474 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			474 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// BreakCriticalEdges pass - Break all of the critical edges in the CFG by
 | 
						|
// inserting a dummy basic block.  This pass may be "required" by passes that
 | 
						|
// cannot deal with critical edges.  For this usage, the structure type is
 | 
						|
// forward declared.  This pass obviously invalidates the CFG, but can update
 | 
						|
// dominator trees.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/Utils/BreakCriticalEdges.h"
 | 
						|
#include "llvm/ADT/SetVector.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/BlockFrequencyInfo.h"
 | 
						|
#include "llvm/Analysis/BranchProbabilityInfo.h"
 | 
						|
#include "llvm/Analysis/CFG.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/Analysis/MemorySSAUpdater.h"
 | 
						|
#include "llvm/Analysis/PostDominators.h"
 | 
						|
#include "llvm/IR/CFG.h"
 | 
						|
#include "llvm/IR/Dominators.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Transforms/Utils.h"
 | 
						|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
 | 
						|
#include "llvm/Transforms/Utils/Cloning.h"
 | 
						|
#include "llvm/Transforms/Utils/ValueMapper.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "break-crit-edges"
 | 
						|
 | 
						|
STATISTIC(NumBroken, "Number of blocks inserted");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct BreakCriticalEdges : public FunctionPass {
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    BreakCriticalEdges() : FunctionPass(ID) {
 | 
						|
      initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    bool runOnFunction(Function &F) override {
 | 
						|
      auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
 | 
						|
      auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
 | 
						|
 | 
						|
      auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
 | 
						|
      auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
 | 
						|
 | 
						|
      auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
 | 
						|
      auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
 | 
						|
      unsigned N =
 | 
						|
          SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI, nullptr, PDT));
 | 
						|
      NumBroken += N;
 | 
						|
      return N > 0;
 | 
						|
    }
 | 
						|
 | 
						|
    void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
      AU.addPreserved<DominatorTreeWrapperPass>();
 | 
						|
      AU.addPreserved<LoopInfoWrapperPass>();
 | 
						|
 | 
						|
      // No loop canonicalization guarantees are broken by this pass.
 | 
						|
      AU.addPreservedID(LoopSimplifyID);
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char BreakCriticalEdges::ID = 0;
 | 
						|
INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
 | 
						|
                "Break critical edges in CFG", false, false)
 | 
						|
 | 
						|
// Publicly exposed interface to pass...
 | 
						|
char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
 | 
						|
FunctionPass *llvm::createBreakCriticalEdgesPass() {
 | 
						|
  return new BreakCriticalEdges();
 | 
						|
}
 | 
						|
 | 
						|
PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
 | 
						|
                                              FunctionAnalysisManager &AM) {
 | 
						|
  auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
 | 
						|
  auto *LI = AM.getCachedResult<LoopAnalysis>(F);
 | 
						|
  unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
 | 
						|
  NumBroken += N;
 | 
						|
  if (N == 0)
 | 
						|
    return PreservedAnalyses::all();
 | 
						|
  PreservedAnalyses PA;
 | 
						|
  PA.preserve<DominatorTreeAnalysis>();
 | 
						|
  PA.preserve<LoopAnalysis>();
 | 
						|
  return PA;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//    Implementation of the external critical edge manipulation functions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// When a loop exit edge is split, LCSSA form may require new PHIs in the new
 | 
						|
/// exit block. This function inserts the new PHIs, as needed. Preds is a list
 | 
						|
/// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
 | 
						|
/// the old loop exit, now the successor of SplitBB.
 | 
						|
static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
 | 
						|
                                       BasicBlock *SplitBB,
 | 
						|
                                       BasicBlock *DestBB) {
 | 
						|
  // SplitBB shouldn't have anything non-trivial in it yet.
 | 
						|
  assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
 | 
						|
          SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
 | 
						|
 | 
						|
  // For each PHI in the destination block.
