1128 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			1128 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- PassManagerBuilder.cpp - Build Standard Pass -----------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the PassManagerBuilder class, which is used to set up a
 | 
						|
// "standard" optimization sequence suitable for languages like C and C++.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
 | 
						|
#include "llvm-c/Transforms/PassManagerBuilder.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Analysis/BasicAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/InlineCost.h"
 | 
						|
#include "llvm/Analysis/Passes.h"
 | 
						|
#include "llvm/Analysis/ScopedNoAliasAA.h"
 | 
						|
#include "llvm/Analysis/TargetLibraryInfo.h"
 | 
						|
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/LegacyPassManager.h"
 | 
						|
#include "llvm/IR/Verifier.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/ManagedStatic.h"
 | 
						|
#include "llvm/Transforms/AggressiveInstCombine/AggressiveInstCombine.h"
 | 
						|
#include "llvm/Transforms/IPO.h"
 | 
						|
#include "llvm/Transforms/IPO/ForceFunctionAttrs.h"
 | 
						|
#include "llvm/Transforms/IPO/FunctionAttrs.h"
 | 
						|
#include "llvm/Transforms/IPO/InferFunctionAttrs.h"
 | 
						|
#include "llvm/Transforms/InstCombine/InstCombine.h"
 | 
						|
#include "llvm/Transforms/Instrumentation.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Scalar/GVN.h"
 | 
						|
#include "llvm/Transforms/Scalar/InstSimplifyPass.h"
 | 
						|
#include "llvm/Transforms/Scalar/LICM.h"
 | 
						|
#include "llvm/Transforms/Scalar/SimpleLoopUnswitch.h"
 | 
						|
#include "llvm/Transforms/Utils.h"
 | 
						|
#include "llvm/Transforms/Vectorize.h"
 | 
						|
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
 | 
						|
#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    RunPartialInlining("enable-partial-inlining", cl::init(false), cl::Hidden,
 | 
						|
                       cl::ZeroOrMore, cl::desc("Run Partial inlinining pass"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
UseGVNAfterVectorization("use-gvn-after-vectorization",
 | 
						|
  cl::init(false), cl::Hidden,
 | 
						|
  cl::desc("Run GVN instead of Early CSE after vectorization passes"));
 | 
						|
 | 
						|
static cl::opt<bool> ExtraVectorizerPasses(
 | 
						|
    "extra-vectorizer-passes", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Run cleanup optimization passes after vectorization."));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
RunLoopRerolling("reroll-loops", cl::Hidden,
 | 
						|
                 cl::desc("Run the loop rerolling pass"));
 | 
						|
 | 
						|
static cl::opt<bool> RunNewGVN("enable-newgvn", cl::init(false), cl::Hidden,
 | 
						|
                               cl::desc("Run the NewGVN pass"));
 | 
						|
 | 
						|
// Experimental option to use CFL-AA
 | 
						|
enum class CFLAAType { None, Steensgaard, Andersen, Both };
 | 
						|
static cl::opt<CFLAAType>
 | 
						|
    UseCFLAA("use-cfl-aa", cl::init(CFLAAType::None), cl::Hidden,
 | 
						|
             cl::desc("Enable the new, experimental CFL alias analysis"),
 | 
						|
             cl::values(clEnumValN(CFLAAType::None, "none", "Disable CFL-AA"),
 | 
						|
                        clEnumValN(CFLAAType::Steensgaard, "steens",
 | 
						|
                                   "Enable unification-based CFL-AA"),
 | 
						|
                        clEnumValN(CFLAAType::Andersen, "anders",
 | 
						|
                                   "Enable inclusion-based CFL-AA"),
 | 
						|
                        clEnumValN(CFLAAType::Both, "both",
 | 
						|
                                   "Enable both variants of CFL-AA")));
 | 
						|
 | 
						|
static cl::opt<bool> EnableLoopInterchange(
 | 
						|
    "enable-loopinterchange", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Enable the new, experimental LoopInterchange Pass"));
 | 
						|
 | 
						|
static cl::opt<bool> EnableUnrollAndJam("enable-unroll-and-jam",
 | 
						|
                                        cl::init(false), cl::Hidden,
 | 
						|
                                        cl::desc("Enable Unroll And Jam Pass"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    EnablePrepareForThinLTO("prepare-for-thinlto", cl::init(false), cl::Hidden,
 | 
						|
                            cl::desc("Enable preparation for ThinLTO."));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    EnablePerformThinLTO("perform-thinlto", cl::init(false), cl::Hidden,
 | 
						|
                         cl::desc("Enable performing ThinLTO."));
 | 
						|
 | 
						|
cl::opt<bool> EnableHotColdSplit("hot-cold-split", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Enable hot-cold splitting pass"));
 | 
						|
 | 
						|
static cl::opt<bool> UseLoopVersioningLICM(
 | 
						|
    "enable-loop-versioning-licm", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Enable the experimental Loop Versioning LICM pass"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    DisablePreInliner("disable-preinline", cl::init(false), cl::Hidden,
 | 
						|
                      cl::desc("Disable pre-instrumentation inliner"));
 | 
						|
 | 
						|
static cl::opt<int> PreInlineThreshold(
 | 
						|
    "preinline-threshold", cl::Hidden, cl::init(75), cl::ZeroOrMore,
 | 
						|
    cl::desc("Control the amount of inlining in pre-instrumentation inliner "
 | 
						|
             "(default = 75)"));
 | 
						|
 | 
						|
static cl::opt<bool> EnableGVNHoist(
 | 
						|
    "enable-gvn-hoist", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Enable the GVN hoisting pass (default = off)"));
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
    DisableLibCallsShrinkWrap("disable-libcalls-shrinkwrap", cl::init(false),
 | 
						|
                              cl::Hidden,
 | 
						|
                              cl::desc("Disable shrink-wrap library calls"));
 | 
						|
 | 
						|
static cl::opt<bool> EnableSimpleLoopUnswitch(
 | 
						|
    "enable-simple-loop-unswitch", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Enable the simple loop unswitch pass. Also enables independent "
 | 
						|
             "cleanup passes integrated into the loop pass manager pipeline."));
 | 
						|
 | 
						|
static cl::opt<bool> EnableGVNSink(
 | 
						|
    "enable-gvn-sink", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Enable the GVN sinking pass (default = off)"));
 | 
						|
 | 
						|
// This option is used in simplifying testing SampleFDO optimizations for
 | 
						|
// profile loading.
 | 
						|
static cl::opt<bool>
 | 
						|
    EnableCHR("enable-chr", cl::init(true), cl::Hidden,
 | 
						|
              cl::desc("Enable control height reduction optimization (CHR)"));
 | 
						|
 | 
						|
cl::opt<bool> FlattenedProfileUsed(
 | 
						|
    "flattened-profile-used", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Indicate the sample profile being used is flattened, i.e., "
 | 
						|
             "no inline hierachy exists in the profile. "));
 | 
						|
 | 
						|
cl::opt<bool> EnableOrderFileInstrumentation(
 | 
						|
    "enable-order-file-instrumentation", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Enable order file instrumentation (default = off)"));
 | 
						|
 | 
						|
cl::opt<bool> ForgetSCEVInLoopUnroll(
 | 
						|
    "forget-scev-loop-unroll", cl::init(false), cl::Hidden,
 | 
						|
    cl::desc("Forget everything in SCEV when doing LoopUnroll, instead of just"
 | 
						|
             " the current top-most loop. This is somtimes preferred to reduce"
 | 
						|
             " compile time."));
 | 
						|
 | 
						|
PassManagerBuilder::PassManagerBuilder() {
 | 
						|
    OptLevel = 2;
 | 
						|
    SizeLevel = 0;
 | 
						|
    LibraryInfo = nullptr;
 | 
						|
    Inliner = nullptr;
 | 
						|
    DisableUnrollLoops = false;
 | 
						|
    SLPVectorize = RunSLPVectorization;
 | 
						|
    LoopVectorize = EnableLoopVectorization;
 | 
						|
    LoopsInterleaved = EnableLoopInterleaving;
 | 
						|
    RerollLoops = RunLoopRerolling;
 | 
						|
    NewGVN = RunNewGVN;
 | 
						|
    LicmMssaOptCap = SetLicmMssaOptCap;
 | 
						|
    LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap;
 | 
						|
    DisableGVNLoadPRE = false;
 | 
						|
    ForgetAllSCEVInLoopUnroll = ForgetSCEVInLoopUnroll;
 | 
						|
    VerifyInput = false;
 | 
						|
    VerifyOutput = false;
 | 
						|
    MergeFunctions = false;
 | 
						|
    PrepareForLTO = false;
 | 
						|
    EnablePGOInstrGen = false;
 | 
						|
    EnablePGOCSInstrGen = false;
 | 
						|
    EnablePGOCSInstrUse = false;
 | 
						|
    PGOInstrGen = "";
 | 
						|
    PGOInstrUse = "";
 | 
						|
    PGOSampleUse = "";
 | 
						|
    PrepareForThinLTO = EnablePrepareForThinLTO;
 | 
						|
    PerformThinLTO = EnablePerformThinLTO;
 | 
						|
    DivergentTarget = false;
 | 
						|
}
 | 
						|
 | 
						|
PassManagerBuilder::~PassManagerBuilder() {
 | 
						|
  delete LibraryInfo;
 | 
						|
  delete Inliner;
 | 
						|
}
 | 
						|
 | 
						|
/// Set of global extensions, automatically added as part of the standard set.
