883 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			883 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- TailRecursionElimination.cpp - Eliminate Tail Calls ----------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file transforms calls of the current function (self recursion) followed
 | 
						|
// by a return instruction with a branch to the entry of the function, creating
 | 
						|
// a loop.  This pass also implements the following extensions to the basic
 | 
						|
// algorithm:
 | 
						|
//
 | 
						|
//  1. Trivial instructions between the call and return do not prevent the
 | 
						|
//     transformation from taking place, though currently the analysis cannot
 | 
						|
//     support moving any really useful instructions (only dead ones).
 | 
						|
//  2. This pass transforms functions that are prevented from being tail
 | 
						|
//     recursive by an associative and commutative expression to use an
 | 
						|
//     accumulator variable, thus compiling the typical naive factorial or
 | 
						|
//     'fib' implementation into efficient code.
 | 
						|
//  3. TRE is performed if the function returns void, if the return
 | 
						|
//     returns the result returned by the call, or if the function returns a
 | 
						|
//     run-time constant on all exits from the function.  It is possible, though
 | 
						|
//     unlikely, that the return returns something else (like constant 0), and
 | 
						|
//     can still be TRE'd.  It can be TRE'd if ALL OTHER return instructions in
 | 
						|
//     the function return the exact same value.
 | 
						|
//  4. If it can prove that callees do not access their caller stack frame,
 | 
						|
//     they are marked as eligible for tail call elimination (by the code
 | 
						|
//     generator).
 | 
						|
//
 | 
						|
// There are several improvements that could be made:
 | 
						|
//
 | 
						|
//  1. If the function has any alloca instructions, these instructions will be
 | 
						|
//     moved out of the entry block of the function, causing them to be
 | 
						|
//     evaluated each time through the tail recursion.  Safely keeping allocas
 | 
						|
//     in the entry block requires analysis to proves that the tail-called
 | 
						|
//     function does not read or write the stack object.
 | 
						|
//  2. Tail recursion is only performed if the call immediately precedes the
 | 
						|
//     return instruction.  It's possible that there could be a jump between
 | 
						|
//     the call and the return.
 | 
						|
//  3. There can be intervening operations between the call and the return that
 | 
						|
//     prevent the TRE from occurring.  For example, there could be GEP's and
 | 
						|
//     stores to memory that will not be read or written by the call.  This
 | 
						|
//     requires some substantial analysis (such as with DSA) to prove safe to
 | 
						|
//     move ahead of the call, but doing so could allow many more TREs to be
 | 
						|
//     performed, for example in TreeAdd/TreeAlloc from the treeadd benchmark.
 | 
						|
//  4. The algorithm we use to detect if callees access their caller stack
 | 
						|
//     frames is very primitive.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Scalar/TailRecursionElimination.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/CaptureTracking.h"
 | 
						|
#include "llvm/Analysis/DomTreeUpdater.h"
 | 
						|
#include "llvm/Analysis/GlobalsModRef.h"
 | 
						|
#include "llvm/Analysis/InlineCost.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/Loads.h"
 | 
						|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
 | 
						|
#include "llvm/Analysis/PostDominators.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/CallSite.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/DiagnosticInfo.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/InstIterator.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/ValueHandle.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "tailcallelim"
 | 
						|
 | 
						|
STATISTIC(NumEliminated, "Number of tail calls removed");
 | 
						|
STATISTIC(NumRetDuped,   "Number of return duplicated");
 | 
						|
STATISTIC(NumAccumAdded, "Number of accumulators introduced");
 | 
						|
 | 
						|
/// Scan the specified function for alloca instructions.
 | 
						|
/// If it contains any dynamic allocas, returns false.
 | 
						|
static bool canTRE(Function &F) {
 | 
						|
  // Because of PR962, we don't TRE dynamic allocas.
 | 
						|
  return llvm::all_of(instructions(F), [](Instruction &I) {
 | 
						|
    auto *AI = dyn_cast<AllocaInst>(&I);
 | 
						|
    return !AI || AI->isStaticAlloca();
 | 
						|
  });
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct AllocaDerivedValueTracker {
 | 
						|
  // Start at a root value and walk its use-def chain to mark calls that use the
 | 
						|
  // value or a derived value in AllocaUsers, and places where it may escape in
 | 
						|
  // EscapePoints.
 | 
						|
  void walk(Value *Root) {
 | 
						|
    SmallVector<Use *, 32> Worklist;
 | 
						|
    SmallPtrSet<Use *, 32> Visited;
 | 
						|
 | 
						|
    auto AddUsesToWorklist = [&](Value *V) {
 | 
						|
      for (auto &U : V->uses()) {
 | 
						|
        if (!Visited.insert(&U).second)
 | 
						|
          continue;
 | 
						|
        Worklist.push_back(&U);
 | 
						|
      }
 | 
						|
    };
 | 
						|
 | 
						|
    AddUsesToWorklist(Root);
 | 
						|
 | 
						|
    while (!Worklist.empty()) {
 | 
						|
      Use *U = Worklist.pop_back_val();
 | 
						|
      Instruction *I = cast<Instruction>(U->getUser());
 | 
						|
 | 
						|
      switch (I->getOpcode()) {
 | 
						|
      case Instruction::Call:
 | 
						|
      case Instruction::Invoke: {
 | 
						|
        CallSite CS(I);
 | 
						|
        // If the alloca-derived argument is passed byval it is not an escape
 | 
						|
        // point, or a use of an alloca. Calling with byval copies the contents
 | 
						|
        // of the alloca into argument registers or stack slots, which exist
 | 
						|
        // beyond the lifetime of the current frame.
 | 
						|
        if (CS.isArgOperand(U) && CS.isByValArgument(CS.getArgumentNo(U)))
 | 
						|
          continue;
 | 
						|
        bool IsNocapture =
 | 
						|
            CS.isDataOperand(U) && CS.doesNotCapture(CS.getDataOperandNo(U));
 | 
						|
        callUsesLocalStack(CS, IsNocapture);
 | 
						|
        if (IsNocapture) {
 | 
						|
          // If the alloca-derived argument is passed in as nocapture, then it
 | 
						|
          // can't propagate to the call's return. That would be capturing.