 | 
						|
  for (PHINode &PN : DestBB->phis()) {
 | 
						|
    unsigned Idx = PN.getBasicBlockIndex(SplitBB);
 | 
						|
    Value *V = PN.getIncomingValue(Idx);
 | 
						|
 | 
						|
    // If the input is a PHI which already satisfies LCSSA, don't create
 | 
						|
    // a new one.
 | 
						|
    if (const PHINode *VP = dyn_cast<PHINode>(V))
 | 
						|
      if (VP->getParent() == SplitBB)
 | 
						|
        continue;
 | 
						|
 | 
						|
    // Otherwise a new PHI is needed. Create one and populate it.
 | 
						|
    PHINode *NewPN = PHINode::Create(
 | 
						|
        PN.getType(), Preds.size(), "split",
 | 
						|
        SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
 | 
						|
    for (unsigned i = 0, e = Preds.size(); i != e; ++i)
 | 
						|
      NewPN->addIncoming(V, Preds[i]);
 | 
						|
 | 
						|
    // Update the original PHI.
 | 
						|
    PN.setIncomingValue(Idx, NewPN);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
BasicBlock *
 | 
						|
llvm::SplitCriticalEdge(Instruction *TI, unsigned SuccNum,
 | 
						|
                        const CriticalEdgeSplittingOptions &Options) {
 | 
						|
  if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  assert(!isa<IndirectBrInst>(TI) &&
 | 
						|
         "Cannot split critical edge from IndirectBrInst");
 | 
						|
 | 
						|
  BasicBlock *TIBB = TI->getParent();
 | 
						|
  BasicBlock *DestBB = TI->getSuccessor(SuccNum);
 | 
						|
 | 
						|
  // Splitting the critical edge to a pad block is non-trivial. Don't do
 | 
						|
  // it in this generic function.
 | 
						|
  if (DestBB->isEHPad()) return nullptr;
 | 
						|
 | 
						|
  // Don't split the non-fallthrough edge from a callbr.
 | 
						|
  if (isa<CallBrInst>(TI) && SuccNum > 0)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  if (Options.IgnoreUnreachableDests &&
 | 
						|
      isa<UnreachableInst>(DestBB->getFirstNonPHIOrDbgOrLifetime()))
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Create a new basic block, linking it into the CFG.
 | 
						|
  BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
 | 
						|
                      TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
 | 
						|
  // Create our unconditional branch.
 | 
						|
  BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
 | 
						|
  NewBI->setDebugLoc(TI->getDebugLoc());
 | 
						|
 | 
						|
  // Branch to the new block, breaking the edge.
 | 
						|
  TI->setSuccessor(SuccNum, NewBB);
 | 
						|
 | 
						|
  // Insert the block into the function... right after the block TI lives in.
 | 
						|
  Function &F = *TIBB->getParent();
 | 
						|
  Function::iterator FBBI = TIBB->getIterator();
 | 
						|
  F.getBasicBlockList().insert(++FBBI, NewBB);
 | 
						|
 | 
						|
  // If there are any PHI nodes in DestBB, we need to update them so that they
 | 
						|
  // merge incoming values from NewBB instead of from TIBB.
 | 
						|
  {
 | 
						|
    unsigned BBIdx = 0;
 | 
						|
    for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
 | 
						|
      // We no longer enter through TIBB, now we come in through NewBB.
 | 
						|
      // Revector exactly one entry in the PHI node that used to come from
 | 
						|
      // TIBB to come from NewBB.
 | 
						|
      PHINode *PN = cast<PHINode>(I);
 | 
						|
 | 
						|
      // Reuse the previous value of BBIdx if it lines up.  In cases where we
 | 
						|
      // have multiple phi nodes with *lots* of predecessors, this is a speed
 | 
						|
      // win because we don't have to scan the PHI looking for TIBB.  This
 | 
						|
      // happens because the BB list of PHI nodes are usually in the same
 | 
						|
      // order.