 | 
						|
static ManagedStatic<SmallVector<std::pair<PassManagerBuilder::ExtensionPointTy,
 | 
						|
   PassManagerBuilder::ExtensionFn>, 8> > GlobalExtensions;
 | 
						|
 | 
						|
/// Check if GlobalExtensions is constructed and not empty.
 | 
						|
/// Since GlobalExtensions is a managed static, calling 'empty()' will trigger
 | 
						|
/// the construction of the object.
 | 
						|
static bool GlobalExtensionsNotEmpty() {
 | 
						|
  return GlobalExtensions.isConstructed() && !GlobalExtensions->empty();
 | 
						|
}
 | 
						|
 | 
						|
void PassManagerBuilder::addGlobalExtension(
 | 
						|
    PassManagerBuilder::ExtensionPointTy Ty,
 | 
						|
    PassManagerBuilder::ExtensionFn Fn) {
 | 
						|
  GlobalExtensions->push_back(std::make_pair(Ty, std::move(Fn)));
 | 
						|
}
 | 
						|
 | 
						|
void PassManagerBuilder::addExtension(ExtensionPointTy Ty, ExtensionFn Fn) {
 | 
						|
  Extensions.push_back(std::make_pair(Ty, std::move(Fn)));
 | 
						|
}
 | 
						|
 | 
						|
void PassManagerBuilder::addExtensionsToPM(ExtensionPointTy ETy,
 | 
						|
                                           legacy::PassManagerBase &PM) const {
 | 
						|
  if (GlobalExtensionsNotEmpty()) {
 | 
						|
    for (auto &Ext : *GlobalExtensions) {
 | 
						|
      if (Ext.first == ETy)
 | 
						|
        Ext.second(*this, PM);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0, e = Extensions.size(); i != e; ++i)
 | 
						|
    if (Extensions[i].first == ETy)
 | 
						|
      Extensions[i].second(*this, PM);
 | 
						|
}
 | 
						|
 | 
						|
void PassManagerBuilder::addInitialAliasAnalysisPasses(
 | 
						|
    legacy::PassManagerBase &PM) const {
 | 
						|
  switch (UseCFLAA) {
 | 
						|
  case CFLAAType::Steensgaard:
 | 
						|
    PM.add(createCFLSteensAAWrapperPass());
 | 
						|
    break;
 | 
						|
  case CFLAAType::Andersen:
 | 
						|
    PM.add(createCFLAndersAAWrapperPass());
 | 
						|
    break;
 | 
						|
  case CFLAAType::Both:
 | 
						|
    PM.add(createCFLSteensAAWrapperPass());
 | 
						|
    PM.add(createCFLAndersAAWrapperPass());
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add TypeBasedAliasAnalysis before BasicAliasAnalysis so that
 | 
						|
  // BasicAliasAnalysis wins if they disagree. This is intended to help
 | 
						|
  // support "obvious" type-punning idioms.
 | 
						|
  PM.add(createTypeBasedAAWrapperPass());
 | 
						|
  PM.add(createScopedNoAliasAAWrapperPass());
 | 
						|
}
 | 
						|
 | 
						|
void PassManagerBuilder::addInstructionCombiningPass(
 | 
						|
    legacy::PassManagerBase &PM) const {
 | 
						|
  bool ExpensiveCombines = OptLevel > 2;
 | 
						|
  PM.add(createInstructionCombiningPass(ExpensiveCombines));
 | 
						|
}
 | 
						|
 | 
						|
void PassManagerBuilder::populateFunctionPassManager(
 | 
						|
    legacy::FunctionPassManager &FPM) {
 | 
						|
  addExtensionsToPM(EP_EarlyAsPossible, FPM);
 | 
						|
  FPM.add(createEntryExitInstrumenterPass());
 | 
						|
 | 
						|
  // Add LibraryInfo if we have some.
 | 
						|
  if (LibraryInfo)
 | 
						|
    FPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
 | 
						|
 | 
						|
  if (OptLevel == 0) return;
 | 
						|
 | 
						|
  addInitialAliasAnalysisPasses(FPM);
 | 
						|
 | 
						|
  FPM.add(createCFGSimplificationPass());
 | 
						|
  FPM.add(createSROAPass());
 | 
						|
  FPM.add(createEarlyCSEPass());
 | 
						|
  FPM.add(createLowerExpectIntrinsicPass());
 | 
						|
}
 | 
						|
 | 
						|
// Do PGO instrumentation generation or use pass as the option specified.
 | 
						|
void PassManagerBuilder::addPGOInstrPasses(legacy::PassManagerBase &MPM,
 | 
						|
                                           bool IsCS = false) {
 | 
						|
  if (IsCS) {
 | 
						|
    if (!EnablePGOCSInstrGen && !EnablePGOCSInstrUse)
 | 
						|
      return;
 | 
						|
  } else if (!EnablePGOInstrGen && PGOInstrUse.empty() && PGOSampleUse.empty())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Perform the preinline and cleanup passes for O1 and above.
 | 
						|
  // And avoid doing them if optimizing for size.
 | 
						|
  // We will not do this inline for context sensitive PGO (when IsCS is true).
 | 
						|
  if (OptLevel > 0 && SizeLevel == 0 && !DisablePreInliner &&
 | 
						|
      PGOSampleUse.empty() && !IsCS) {
 | 
						|
    // Create preinline pass. We construct an InlineParams object and specify
 | 
						|
    // the threshold here to avoid the command line options of the regular
 | 
						|
    // inliner to influence pre-inlining. The only fields of InlineParams we
 | 
						|
    // care about are DefaultThreshold and HintThreshold.
 | 
						|
    InlineParams IP;
 | 
						|
    IP.DefaultThreshold = PreInlineThreshold;
 | 
						|
    // FIXME: The hint threshold has the same value used by the regular inliner.
 | 
						|
    // This should probably be lowered after performance testing.
 | 
						|
    IP.HintThreshold = 325;
 | 
						|
 | 
						|
    MPM.add(createFunctionInliningPass(IP));
 | 
						|
    MPM.add(createSROAPass());
 | 
						|
    MPM.add(createEarlyCSEPass());             // Catch trivial redundancies
 | 
						|
    MPM.add(createCFGSimplificationPass());    // Merge & remove BBs
 | 
						|
    MPM.add(createInstructionCombiningPass()); // Combine silly seq's
 | 
						|
    addExtensionsToPM(EP_Peephole, MPM);
 | 
						|
  }
 | 
						|
  if ((EnablePGOInstrGen && !IsCS) || (EnablePGOCSInstrGen && IsCS)) {
 | 
						|
    MPM.add(createPGOInstrumentationGenLegacyPass(IsCS));
 | 
						|
    // Add the profile lowering pass.