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case Instruction::Load: {
 | 
						|
        // The result of a load is not alloca-derived (unless an alloca has
 | 
						|
        // otherwise escaped, but this is a local analysis).
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      case Instruction::Store: {
 | 
						|
        if (U->getOperandNo() == 0)
 | 
						|
          EscapePoints.insert(I);
 | 
						|
        continue;  // Stores have no users to analyze.
 | 
						|
      }
 | 
						|
      case Instruction::BitCast:
 | 
						|
      case Instruction::GetElementPtr:
 | 
						|
      case Instruction::PHI:
 | 
						|
      case Instruction::Select:
 | 
						|
      case Instruction::AddrSpaceCast:
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        EscapePoints.insert(I);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      AddUsesToWorklist(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  void callUsesLocalStack(CallSite CS, bool IsNocapture) {
 | 
						|
    // Add it to the list of alloca users.
 | 
						|
    AllocaUsers.insert(CS.getInstruction());
 | 
						|
 | 
						|
    // If it's nocapture then it can't capture this alloca.
 | 
						|
    if (IsNocapture)
 | 
						|
      return;
 | 
						|
 | 
						|
    // If it can write to memory, it can leak the alloca value.
 | 
						|
    if (!CS.onlyReadsMemory())
 | 
						|
      EscapePoints.insert(CS.getInstruction());
 | 
						|
  }
 | 
						|
 | 
						|
  SmallPtrSet<Instruction *, 32> AllocaUsers;
 | 
						|
  SmallPtrSet<Instruction *, 32> EscapePoints;
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
static bool markTails(Function &F, bool &AllCallsAreTailCalls,
 | 
						|
                      OptimizationRemarkEmitter *ORE) {
 | 
						|
  if (F.callsFunctionThatReturnsTwice())
 | 
						|
    return false;
 | 
						|
  AllCallsAreTailCalls = true;
 | 
						|
 | 
						|
  // The local stack holds all alloca instructions and all byval arguments.
 | 
						|
  AllocaDerivedValueTracker Tracker;
 | 
						|
  for (Argument &Arg : F.args()) {
 | 
						|
    if (Arg.hasByValAttr())
 | 
						|
      Tracker.walk(&Arg);
 | 
						|
  }
 | 
						|
  for (auto &BB : F) {
 | 
						|
    for (auto &I : BB)
 | 
						|
      if (AllocaInst *AI = dyn_cast<AllocaInst>(&I))
 | 
						|
        Tracker.walk(AI);
 | 
						|
  }
 | 
						|
 | 
						|
  bool Modified = false;
 | 
						|
 | 
						|
  // Track whether a block is reachable after an alloca has escaped. Blocks that
 | 
						|
  // contain the escaping instruction will be marked as being visited without an
 | 
						|
  // escaped alloca, since that is how the block began.
 | 
						|
  enum VisitType {
 | 
						|
    UNVISITED,
 | 
						|
    UNESCAPED,
 | 
						|
    ESCAPED
 | 
						|
  };
 | 
						|
  DenseMap<BasicBlock *, VisitType> Visited;
 | 
						|
 | 
						|
  // We propagate the fact that an alloca has escaped from block to successor.
 | 
						|
  // Visit the blocks that are propagating the escapedness first. To do this, we
 | 
						|
  // maintain two worklists.
 | 
						|
  SmallVector<BasicBlock *, 32> WorklistUnescaped, WorklistEscaped;
 | 
						|
 | 
						|
  // We may enter a block and visit it thinking that no alloca has escaped yet,
 | 
						|
  // then see an escape point and go back around a loop edge and come back to
 | 
						|
  // the same block twice. Because of this, we defer setting tail on calls when
 | 
						|
  // we first encounter them in a block. Every entry in this list does not
 | 
						|
  // statically use an alloca via use-def chain analysis, but may find an alloca
 | 
						|
  // through other means if the block turns out to be reachable after an escape
 | 
						|
  // point.
 | 
						|
  SmallVector<CallInst *, 32> DeferredTails;
 | 
						|
 | 
						|
  BasicBlock *BB = &F.getEntryBlock();
 | 
						|
  VisitType Escaped = UNESCAPED;
 | 
						|
  do {
 | 
						|
    for (auto &I : *BB) {
 | 
						|
      if (Tracker.EscapePoints.count(&I))
 | 
						|
        Escaped = ESCAPED;
 | 
						|
 | 
						|
      CallInst *CI = dyn_cast<CallInst>(&I);
 | 
						|
      if (!CI || CI->isTailCall() || isa<DbgInfoIntrinsic>(&I))
 | 
						|
        continue;
 | 
						|
 | 
						|
      bool IsNoTail = CI->isNoTailCall() || CI->hasOperandBundles();
 | 
						|
 | 
						|
      if (!IsNoTail && CI->doesNotAccessMemory()) {
 | 
						|
        // A call to a readnone function whose arguments are all things computed
 | 
						|
        // outside this function can be marked tail. Even if you stored the
 | 
						|
        // alloca address into a global, a readnone function can't load the
 | 
						|
        // global anyhow.
