and the SCC containing the call edge. This is a slight over
 | 
						|
    // approximation of the possible inlining decisions that must be avoided,
 | 
						|
    // but is relatively efficient to store. We use C != OldC to know when
 | 
						|
    // a new SCC is generated and the original SCC may be generated via merge
 | 
						|
    // in later iterations.
 | 
						|
    //
 | 
						|
    // It is also possible that even if no new SCC is generated
 | 
						|
    // (i.e., C == OldC), the original SCC could be split and then merged
 | 
						|
    // into the same one as itself. and the original SCC will be added into
 | 
						|
    // UR.CWorklist again, we want to catch such cases too.
 | 
						|
    //
 | 
						|
    // FIXME: This seems like a very heavyweight way of retaining the inline
 | 
						|
    // history, we should look for a more efficient way of tracking it.
 | 
						|
    if ((C != OldC || UR.CWorklist.count(OldC)) &&
 | 
						|
        llvm::any_of(InlinedCallees, [&](Function *Callee) {
 | 
						|
          return CG.lookupSCC(*CG.lookup(*Callee)) == OldC;
 | 
						|
        })) {
 | 
						|
      LLVM_DEBUG(dbgs() << "Inlined an internal call edge and split an SCC, "
 | 
						|
                           "retaining this to avoid infinite inlining.\n");
 | 
						|
      UR.InlinedInternalEdges.insert({&N, OldC});
 | 
						|
    }
 | 
						|
    InlinedCallees.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we've finished inlining all of the calls across this SCC, delete
 | 
						|
  // all of the trivially dead functions, updating the call graph and the CGSCC
 | 
						|
  // pass manager in the process.
 | 
						|
  //
 | 
						|
  // Note that this walks a pointer set which has non-deterministic order but
 | 
						|
  // that is OK as all we do is delete things and add pointers to unordered
 | 
						|
  // sets.
 | 
						|
  for (Function *DeadF : DeadFunctions) {
 | 
						|
    // Get the necessary information out of the call graph and nuke the
 | 
						|
    // function there. Also, cclear out any cached analyses.
 | 
						|
    auto &DeadC = *CG.lookupSCC(*CG.lookup(*DeadF));
 | 
						|
    FunctionAnalysisManager &FAM =
 | 
						|
        AM.getResult<FunctionAnalysisManagerCGSCCProxy>(DeadC, CG)
 | 
						|
            .getManager();
 | 
						|
    FAM.clear(*DeadF, DeadF->getName());
 | 
						|
    AM.clear(DeadC, DeadC.getName());
 | 
						|
    auto &DeadRC = DeadC.getOuterRefSCC();
 | 
						|
    CG.removeDeadFunction(*DeadF);
 | 
						|
 | 
						|
    // Mark the relevant parts of the call graph as invalid so we don't visit
 | 
						|
    // them.
 | 
						|
    UR.InvalidatedSCCs.insert(&DeadC);
 | 
						|
    UR.InvalidatedRefSCCs.insert(&DeadRC);
 | 
						|
 | 
						|
    // And delete the actual function from the module.
 | 
						|
    M.getFunctionList().erase(DeadF);
 | 
						|
    ++NumDeleted;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
 | 
						|
  // Even if we change the IR, we update the core CGSCC data structures and so
 | 
						|
  // can preserve the proxy to the function analysis manager.
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
 | 
						|
  return PA;
 | 
						|
}
 |