355 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			355 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
//===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
///
 | 
						|
/// \file
 | 
						|
/// This file implements the construction of a VPlan-based Hierarchical CFG
 | 
						|
/// (H-CFG) for an incoming IR. This construction comprises the following
 | 
						|
/// components and steps:
 | 
						|
//
 | 
						|
/// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
 | 
						|
/// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
 | 
						|
/// Region) is created to enclose and serve as parent of all the VPBasicBlocks
 | 
						|
/// in the plain CFG.
 | 
						|
/// NOTE: At this point, there is a direct correspondence between all the
 | 
						|
/// VPBasicBlocks created for the initial plain CFG and the incoming
 | 
						|
/// BasicBlocks. However, this might change in the future.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "VPlanHCFGBuilder.h"
 | 
						|
#include "LoopVectorizationPlanner.h"
 | 
						|
#include "llvm/Analysis/LoopIterator.h"
 | 
						|
 | 
						|
#define DEBUG_TYPE "loop-vectorize"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace {
 | 
						|
// Class that is used to build the plain CFG for the incoming IR.
 | 
						|
class PlainCFGBuilder {
 | 
						|
private:
 | 
						|
  // The outermost loop of the input loop nest considered for vectorization.
 | 
						|
  Loop *TheLoop;
 | 
						|
 | 
						|
  // Loop Info analysis.
 | 
						|
  LoopInfo *LI;
 | 
						|
 | 
						|
  // Vectorization plan that we are working on.
 | 
						|
  VPlan &Plan;
 | 
						|
 | 
						|
  // Output Top Region.
 | 
						|
  VPRegionBlock *TopRegion = nullptr;
 | 
						|
 | 
						|
  // Builder of the VPlan instruction-level representation.
 | 
						|
  VPBuilder VPIRBuilder;
 | 
						|
 | 
						|
  // NOTE: The following maps are intentionally destroyed after the plain CFG
 | 
						|
  // construction because subsequent VPlan-to-VPlan transformation may
 | 
						|
  // invalidate them.
 | 
						|
  // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
 | 
						|
  DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
 | 
						|
  // Map incoming Value definitions to their newly-created VPValues.
 | 
						|
  DenseMap<Value *, VPValue *> IRDef2VPValue;
 | 
						|
 | 
						|
  // Hold phi node's that need to be fixed once the plain CFG has been built.
 | 
						|
  SmallVector<PHINode *, 8> PhisToFix;
 | 
						|
 | 
						|
  // Utility functions.
 | 
						|
  void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
 | 
						|
  void fixPhiNodes();
 | 
						|
  VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
 | 
						|
#ifndef NDEBUG
 | 
						|
  bool isExternalDef(Value *Val);
 | 
						|
#endif
 | 
						|
  VPValue *getOrCreateVPOperand(Value *IRVal);
 | 
						|
  void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
 | 
						|
 | 
						|
public:
 | 
						|
  PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
 | 
						|
      : TheLoop(Lp), LI(LI), Plan(P) {}
 | 
						|
 | 
						|
  // Build the plain CFG and return its Top Region.
 | 
						|
  VPRegionBlock *buildPlainCFG();
 | 
						|
};
 | 
						|
} // anonymous namespace
 | 
						|
 | 
						|
// Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
 | 
						|
// must have no predecessors.
 | 
						|
void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
 | 
						|
  SmallVector<VPBlockBase *, 8> VPBBPreds;
 | 
						|
  // Collect VPBB predecessors.
 | 
						|
  for (BasicBlock *Pred : predecessors(BB))
 | 
						|
    VPBBPreds.push_back(getOrCreateVPBB(Pred));
 | 
						|
 | 
						|
  VPBB->setPredecessors(VPBBPreds);
 | 
						|
}
 | 
						|
 | 
						|
// Add operands to VPInstructions representing phi nodes from the input IR.
 | 
						|
void PlainCFGBuilder::fixPhiNodes() {
 | 
						|
  for (auto *Phi : PhisToFix) {
 | 
						|
    assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
 | 
						|
    VPValue *VPVal = IRDef2VPValue[Phi];
 | 
						|
    assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node.");
 | 
						|
    auto *VPPhi = cast<VPInstruction>(VPVal);
 | 
						|
    assert(VPPhi->getNumOperands() == 0 &&
 | 
						|
           "Expected VPInstruction with no operands.");
 | 
						|
 | 
						|
    for (Value *Op : Phi->operands())
 | 
						|
      VPPhi->addOperand(getOrCreateVPOperand(Op));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an
 | 
						|
// existing one if it was already created.