 | 
						|
        //
 | 
						|
        // Note that this runs whether we know an alloca has escaped or not. If
 | 
						|
        // it has, then we can't trust Tracker.AllocaUsers to be accurate.
 | 
						|
        bool SafeToTail = true;
 | 
						|
        for (auto &Arg : CI->arg_operands()) {
 | 
						|
          if (isa<Constant>(Arg.getUser()))
 | 
						|
            continue;
 | 
						|
          if (Argument *A = dyn_cast<Argument>(Arg.getUser()))
 | 
						|
            if (!A->hasByValAttr())
 | 
						|
              continue;
 | 
						|
          SafeToTail = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        if (SafeToTail) {
 | 
						|
          using namespace ore;
 | 
						|
          ORE->emit([&]() {
 | 
						|
            return OptimizationRemark(DEBUG_TYPE, "tailcall-readnone", CI)
 | 
						|
                   << "marked as tail call candidate (readnone)";
 | 
						|
          });
 | 
						|
          CI->setTailCall();
 | 
						|
          Modified = true;
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      if (!IsNoTail && Escaped == UNESCAPED && !Tracker.AllocaUsers.count(CI)) {
 | 
						|
        DeferredTails.push_back(CI);
 | 
						|
      } else {
 | 
						|
        AllCallsAreTailCalls = false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    for (auto *SuccBB : make_range(succ_begin(BB), succ_end(BB))) {
 | 
						|
      auto &State = Visited[SuccBB];
 | 
						|
      if (State < Escaped) {
 | 
						|
        State = Escaped;
 | 
						|
        if (State == ESCAPED)
 | 
						|
          WorklistEscaped.push_back(SuccBB);
 | 
						|
        else
 | 
						|
          WorklistUnescaped.push_back(SuccBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!WorklistEscaped.empty()) {
 | 
						|
      BB = WorklistEscaped.pop_back_val();
 | 
						|
      Escaped = ESCAPED;
 | 
						|
    } else {
 | 
						|
      BB = nullptr;
 | 
						|
      while (!WorklistUnescaped.empty()) {
 | 
						|
        auto *NextBB = WorklistUnescaped.pop_back_val();
 | 
						|
        if (Visited[NextBB] == UNESCAPED) {
 | 
						|
          BB = NextBB;
 | 
						|
          Escaped = UNESCAPED;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } while (BB);
 | 
						|
 | 
						|
  for (CallInst *CI : DeferredTails) {
 | 
						|
    if (Visited[CI->getParent()] != ESCAPED) {
 | 
						|
      // If the escape point was part way through the block, calls after the
 | 
						|
      // escape point wouldn't have been put into DeferredTails.
 | 
						|
      LLVM_DEBUG(dbgs() << "Marked as tail call candidate: " << *CI << "\n");
 | 
						|
      CI->setTailCall();
 | 
						|
      Modified = true;
 | 
						|
    } else {
 | 
						|
      AllCallsAreTailCalls = false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Modified;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if it is safe to move the specified
 | 
						|
/// instruction from after the call to before the call, assuming that all
 | 
						|
/// instructions between the call and this instruction are movable.
 | 
						|
///
 | 
						|
static bool canMoveAboveCall(Instruction *I, CallInst *CI, AliasAnalysis *AA) {
 | 
						|
  // FIXME: We can move load/store/call/free instructions above the call if the
 | 
						|
  // call does not mod/ref the memory location being processed.
 | 
						|
  if (I->mayHaveSideEffects())  // This also handles volatile loads.
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (LoadInst *L = dyn_cast<LoadInst>(I)) {
 | 
						|
    // Loads may always be moved above calls without side effects.
 | 
						|
    if (CI->mayHaveSideEffects()) {
 | 
						|
      // Non-volatile loads may be moved above a call with side effects if it
 | 
						|
      // does not write to memory and the load provably won't trap.
 | 
						|
      // Writes to memory only matter if they may alias the pointer
 | 
						|
      // being loaded from.
 | 
						|
      const DataLayout &DL = L->getModule()->getDataLayout();
 | 
						|
      if (isModSet(AA->getModRefInfo(CI, MemoryLocation::get(L))) ||
 | 
						|
          !isSafeToLoadUnconditionally(L->getPointerOperand(),
 | 
						|
                                       L->getAlignment(), DL, L))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, if this is a side-effect free instruction, check to make sure
 | 
						|
  // that it does not use the return value of the call.  If it doesn't use the
 | 
						|
  // return value of the call, it must only use things that are defined before
 | 
						|
  // the call, or movable instructions between the call and the instruction
 | 
						|
  // itself.
 | 
						|
  return !is_contained(I->operands(), CI);
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if the specified value is the same when the return would exit
 | 
						|
/// as it was when the initial iteration of the recursive function was executed.
 | 
						|
///
 | 
						|
/// We currently handle static constants and arguments that are not modified as
 | 
						|
/// part of the recursion.
 | 
						|
static bool isDynamicConstant(Value *V, CallInst *CI, ReturnInst *RI) {
 | 
						|
  if (isa<Constant>(V)) return true; // Static constants are always dyn consts
 | 
						|
 | 
						|
  // Check to see if this is an immutable argument, if so, the value
 | 
						|
  // will be available to initialize the accumulator.
 | 
						|
  if (Argument *Arg = dyn_cast<Argument>(V)) {
 | 
						|
    // Figure out which argument number this is...
 | 
						|
    unsigned ArgNo = 0;
 | 
						|
    Function *F = CI->getParent()->getParent();
 | 
						|
    for (Function::arg_iterator AI = F->arg_begin(); &*AI != Arg; ++AI)
 | 
						|
      ++ArgNo;
 | 
						|
 | 
						|
    // If we are passing this argument into call as the corresponding
 | 
						|
    // argument operand, then the argument is dynamically constant.
