649 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			649 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
//===---- llvm/unittest/IR/PatternMatch.cpp - PatternMatch unit tests ----===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/IR/PatternMatch.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/IR/BasicBlock.h"
 | 
						|
#include "llvm/IR/Constants.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/MDBuilder.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/IR/NoFolder.h"
 | 
						|
#include "llvm/IR/Operator.h"
 | 
						|
#include "llvm/IR/Type.h"
 | 
						|
#include "gtest/gtest.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
struct PatternMatchTest : ::testing::Test {
 | 
						|
  LLVMContext Ctx;
 | 
						|
  std::unique_ptr<Module> M;
 | 
						|
  Function *F;
 | 
						|
  BasicBlock *BB;
 | 
						|
  IRBuilder<NoFolder> IRB;
 | 
						|
 | 
						|
  PatternMatchTest()
 | 
						|
      : M(new Module("PatternMatchTestModule", Ctx)),
 | 
						|
        F(Function::Create(
 | 
						|
            FunctionType::get(Type::getVoidTy(Ctx), /* IsVarArg */ false),
 | 
						|
            Function::ExternalLinkage, "f", M.get())),
 | 
						|
        BB(BasicBlock::Create(Ctx, "entry", F)), IRB(BB) {}
 | 
						|
};
 | 
						|
 | 
						|
TEST_F(PatternMatchTest, OneUse) {
 | 
						|
  // Build up a little tree of values:
 | 
						|
  //
 | 
						|
  //   One  = (1 + 2) + 42
 | 
						|
  //   Two  = One + 42
 | 
						|
  //   Leaf = (Two + 8) + (Two + 13)
 | 
						|
  Value *One = IRB.CreateAdd(IRB.CreateAdd(IRB.getInt32(1), IRB.getInt32(2)),
 | 
						|
                             IRB.getInt32(42));
 | 
						|
  Value *Two = IRB.CreateAdd(One, IRB.getInt32(42));
 | 
						|
  Value *Leaf = IRB.CreateAdd(IRB.CreateAdd(Two, IRB.getInt32(8)),
 | 
						|
                              IRB.CreateAdd(Two, IRB.getInt32(13)));
 | 
						|
  Value *V;
 | 
						|
 | 
						|
  EXPECT_TRUE(m_OneUse(m_Value(V)).match(One));
 | 
						|
  EXPECT_EQ(One, V);
 | 
						|
 | 
						|
  EXPECT_FALSE(m_OneUse(m_Value()).match(Two));
 | 
						|
  EXPECT_FALSE(m_OneUse(m_Value()).match(Leaf));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(PatternMatchTest, CommutativeDeferredValue) {
 | 
						|
  Value *X = IRB.getInt32(1);
 | 
						|
  Value *Y = IRB.getInt32(2);
 | 
						|
 | 
						|
  {
 | 
						|
    Value *tX = X;
 | 
						|
    EXPECT_TRUE(match(X, m_Deferred(tX)));
 | 
						|
    EXPECT_FALSE(match(Y, m_Deferred(tX)));
 | 
						|
  }
 | 
						|
  {
 | 
						|
    const Value *tX = X;
 | 
						|
    EXPECT_TRUE(match(X, m_Deferred(tX)));
 | 
						|
    EXPECT_FALSE(match(Y, m_Deferred(tX)));
 | 
						|
  }
 | 
						|
  {
 | 
						|
    Value *const tX = X;
 | 
						|
    EXPECT_TRUE(match(X, m_Deferred(tX)));
 | 
						|
    EXPECT_FALSE(match(Y, m_Deferred(tX)));
 | 
						|
  }
 | 
						|
  {
 | 
						|
    const Value *const tX = X;
 | 
						|
    EXPECT_TRUE(match(X, m_Deferred(tX)));
 | 
						|
    EXPECT_FALSE(match(Y, m_Deferred(tX)));
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    Value *tX = nullptr;
 | 
						|
    EXPECT_TRUE(match(IRB.CreateAnd(X, X), m_And(m_Value(tX), m_Deferred(tX))));
 | 
						|
    EXPECT_EQ(tX, X);
 | 
						|
  }
 | 
						|
  {
 | 
						|
    Value *tX = nullptr;
 | 
						|
    EXPECT_FALSE(
 | 
						|
        match(IRB.CreateAnd(X, Y), m_c_And(m_Value(tX), m_Deferred(tX))));
 | 
						|
  }
 | 
						|
 | 
						|
  auto checkMatch = [X, Y](Value *Pattern) {
 | 
						|