 | 
						|
    InstrProfOptions Options;
 | 
						|
    if (!PGOInstrGen.empty())
 | 
						|
      Options.InstrProfileOutput = PGOInstrGen;
 | 
						|
    Options.DoCounterPromotion = true;
 | 
						|
    Options.UseBFIInPromotion = IsCS;
 | 
						|
    MPM.add(createLoopRotatePass());
 | 
						|
    MPM.add(createInstrProfilingLegacyPass(Options, IsCS));
 | 
						|
  }
 | 
						|
  if (!PGOInstrUse.empty())
 | 
						|
    MPM.add(createPGOInstrumentationUseLegacyPass(PGOInstrUse, IsCS));
 | 
						|
  // Indirect call promotion that promotes intra-module targets only.
 | 
						|
  // For ThinLTO this is done earlier due to interactions with globalopt
 | 
						|
  // for imported functions. We don't run this at -O0.
 | 
						|
  if (OptLevel > 0 && !IsCS)
 | 
						|
    MPM.add(
 | 
						|
        createPGOIndirectCallPromotionLegacyPass(false, !PGOSampleUse.empty()));
 | 
						|
}
 | 
						|
void PassManagerBuilder::addFunctionSimplificationPasses(
 | 
						|
    legacy::PassManagerBase &MPM) {
 | 
						|
  // Start of function pass.
 | 
						|
  // Break up aggregate allocas, using SSAUpdater.
 | 
						|
  MPM.add(createSROAPass());
 | 
						|
  MPM.add(createEarlyCSEPass(true /* Enable mem-ssa. */)); // Catch trivial redundancies
 | 
						|
  if (EnableGVNHoist)
 | 
						|
    MPM.add(createGVNHoistPass());
 | 
						|
  if (EnableGVNSink) {
 | 
						|
    MPM.add(createGVNSinkPass());
 | 
						|
    MPM.add(createCFGSimplificationPass());
 | 
						|
  }
 | 
						|
 | 
						|
  // Speculative execution if the target has divergent branches; otherwise nop.
 | 
						|
  MPM.add(createSpeculativeExecutionIfHasBranchDivergencePass());
 | 
						|
  MPM.add(createJumpThreadingPass());         // Thread jumps.
 | 
						|
  MPM.add(createCorrelatedValuePropagationPass()); // Propagate conditionals
 | 
						|
  MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
 | 
						|
  // Combine silly seq's
 | 
						|
  if (OptLevel > 2)
 | 
						|
    MPM.add(createAggressiveInstCombinerPass());
 | 
						|
  addInstructionCombiningPass(MPM);
 | 
						|
  if (SizeLevel == 0 && !DisableLibCallsShrinkWrap)
 | 
						|
    MPM.add(createLibCallsShrinkWrapPass());
 | 
						|
  addExtensionsToPM(EP_Peephole, MPM);
 | 
						|
 | 
						|
  // Optimize memory intrinsic calls based on the profiled size information.
 | 
						|
  if (SizeLevel == 0)
 | 
						|
    MPM.add(createPGOMemOPSizeOptLegacyPass());
 | 
						|
 | 
						|
  MPM.add(createTailCallEliminationPass()); // Eliminate tail calls
 | 
						|
  MPM.add(createCFGSimplificationPass());     // Merge & remove BBs
 | 
						|
  MPM.add(createReassociatePass());           // Reassociate expressions
 | 
						|
 | 
						|
  // Begin the loop pass pipeline.
 | 
						|
  if (EnableSimpleLoopUnswitch) {
 | 
						|
    // The simple loop unswitch pass relies on separate cleanup passes. Schedule
 | 
						|
    // them first so when we re-process a loop they run before other loop
 | 
						|
    // passes.
 | 
						|
    MPM.add(createLoopInstSimplifyPass());
 | 
						|
    MPM.add(createLoopSimplifyCFGPass());
 | 
						|
  }
 | 
						|
  // Rotate Loop - disable header duplication at -Oz
 | 
						|
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
 | 
						|
  MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
 | 
						|
  if (EnableSimpleLoopUnswitch)
 | 
						|
    MPM.add(createSimpleLoopUnswitchLegacyPass());
 | 
						|
  else
 | 
						|
    MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
 | 
						|
  // FIXME: We break the loop pass pipeline here in order to do full
 | 
						|
  // simplify-cfg. Eventually loop-simplifycfg should be enhanced to replace the
 | 
						|
  // need for this.
 | 
						|
  MPM.add(createCFGSimplificationPass());
 | 
						|
  addInstructionCombiningPass(MPM);
 | 
						|
  // We resume loop passes creating a second loop pipeline here.
 | 
						|
  MPM.add(createIndVarSimplifyPass());        // Canonicalize indvars
 | 
						|
  MPM.add(createLoopIdiomPass());             // Recognize idioms like memset.
 | 
						|
  addExtensionsToPM(EP_LateLoopOptimizations, MPM);
 | 
						|
  MPM.add(createLoopDeletionPass());          // Delete dead loops
 | 
						|
 | 
						|
  if (EnableLoopInterchange)
 | 
						|
    MPM.add(createLoopInterchangePass()); // Interchange loops
 | 
						|
 | 
						|
  // Unroll small loops
 | 
						|
  MPM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
 | 
						|
                                     ForgetAllSCEVInLoopUnroll));
 | 
						|
  addExtensionsToPM(EP_LoopOptimizerEnd, MPM);
 | 
						|
  // This ends the loop pass pipelines.
 | 
						|
 | 
						|
  if (OptLevel > 1) {
 | 
						|
    MPM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds
 | 
						|
    MPM.add(NewGVN ? createNewGVNPass()
 | 
						|
                   : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies
 | 
						|
  }
 | 
						|
  MPM.add(createMemCpyOptPass());             // Remove memcpy / form memset
 | 
						|
  MPM.add(createSCCPPass());                  // Constant prop with SCCP
 | 
						|
 | 
						|
  // Delete dead bit computations (instcombine runs after to fold away the dead
 | 
						|
  // computations, and then ADCE will run later to exploit any new DCE
 | 
						|
  // opportunities that creates).
 | 
						|
  MPM.add(createBitTrackingDCEPass());        // Delete dead bit computations
 | 
						|
 | 
						|
  // Run instcombine after redundancy elimination to exploit opportunities
 | 
						|
  // opened up by them.
 | 
						|
  addInstructionCombiningPass(MPM);
 | 
						|
  addExtensionsToPM(EP_Peephole, MPM);
 | 
						|
  MPM.add(createJumpThreadingPass());         // Thread jumps
 | 
						|
  MPM.add(createCorrelatedValuePropagationPass());
 | 
						|
  MPM.add(createDeadStoreEliminationPass());  // Delete dead stores
 | 
						|
  MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
 | 
						|
 | 
						|
  addExtensionsToPM(EP_ScalarOptimizerLate, MPM);
 | 
						|
 | 
						|
  if (RerollLoops)
 | 
						|
    MPM.add(createLoopRerollPass());
 | 
						|
 | 
						|
  MPM.add(createAggressiveDCEPass());         // Delete dead instructions
 | 
						|
  MPM.add(createCFGSimplificationPass()); // Merge & remove BBs
 | 
						|
  // Clean up after everything.
 | 
						|
  addInstructionCombiningPass(MPM);
 | 
						|
  addExtensionsToPM(EP_Peephole, MPM);
 | 
						|
 | 
						|
  if (EnableCHR && OptLevel >= 3 &&
 | 
						|
      (!PGOInstrUse.empty() || !PGOSampleUse.empty() || EnablePGOCSInstrGen))
 | 
						|
    MPM.add(createControlHeightReductionLegacyPass());
 | 
						|
}
 | 
						|
 | 
						|
void PassManagerBuilder::populateModulePassManager(
 | 
						|
    legacy::PassManagerBase &MPM) {
 | 
						|
  // Whether this is a default or *LTO pre-link pipeline. The FullLTO post-link
 | 
						|
  // is handled separately, so just check this is not the ThinLTO post-link.