 | 
						|
    // Otherwise, we cannot transform this function safely.
 | 
						|
    if (CI->getArgOperand(ArgNo) == Arg)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Switch cases are always constant integers. If the value is being switched
 | 
						|
  // on and the return is only reachable from one of its cases, it's
 | 
						|
  // effectively constant.
 | 
						|
  if (BasicBlock *UniquePred = RI->getParent()->getUniquePredecessor())
 | 
						|
    if (SwitchInst *SI = dyn_cast<SwitchInst>(UniquePred->getTerminator()))
 | 
						|
      if (SI->getCondition() == V)
 | 
						|
        return SI->getDefaultDest() != RI->getParent();
 | 
						|
 | 
						|
  // Not a constant or immutable argument, we can't safely transform.
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Check to see if the function containing the specified tail call consistently
 | 
						|
/// returns the same runtime-constant value at all exit points except for
 | 
						|
/// IgnoreRI. If so, return the returned value.
 | 
						|
static Value *getCommonReturnValue(ReturnInst *IgnoreRI, CallInst *CI) {
 | 
						|
  Function *F = CI->getParent()->getParent();
 | 
						|
  Value *ReturnedValue = nullptr;
 | 
						|
 | 
						|
  for (BasicBlock &BBI : *F) {
 | 
						|
    ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator());
 | 
						|
    if (RI == nullptr || RI == IgnoreRI) continue;
 | 
						|
 | 
						|
    // We can only perform this transformation if the value returned is
 | 
						|
    // evaluatable at the start of the initial invocation of the function,
 | 
						|
    // instead of at the end of the evaluation.
 | 
						|
    //
 | 
						|
    Value *RetOp = RI->getOperand(0);
 | 
						|
    if (!isDynamicConstant(RetOp, CI, RI))
 | 
						|
      return nullptr;
 | 
						|
 | 
						|
    if (ReturnedValue && RetOp != ReturnedValue)
 | 
						|
      return nullptr;     // Cannot transform if differing values are returned.
 | 
						|
    ReturnedValue = RetOp;
 | 
						|
  }
 | 
						|
  return ReturnedValue;
 | 
						|
}
 | 
						|
 | 
						|
/// If the specified instruction can be transformed using accumulator recursion
 | 
						|
/// elimination, return the constant which is the start of the accumulator
 | 
						|
/// value.  Otherwise return null.
 | 
						|
static Value *canTransformAccumulatorRecursion(Instruction *I, CallInst *CI) {
 | 
						|
  if (!I->isAssociative() || !I->isCommutative()) return nullptr;
 | 
						|
  assert(I->getNumOperands() == 2 &&
 | 
						|
         "Associative/commutative operations should have 2 args!");
 | 
						|
 | 
						|
  // Exactly one operand should be the result of the call instruction.
 | 
						|
  if ((I->getOperand(0) == CI && I->getOperand(1) == CI) ||
 | 
						|
      (I->getOperand(0) != CI && I->getOperand(1) != CI))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // The only user of this instruction we allow is a single return instruction.
 | 
						|
  if (!I->hasOneUse() || !isa<ReturnInst>(I->user_back()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Ok, now we have to check all of the other return instructions in this
 | 
						|
  // function.  If they return non-constants or differing values, then we cannot
 | 
						|
  // transform the function safely.
 | 
						|
  return getCommonReturnValue(cast<ReturnInst>(I->user_back()), CI);
 | 
						|
}
 | 
						|
 | 
						|
static Instruction *firstNonDbg(BasicBlock::iterator I) {
 | 
						|
  while (isa<DbgInfoIntrinsic>(I))
 | 
						|
    ++I;
 | 
						|
  return &*I;
 | 
						|
}
 | 
						|
 | 
						|
static CallInst *findTRECandidate(Instruction *TI,
 | 
						|
                                  bool CannotTailCallElimCallsMarkedTail,
 | 
						|
                                  const TargetTransformInfo *TTI) {
 | 
						|
  BasicBlock *BB = TI->getParent();
 | 
						|
  Function *F = BB->getParent();
 | 
						|
 | 
						|
  if (&BB->front() == TI) // Make sure there is something before the terminator.
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Scan backwards from the return, checking to see if there is a tail call in
 | 
						|
  // this block.  If so, set CI to it.
 | 
						|
  CallInst *CI = nullptr;
 | 
						|
  BasicBlock::iterator BBI(TI);
 | 
						|
  while (true) {
 | 
						|
    CI = dyn_cast<CallInst>(BBI);
 | 
						|
    if (CI && CI->getCalledFunction() == F)
 | 
						|
      break;
 | 
						|
 | 
						|
    if (BBI == BB->begin())
 | 
						|
      return nullptr;          // Didn't find a potential tail call.
 | 
						|
    --BBI;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this call is marked as a tail call, and if there are dynamic allocas in
 | 
						|
  // the function, we cannot perform this optimization.
 | 
						|
  if (CI->isTailCall() && CannotTailCallElimCallsMarkedTail)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // As a special case, detect code like this:
 | 
						|
  //   double fabs(double f) { return __builtin_fabs(f); } // a 'fabs' call
 | 
						|
  // and disable this xform in this case, because the code generator will
 | 
						|
  // lower the call to fabs into inline code.
 | 
						|
  if (BB == &F->getEntryBlock() &&
 | 
						|
      firstNonDbg(BB->front().getIterator()) == CI &&
 | 
						|
      firstNonDbg(std::next(BB->begin())) == TI && CI->getCalledFunction() &&
 | 
						|
      !TTI->isLoweredToCall(CI->getCalledFunction())) {
 | 
						|
    // A single-block function with just a call and a return. Check that
 | 
						|
    // the arguments match.