    Value *tX = nullptr, *tY = nullptr;
 | 
						|
    EXPECT_TRUE(match(
 | 
						|
        Pattern, m_c_And(m_Value(tX), m_c_And(m_Deferred(tX), m_Value(tY)))));
 | 
						|
    EXPECT_EQ(tX, X);
 | 
						|
    EXPECT_EQ(tY, Y);
 | 
						|
  };
 | 
						|
 | 
						|
  checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(X, Y)));
 | 
						|
  checkMatch(IRB.CreateAnd(X, IRB.CreateAnd(Y, X)));
 | 
						|
  checkMatch(IRB.CreateAnd(IRB.CreateAnd(X, Y), X));
 | 
						|
  checkMatch(IRB.CreateAnd(IRB.CreateAnd(Y, X), X));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(PatternMatchTest, FloatingPointOrderedMin) {
 | 
						|
  Type *FltTy = IRB.getFloatTy();
 | 
						|
  Value *L = ConstantFP::get(FltTy, 1.0);
 | 
						|
  Value *R = ConstantFP::get(FltTy, 2.0);
 | 
						|
  Value *MatchL, *MatchR;
 | 
						|
 | 
						|
  // Test OLT.
 | 
						|
  EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  // Test OLE.
 | 
						|
  EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  // Test no match on OGE.
 | 
						|
  EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                   .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
 | 
						|
 | 
						|
  // Test no match on OGT.
 | 
						|
  EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                   .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
 | 
						|
 | 
						|
  // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
 | 
						|
  // %cmp = fcmp oge L, R
 | 
						|
  // %min = select %cmp R, L
 | 
						|
  // Given L == NaN
 | 
						|
  // the above is expanded to %cmp == false ==> %min = L
 | 
						|
  // which is true for UnordFMin, not OrdFMin, so test that:
 | 
						|
 | 
						|
  // [OU]GE with inverted select.
 | 
						|
  EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
 | 
						|
  EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  // [OU]GT with inverted select.
 | 
						|
  EXPECT_FALSE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
 | 
						|
  EXPECT_TRUE(m_OrdFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(PatternMatchTest, FloatingPointOrderedMax) {
 | 
						|
  Type *FltTy = IRB.getFloatTy();
 | 
						|
  Value *L = ConstantFP::get(FltTy, 1.0);
 | 
						|
  Value *R = ConstantFP::get(FltTy, 2.0);
 | 
						|
  Value *MatchL, *MatchR;
 | 
						|
 | 
						|
  // Test OGT.
 | 
						|
  EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  // Test OGE.
 | 
						|
  EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  // Test no match on OLE.
 | 
						|
  EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                   .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), L, R)));
 | 
						|
 | 
						|
  // Test no match on OLT.
 | 
						|
  EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                   .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), L, R)));
 | 
						|
 | 
						|
 | 
						|
  // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
 | 
						|
  // %cmp = fcmp ole L, R
 | 
						|
  // %max = select %cmp, R, L
 | 
						|
  // Given L == NaN,
 | 
						|
  // the above is expanded to %cmp == false ==> %max == L
 | 
						|
  // which is true for UnordFMax, not OrdFMax, so test that:
 | 
						|
 | 
						|
  // [OU]LE with inverted select.
 | 
						|
  EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                   .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
 | 
						|
  EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  // [OUT]LT with inverted select.