 | 
						|
      if (PN->getIncomingBlock(BBIdx) != TIBB)
 | 
						|
        BBIdx = PN->getBasicBlockIndex(TIBB);
 | 
						|
      PN->setIncomingBlock(BBIdx, NewBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If there are any other edges from TIBB to DestBB, update those to go
 | 
						|
  // through the split block, making those edges non-critical as well (and
 | 
						|
  // reducing the number of phi entries in the DestBB if relevant).
 | 
						|
  if (Options.MergeIdenticalEdges) {
 | 
						|
    for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
 | 
						|
      if (TI->getSuccessor(i) != DestBB) continue;
 | 
						|
 | 
						|
      // Remove an entry for TIBB from DestBB phi nodes.
 | 
						|
      DestBB->removePredecessor(TIBB, Options.KeepOneInputPHIs);
 | 
						|
 | 
						|
      // We found another edge to DestBB, go to NewBB instead.
 | 
						|
      TI->setSuccessor(i, NewBB);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If we have nothing to update, just return.
 | 
						|
  auto *DT = Options.DT;
 | 
						|
  auto *PDT = Options.PDT;
 | 
						|
  auto *LI = Options.LI;
 | 
						|
  auto *MSSAU = Options.MSSAU;
 | 
						|
  if (MSSAU)
 | 
						|
    MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
 | 
						|
        DestBB, NewBB, {TIBB}, Options.MergeIdenticalEdges);
 | 
						|
 | 
						|
  if (!DT && !PDT && !LI)
 | 
						|
    return NewBB;
 | 
						|
 | 
						|
  if (DT || PDT) {
 | 
						|
    // Update the DominatorTree.
 | 
						|
    //       ---> NewBB -----\
 | 
						|
    //      /                 V
 | 
						|
    //  TIBB -------\\------> DestBB
 | 
						|
    //
 | 
						|
    // First, inform the DT about the new path from TIBB to DestBB via NewBB,
 | 
						|
    // then delete the old edge from TIBB to DestBB. By doing this in that order
 | 
						|
    // DestBB stays reachable in the DT the whole time and its subtree doesn't
 | 
						|
    // get disconnected.
 | 
						|
    SmallVector<DominatorTree::UpdateType, 3> Updates;
 | 
						|
    Updates.push_back({DominatorTree::Insert, TIBB, NewBB});
 | 
						|
    Updates.push_back({DominatorTree::Insert, NewBB, DestBB});
 | 
						|
    if (llvm::find(successors(TIBB), DestBB) == succ_end(TIBB))
 | 
						|
      Updates.push_back({DominatorTree::Delete, TIBB, DestBB});
 | 
						|
 | 
						|
    if (DT)
 | 
						|
      DT->applyUpdates(Updates);
 | 
						|
    if (PDT)
 | 
						|
      PDT->applyUpdates(Updates);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update LoopInfo if it is around.
 | 
						|
  if (LI) {
 | 
						|
    if (Loop *TIL = LI->getLoopFor(TIBB)) {
 | 
						|
      // If one or the other blocks were not in a loop, the new block is not
 | 
						|
      // either, and thus LI doesn't need to be updated.
 | 
						|
      if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
 | 
						|
        if (TIL == DestLoop) {
 | 
						|
          // Both in the same loop, the NewBB joins loop.
 | 
						|
          DestLoop->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
        } else if (TIL->contains(DestLoop)) {
 | 
						|
          // Edge from an outer loop to an inner loop.  Add to the outer loop.
 | 
						|
          TIL->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
        } else if (DestLoop->contains(TIL)) {
 | 
						|
          // Edge from an inner loop to an outer loop.  Add to the outer loop.
 | 
						|
          DestLoop->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
        } else {
 | 
						|
          // Edge from two loops with no containment relation.  Because these
 | 
						|
          // are natural loops, we know that the destination block must be the
 | 
						|
          // header of its loop (adding a branch into a loop elsewhere would
 | 
						|
          // create an irreducible loop).