 | 
						|
    CallSite::arg_iterator I = CallSite(CI).arg_begin(),
 | 
						|
                           E = CallSite(CI).arg_end();
 | 
						|
    Function::arg_iterator FI = F->arg_begin(),
 | 
						|
                           FE = F->arg_end();
 | 
						|
    for (; I != E && FI != FE; ++I, ++FI)
 | 
						|
      if (*I != &*FI) break;
 | 
						|
    if (I == E && FI == FE)
 | 
						|
      return nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  return CI;
 | 
						|
}
 | 
						|
 | 
						|
static bool eliminateRecursiveTailCall(
 | 
						|
    CallInst *CI, ReturnInst *Ret, BasicBlock *&OldEntry,
 | 
						|
    bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
 | 
						|
    AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
 | 
						|
  // If we are introducing accumulator recursion to eliminate operations after
 | 
						|
  // the call instruction that are both associative and commutative, the initial
 | 
						|
  // value for the accumulator is placed in this variable.  If this value is set
 | 
						|
  // then we actually perform accumulator recursion elimination instead of
 | 
						|
  // simple tail recursion elimination.  If the operation is an LLVM instruction
 | 
						|
  // (eg: "add") then it is recorded in AccumulatorRecursionInstr.  If not, then
 | 
						|
  // we are handling the case when the return instruction returns a constant C
 | 
						|
  // which is different to the constant returned by other return instructions
 | 
						|
  // (which is recorded in AccumulatorRecursionEliminationInitVal).  This is a
 | 
						|
  // special case of accumulator recursion, the operation being "return C".
 | 
						|
  Value *AccumulatorRecursionEliminationInitVal = nullptr;
 | 
						|
  Instruction *AccumulatorRecursionInstr = nullptr;
 | 
						|
 | 
						|
  // Ok, we found a potential tail call.  We can currently only transform the
 | 
						|
  // tail call if all of the instructions between the call and the return are
 | 
						|
  // movable to above the call itself, leaving the call next to the return.
 | 
						|
  // Check that this is the case now.
 | 
						|
  BasicBlock::iterator BBI(CI);
 | 
						|
  for (++BBI; &*BBI != Ret; ++BBI) {
 | 
						|
    if (canMoveAboveCall(&*BBI, CI, AA))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If we can't move the instruction above the call, it might be because it
 | 
						|
    // is an associative and commutative operation that could be transformed
 | 
						|
    // using accumulator recursion elimination.  Check to see if this is the
 | 
						|
    // case, and if so, remember the initial accumulator value for later.
 | 
						|
    if ((AccumulatorRecursionEliminationInitVal =
 | 
						|
             canTransformAccumulatorRecursion(&*BBI, CI))) {
 | 
						|
      // Yes, this is accumulator recursion.  Remember which instruction
 | 
						|
      // accumulates.
 | 
						|
      AccumulatorRecursionInstr = &*BBI;
 | 
						|
    } else {
 | 
						|
      return false;   // Otherwise, we cannot eliminate the tail recursion!
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // We can only transform call/return pairs that either ignore the return value
 | 
						|
  // of the call and return void, ignore the value of the call and return a
 | 
						|
  // constant, return the value returned by the tail call, or that are being
 | 
						|
  // accumulator recursion variable eliminated.
 | 
						|
  if (Ret->getNumOperands() == 1 && Ret->getReturnValue() != CI &&
 | 
						|
      !isa<UndefValue>(Ret->getReturnValue()) &&
 | 
						|
      AccumulatorRecursionEliminationInitVal == nullptr &&
 | 
						|
      !getCommonReturnValue(nullptr, CI)) {
 | 
						|
    // One case remains that we are able to handle: the current return
 | 
						|
    // instruction returns a constant, and all other return instructions
 | 
						|
    // return a different constant.
 | 
						|
    if (!isDynamicConstant(Ret->getReturnValue(), CI, Ret))
 | 
						|
      return false; // Current return instruction does not return a constant.
 | 
						|
    // Check that all other return instructions return a common constant.  If
 | 
						|
    // so, record it in AccumulatorRecursionEliminationInitVal.
 | 
						|
    AccumulatorRecursionEliminationInitVal = getCommonReturnValue(Ret, CI);
 | 
						|
    if (!AccumulatorRecursionEliminationInitVal)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock *BB = Ret->getParent();
 | 
						|
  Function *F = BB->getParent();
 | 
						|
 | 
						|
  using namespace ore;
 | 
						|
  ORE->emit([&]() {
 | 
						|
    return OptimizationRemark(DEBUG_TYPE, "tailcall-recursion", CI)
 | 
						|
           << "transforming tail recursion into loop";
 | 
						|
  });
 | 
						|
 | 
						|
  // OK! We can transform this tail call.  If this is the first one found,
 | 
						|
  // create the new entry block, allowing us to branch back to the old entry.
 | 
						|
  if (!OldEntry) {
 | 
						|
    OldEntry = &F->getEntryBlock();
 | 
						|
    BasicBlock *NewEntry = BasicBlock::Create(F->getContext(), "", F, OldEntry);
 | 
						|
    NewEntry->takeName(OldEntry);
 | 
						|
    OldEntry->setName("tailrecurse");
 | 
						|
    BranchInst *BI = BranchInst::Create(OldEntry, NewEntry);
 | 
						|
    BI->setDebugLoc(CI->getDebugLoc());
 | 
						|
 | 
						|
    // If this tail call is marked 'tail' and if there are any allocas in the
 | 
						|
    // entry block, move them up to the new entry block.