 | 
						|
  EXPECT_FALSE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                   .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
 | 
						|
  EXPECT_TRUE(m_OrdFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(PatternMatchTest, FloatingPointUnorderedMin) {
 | 
						|
  Type *FltTy = IRB.getFloatTy();
 | 
						|
  Value *L = ConstantFP::get(FltTy, 1.0);
 | 
						|
  Value *R = ConstantFP::get(FltTy, 2.0);
 | 
						|
  Value *MatchL, *MatchR;
 | 
						|
 | 
						|
  // Test ULT.
 | 
						|
  EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  // Test ULE.
 | 
						|
  EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  // Test no match on UGE.
 | 
						|
  EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                   .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
 | 
						|
 | 
						|
  // Test no match on UGT.
 | 
						|
  EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                   .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
 | 
						|
 | 
						|
  // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
 | 
						|
  // %cmp = fcmp uge L, R
 | 
						|
  // %min = select %cmp R, L
 | 
						|
  // Given L == NaN
 | 
						|
  // the above is expanded to %cmp == true ==> %min = R
 | 
						|
  // which is true for OrdFMin, not UnordFMin, so test that:
 | 
						|
 | 
						|
  // [UO]GE with inverted select.
 | 
						|
  EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), R, L)));
 | 
						|
  EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpOGE(L, R), R, L)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  // [UO]GT with inverted select.
 | 
						|
  EXPECT_FALSE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), R, L)));
 | 
						|
  EXPECT_TRUE(m_UnordFMin(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpOGT(L, R), R, L)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(PatternMatchTest, FloatingPointUnorderedMax) {
 | 
						|
  Type *FltTy = IRB.getFloatTy();
 | 
						|
  Value *L = ConstantFP::get(FltTy, 1.0);
 | 
						|
  Value *R = ConstantFP::get(FltTy, 2.0);
 | 
						|
  Value *MatchL, *MatchR;
 | 
						|
 | 
						|
  // Test UGT.
 | 
						|
  EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpUGT(L, R), L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  // Test UGE.
 | 
						|
  EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpUGE(L, R), L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  // Test no match on ULE.
 | 
						|
  EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                   .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), L, R)));
 | 
						|
 | 
						|
  // Test no match on ULT.
 | 
						|
  EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                   .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), L, R)));
 | 
						|
 | 
						|
  // Test inverted selects. Note, that this "inverts" the ordering, e.g.:
 | 
						|
  // %cmp = fcmp ule L, R
 | 
						|
  // %max = select %cmp R, L
 | 
						|
  // Given L == NaN
 | 
						|
  // the above is expanded to %cmp == true ==> %max = R
 | 
						|
  // which is true for OrdFMax, not UnordFMax, so test that:
 | 
						|
 | 
						|
  // [UO]LE with inverted select.
 | 
						|
  EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpULE(L, R), R, L)));
 | 
						|
  EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpOLE(L, R), R, L)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  // [UO]LT with inverted select.
 | 
						|
  EXPECT_FALSE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpULT(L, R), R, L)));
 | 
						|
  EXPECT_TRUE(m_UnordFMax(m_Value(MatchL), m_Value(MatchR))
 | 
						|
                  .match(IRB.CreateSelect(IRB.CreateFCmpOLT(L, R), R, L)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(PatternMatchTest, OverflowingBinOps) {
 | 
						|
  Value *L = IRB.getInt32(1);
 | 
						|
  Value *R = IRB.getInt32(2);
 | 
						|
  Value *MatchL, *MatchR;
 | 
						|
 | 
						|
  EXPECT_TRUE(
 | 
						|
      m_NSWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWAdd(L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
  MatchL = MatchR = nullptr;
 | 
						|
  EXPECT_TRUE(
 | 
						|
      m_NSWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWSub(L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
  MatchL = MatchR = nullptr;
 | 
						|
  EXPECT_TRUE(
 | 
						|
      m_NSWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNSWMul(L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
  MatchL = MatchR = nullptr;
 | 
						|
  EXPECT_TRUE(m_NSWShl(m_Value(MatchL), m_Value(MatchR)).match(
 | 
						|
      IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  EXPECT_TRUE(
 | 
						|
      m_NUWAdd(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWAdd(L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
  MatchL = MatchR = nullptr;
 | 
						|
  EXPECT_TRUE(
 | 
						|
      m_NUWSub(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWSub(L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
  MatchL = MatchR = nullptr;
 | 
						|
  EXPECT_TRUE(
 | 
						|
      m_NUWMul(m_Value(MatchL), m_Value(MatchR)).match(IRB.CreateNUWMul(L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
  MatchL = MatchR = nullptr;
 | 
						|
  EXPECT_TRUE(m_NUWShl(m_Value(MatchL), m_Value(MatchR)).match(
 | 
						|
      IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
 | 
						|
  EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
 | 
						|
  EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
 | 
						|
  EXPECT_FALSE(m_NSWAdd(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
 | 
						|
  EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
 | 
						|
  EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
 | 
						|
  EXPECT_FALSE(m_NSWSub(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
 | 
						|
  EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
 | 
						|
  EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNUWMul(L, R)));
 | 
						|
  EXPECT_FALSE(m_NSWMul(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
 | 
						|
  EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
 | 
						|
  EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(
 | 
						|
      IRB.CreateShl(L, R, "", /* NUW */ true, /* NSW */ false)));
 | 
						|
  EXPECT_FALSE(m_NSWShl(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
 | 
						|
 | 
						|
  EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateAdd(L, R)));
 | 
						|
  EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNSWAdd(L, R)));
 | 
						|
  EXPECT_FALSE(m_NUWAdd(m_Value(), m_Value()).match(IRB.CreateNUWSub(L, R)));
 | 
						|
  EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateSub(L, R)));