 | 
						|
          assert(DestLoop->getHeader() == DestBB &&
 | 
						|
                 "Should not create irreducible loops!");
 | 
						|
          if (Loop *P = DestLoop->getParentLoop())
 | 
						|
            P->addBasicBlockToLoop(NewBB, *LI);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If TIBB is in a loop and DestBB is outside of that loop, we may need
 | 
						|
      // to update LoopSimplify form and LCSSA form.
 | 
						|
      if (!TIL->contains(DestBB)) {
 | 
						|
        assert(!TIL->contains(NewBB) &&
 | 
						|
               "Split point for loop exit is contained in loop!");
 | 
						|
 | 
						|
        // Update LCSSA form in the newly created exit block.
 | 
						|
        if (Options.PreserveLCSSA) {
 | 
						|
          createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
 | 
						|
        }
 | 
						|
 | 
						|
        // The only that we can break LoopSimplify form by splitting a critical
 | 
						|
        // edge is if after the split there exists some edge from TIL to DestBB
 | 
						|
        // *and* the only edge into DestBB from outside of TIL is that of
 | 
						|
        // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
 | 
						|
        // is the new exit block and it has no non-loop predecessors. If the
 | 
						|
        // second isn't true, then DestBB was not in LoopSimplify form prior to
 | 
						|
        // the split as it had a non-loop predecessor. In both of these cases,
 | 
						|
        // the predecessor must be directly in TIL, not in a subloop, or again
 | 
						|
        // LoopSimplify doesn't hold.
 | 
						|
        SmallVector<BasicBlock *, 4> LoopPreds;
 | 
						|
        for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
 | 
						|
             ++I) {
 | 
						|
          BasicBlock *P = *I;
 | 
						|
          if (P == NewBB)
 | 
						|
            continue; // The new block is known.
 | 
						|
          if (LI->getLoopFor(P) != TIL) {
 | 
						|
            // No need to re-simplify, it wasn't to start with.
 | 
						|
            LoopPreds.clear();
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          LoopPreds.push_back(P);
 | 
						|
        }
 | 
						|
        if (!LoopPreds.empty()) {
 | 
						|
          assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
 | 
						|
          BasicBlock *NewExitBB = SplitBlockPredecessors(
 | 
						|
              DestBB, LoopPreds, "split", DT, LI, MSSAU, Options.PreserveLCSSA);
 | 
						|
          if (Options.PreserveLCSSA)
 | 
						|
            createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return NewBB;
 | 
						|
}
 | 
						|
 | 
						|
// Return the unique indirectbr predecessor of a block. This may return null
 | 
						|
// even if such a predecessor exists, if it's not useful for splitting.
 | 
						|
// If a predecessor is found, OtherPreds will contain all other (non-indirectbr)
 | 
						|
// predecessors of BB.
 | 
						|
static BasicBlock *
 | 
						|
findIBRPredecessor(BasicBlock *BB, SmallVectorImpl<BasicBlock *> &OtherPreds) {
 | 
						|
  // If the block doesn't have any PHIs, we don't care about it, since there's
 | 
						|
  // no point in splitting it.
 | 
						|
  PHINode *PN = dyn_cast<PHINode>(BB->begin());
 | 
						|
  if (!PN)
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  // Verify we have exactly one IBR predecessor.
 | 
						|
  // Conservatively bail out if one of the other predecessors is not a "regular"
 | 
						|
  // terminator (that is, not a switch or a br).