 | 
						|
    TailCallsAreMarkedTail = CI->isTailCall();
 | 
						|
    if (TailCallsAreMarkedTail)
 | 
						|
      // Move all fixed sized allocas from OldEntry to NewEntry.
 | 
						|
      for (BasicBlock::iterator OEBI = OldEntry->begin(), E = OldEntry->end(),
 | 
						|
             NEBI = NewEntry->begin(); OEBI != E; )
 | 
						|
        if (AllocaInst *AI = dyn_cast<AllocaInst>(OEBI++))
 | 
						|
          if (isa<ConstantInt>(AI->getArraySize()))
 | 
						|
            AI->moveBefore(&*NEBI);
 | 
						|
 | 
						|
    // Now that we have created a new block, which jumps to the entry
 | 
						|
    // block, insert a PHI node for each argument of the function.
 | 
						|
    // For now, we initialize each PHI to only have the real arguments
 | 
						|
    // which are passed in.
 | 
						|
    Instruction *InsertPos = &OldEntry->front();
 | 
						|
    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
 | 
						|
         I != E; ++I) {
 | 
						|
      PHINode *PN = PHINode::Create(I->getType(), 2,
 | 
						|
                                    I->getName() + ".tr", InsertPos);
 | 
						|
      I->replaceAllUsesWith(PN); // Everyone use the PHI node now!
 | 
						|
      PN->addIncoming(&*I, NewEntry);
 | 
						|
      ArgumentPHIs.push_back(PN);
 | 
						|
    }
 | 
						|
    // The entry block was changed from OldEntry to NewEntry.
 | 
						|
    // The forward DominatorTree needs to be recalculated when the EntryBB is
 | 
						|
    // changed. In this corner-case we recalculate the entire tree.
 | 
						|
    DTU.recalculate(*NewEntry->getParent());
 | 
						|
  }
 | 
						|
 | 
						|
  // If this function has self recursive calls in the tail position where some
 | 
						|
  // are marked tail and some are not, only transform one flavor or another.  We
 | 
						|
  // have to choose whether we move allocas in the entry block to the new entry
 | 
						|
  // block or not, so we can't make a good choice for both.  NOTE: We could do
 | 
						|
  // slightly better here in the case that the function has no entry block
 | 
						|
  // allocas.
 | 
						|
  if (TailCallsAreMarkedTail && !CI->isTailCall())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Ok, now that we know we have a pseudo-entry block WITH all of the
 | 
						|
  // required PHI nodes, add entries into the PHI node for the actual
 | 
						|
  // parameters passed into the tail-recursive call.
 | 
						|
  for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
 | 
						|
    ArgumentPHIs[i]->addIncoming(CI->getArgOperand(i), BB);
 | 
						|
 | 
						|
  // If we are introducing an accumulator variable to eliminate the recursion,
 | 
						|
  // do so now.  Note that we _know_ that no subsequent tail recursion
 | 
						|
  // eliminations will happen on this function because of the way the
 | 
						|
  // accumulator recursion predicate is set up.
 | 
						|
  //
 | 
						|
  if (AccumulatorRecursionEliminationInitVal) {
 | 
						|
    Instruction *AccRecInstr = AccumulatorRecursionInstr;
 | 
						|
    // Start by inserting a new PHI node for the accumulator.
 | 
						|
    pred_iterator PB = pred_begin(OldEntry), PE = pred_end(OldEntry);
 | 
						|
    PHINode *AccPN = PHINode::Create(
 | 
						|
        AccumulatorRecursionEliminationInitVal->getType(),
 | 
						|
        std::distance(PB, PE) + 1, "accumulator.tr", &OldEntry->front());
 | 
						|
 | 
						|
    // Loop over all of the predecessors of the tail recursion block.  For the
 | 
						|
    // real entry into the function we seed the PHI with the initial value,
 | 
						|
    // computed earlier.  For any other existing branches to this block (due to
 | 
						|
    // other tail recursions eliminated) the accumulator is not modified.
 | 
						|
    // Because we haven't added the branch in the current block to OldEntry yet,
 | 
						|
    // it will not show up as a predecessor.
 | 
						|
    for (pred_iterator PI = PB; PI != PE; ++PI) {
 | 
						|
      BasicBlock *P = *PI;
 | 
						|
      if (P == &F->getEntryBlock())
 | 
						|
        AccPN->addIncoming(AccumulatorRecursionEliminationInitVal, P);
 | 
						|
      else
 | 
						|
        AccPN->addIncoming(AccPN, P);
 | 
						|
    }
 | 
						|
 | 
						|
    if (AccRecInstr) {
 | 
						|
      // Add an incoming argument for the current block, which is computed by
 | 
						|
      // our associative and commutative accumulator instruction.
 | 
						|
      AccPN->addIncoming(AccRecInstr, BB);
 | 
						|
 | 
						|
      // Next, rewrite the accumulator recursion instruction so that it does not
 | 
						|
      // use the result of the call anymore, instead, use the PHI node we just
 | 
						|
      // inserted.
 | 
						|
      AccRecInstr->setOperand(AccRecInstr->getOperand(0) != CI, AccPN);
 | 
						|
    } else {
 | 
						|
      // Add an incoming argument for the current block, which is just the
 | 
						|
      // constant returned by the current return instruction.
 | 
						|
      AccPN->addIncoming(Ret->getReturnValue(), BB);
 | 
						|
    }
 | 
						|
 | 
						|
    // Finally, rewrite any return instructions in the program to return the PHI
 | 
						|
    // node instead of the "initval" that they do currently.  This loop will
 | 
						|
    // actually rewrite the return value we are destroying, but that's ok.