 | 
						|
  EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNSWSub(L, R)));
 | 
						|
  EXPECT_FALSE(m_NUWSub(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
 | 
						|
  EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateMul(L, R)));
 | 
						|
  EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNSWMul(L, R)));
 | 
						|
  EXPECT_FALSE(m_NUWMul(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
 | 
						|
  EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateShl(L, R)));
 | 
						|
  EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(
 | 
						|
      IRB.CreateShl(L, R, "", /* NUW */ false, /* NSW */ true)));
 | 
						|
  EXPECT_FALSE(m_NUWShl(m_Value(), m_Value()).match(IRB.CreateNUWAdd(L, R)));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(PatternMatchTest, LoadStoreOps) {
 | 
						|
  // Create this load/store sequence:
 | 
						|
  //
 | 
						|
  //  %p = alloca i32*
 | 
						|
  //  %0 = load i32*, i32** %p
 | 
						|
  //  store i32 42, i32* %0
 | 
						|
 | 
						|
  Value *Alloca = IRB.CreateAlloca(IRB.getInt32Ty());
 | 
						|
  Value *LoadInst = IRB.CreateLoad(IRB.getInt32Ty(), Alloca);
 | 
						|
  Value *FourtyTwo = IRB.getInt32(42);
 | 
						|
  Value *StoreInst = IRB.CreateStore(FourtyTwo, Alloca);
 | 
						|
  Value *MatchLoad, *MatchStoreVal, *MatchStorePointer;
 | 
						|
 | 
						|
  EXPECT_TRUE(m_Load(m_Value(MatchLoad)).match(LoadInst));
 | 
						|
  EXPECT_EQ(Alloca, MatchLoad);
 | 
						|
 | 
						|
  EXPECT_TRUE(m_Load(m_Specific(Alloca)).match(LoadInst));
 | 
						|
 | 
						|
  EXPECT_FALSE(m_Load(m_Value(MatchLoad)).match(Alloca));
 | 
						|
 | 
						|
  EXPECT_TRUE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
 | 
						|
                .match(StoreInst));
 | 
						|
  EXPECT_EQ(FourtyTwo, MatchStoreVal);
 | 
						|
  EXPECT_EQ(Alloca, MatchStorePointer);
 | 
						|
 | 
						|
  EXPECT_FALSE(m_Store(m_Value(MatchStoreVal), m_Value(MatchStorePointer))
 | 
						|
                .match(Alloca));
 | 
						|
 | 
						|
  EXPECT_TRUE(m_Store(m_SpecificInt(42), m_Specific(Alloca))
 | 
						|
                .match(StoreInst));
 | 
						|
  EXPECT_FALSE(m_Store(m_SpecificInt(42), m_Specific(FourtyTwo))
 | 
						|
                .match(StoreInst));
 | 
						|
  EXPECT_FALSE(m_Store(m_SpecificInt(43), m_Specific(Alloca))
 | 
						|
                .match(StoreInst));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(PatternMatchTest, VectorOps) {
 | 
						|
  // Build up small tree of vector operations
 | 
						|
  //
 | 
						|
  //   Val = 0 + 1
 | 
						|
  //   Val2 = Val + 3
 | 
						|
  //   VI1 = insertelement <2 x i8> undef, i8 1, i32 0 = <1, undef>
 | 
						|
  //   VI2 = insertelement <2 x i8> %VI1, i8 %Val2, i8 %Val = <1, 4>
 | 
						|
  //   VI3 = insertelement <2 x i8> %VI1, i8 %Val2, i32 1 = <1, 4>
 | 
						|
  //   VI4 = insertelement <2 x i8> %VI1, i8 2, i8 %Val = <1, 2>
 | 
						|
  //
 | 
						|
  //   SI1 = shufflevector <2 x i8> %VI1, <2 x i8> undef, zeroinitializer
 | 
						|
  //   SI2 = shufflevector <2 x i8> %VI3, <2 x i8> %VI4, <2 x i8> <i8 0, i8 2>
 | 
						|
  //   SI3 = shufflevector <2 x i8> %VI3, <2 x i8> undef, zeroinitializer
 | 
						|
  //   SI4 = shufflevector <2 x i8> %VI4, <2 x i8> undef, zeroinitializer
 | 
						|
  //
 | 
						|
  //   SP1 = VectorSplat(2, i8 2)