 | 
						|
  bool DefaultOrPreLinkPipeline = !PerformThinLTO;
 | 
						|
 | 
						|
  if (!PGOSampleUse.empty()) {
 | 
						|
    MPM.add(createPruneEHPass());
 | 
						|
    // In ThinLTO mode, when flattened profile is used, all the available
 | 
						|
    // profile information will be annotated in PreLink phase so there is
 | 
						|
    // no need to load the profile again in PostLink.
 | 
						|
    if (!(FlattenedProfileUsed && PerformThinLTO))
 | 
						|
      MPM.add(createSampleProfileLoaderPass(PGOSampleUse));
 | 
						|
  }
 | 
						|
 | 
						|
  // Allow forcing function attributes as a debugging and tuning aid.
 | 
						|
  MPM.add(createForceFunctionAttrsLegacyPass());
 | 
						|
 | 
						|
  // If all optimizations are disabled, just run the always-inline pass and,
 | 
						|
  // if enabled, the function merging pass.
 | 
						|
  if (OptLevel == 0) {
 | 
						|
    addPGOInstrPasses(MPM);
 | 
						|
    if (Inliner) {
 | 
						|
      MPM.add(Inliner);
 | 
						|
      Inliner = nullptr;
 | 
						|
    }
 | 
						|
 | 
						|
    // FIXME: The BarrierNoopPass is a HACK! The inliner pass above implicitly
 | 
						|
    // creates a CGSCC pass manager, but we don't want to add extensions into
 | 
						|
    // that pass manager. To prevent this we insert a no-op module pass to reset
 | 
						|
    // the pass manager to get the same behavior as EP_OptimizerLast in non-O0
 | 
						|
    // builds. The function merging pass is
 | 
						|
    if (MergeFunctions)
 | 
						|
      MPM.add(createMergeFunctionsPass());
 | 
						|
    else if (GlobalExtensionsNotEmpty() || !Extensions.empty())
 | 
						|
      MPM.add(createBarrierNoopPass());
 | 
						|
 | 
						|
    if (PerformThinLTO) {
 | 
						|
      // Drop available_externally and unreferenced globals. This is necessary
 | 
						|
      // with ThinLTO in order to avoid leaving undefined references to dead
 | 
						|
      // globals in the object file.
 | 
						|
      MPM.add(createEliminateAvailableExternallyPass());
 | 
						|
      MPM.add(createGlobalDCEPass());
 | 
						|
    }
 | 
						|
 | 
						|
    addExtensionsToPM(EP_EnabledOnOptLevel0, MPM);
 | 
						|
 | 
						|
    if (PrepareForLTO || PrepareForThinLTO) {
 | 
						|
      MPM.add(createCanonicalizeAliasesPass());
 | 
						|
      // Rename anon globals to be able to export them in the summary.
 | 
						|
      // This has to be done after we add the extensions to the pass manager
 | 
						|
      // as there could be passes (e.g. Adddress sanitizer) which introduce
 | 
						|
      // new unnamed globals.
 | 
						|
      MPM.add(createNameAnonGlobalPass());
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Add LibraryInfo if we have some.
 | 
						|
  if (LibraryInfo)
 | 
						|
    MPM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
 | 
						|
 | 
						|
  addInitialAliasAnalysisPasses(MPM);
 | 
						|
 | 
						|
  // For ThinLTO there are two passes of indirect call promotion. The
 | 
						|
  // first is during the compile phase when PerformThinLTO=false and
 | 
						|
  // intra-module indirect call targets are promoted. The second is during
 | 
						|
  // the ThinLTO backend when PerformThinLTO=true, when we promote imported
 | 
						|
  // inter-module indirect calls. For that we perform indirect call promotion
 | 
						|
  // earlier in the pass pipeline, here before globalopt. Otherwise imported
 | 
						|
  // available_externally functions look unreferenced and are removed.
 | 
						|
  if (PerformThinLTO)
 | 
						|
    MPM.add(createPGOIndirectCallPromotionLegacyPass(/*InLTO = */ true,
 | 
						|
                                                     !PGOSampleUse.empty()));
 | 
						|
 | 
						|
  // For SamplePGO in ThinLTO compile phase, we do not want to unroll loops
 | 
						|
  // as it will change the CFG too much to make the 2nd profile annotation
 | 
						|
  // in backend more difficult.
 | 
						|
  bool PrepareForThinLTOUsingPGOSampleProfile =
 | 
						|
      PrepareForThinLTO && !PGOSampleUse.empty();
 | 
						|
  if (PrepareForThinLTOUsingPGOSampleProfile)
 | 
						|
    DisableUnrollLoops = true;
 | 
						|
 | 
						|
  // Infer attributes about declarations if possible.
 | 
						|
  MPM.add(createInferFunctionAttrsLegacyPass());
 | 
						|
 | 
						|
  addExtensionsToPM(EP_ModuleOptimizerEarly, MPM);
 | 
						|
 | 
						|
  if (OptLevel > 2)
 | 
						|
    MPM.add(createCallSiteSplittingPass());
 | 
						|
 | 
						|
  MPM.add(createIPSCCPPass());          // IP SCCP
 | 
						|
  MPM.add(createCalledValuePropagationPass());
 | 
						|
  MPM.add(createGlobalOptimizerPass()); // Optimize out global vars
 | 
						|
  // Promote any localized global vars.
 | 
						|
  MPM.add(createPromoteMemoryToRegisterPass());
 | 
						|
 | 
						|
  MPM.add(createDeadArgEliminationPass()); // Dead argument elimination
 | 
						|
 | 
						|
  addInstructionCombiningPass(MPM); // Clean up after IPCP & DAE
 | 
						|
  addExtensionsToPM(EP_Peephole, MPM);
 | 
						|
  MPM.add(createCFGSimplificationPass()); // Clean up after IPCP & DAE
 | 
						|
 | 
						|
  // For SamplePGO in ThinLTO compile phase, we do not want to do indirect
 | 
						|
  // call promotion as it will change the CFG too much to make the 2nd
 | 
						|
  // profile annotation in backend more difficult.
 | 
						|
  // PGO instrumentation is added during the compile phase for ThinLTO, do
 | 
						|
  // not run it a second time
 | 
						|
  if (DefaultOrPreLinkPipeline && !PrepareForThinLTOUsingPGOSampleProfile)
 | 
						|
    addPGOInstrPasses(MPM);
 | 
						|
 | 
						|
  // Create profile COMDAT variables. Lld linker wants to see all variables
 | 
						|
  // before the LTO/ThinLTO link since it needs to resolve symbols/comdats.
 | 
						|
  if (!PerformThinLTO && EnablePGOCSInstrGen)
 | 
						|
    MPM.add(createPGOInstrumentationGenCreateVarLegacyPass(PGOInstrGen));
 | 
						|
 | 
						|
  // We add a module alias analysis pass here. In part due to bugs in the
 | 
						|
  // analysis infrastructure this "works" in that the analysis stays alive
 | 
						|
  // for the entire SCC pass run below.
 | 
						|
  MPM.add(createGlobalsAAWrapperPass());
 | 
						|
 | 
						|
  // Start of CallGraph SCC passes.
 | 
						|
  MPM.add(createPruneEHPass()); // Remove dead EH info
 | 
						|
  bool RunInliner = false;
 | 
						|
  if (Inliner) {
 | 
						|
    MPM.add(Inliner);
 | 
						|
    Inliner = nullptr;
 | 
						|
    RunInliner = true;
 | 
						|
  }
 | 
						|
 | 
						|
  MPM.add(createPostOrderFunctionAttrsLegacyPass());
 | 
						|
  if (OptLevel > 2)
 | 
						|
    MPM.add(createArgumentPromotionPass()); // Scalarize uninlined fn args
 | 
						|
 | 
						|
  addExtensionsToPM(EP_CGSCCOptimizerLate, MPM);
 | 
						|
  addFunctionSimplificationPasses(MPM);
 | 
						|
 | 
						|
  // FIXME: This is a HACK! The inliner pass above implicitly creates a CGSCC
 | 
						|
  // pass manager that we are specifically trying to avoid. To prevent this
 | 
						|
  // we must insert a no-op module pass to reset the pass manager.