 | 
						|
  BasicBlock *IBB = nullptr;
 | 
						|
  for (unsigned Pred = 0, E = PN->getNumIncomingValues(); Pred != E; ++Pred) {
 | 
						|
    BasicBlock *PredBB = PN->getIncomingBlock(Pred);
 | 
						|
    Instruction *PredTerm = PredBB->getTerminator();
 | 
						|
    switch (PredTerm->getOpcode()) {
 | 
						|
    case Instruction::IndirectBr:
 | 
						|
      if (IBB)
 | 
						|
        return nullptr;
 | 
						|
      IBB = PredBB;
 | 
						|
      break;
 | 
						|
    case Instruction::Br:
 | 
						|
    case Instruction::Switch:
 | 
						|
      OtherPreds.push_back(PredBB);
 | 
						|
      continue;
 | 
						|
    default:
 | 
						|
      return nullptr;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return IBB;
 | 
						|
}
 | 
						|
 | 
						|
bool llvm::SplitIndirectBrCriticalEdges(Function &F,
 | 
						|
                                        BranchProbabilityInfo *BPI,
 | 
						|
                                        BlockFrequencyInfo *BFI) {
 | 
						|
  // Check whether the function has any indirectbrs, and collect which blocks
 | 
						|
  // they may jump to. Since most functions don't have indirect branches,
 | 
						|
  // this lowers the common case's overhead to O(Blocks) instead of O(Edges).
 | 
						|
  SmallSetVector<BasicBlock *, 16> Targets;
 | 
						|
  for (auto &BB : F) {
 | 
						|
    auto *IBI = dyn_cast<IndirectBrInst>(BB.getTerminator());
 | 
						|
    if (!IBI)
 | 
						|
      continue;
 | 
						|
 | 
						|
    for (unsigned Succ = 0, E = IBI->getNumSuccessors(); Succ != E; ++Succ)
 | 
						|
      Targets.insert(IBI->getSuccessor(Succ));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Targets.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool ShouldUpdateAnalysis = BPI && BFI;
 | 
						|
  bool Changed = false;
 | 
						|
  for (BasicBlock *Target : Targets) {
 | 
						|
    SmallVector<BasicBlock *, 16> OtherPreds;
 | 
						|
    BasicBlock *IBRPred = findIBRPredecessor(Target, OtherPreds);
 | 
						|
    // If we did not found an indirectbr, or the indirectbr is the only
 | 
						|
    // incoming edge, this isn't the kind of edge we're looking for.
 | 
						|
    if (!IBRPred || OtherPreds.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Don't even think about ehpads/landingpads.
 | 
						|
    Instruction *FirstNonPHI = Target->getFirstNonPHI();
 | 
						|
    if (FirstNonPHI->isEHPad() || Target->isLandingPad())
 | 
						|
      continue;
 | 
						|
 | 
						|
    BasicBlock *BodyBlock = Target->splitBasicBlock(FirstNonPHI, ".split");
 | 
						|
    if (ShouldUpdateAnalysis) {
 | 
						|
      // Copy the BFI/BPI from Target to BodyBlock.
 | 
						|
      for (unsigned I = 0, E = BodyBlock->getTerminator()->getNumSuccessors();
 | 
						|
           I < E; ++I)
 | 
						|
        BPI->setEdgeProbability(BodyBlock, I,
 | 
						|
                                BPI->getEdgeProbability(Target, I));
 | 
						|
      BFI->setBlockFreq(BodyBlock, BFI->getBlockFreq(Target).getFrequency());
 | 
						|
    }
 | 
						|
    // It's possible Target was its own successor through an indirectbr.
 | 
						|
    // In this case, the indirectbr now comes from BodyBlock.
 | 
						|
    if (IBRPred == Target)
 | 
						|
      IBRPred = BodyBlock;
 | 
						|
 | 
						|
    // At this point Target only has PHIs, and BodyBlock has the rest of the
 | 
						|
    // block's body. Create a copy of Target that will be used by the "direct"
 | 
						|
    // preds.