 | 
						|
  //   SP2 = VectorSplat(2, i8 %Val)
 | 
						|
  Type *VecTy = VectorType::get(IRB.getInt8Ty(), 2);
 | 
						|
  Type *i32 = IRB.getInt32Ty();
 | 
						|
  Type *i32VecTy = VectorType::get(i32, 2);
 | 
						|
 | 
						|
  Value *Val = IRB.CreateAdd(IRB.getInt8(0), IRB.getInt8(1));
 | 
						|
  Value *Val2 = IRB.CreateAdd(Val, IRB.getInt8(3));
 | 
						|
 | 
						|
  SmallVector<Constant *, 2> VecElemIdxs;
 | 
						|
  VecElemIdxs.push_back(ConstantInt::get(i32, 0));
 | 
						|
  VecElemIdxs.push_back(ConstantInt::get(i32, 2));
 | 
						|
  auto *IdxVec = ConstantVector::get(VecElemIdxs);
 | 
						|
 | 
						|
  Value *UndefVec = UndefValue::get(VecTy);
 | 
						|
  Value *VI1 = IRB.CreateInsertElement(UndefVec, IRB.getInt8(1), (uint64_t)0);
 | 
						|
  Value *VI2 = IRB.CreateInsertElement(VI1, Val2, Val);
 | 
						|
  Value *VI3 = IRB.CreateInsertElement(VI1, Val2, (uint64_t)1);
 | 
						|
  Value *VI4 = IRB.CreateInsertElement(VI1, IRB.getInt8(2), Val);
 | 
						|
 | 
						|
  Value *EX1 = IRB.CreateExtractElement(VI4, Val);
 | 
						|
  Value *EX2 = IRB.CreateExtractElement(VI4, (uint64_t)0);
 | 
						|
  Value *EX3 = IRB.CreateExtractElement(IdxVec, (uint64_t)1);
 | 
						|
 | 
						|
  Value *Zero = ConstantAggregateZero::get(i32VecTy);
 | 
						|
  Value *SI1 = IRB.CreateShuffleVector(VI1, UndefVec, Zero);
 | 
						|
  Value *SI2 = IRB.CreateShuffleVector(VI3, VI4, IdxVec);
 | 
						|
  Value *SI3 = IRB.CreateShuffleVector(VI3, UndefVec, Zero);
 | 
						|
  Value *SI4 = IRB.CreateShuffleVector(VI4, UndefVec, Zero);
 | 
						|
 | 
						|
  Value *SP1 = IRB.CreateVectorSplat(2, IRB.getInt8(2));
 | 
						|
  Value *SP2 = IRB.CreateVectorSplat(2, Val);
 | 
						|
 | 
						|
  Value *A = nullptr, *B = nullptr, *C = nullptr;
 | 
						|
 | 
						|
  // Test matching insertelement
 | 
						|
  EXPECT_TRUE(match(VI1, m_InsertElement(m_Value(), m_Value(), m_Value())));
 | 
						|
  EXPECT_TRUE(
 | 
						|
      match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_ConstantInt())));
 | 
						|
  EXPECT_TRUE(
 | 
						|
      match(VI1, m_InsertElement(m_Undef(), m_ConstantInt(), m_Zero())));
 | 
						|
  EXPECT_TRUE(
 | 
						|
      match(VI1, m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero())));
 | 
						|
  EXPECT_TRUE(match(VI2, m_InsertElement(m_Value(), m_Value(), m_Value())));
 | 
						|
  EXPECT_FALSE(
 | 
						|
      match(VI2, m_InsertElement(m_Value(), m_Value(), m_ConstantInt())));
 | 
						|
  EXPECT_FALSE(
 | 
						|
      match(VI2, m_InsertElement(m_Value(), m_ConstantInt(), m_Value())));
 | 
						|
  EXPECT_FALSE(match(VI2, m_InsertElement(m_Constant(), m_Value(), m_Value())));
 | 
						|
  EXPECT_TRUE(match(VI3, m_InsertElement(m_Value(A), m_Value(B), m_Value(C))));
 | 
						|
  EXPECT_TRUE(A == VI1);
 | 
						|
  EXPECT_TRUE(B == Val2);
 | 
						|
  EXPECT_TRUE(isa<ConstantInt>(C));
 | 
						|
  A = B = C = nullptr; // reset
 | 
						|
 | 
						|
  // Test matching extractelement
 | 
						|
  EXPECT_TRUE(match(EX1, m_ExtractElement(m_Value(A), m_Value(B))));
 | 
						|
  EXPECT_TRUE(A == VI4);
 | 
						|
  EXPECT_TRUE(B == Val);
 | 
						|
  A = B = C = nullptr; // reset
 | 
						|
  EXPECT_FALSE(match(EX1, m_ExtractElement(m_Value(), m_ConstantInt())));
 | 
						|
  EXPECT_TRUE(match(EX2, m_ExtractElement(m_Value(), m_ConstantInt())));