 | 
						|
  MPM.add(createBarrierNoopPass());
 | 
						|
 | 
						|
  if (RunPartialInlining)
 | 
						|
    MPM.add(createPartialInliningPass());
 | 
						|
 | 
						|
  if (OptLevel > 1 && !PrepareForLTO && !PrepareForThinLTO)
 | 
						|
    // Remove avail extern fns and globals definitions if we aren't
 | 
						|
    // compiling an object file for later LTO. For LTO we want to preserve
 | 
						|
    // these so they are eligible for inlining at link-time. Note if they
 | 
						|
    // are unreferenced they will be removed by GlobalDCE later, so
 | 
						|
    // this only impacts referenced available externally globals.
 | 
						|
    // Eventually they will be suppressed during codegen, but eliminating
 | 
						|
    // here enables more opportunity for GlobalDCE as it may make
 | 
						|
    // globals referenced by available external functions dead
 | 
						|
    // and saves running remaining passes on the eliminated functions.
 | 
						|
    MPM.add(createEliminateAvailableExternallyPass());
 | 
						|
 | 
						|
  // CSFDO instrumentation and use pass. Don't invoke this for Prepare pass
 | 
						|
  // for LTO and ThinLTO -- The actual pass will be called after all inlines
 | 
						|
  // are performed.
 | 
						|
  // Need to do this after COMDAT variables have been eliminated,
 | 
						|
  // (i.e. after EliminateAvailableExternallyPass).
 | 
						|
  if (!(PrepareForLTO || PrepareForThinLTO))
 | 
						|
    addPGOInstrPasses(MPM, /* IsCS */ true);
 | 
						|
 | 
						|
  if (EnableOrderFileInstrumentation)
 | 
						|
    MPM.add(createInstrOrderFilePass());
 | 
						|
 | 
						|
  MPM.add(createReversePostOrderFunctionAttrsPass());
 | 
						|
 | 
						|
  // The inliner performs some kind of dead code elimination as it goes,
 | 
						|
  // but there are cases that are not really caught by it. We might
 | 
						|
  // at some point consider teaching the inliner about them, but it
 | 
						|
  // is OK for now to run GlobalOpt + GlobalDCE in tandem as their
 | 
						|
  // benefits generally outweight the cost, making the whole pipeline
 | 
						|
  // faster.
 | 
						|
  if (RunInliner) {
 | 
						|
    MPM.add(createGlobalOptimizerPass());
 | 
						|
    MPM.add(createGlobalDCEPass());
 | 
						|
  }
 | 
						|
 | 
						|
  // If we are planning to perform ThinLTO later, let's not bloat the code with
 | 
						|
  // unrolling/vectorization/... now. We'll first run the inliner + CGSCC passes
 | 
						|
  // during ThinLTO and perform the rest of the optimizations afterward.
 | 
						|
  if (PrepareForThinLTO) {
 | 
						|
    // Ensure we perform any last passes, but do so before renaming anonymous
 | 
						|
    // globals in case the passes add any.
 | 
						|
    addExtensionsToPM(EP_OptimizerLast, MPM);
 | 
						|
    MPM.add(createCanonicalizeAliasesPass());
 | 
						|
    // Rename anon globals to be able to export them in the summary.
 | 
						|
    MPM.add(createNameAnonGlobalPass());
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (PerformThinLTO)
 | 
						|
    // Optimize globals now when performing ThinLTO, this enables more
 | 
						|
    // optimizations later.
 | 
						|
    MPM.add(createGlobalOptimizerPass());
 | 
						|
 | 
						|
  // Scheduling LoopVersioningLICM when inlining is over, because after that
 | 
						|
  // we may see more accurate aliasing. Reason to run this late is that too
 | 
						|
  // early versioning may prevent further inlining due to increase of code
 | 
						|
  // size. By placing it just after inlining other optimizations which runs
 | 
						|
  // later might get benefit of no-alias assumption in clone loop.
 | 
						|
  if (UseLoopVersioningLICM) {
 | 
						|
    MPM.add(createLoopVersioningLICMPass());    // Do LoopVersioningLICM
 | 
						|
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
 | 
						|
  }
 | 
						|
 | 
						|
  // We add a fresh GlobalsModRef run at this point. This is particularly
 | 
						|
  // useful as the above will have inlined, DCE'ed, and function-attr
 | 
						|
  // propagated everything. We should at this point have a reasonably minimal
 | 
						|
  // and richly annotated call graph. By computing aliasing and mod/ref
 | 
						|
  // information for all local globals here, the late loop passes and notably
 | 
						|
  // the vectorizer will be able to use them to help recognize vectorizable
 | 
						|
  // memory operations.
 | 
						|
  //
 | 
						|
  // Note that this relies on a bug in the pass manager which preserves
 | 
						|
  // a module analysis into a function pass pipeline (and throughout it) so
 | 
						|
  // long as the first function pass doesn't invalidate the module analysis.
 | 
						|
  // Thus both Float2Int and LoopRotate have to preserve AliasAnalysis for
 | 
						|
  // this to work. Fortunately, it is trivial to preserve AliasAnalysis
 | 
						|
  // (doing nothing preserves it as it is required to be conservatively
 | 
						|
  // correct in the face of IR changes).
 | 
						|
  MPM.add(createGlobalsAAWrapperPass());
 | 
						|
 | 
						|
  MPM.add(createFloat2IntPass());
 | 
						|
 | 
						|
  addExtensionsToPM(EP_VectorizerStart, MPM);
 | 
						|
 | 
						|
  // Re-rotate loops in all our loop nests. These may have fallout out of
 | 
						|
  // rotated form due to GVN or other transformations, and the vectorizer relies
 | 
						|
  // on the rotated form. Disable header duplication at -Oz.
 | 
						|
  MPM.add(createLoopRotatePass(SizeLevel == 2 ? 0 : -1));
 | 
						|
 | 
						|
  // Distribute loops to allow partial vectorization.  I.e. isolate dependences
 | 
						|
  // into separate loop that would otherwise inhibit vectorization.  This is
 | 
						|
  // currently only performed for loops marked with the metadata
 | 
						|
  // llvm.loop.distribute=true or when -enable-loop-distribute is specified.
 | 
						|
  MPM.add(createLoopDistributePass());
 | 
						|
 | 
						|
  MPM.add(createLoopVectorizePass(!LoopsInterleaved, !LoopVectorize));
 | 
						|
 | 
						|
  // Eliminate loads by forwarding stores from the previous iteration to loads
 | 
						|
  // of the current iteration.
 | 
						|
  MPM.add(createLoopLoadEliminationPass());
 | 
						|
 | 
						|
  // FIXME: Because of #pragma vectorize enable, the passes below are always
 | 
						|
  // inserted in the pipeline, even when the vectorizer doesn't run (ex. when
 | 
						|
  // on -O1 and no #pragma is found). Would be good to have these two passes
 | 
						|
  // as function calls, so that we can only pass them when the vectorizer
 | 
						|
  // changed the code.
 | 
						|
  addInstructionCombiningPass(MPM);
 | 
						|
  if (OptLevel > 1 && ExtraVectorizerPasses) {
 | 
						|
    // At higher optimization levels, try to clean up any runtime overlap and
 | 
						|
    // alignment checks inserted by the vectorizer. We want to track correllated
 | 
						|
    // runtime checks for two inner loops in the same outer loop, fold any
 | 
						|
    // common computations, hoist loop-invariant aspects out of any outer loop,
 | 
						|
    // and unswitch the runtime checks if possible. Once hoisted, we may have
 | 
						|
    // dead (or speculatable) control flows or more combining opportunities.