 | 
						|
    for (BasicBlock &BBI : *F)
 | 
						|
      if (ReturnInst *RI = dyn_cast<ReturnInst>(BBI.getTerminator()))
 | 
						|
        RI->setOperand(0, AccPN);
 | 
						|
    ++NumAccumAdded;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that all of the PHI nodes are in place, remove the call and
 | 
						|
  // ret instructions, replacing them with an unconditional branch.
 | 
						|
  BranchInst *NewBI = BranchInst::Create(OldEntry, Ret);
 | 
						|
  NewBI->setDebugLoc(CI->getDebugLoc());
 | 
						|
 | 
						|
  BB->getInstList().erase(Ret);  // Remove return.
 | 
						|
  BB->getInstList().erase(CI);   // Remove call.
 | 
						|
  DTU.applyUpdates({{DominatorTree::Insert, BB, OldEntry}});
 | 
						|
  ++NumEliminated;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool foldReturnAndProcessPred(
 | 
						|
    BasicBlock *BB, ReturnInst *Ret, BasicBlock *&OldEntry,
 | 
						|
    bool &TailCallsAreMarkedTail, SmallVectorImpl<PHINode *> &ArgumentPHIs,
 | 
						|
    bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
 | 
						|
    AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
 | 
						|
  bool Change = false;
 | 
						|
 | 
						|
  // Make sure this block is a trivial return block.
 | 
						|
  assert(BB->getFirstNonPHIOrDbg() == Ret &&
 | 
						|
         "Trying to fold non-trivial return block");
 | 
						|
 | 
						|
  // If the return block contains nothing but the return and PHI's,
 | 
						|
  // there might be an opportunity to duplicate the return in its
 | 
						|
  // predecessors and perform TRE there. Look for predecessors that end
 | 
						|
  // in unconditional branch and recursive call(s).
 | 
						|
  SmallVector<BranchInst*, 8> UncondBranchPreds;
 | 
						|
  for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
 | 
						|
    BasicBlock *Pred = *PI;
 | 
						|
    Instruction *PTI = Pred->getTerminator();
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
 | 
						|
      if (BI->isUnconditional())
 | 
						|
        UncondBranchPreds.push_back(BI);
 | 
						|
  }
 | 
						|
 | 
						|
  while (!UncondBranchPreds.empty()) {
 | 
						|
    BranchInst *BI = UncondBranchPreds.pop_back_val();
 | 
						|
    BasicBlock *Pred = BI->getParent();
 | 
						|
    if (CallInst *CI = findTRECandidate(BI, CannotTailCallElimCallsMarkedTail, TTI)){
 | 
						|
      LLVM_DEBUG(dbgs() << "FOLDING: " << *BB
 | 
						|
                        << "INTO UNCOND BRANCH PRED: " << *Pred);
 | 
						|
      ReturnInst *RI = FoldReturnIntoUncondBranch(Ret, BB, Pred, &DTU);
 | 
						|
 | 
						|
      // Cleanup: if all predecessors of BB have been eliminated by
 | 
						|
      // FoldReturnIntoUncondBranch, delete it.  It is important to empty it,
 | 
						|
      // because the ret instruction in there is still using a value which
 | 
						|
      // eliminateRecursiveTailCall will attempt to remove.
 | 
						|
      if (!BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
 | 
						|
        DTU.deleteBB(BB);
 | 
						|
 | 
						|
      eliminateRecursiveTailCall(CI, RI, OldEntry, TailCallsAreMarkedTail,
 | 
						|
                                 ArgumentPHIs, AA, ORE, DTU);
 | 
						|
      ++NumRetDuped;
 | 
						|
      Change = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Change;
 | 
						|
}
 | 
						|
 | 
						|
static bool processReturningBlock(
 | 
						|
    ReturnInst *Ret, BasicBlock *&OldEntry, bool &TailCallsAreMarkedTail,
 | 
						|
    SmallVectorImpl<PHINode *> &ArgumentPHIs,
 | 
						|
    bool CannotTailCallElimCallsMarkedTail, const TargetTransformInfo *TTI,
 | 
						|
    AliasAnalysis *AA, OptimizationRemarkEmitter *ORE, DomTreeUpdater &DTU) {
 | 
						|
  CallInst *CI = findTRECandidate(Ret, CannotTailCallElimCallsMarkedTail, TTI);
 | 
						|
  if (!CI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return eliminateRecursiveTailCall(CI, Ret, OldEntry, TailCallsAreMarkedTail,
 | 
						|
                                    ArgumentPHIs, AA, ORE, DTU);
 | 
						|
}
 | 
						|
 | 
						|
static bool eliminateTailRecursion(Function &F, const TargetTransformInfo *TTI,
 | 
						|
                                   AliasAnalysis *AA,
 | 
						|
                                   OptimizationRemarkEmitter *ORE,
 | 
						|
                                   DomTreeUpdater &DTU) {
 | 
						|
  if (F.getFnAttribute("disable-tail-calls").getValueAsString() == "true")
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool MadeChange = false;
 | 
						|
  bool AllCallsAreTailCalls = false;
 | 
						|
  MadeChange |= markTails(F, AllCallsAreTailCalls, ORE);
 | 
						|
  if (!AllCallsAreTailCalls)
 | 
						|
    return MadeChange;
 | 
						|
 | 
						|
  // If this function is a varargs function, we won't be able to PHI the args
 | 
						|
  // right, so don't even try to convert it...