 | 
						|
VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
 | 
						|
  auto BlockIt = BB2VPBB.find(BB);
 | 
						|
  if (BlockIt != BB2VPBB.end())
 | 
						|
    // Retrieve existing VPBB.
 | 
						|
    return BlockIt->second;
 | 
						|
 | 
						|
  // Create new VPBB.
 | 
						|
  LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
 | 
						|
  VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
 | 
						|
  BB2VPBB[BB] = VPBB;
 | 
						|
  VPBB->setParent(TopRegion);
 | 
						|
  return VPBB;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
// Return true if \p Val is considered an external definition. An external
 | 
						|
// definition is either:
 | 
						|
// 1. A Value that is not an Instruction. This will be refined in the future.
 | 
						|
// 2. An Instruction that is outside of the CFG snippet represented in VPlan,
 | 
						|
// i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
 | 
						|
// outermost loop exits.
 | 
						|
bool PlainCFGBuilder::isExternalDef(Value *Val) {
 | 
						|
  // All the Values that are not Instructions are considered external
 | 
						|
  // definitions for now.
 | 
						|
  Instruction *Inst = dyn_cast<Instruction>(Val);
 | 
						|
  if (!Inst)
 | 
						|
    return true;
 | 
						|
 | 
						|
  BasicBlock *InstParent = Inst->getParent();
 | 
						|
  assert(InstParent && "Expected instruction parent.");
 | 
						|
 | 
						|
  // Check whether Instruction definition is in loop PH.
 | 
						|
  BasicBlock *PH = TheLoop->getLoopPreheader();
 | 
						|
  assert(PH && "Expected loop pre-header.");
 | 
						|
 | 
						|
  if (InstParent == PH)
 | 
						|
    // Instruction definition is in outermost loop PH.
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check whether Instruction definition is in the loop exit.
 | 
						|
  BasicBlock *Exit = TheLoop->getUniqueExitBlock();
 | 
						|
  assert(Exit && "Expected loop with single exit.");
 | 
						|
  if (InstParent == Exit) {
 | 
						|
    // Instruction definition is in outermost loop exit.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check whether Instruction definition is in loop body.
 | 
						|
  return !TheLoop->contains(Inst);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
// Create a new VPValue or retrieve an existing one for the Instruction's
 | 
						|
// operand \p IRVal. This function must only be used to create/retrieve VPValues
 | 
						|
// for *Instruction's operands* and not to create regular VPInstruction's. For
 | 
						|
// the latter, please, look at 'createVPInstructionsForVPBB'.
 | 
						|
VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
 | 
						|
  auto VPValIt = IRDef2VPValue.find(IRVal);
 | 
						|
  if (VPValIt != IRDef2VPValue.end())
 | 
						|
    // Operand has an associated VPInstruction or VPValue that was previously
 | 
						|
    // created.
 | 
						|
    return VPValIt->second;
 | 
						|
 | 
						|
  // Operand doesn't have a previously created VPInstruction/VPValue. This
 | 
						|
  // means that operand is:
 | 
						|
  //   A) a definition external to VPlan,
 | 
						|
  //   B) any other Value without specific representation in VPlan.
 | 
						|
  // For now, we use VPValue to represent A and B and classify both as external
 | 
						|
  // definitions. We may introduce specific VPValue subclasses for them in the
 | 
						|
  // future.
 | 
						|
  assert(isExternalDef(IRVal) && "Expected external definition as operand.");
 | 
						|
 | 
						|
  // A and B: Create VPValue and add it to the pool of external definitions and
 | 
						|
  // to the Value->VPValue map.
 | 
						|
  VPValue *NewVPVal = new VPValue(IRVal);
 | 
						|
  Plan.addExternalDef(NewVPVal);
 | 
						|
  IRDef2VPValue[IRVal] = NewVPVal;
 | 
						|
  return NewVPVal;
 | 
						|
}
 | 
						|
 | 
						|
// Create new VPInstructions in a VPBasicBlock, given its BasicBlock
 | 
						|
// counterpart. This function must be invoked in RPO so that the operands of a
 | 
						|
// VPInstruction in \p BB have been visited before (except for Phi nodes).