 | 
						|
    MPM.add(createEarlyCSEPass());
 | 
						|
    MPM.add(createCorrelatedValuePropagationPass());
 | 
						|
    addInstructionCombiningPass(MPM);
 | 
						|
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
 | 
						|
    MPM.add(createLoopUnswitchPass(SizeLevel || OptLevel < 3, DivergentTarget));
 | 
						|
    MPM.add(createCFGSimplificationPass());
 | 
						|
    addInstructionCombiningPass(MPM);
 | 
						|
  }
 | 
						|
 | 
						|
  // Cleanup after loop vectorization, etc. Simplification passes like CVP and
 | 
						|
  // GVN, loop transforms, and others have already run, so it's now better to
 | 
						|
  // convert to more optimized IR using more aggressive simplify CFG options.
 | 
						|
  // The extra sinking transform can create larger basic blocks, so do this
 | 
						|
  // before SLP vectorization.
 | 
						|
  MPM.add(createCFGSimplificationPass(1, true, true, false, true));
 | 
						|
 | 
						|
  if (SLPVectorize) {
 | 
						|
    MPM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
 | 
						|
    if (OptLevel > 1 && ExtraVectorizerPasses) {
 | 
						|
      MPM.add(createEarlyCSEPass());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  addExtensionsToPM(EP_Peephole, MPM);
 | 
						|
  addInstructionCombiningPass(MPM);
 | 
						|
 | 
						|
  if (EnableUnrollAndJam && !DisableUnrollLoops) {
 | 
						|
    // Unroll and Jam. We do this before unroll but need to be in a separate
 | 
						|
    // loop pass manager in order for the outer loop to be processed by
 | 
						|
    // unroll and jam before the inner loop is unrolled.
 | 
						|
    MPM.add(createLoopUnrollAndJamPass(OptLevel));
 | 
						|
  }
 | 
						|
 | 
						|
  // Unroll small loops
 | 
						|
  MPM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
 | 
						|
                               ForgetAllSCEVInLoopUnroll));
 | 
						|
 | 
						|
  if (!DisableUnrollLoops) {
 | 
						|
    // LoopUnroll may generate some redundency to cleanup.
 | 
						|
    addInstructionCombiningPass(MPM);
 | 
						|
 | 
						|
    // Runtime unrolling will introduce runtime check in loop prologue. If the
 | 
						|
    // unrolled loop is a inner loop, then the prologue will be inside the
 | 
						|
    // outer loop. LICM pass can help to promote the runtime check out if the
 | 
						|
    // checked value is loop invariant.
 | 
						|
    MPM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
 | 
						|
  }
 | 
						|
 | 
						|
  MPM.add(createWarnMissedTransformationsPass());
 | 
						|
 | 
						|
  // After vectorization and unrolling, assume intrinsics may tell us more
 | 
						|
  // about pointer alignments.
 | 
						|
  MPM.add(createAlignmentFromAssumptionsPass());
 | 
						|
 | 
						|
  // FIXME: We shouldn't bother with this anymore.
 | 
						|
  MPM.add(createStripDeadPrototypesPass()); // Get rid of dead prototypes
 | 
						|
 | 
						|
  // GlobalOpt already deletes dead functions and globals, at -O2 try a
 | 
						|
  // late pass of GlobalDCE.  It is capable of deleting dead cycles.
 | 
						|
  if (OptLevel > 1) {
 | 
						|
    MPM.add(createGlobalDCEPass());         // Remove dead fns and globals.
 | 
						|
    MPM.add(createConstantMergePass());     // Merge dup global constants
 | 
						|
  }
 | 
						|
 | 
						|
  // See comment in the new PM for justification of scheduling splitting at
 | 
						|
  // this stage (\ref buildModuleSimplificationPipeline).
 | 
						|
  if (EnableHotColdSplit && !(PrepareForLTO || PrepareForThinLTO))
 | 
						|
    MPM.add(createHotColdSplittingPass());
 | 
						|
 | 
						|
  if (MergeFunctions)
 | 
						|
    MPM.add(createMergeFunctionsPass());
 | 
						|
 | 
						|
  // LoopSink pass sinks instructions hoisted by LICM, which serves as a
 | 
						|
  // canonicalization pass that enables other optimizations. As a result,
 | 
						|
  // LoopSink pass needs to be a very late IR pass to avoid undoing LICM
 | 
						|
  // result too early.
 | 
						|
  MPM.add(createLoopSinkPass());
 | 
						|
  // Get rid of LCSSA nodes.
 | 
						|
  MPM.add(createInstSimplifyLegacyPass());
 | 
						|
 | 
						|
  // This hoists/decomposes div/rem ops. It should run after other sink/hoist
 | 
						|
  // passes to avoid re-sinking, but before SimplifyCFG because it can allow
 | 
						|
  // flattening of blocks.
 | 
						|
  MPM.add(createDivRemPairsPass());
 | 
						|
 | 
						|
  // LoopSink (and other loop passes since the last simplifyCFG) might have
 | 
						|
  // resulted in single-entry-single-exit or empty blocks. Clean up the CFG.
 | 
						|
  MPM.add(createCFGSimplificationPass());
 | 
						|
 | 
						|
  addExtensionsToPM(EP_OptimizerLast, MPM);
 | 
						|
 | 
						|
  if (PrepareForLTO) {
 | 
						|
    MPM.add(createCanonicalizeAliasesPass());
 | 
						|
    // Rename anon globals to be able to handle them in the summary
 | 
						|
    MPM.add(createNameAnonGlobalPass());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void PassManagerBuilder::addLTOOptimizationPasses(legacy::PassManagerBase &PM) {
 | 
						|
  // Load sample profile before running the LTO optimization pipeline.
 | 
						|
  if (!PGOSampleUse.empty()) {
 | 
						|
    PM.add(createPruneEHPass());
 | 
						|
    PM.add(createSampleProfileLoaderPass(PGOSampleUse));
 | 
						|
  }
 | 
						|
 | 
						|
  // Remove unused virtual tables to improve the quality of code generated by
 | 
						|
  // whole-program devirtualization and bitset lowering.
 | 
						|
  PM.add(createGlobalDCEPass());
 | 
						|
 | 
						|
  // Provide AliasAnalysis services for optimizations.
 | 
						|
  addInitialAliasAnalysisPasses(PM);
 | 
						|
 | 
						|
  // Allow forcing function attributes as a debugging and tuning aid.
 | 
						|
  PM.add(createForceFunctionAttrsLegacyPass());
 | 
						|
 | 
						|
  // Infer attributes about declarations if possible.
 | 
						|
  PM.add(createInferFunctionAttrsLegacyPass());
 | 
						|
 | 
						|
  if (OptLevel > 1) {
 | 
						|
    // Split call-site with more constrained arguments.
 | 
						|
    PM.add(createCallSiteSplittingPass());
 | 
						|
 | 
						|
    // Indirect call promotion. This should promote all the targets that are
 | 
						|
    // left by the earlier promotion pass that promotes intra-module targets.
 | 
						|
    // This two-step promotion is to save the compile time. For LTO, it should
 | 
						|
    // produce the same result as if we only do promotion here.
 | 
						|
    PM.add(
 | 
						|
        createPGOIndirectCallPromotionLegacyPass(true, !PGOSampleUse.empty()));
 | 
						|
 | 
						|
    // Propagate constants at call sites into the functions they call.  This
 | 
						|
    // opens opportunities for globalopt (and inlining) by substituting function
 | 
						|
    // pointers passed as arguments to direct uses of functions.
 | 
						|
    PM.add(createIPSCCPPass());
 | 
						|
 | 
						|
    // Attach metadata to indirect call sites indicating the set of functions
 | 
						|
    // they may target at run-time. This should follow IPSCCP.
 | 
						|
    PM.add(createCalledValuePropagationPass());
 | 
						|
  }
 | 
						|
 | 
						|
  // Infer attributes about definitions. The readnone attribute in particular is
 | 
						|
  // required for virtual constant propagation.