 | 
						|
  EXPECT_TRUE(match(EX3, m_ExtractElement(m_Constant(), m_ConstantInt())));
 | 
						|
 | 
						|
  // Test matching shufflevector
 | 
						|
  EXPECT_TRUE(match(SI1, m_ShuffleVector(m_Value(), m_Undef(), m_Zero())));
 | 
						|
  EXPECT_TRUE(match(SI2, m_ShuffleVector(m_Value(A), m_Value(B), m_Value(C))));
 | 
						|
  EXPECT_TRUE(A == VI3);
 | 
						|
  EXPECT_TRUE(B == VI4);
 | 
						|
  EXPECT_TRUE(C == IdxVec);
 | 
						|
  A = B = C = nullptr; // reset
 | 
						|
 | 
						|
  // Test matching the vector splat pattern
 | 
						|
  EXPECT_TRUE(match(
 | 
						|
      SI1,
 | 
						|
      m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(1), m_Zero()),
 | 
						|
                      m_Undef(), m_Zero())));
 | 
						|
  EXPECT_FALSE(match(
 | 
						|
      SI3, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()),
 | 
						|
                           m_Undef(), m_Zero())));
 | 
						|
  EXPECT_FALSE(match(
 | 
						|
      SI4, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(), m_Zero()),
 | 
						|
                           m_Undef(), m_Zero())));
 | 
						|
  EXPECT_TRUE(match(
 | 
						|
      SP1,
 | 
						|
      m_ShuffleVector(m_InsertElement(m_Undef(), m_SpecificInt(2), m_Zero()),
 | 
						|
                      m_Undef(), m_Zero())));
 | 
						|
  EXPECT_TRUE(match(
 | 
						|
      SP2, m_ShuffleVector(m_InsertElement(m_Undef(), m_Value(A), m_Zero()),
 | 
						|
                           m_Undef(), m_Zero())));
 | 
						|
  EXPECT_TRUE(A == Val);
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(PatternMatchTest, VectorUndefInt) {
 | 
						|
  Type *ScalarTy = IRB.getInt8Ty();
 | 
						|
  Type *VectorTy = VectorType::get(ScalarTy, 4);
 | 
						|
  Constant *ScalarUndef = UndefValue::get(ScalarTy);
 | 
						|
  Constant *VectorUndef = UndefValue::get(VectorTy);
 | 
						|
  Constant *ScalarZero = Constant::getNullValue(ScalarTy);
 | 
						|
  Constant *VectorZero = Constant::getNullValue(VectorTy);
 | 
						|
 | 
						|
  SmallVector<Constant *, 4> Elems;
 | 
						|
  Elems.push_back(ScalarUndef);
 | 
						|
  Elems.push_back(ScalarZero);
 | 
						|
  Elems.push_back(ScalarUndef);
 | 
						|
  Elems.push_back(ScalarZero);
 | 
						|
  Constant *VectorZeroUndef = ConstantVector::get(Elems);
 | 
						|
 | 
						|
  EXPECT_TRUE(match(ScalarUndef, m_Undef()));
 | 
						|
  EXPECT_TRUE(match(VectorUndef, m_Undef()));
 | 
						|
  EXPECT_FALSE(match(ScalarZero, m_Undef()));
 | 
						|
  EXPECT_FALSE(match(VectorZero, m_Undef()));
 | 
						|
  EXPECT_FALSE(match(VectorZeroUndef, m_Undef()));
 | 
						|
 | 
						|
  EXPECT_FALSE(match(ScalarUndef, m_Zero()));
 | 
						|
  EXPECT_FALSE(match(VectorUndef, m_Zero()));
 | 
						|
  EXPECT_TRUE(match(ScalarZero, m_Zero()));
 | 
						|
  EXPECT_TRUE(match(VectorZero, m_Zero()));
 | 
						|
  EXPECT_TRUE(match(VectorZeroUndef, m_Zero()));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(PatternMatchTest, VectorUndefFloat) {
 | 
						|
  Type *ScalarTy = IRB.getFloatTy();
 | 
						|
  Type *VectorTy = VectorType::get(ScalarTy, 4);
 | 
						|
  Constant *ScalarUndef = UndefValue::get(ScalarTy);
 | 
						|
  Constant *VectorUndef = UndefValue::get(VectorTy);
 | 
						|
  Constant *ScalarZero = Constant::getNullValue(ScalarTy);
 | 
						|
  Constant *VectorZero = Constant::getNullValue(VectorTy);