 | 
						|
void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
 | 
						|
                                                  BasicBlock *BB) {
 | 
						|
  VPIRBuilder.setInsertPoint(VPBB);
 | 
						|
  for (Instruction &InstRef : *BB) {
 | 
						|
    Instruction *Inst = &InstRef;
 | 
						|
 | 
						|
    // There shouldn't be any VPValue for Inst at this point. Otherwise, we
 | 
						|
    // visited Inst when we shouldn't, breaking the RPO traversal order.
 | 
						|
    assert(!IRDef2VPValue.count(Inst) &&
 | 
						|
           "Instruction shouldn't have been visited.");
 | 
						|
 | 
						|
    if (auto *Br = dyn_cast<BranchInst>(Inst)) {
 | 
						|
      // Branch instruction is not explicitly represented in VPlan but we need
 | 
						|
      // to represent its condition bit when it's conditional.
 | 
						|
      if (Br->isConditional())
 | 
						|
        getOrCreateVPOperand(Br->getCondition());
 | 
						|
 | 
						|
      // Skip the rest of the Instruction processing for Branch instructions.
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    VPInstruction *NewVPInst;
 | 
						|
    if (auto *Phi = dyn_cast<PHINode>(Inst)) {
 | 
						|
      // Phi node's operands may have not been visited at this point. We create
 | 
						|
      // an empty VPInstruction that we will fix once the whole plain CFG has
 | 
						|
      // been built.
 | 
						|
      NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp(
 | 
						|
          Inst->getOpcode(), {} /*No operands*/, Inst));
 | 
						|
      PhisToFix.push_back(Phi);
 | 
						|
    } else {
 | 
						|
      // Translate LLVM-IR operands into VPValue operands and set them in the
 | 
						|
      // new VPInstruction.
 | 
						|
      SmallVector<VPValue *, 4> VPOperands;
 | 
						|
      for (Value *Op : Inst->operands())
 | 
						|
        VPOperands.push_back(getOrCreateVPOperand(Op));
 | 
						|
 | 
						|
      // Build VPInstruction for any arbitraty Instruction without specific
 | 
						|
      // representation in VPlan.
 | 
						|
      NewVPInst = cast<VPInstruction>(
 | 
						|
          VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
 | 
						|
    }
 | 
						|
 | 
						|
    IRDef2VPValue[Inst] = NewVPInst;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Main interface to build the plain CFG.
 | 
						|
VPRegionBlock *PlainCFGBuilder::buildPlainCFG() {
 | 
						|
  // 1. Create the Top Region. It will be the parent of all VPBBs.
 | 
						|
  TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/);
 | 
						|
 | 
						|
  // 2. Scan the body of the loop in a topological order to visit each basic
 | 
						|
  // block after having visited its predecessor basic blocks. Create a VPBB for
 | 
						|
  // each BB and link it to its successor and predecessor VPBBs. Note that
 | 
						|
  // predecessors must be set in the same order as they are in the incomming IR.
 | 
						|
  // Otherwise, there might be problems with existing phi nodes and algorithm
 | 
						|
  // based on predecessors traversal.
 | 
						|
 | 
						|
  // Loop PH needs to be explicitly visited since it's not taken into account by
 | 
						|
  // LoopBlocksDFS.
 | 
						|
  BasicBlock *PreheaderBB = TheLoop->getLoopPreheader();
 | 
						|
  assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
 | 
						|
         "Unexpected loop preheader");
 | 
						|
  VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB);
 | 
						|
  createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB);
 | 
						|
  // Create empty VPBB for Loop H so that we can link PH->H.
 | 
						|
  VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
 | 
						|
  // Preheader's predecessors will be set during the loop RPO traversal below.
 | 
						|
  PreheaderVPBB->setOneSuccessor(HeaderVPBB);
 | 
						|
 | 
						|
  LoopBlocksRPO RPO(TheLoop);
 | 
						|
  RPO.perform(LI);
 | 
						|
 | 
						|
  for (BasicBlock *BB : RPO) {
 | 
						|
    // Create or retrieve the VPBasicBlock for this BB and create its
 | 
						|
    // VPInstructions.
 | 
						|
    VPBasicBlock *VPBB = getOrCreateVPBB(BB);
 | 
						|
    createVPInstructionsForVPBB(VPBB, BB);
 | 
						|
 | 
						|
    // Set VPBB successors. We create empty VPBBs for successors if they don't
 | 
						|
    // exist already. Recipes will be created when the successor is visited
 | 
						|
    // during the RPO traversal.