 | 
						|
  PM.add(createPostOrderFunctionAttrsLegacyPass());
 | 
						|
  PM.add(createReversePostOrderFunctionAttrsPass());
 | 
						|
 | 
						|
  // Split globals using inrange annotations on GEP indices. This can help
 | 
						|
  // improve the quality of generated code when virtual constant propagation or
 | 
						|
  // control flow integrity are enabled.
 | 
						|
  PM.add(createGlobalSplitPass());
 | 
						|
 | 
						|
  // Apply whole-program devirtualization and virtual constant propagation.
 | 
						|
  PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
 | 
						|
 | 
						|
  // That's all we need at opt level 1.
 | 
						|
  if (OptLevel == 1)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Now that we internalized some globals, see if we can hack on them!
 | 
						|
  PM.add(createGlobalOptimizerPass());
 | 
						|
  // Promote any localized global vars.
 | 
						|
  PM.add(createPromoteMemoryToRegisterPass());
 | 
						|
 | 
						|
  // Linking modules together can lead to duplicated global constants, only
 | 
						|
  // keep one copy of each constant.
 | 
						|
  PM.add(createConstantMergePass());
 | 
						|
 | 
						|
  // Remove unused arguments from functions.
 | 
						|
  PM.add(createDeadArgEliminationPass());
 | 
						|
 | 
						|
  // Reduce the code after globalopt and ipsccp.  Both can open up significant
 | 
						|
  // simplification opportunities, and both can propagate functions through
 | 
						|
  // function pointers.  When this happens, we often have to resolve varargs
 | 
						|
  // calls, etc, so let instcombine do this.
 | 
						|
  if (OptLevel > 2)
 | 
						|
    PM.add(createAggressiveInstCombinerPass());
 | 
						|
  addInstructionCombiningPass(PM);
 | 
						|
  addExtensionsToPM(EP_Peephole, PM);
 | 
						|
 | 
						|
  // Inline small functions
 | 
						|
  bool RunInliner = Inliner;
 | 
						|
  if (RunInliner) {
 | 
						|
    PM.add(Inliner);
 | 
						|
    Inliner = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  PM.add(createPruneEHPass());   // Remove dead EH info.
 | 
						|
 | 
						|
  // CSFDO instrumentation and use pass.
 | 
						|
  addPGOInstrPasses(PM, /* IsCS */ true);
 | 
						|
 | 
						|
  // Optimize globals again if we ran the inliner.
 | 
						|
  if (RunInliner)
 | 
						|
    PM.add(createGlobalOptimizerPass());
 | 
						|
  PM.add(createGlobalDCEPass()); // Remove dead functions.
 | 
						|
 | 
						|
  // If we didn't decide to inline a function, check to see if we can
 | 
						|
  // transform it to pass arguments by value instead of by reference.
 | 
						|
  PM.add(createArgumentPromotionPass());
 | 
						|
 | 
						|
  // The IPO passes may leave cruft around.  Clean up after them.
 | 
						|
  addInstructionCombiningPass(PM);
 | 
						|
  addExtensionsToPM(EP_Peephole, PM);
 | 
						|
  PM.add(createJumpThreadingPass());
 | 
						|
 | 
						|
  // Break up allocas
 | 
						|
  PM.add(createSROAPass());
 | 
						|
 | 
						|
  // LTO provides additional opportunities for tailcall elimination due to
 | 
						|
  // link-time inlining, and visibility of nocapture attribute.
 | 
						|
  PM.add(createTailCallEliminationPass());
 | 
						|
 | 
						|
  // Run a few AA driven optimizations here and now, to cleanup the code.
 | 
						|
  PM.add(createPostOrderFunctionAttrsLegacyPass()); // Add nocapture.
 | 
						|
  PM.add(createGlobalsAAWrapperPass()); // IP alias analysis.
 | 
						|
 | 
						|
  PM.add(createLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap));
 | 
						|
  PM.add(createMergedLoadStoreMotionPass()); // Merge ld/st in diamonds.
 | 
						|
  PM.add(NewGVN ? createNewGVNPass()
 | 
						|
                : createGVNPass(DisableGVNLoadPRE)); // Remove redundancies.
 | 
						|
  PM.add(createMemCpyOptPass());            // Remove dead memcpys.
 | 
						|
 | 
						|
  // Nuke dead stores.
 | 
						|
  PM.add(createDeadStoreEliminationPass());
 | 
						|
 | 
						|
  // More loops are countable; try to optimize them.
 | 
						|
  PM.add(createIndVarSimplifyPass());
 | 
						|
  PM.add(createLoopDeletionPass());
 | 
						|
  if (EnableLoopInterchange)
 | 
						|
    PM.add(createLoopInterchangePass());
 | 
						|
 | 
						|
  // Unroll small loops
 | 
						|
  PM.add(createSimpleLoopUnrollPass(OptLevel, DisableUnrollLoops,
 | 
						|
                                    ForgetAllSCEVInLoopUnroll));
 | 
						|
  PM.add(createLoopVectorizePass(true, !LoopVectorize));
 | 
						|
  // The vectorizer may have significantly shortened a loop body; unroll again.
 | 
						|
  PM.add(createLoopUnrollPass(OptLevel, DisableUnrollLoops,
 | 
						|
                              ForgetAllSCEVInLoopUnroll));
 | 
						|
 | 
						|
  PM.add(createWarnMissedTransformationsPass());
 | 
						|
 | 
						|
  // Now that we've optimized loops (in particular loop induction variables),
 | 
						|
  // we may have exposed more scalar opportunities. Run parts of the scalar
 | 
						|
  // optimizer again at this point.
 | 
						|
  addInstructionCombiningPass(PM); // Initial cleanup
 | 
						|
  PM.add(createCFGSimplificationPass()); // if-convert
 | 
						|
  PM.add(createSCCPPass()); // Propagate exposed constants
 | 
						|
  addInstructionCombiningPass(PM); // Clean up again
 | 
						|
  PM.add(createBitTrackingDCEPass());
 | 
						|
 | 
						|
  // More scalar chains could be vectorized due to more alias information
 | 
						|
  if (SLPVectorize)
 | 
						|
    PM.add(createSLPVectorizerPass()); // Vectorize parallel scalar chains.
 | 
						|
 | 
						|
  // After vectorization, assume intrinsics may tell us more about pointer
 | 
						|
  // alignments.
 | 
						|
  PM.add(createAlignmentFromAssumptionsPass());
 | 
						|
 | 
						|
  // Cleanup and simplify the code after the scalar optimizations.
 | 
						|
  addInstructionCombiningPass(PM);
 | 
						|
  addExtensionsToPM(EP_Peephole, PM);
 | 
						|
 | 
						|
  PM.add(createJumpThreadingPass());
 | 
						|
}
 | 
						|
 | 
						|
void PassManagerBuilder::addLateLTOOptimizationPasses(
 | 
						|
    legacy::PassManagerBase &PM) {
 | 
						|
  // See comment in the new PM for justification of scheduling splitting at
 | 
						|
  // this stage (\ref buildLTODefaultPipeline).
 | 
						|
  if (EnableHotColdSplit)
 | 
						|
    PM.add(createHotColdSplittingPass());
 | 
						|
 | 
						|
  // Delete basic blocks, which optimization passes may have killed.
 | 
						|
  PM.add(createCFGSimplificationPass());
 | 
						|
 | 
						|
  // Drop bodies of available externally objects to improve GlobalDCE.
 | 
						|
  PM.add(createEliminateAvailableExternallyPass());
 | 
						|
 | 
						|
  // Now that we have optimized the program, discard unreachable functions.
 | 
						|
  PM.add(createGlobalDCEPass());
 | 
						|
 | 
						|
  // FIXME: this is profitable (for compiler time) to do at -O0 too, but
 | 
						|
  // currently it damages debug info.