 | 
						|
 | 
						|
  SmallVector<Constant *, 4> Elems;
 | 
						|
  Elems.push_back(ScalarUndef);
 | 
						|
  Elems.push_back(ScalarZero);
 | 
						|
  Elems.push_back(ScalarUndef);
 | 
						|
  Elems.push_back(ScalarZero);
 | 
						|
  Constant *VectorZeroUndef = ConstantVector::get(Elems);
 | 
						|
 | 
						|
  EXPECT_TRUE(match(ScalarUndef, m_Undef()));
 | 
						|
  EXPECT_TRUE(match(VectorUndef, m_Undef()));
 | 
						|
  EXPECT_FALSE(match(ScalarZero, m_Undef()));
 | 
						|
  EXPECT_FALSE(match(VectorZero, m_Undef()));
 | 
						|
  EXPECT_FALSE(match(VectorZeroUndef, m_Undef()));
 | 
						|
 | 
						|
  EXPECT_FALSE(match(ScalarUndef, m_AnyZeroFP()));
 | 
						|
  EXPECT_FALSE(match(VectorUndef, m_AnyZeroFP()));
 | 
						|
  EXPECT_TRUE(match(ScalarZero, m_AnyZeroFP()));
 | 
						|
  EXPECT_TRUE(match(VectorZero, m_AnyZeroFP()));
 | 
						|
  EXPECT_TRUE(match(VectorZeroUndef, m_AnyZeroFP()));
 | 
						|
}
 | 
						|
 | 
						|
TEST_F(PatternMatchTest, FloatingPointFNeg) {
 | 
						|
  Type *FltTy = IRB.getFloatTy();
 | 
						|
  Value *One = ConstantFP::get(FltTy, 1.0);
 | 
						|
  Value *Z = ConstantFP::get(FltTy, 0.0);
 | 
						|
  Value *NZ = ConstantFP::get(FltTy, -0.0);
 | 
						|
  Value *V = IRB.CreateFNeg(One);
 | 
						|
  Value *V1 = IRB.CreateFSub(NZ, One);
 | 
						|
  Value *V2 = IRB.CreateFSub(Z, One);
 | 
						|
  Value *V3 = IRB.CreateFAdd(NZ, One);
 | 
						|
  Value *Match;
 | 
						|
 | 
						|
  // Test FNeg(1.0)
 | 
						|
  EXPECT_TRUE(match(V, m_FNeg(m_Value(Match))));
 | 
						|
  EXPECT_EQ(One, Match);
 | 
						|
 | 
						|
  // Test FSub(-0.0, 1.0)
 | 
						|
  EXPECT_TRUE(match(V1, m_FNeg(m_Value(Match))));
 | 
						|
  EXPECT_EQ(One, Match);
 | 
						|
 | 
						|
  // Test FSub(0.0, 1.0)
 | 
						|
  EXPECT_FALSE(match(V2, m_FNeg(m_Value(Match))));
 | 
						|
  cast<Instruction>(V2)->setHasNoSignedZeros(true);
 | 
						|
  EXPECT_TRUE(match(V2, m_FNeg(m_Value(Match))));
 | 
						|
  EXPECT_EQ(One, Match);
 | 
						|
 | 
						|
  // Test FAdd(-0.0, 1.0)
 | 
						|
  EXPECT_FALSE(match(V3, m_FNeg(m_Value(Match))));
 | 
						|
}
 | 
						|
 | 
						|
template <typename T> struct MutableConstTest : PatternMatchTest { };
 | 
						|
 | 
						|
typedef ::testing::Types<std::tuple<Value*, Instruction*>,
 | 
						|
                         std::tuple<const Value*, const Instruction *>>
 | 
						|
    MutableConstTestTypes;
 | 
						|
TYPED_TEST_CASE(MutableConstTest, MutableConstTestTypes);
 | 
						|
 | 
						|
TYPED_TEST(MutableConstTest, ICmp) {
 | 
						|
  auto &IRB = PatternMatchTest::IRB;
 | 
						|
 | 
						|
  typedef typename std::tuple_element<0, TypeParam>::type ValueType;
 | 
						|
  typedef typename std::tuple_element<1, TypeParam>::type InstructionType;
 | 
						|
 | 
						|
  Value *L = IRB.getInt32(1);
 | 
						|
  Value *R = IRB.getInt32(2);
 | 
						|
  ICmpInst::Predicate Pred = ICmpInst::ICMP_UGT;
 | 
						|
 | 
						|
  ValueType MatchL;
 | 
						|
  ValueType MatchR;
 | 
						|
  ICmpInst::Predicate MatchPred;
 | 
						|
 | 
						|
  EXPECT_TRUE(m_ICmp(MatchPred, m_Value(MatchL), m_Value(MatchR))
 | 
						|
              .match((InstructionType)IRB.CreateICmp(Pred, L, R)));
 | 
						|
  EXPECT_EQ(L, MatchL);
 | 
						|
  EXPECT_EQ(R, MatchR);
 | 
						|
}
 | 
						|
 | 
						|
} // anonymous namespace.
 |