 | 
						|
    ValueToValueMapTy VMap;
 | 
						|
    BasicBlock *DirectSucc = CloneBasicBlock(Target, VMap, ".clone", &F);
 | 
						|
 | 
						|
    BlockFrequency BlockFreqForDirectSucc;
 | 
						|
    for (BasicBlock *Pred : OtherPreds) {
 | 
						|
      // If the target is a loop to itself, then the terminator of the split
 | 
						|
      // block (BodyBlock) needs to be updated.
 | 
						|
      BasicBlock *Src = Pred != Target ? Pred : BodyBlock;
 | 
						|
      Src->getTerminator()->replaceUsesOfWith(Target, DirectSucc);
 | 
						|
      if (ShouldUpdateAnalysis)
 | 
						|
        BlockFreqForDirectSucc += BFI->getBlockFreq(Src) *
 | 
						|
            BPI->getEdgeProbability(Src, DirectSucc);
 | 
						|
    }
 | 
						|
    if (ShouldUpdateAnalysis) {
 | 
						|
      BFI->setBlockFreq(DirectSucc, BlockFreqForDirectSucc.getFrequency());
 | 
						|
      BlockFrequency NewBlockFreqForTarget =
 | 
						|
          BFI->getBlockFreq(Target) - BlockFreqForDirectSucc;
 | 
						|
      BFI->setBlockFreq(Target, NewBlockFreqForTarget.getFrequency());
 | 
						|
      BPI->eraseBlock(Target);
 | 
						|
    }
 | 
						|
 | 
						|
    // Ok, now fix up the PHIs. We know the two blocks only have PHIs, and that
 | 
						|
    // they are clones, so the number of PHIs are the same.
 | 
						|
    // (a) Remove the edge coming from IBRPred from the "Direct" PHI
 | 
						|
    // (b) Leave that as the only edge in the "Indirect" PHI.
 | 
						|
    // (c) Merge the two in the body block.
 | 
						|
    BasicBlock::iterator Indirect = Target->begin(),
 | 
						|
                         End = Target->getFirstNonPHI()->getIterator();
 | 
						|
    BasicBlock::iterator Direct = DirectSucc->begin();
 | 
						|
    BasicBlock::iterator MergeInsert = BodyBlock->getFirstInsertionPt();
 | 
						|
 | 
						|
    assert(&*End == Target->getTerminator() &&
 | 
						|
           "Block was expected to only contain PHIs");
 | 
						|
 | 
						|
    while (Indirect != End) {
 | 
						|
      PHINode *DirPHI = cast<PHINode>(Direct);
 | 
						|
      PHINode *IndPHI = cast<PHINode>(Indirect);
 | 
						|
 | 
						|
      // Now, clean up - the direct block shouldn't get the indirect value,
 | 
						|
      // and vice versa.
 | 
						|
      DirPHI->removeIncomingValue(IBRPred);
 | 
						|
      Direct++;
 | 
						|
 | 
						|
      // Advance the pointer here, to avoid invalidation issues when the old
 | 
						|
      // PHI is erased.
 | 
						|
      Indirect++;
 | 
						|
 | 
						|
      PHINode *NewIndPHI = PHINode::Create(IndPHI->getType(), 1, "ind", IndPHI);
 | 
						|
      NewIndPHI->addIncoming(IndPHI->getIncomingValueForBlock(IBRPred),
 | 
						|
                             IBRPred);
 | 
						|
 | 
						|
      // Create a PHI in the body block, to merge the direct and indirect
 | 
						|
      // predecessors.
 | 
						|
      PHINode *MergePHI =
 | 
						|
          PHINode::Create(IndPHI->getType(), 2, "merge", &*MergeInsert);
 | 
						|
      MergePHI->addIncoming(NewIndPHI, Target);
 | 
						|
      MergePHI->addIncoming(DirPHI, DirectSucc);
 | 
						|
 | 
						|
      IndPHI->replaceAllUsesWith(MergePHI);
 | 
						|
      IndPHI->eraseFromParent();
 | 
						|
    }
 | 
						|
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 |