 | 
						|
    Instruction *TI = BB->getTerminator();
 | 
						|
    assert(TI && "Terminator expected.");
 | 
						|
    unsigned NumSuccs = TI->getNumSuccessors();
 | 
						|
 | 
						|
    if (NumSuccs == 1) {
 | 
						|
      VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0));
 | 
						|
      assert(SuccVPBB && "VPBB Successor not found.");
 | 
						|
      VPBB->setOneSuccessor(SuccVPBB);
 | 
						|
    } else if (NumSuccs == 2) {
 | 
						|
      VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0));
 | 
						|
      assert(SuccVPBB0 && "Successor 0 not found.");
 | 
						|
      VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1));
 | 
						|
      assert(SuccVPBB1 && "Successor 1 not found.");
 | 
						|
 | 
						|
      // Get VPBB's condition bit.
 | 
						|
      assert(isa<BranchInst>(TI) && "Unsupported terminator!");
 | 
						|
      auto *Br = cast<BranchInst>(TI);
 | 
						|
      Value *BrCond = Br->getCondition();
 | 
						|
      // Look up the branch condition to get the corresponding VPValue
 | 
						|
      // representing the condition bit in VPlan (which may be in another VPBB).
 | 
						|
      assert(IRDef2VPValue.count(BrCond) &&
 | 
						|
             "Missing condition bit in IRDef2VPValue!");
 | 
						|
      VPValue *VPCondBit = IRDef2VPValue[BrCond];
 | 
						|
 | 
						|
      // Link successors using condition bit.
 | 
						|
      VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit);
 | 
						|
    } else
 | 
						|
      llvm_unreachable("Number of successors not supported.");
 | 
						|
 | 
						|
    // Set VPBB predecessors in the same order as they are in the incoming BB.
 | 
						|
    setVPBBPredsFromBB(VPBB, BB);
 | 
						|
  }
 | 
						|
 | 
						|
  // 3. Process outermost loop exit. We created an empty VPBB for the loop
 | 
						|
  // single exit BB during the RPO traversal of the loop body but Instructions
 | 
						|
  // weren't visited because it's not part of the the loop.
 | 
						|
  BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
 | 
						|
  assert(LoopExitBB && "Loops with multiple exits are not supported.");
 | 
						|
  VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
 | 
						|
  createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB);
 | 
						|
  // Loop exit was already set as successor of the loop exiting BB.
 | 
						|
  // We only set its predecessor VPBB now.
 | 
						|
  setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
 | 
						|
 | 
						|
  // 4. The whole CFG has been built at this point so all the input Values must
 | 
						|
  // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
 | 
						|
  // VPlan operands.
 | 
						|
  fixPhiNodes();
 | 
						|
 | 
						|
  // 5. Final Top Region setup. Set outermost loop pre-header and single exit as
 | 
						|
  // Top Region entry and exit.
 | 
						|
  TopRegion->setEntry(PreheaderVPBB);
 | 
						|
  TopRegion->setExit(LoopExitVPBB);
 | 
						|
  return TopRegion;
 | 
						|
}
 | 
						|
 | 
						|
VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() {
 | 
						|
  PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
 | 
						|
  return PCFGBuilder.buildPlainCFG();
 | 
						|
}
 | 
						|
 | 
						|
// Public interface to build a H-CFG.
 | 
						|
void VPlanHCFGBuilder::buildHierarchicalCFG() {
 | 
						|
  // Build Top Region enclosing the plain CFG and set it as VPlan entry.
 | 
						|
  VPRegionBlock *TopRegion = buildPlainCFG();
 | 
						|
  Plan.setEntry(TopRegion);
 | 
						|
  LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
 | 
						|
 | 
						|
  Verifier.verifyHierarchicalCFG(TopRegion);
 | 
						|
 | 
						|
  // Compute plain CFG dom tree for VPLInfo.
 | 
						|
  VPDomTree.recalculate(*TopRegion);
 | 
						|
  LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
 | 
						|
             VPDomTree.print(dbgs()));
 | 
						|
 | 
						|
  // Compute VPLInfo and keep it in Plan.
 | 
						|
  VPLoopInfo &VPLInfo = Plan.getVPLoopInfo();
 | 
						|
  VPLInfo.analyze(VPDomTree);
 | 
						|
  LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n";
 | 
						|
             VPLInfo.print(dbgs()));
 | 
						|
}
 |