 | 
						|
  if (F.getFunctionType()->isVarArg())
 | 
						|
    return false;
 | 
						|
 | 
						|
  BasicBlock *OldEntry = nullptr;
 | 
						|
  bool TailCallsAreMarkedTail = false;
 | 
						|
  SmallVector<PHINode*, 8> ArgumentPHIs;
 | 
						|
 | 
						|
  // If false, we cannot perform TRE on tail calls marked with the 'tail'
 | 
						|
  // attribute, because doing so would cause the stack size to increase (real
 | 
						|
  // TRE would deallocate variable sized allocas, TRE doesn't).
 | 
						|
  bool CanTRETailMarkedCall = canTRE(F);
 | 
						|
 | 
						|
  // Change any tail recursive calls to loops.
 | 
						|
  //
 | 
						|
  // FIXME: The code generator produces really bad code when an 'escaping
 | 
						|
  // alloca' is changed from being a static alloca to being a dynamic alloca.
 | 
						|
  // Until this is resolved, disable this transformation if that would ever
 | 
						|
  // happen.  This bug is PR962.
 | 
						|
  for (Function::iterator BBI = F.begin(), E = F.end(); BBI != E; /*in loop*/) {
 | 
						|
    BasicBlock *BB = &*BBI++; // foldReturnAndProcessPred may delete BB.
 | 
						|
    if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB->getTerminator())) {
 | 
						|
      bool Change = processReturningBlock(Ret, OldEntry, TailCallsAreMarkedTail,
 | 
						|
                                          ArgumentPHIs, !CanTRETailMarkedCall,
 | 
						|
                                          TTI, AA, ORE, DTU);
 | 
						|
      if (!Change && BB->getFirstNonPHIOrDbg() == Ret)
 | 
						|
        Change = foldReturnAndProcessPred(
 | 
						|
            BB, Ret, OldEntry, TailCallsAreMarkedTail, ArgumentPHIs,
 | 
						|
            !CanTRETailMarkedCall, TTI, AA, ORE, DTU);
 | 
						|
      MadeChange |= Change;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we eliminated any tail recursions, it's possible that we inserted some
 | 
						|
  // silly PHI nodes which just merge an initial value (the incoming operand)
 | 
						|
  // with themselves.  Check to see if we did and clean up our mess if so.  This
 | 
						|
  // occurs when a function passes an argument straight through to its tail
 | 
						|
  // call.
 | 
						|
  for (PHINode *PN : ArgumentPHIs) {
 | 
						|
    // If the PHI Node is a dynamic constant, replace it with the value it is.
 | 
						|
    if (Value *PNV = SimplifyInstruction(PN, F.getParent()->getDataLayout())) {
 | 
						|
      PN->replaceAllUsesWith(PNV);
 | 
						|
      PN->eraseFromParent();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
struct TailCallElim : public FunctionPass {
 | 
						|
  static char ID; // Pass identification, replacement for typeid
 | 
						|
  TailCallElim() : FunctionPass(ID) {
 | 
						|
    initializeTailCallElimPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    AU.addRequired<TargetTransformInfoWrapperPass>();
 | 
						|
    AU.addRequired<AAResultsWrapperPass>();
 | 
						|
    AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
 | 
						|
    AU.addPreserved<GlobalsAAWrapperPass>();
 | 
						|
    AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
    AU.addPreserved<PostDominatorTreeWrapperPass>();
 | 
						|
  }
 | 
						|
 | 
						|
  bool runOnFunction(Function &F) override {
 | 
						|
    if (skipFunction(F))
 | 
						|
      return false;
 | 
						|
 | 
						|
    auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
    auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | 
						|
    auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
 | 
						|
    auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
 | 
						|
    // There is no noticable performance difference here between Lazy and Eager
 | 
						|
    // UpdateStrategy based on some test results. It is feasible to switch the
 | 
						|
    // UpdateStrategy to Lazy if we find it profitable later.
 | 
						|
    DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
 | 
						|
 | 
						|
    return eliminateTailRecursion(
 | 
						|
        F, &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F),
 | 
						|
        &getAnalysis<AAResultsWrapperPass>().getAAResults(),
 | 
						|
        &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(), DTU);
 | 
						|
  }
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
char TailCallElim::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(TailCallElim, "tailcallelim", "Tail Call Elimination",
 | 
						|
                      false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
 | 
						|
INITIALIZE_PASS_END(TailCallElim, "tailcallelim", "Tail Call Elimination",
 | 
						|
                    false, false)
 | 
						|
 | 
						|
// Public interface to the TailCallElimination pass
 | 
						|
FunctionPass *llvm::createTailCallEliminationPass() {
 | 
						|
  return new TailCallElim();
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses TailCallElimPass::run(Function &F,
 | 
						|
                                        FunctionAnalysisManager &AM) {
 | 
						|
 | 
						|
  TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
 | 
						|
  AliasAnalysis &AA = AM.getResult<AAManager>(F);
 | 
						|
  auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
 | 
						|
  auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto *PDT = AM.getCachedResult<PostDominatorTreeAnalysis>(F);
 | 
						|
  // There is no noticable performance difference here between Lazy and Eager
 | 
						|
  // UpdateStrategy based on some test results. It is feasible to switch the
 | 
						|
  // UpdateStrategy to Lazy if we find it profitable later.
 | 
						|
  DomTreeUpdater DTU(DT, PDT, DomTreeUpdater::UpdateStrategy::Eager);
 | 
						|
  bool Changed = eliminateTailRecursion(F, &TTI, &AA, &ORE, DTU);
 | 
						|
 | 
						|
  if (!Changed)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<GlobalsAA>();
 | 
						|
  PA.preserve<DominatorTreeAnalysis>();
 | 
						|
  PA.preserve<PostDominatorTreeAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 |