 | 
						|
  if (MergeFunctions)
 | 
						|
    PM.add(createMergeFunctionsPass());
 | 
						|
}
 | 
						|
 | 
						|
void PassManagerBuilder::populateThinLTOPassManager(
 | 
						|
    legacy::PassManagerBase &PM) {
 | 
						|
  PerformThinLTO = true;
 | 
						|
  if (LibraryInfo)
 | 
						|
    PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
 | 
						|
 | 
						|
  if (VerifyInput)
 | 
						|
    PM.add(createVerifierPass());
 | 
						|
 | 
						|
  if (ImportSummary) {
 | 
						|
    // These passes import type identifier resolutions for whole-program
 | 
						|
    // devirtualization and CFI. They must run early because other passes may
 | 
						|
    // disturb the specific instruction patterns that these passes look for,
 | 
						|
    // creating dependencies on resolutions that may not appear in the summary.
 | 
						|
    //
 | 
						|
    // For example, GVN may transform the pattern assume(type.test) appearing in
 | 
						|
    // two basic blocks into assume(phi(type.test, type.test)), which would
 | 
						|
    // transform a dependency on a WPD resolution into a dependency on a type
 | 
						|
    // identifier resolution for CFI.
 | 
						|
    //
 | 
						|
    // Also, WPD has access to more precise information than ICP and can
 | 
						|
    // devirtualize more effectively, so it should operate on the IR first.
 | 
						|
    PM.add(createWholeProgramDevirtPass(nullptr, ImportSummary));
 | 
						|
    PM.add(createLowerTypeTestsPass(nullptr, ImportSummary));
 | 
						|
  }
 | 
						|
 | 
						|
  populateModulePassManager(PM);
 | 
						|
 | 
						|
  if (VerifyOutput)
 | 
						|
    PM.add(createVerifierPass());
 | 
						|
  PerformThinLTO = false;
 | 
						|
}
 | 
						|
 | 
						|
void PassManagerBuilder::populateLTOPassManager(legacy::PassManagerBase &PM) {
 | 
						|
  if (LibraryInfo)
 | 
						|
    PM.add(new TargetLibraryInfoWrapperPass(*LibraryInfo));
 | 
						|
 | 
						|
  if (VerifyInput)
 | 
						|
    PM.add(createVerifierPass());
 | 
						|
 | 
						|
  if (OptLevel != 0)
 | 
						|
    addLTOOptimizationPasses(PM);
 | 
						|
  else {
 | 
						|
    // The whole-program-devirt pass needs to run at -O0 because only it knows
 | 
						|
    // about the llvm.type.checked.load intrinsic: it needs to both lower the
 | 
						|
    // intrinsic itself and handle it in the summary.
 | 
						|
    PM.add(createWholeProgramDevirtPass(ExportSummary, nullptr));
 | 
						|
  }
 | 
						|
 | 
						|
  // Create a function that performs CFI checks for cross-DSO calls with targets
 | 
						|
  // in the current module.
 | 
						|
  PM.add(createCrossDSOCFIPass());
 | 
						|
 | 
						|
  // Lower type metadata and the type.test intrinsic. This pass supports Clang's
 | 
						|
  // control flow integrity mechanisms (-fsanitize=cfi*) and needs to run at
 | 
						|
  // link time if CFI is enabled. The pass does nothing if CFI is disabled.
 | 
						|
  PM.add(createLowerTypeTestsPass(ExportSummary, nullptr));
 | 
						|
 | 
						|
  if (OptLevel != 0)
 | 
						|
    addLateLTOOptimizationPasses(PM);
 | 
						|
 | 
						|
  if (VerifyOutput)
 | 
						|
    PM.add(createVerifierPass());
 | 
						|
}
 | 
						|
 | 
						|
inline PassManagerBuilder *unwrap(LLVMPassManagerBuilderRef P) {
 | 
						|
    return reinterpret_cast<PassManagerBuilder*>(P);
 | 
						|
}
 | 
						|
 | 
						|
inline LLVMPassManagerBuilderRef wrap(PassManagerBuilder *P) {
 | 
						|
  return reinterpret_cast<LLVMPassManagerBuilderRef>(P);
 | 
						|
}
 | 
						|
 | 
						|
LLVMPassManagerBuilderRef LLVMPassManagerBuilderCreate() {
 | 
						|
  PassManagerBuilder *PMB = new PassManagerBuilder();
 | 
						|
  return wrap(PMB);
 | 
						|
}
 | 
						|
 | 
						|
void LLVMPassManagerBuilderDispose(LLVMPassManagerBuilderRef PMB) {
 | 
						|
  PassManagerBuilder *Builder = unwrap(PMB);
 | 
						|
  delete Builder;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
LLVMPassManagerBuilderSetOptLevel(LLVMPassManagerBuilderRef PMB,
 | 
						|
                                  unsigned OptLevel) {
 | 
						|
  PassManagerBuilder *Builder = unwrap(PMB);
 | 
						|
  Builder->OptLevel = OptLevel;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
LLVMPassManagerBuilderSetSizeLevel(LLVMPassManagerBuilderRef PMB,
 | 
						|
                                   unsigned SizeLevel) {
 | 
						|
  PassManagerBuilder *Builder = unwrap(PMB);
 | 
						|
  Builder->SizeLevel = SizeLevel;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
LLVMPassManagerBuilderSetDisableUnitAtATime(LLVMPassManagerBuilderRef PMB,
 | 
						|
                                            LLVMBool Value) {
 | 
						|
  // NOTE: The DisableUnitAtATime switch has been removed.
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
LLVMPassManagerBuilderSetDisableUnrollLoops(LLVMPassManagerBuilderRef PMB,
 | 
						|
                                            LLVMBool Value) {
 | 
						|
  PassManagerBuilder *Builder = unwrap(PMB);
 | 
						|
  Builder->DisableUnrollLoops = Value;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
LLVMPassManagerBuilderSetDisableSimplifyLibCalls(LLVMPassManagerBuilderRef PMB,
 | 
						|
                                                 LLVMBool Value) {
 | 
						|
  // NOTE: The simplify-libcalls pass has been removed.
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
LLVMPassManagerBuilderUseInlinerWithThreshold(LLVMPassManagerBuilderRef PMB,
 | 
						|
                                              unsigned Threshold) {
 | 
						|
  PassManagerBuilder *Builder = unwrap(PMB);
 | 
						|
  Builder->Inliner = createFunctionInliningPass(Threshold);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
LLVMPassManagerBuilderPopulateFunctionPassManager(LLVMPassManagerBuilderRef PMB,
 | 
						|
                                                  LLVMPassManagerRef PM) {
 | 
						|
  PassManagerBuilder *Builder = unwrap(PMB);
 | 
						|
  legacy::FunctionPassManager *FPM = unwrap<legacy::FunctionPassManager>(PM);
 | 
						|
  Builder->populateFunctionPassManager(*FPM);
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
LLVMPassManagerBuilderPopulateModulePassManager(LLVMPassManagerBuilderRef PMB,
 | 
						|
                                                LLVMPassManagerRef PM) {
 | 
						|
  PassManagerBuilder *Builder = unwrap(PMB);
 | 
						|
  legacy::PassManagerBase *MPM = unwrap(PM);
 | 
						|
  Builder->populateModulePassManager(*MPM);
 | 
						|
}
 | 
						|
 | 
						|
void LLVMPassManagerBuilderPopulateLTOPassManager(LLVMPassManagerBuilderRef PMB,
 | 
						|
                                                  LLVMPassManagerRef PM,
 | 
						|
                                                  LLVMBool Internalize,
 | 
						|
                                                  LLVMBool RunInliner) {
 | 
						|
  PassManagerBuilder *Builder = unwrap(PMB);
 | 
						|
  legacy::PassManagerBase *LPM = unwrap(PM);
 | 
						|
 | 
						|
  // A small backwards compatibility hack. populateLTOPassManager used to take
 | 
						|
  // an RunInliner option.
 | 
						|
  if (RunInliner && !Builder->Inliner)
 | 
						|
    Builder->Inliner = createFunctionInliningPass();
 | 
						|
 | 
						|
  Builder->populateLTOPassManager(*LPM);
 | 
						|
}
 |