4621 lines
		
	
	
		
			165 KiB
		
	
	
	
		
			C++
		
	
	
	
			
		
		
	
	
			4621 lines
		
	
	
		
			165 KiB
		
	
	
	
		
			C++
		
	
	
	
//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
 | 
						|
//
 | 
						|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
 | 
						|
// See https://llvm.org/LICENSE.txt for license information.
 | 
						|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the CodeGenDAGPatterns class, which is used to read and
 | 
						|
// represent the patterns present in a .td file for instructions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "CodeGenDAGPatterns.h"
 | 
						|
#include "llvm/ADT/BitVector.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/MapVector.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/SmallString.h"
 | 
						|
#include "llvm/ADT/StringExtras.h"
 | 
						|
#include "llvm/ADT/StringMap.h"
 | 
						|
#include "llvm/ADT/Twine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/TableGen/Error.h"
 | 
						|
#include "llvm/TableGen/Record.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cstdio>
 | 
						|
#include <iterator>
 | 
						|
#include <set>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "dag-patterns"
 | 
						|
 | 
						|
static inline bool isIntegerOrPtr(MVT VT) {
 | 
						|
  return VT.isInteger() || VT == MVT::iPTR;
 | 
						|
}
 | 
						|
static inline bool isFloatingPoint(MVT VT) {
 | 
						|
  return VT.isFloatingPoint();
 | 
						|
}
 | 
						|
static inline bool isVector(MVT VT) {
 | 
						|
  return VT.isVector();
 | 
						|
}
 | 
						|
static inline bool isScalar(MVT VT) {
 | 
						|
  return !VT.isVector();
 | 
						|
}
 | 
						|
 | 
						|
template <typename Predicate>
 | 
						|
static bool berase_if(MachineValueTypeSet &S, Predicate P) {
 | 
						|
  bool Erased = false;
 | 
						|
  // It is ok to iterate over MachineValueTypeSet and remove elements from it
 | 
						|
  // at the same time.
 | 
						|
  for (MVT T : S) {
 | 
						|
    if (!P(T))
 | 
						|
      continue;
 | 
						|
    Erased = true;
 | 
						|
    S.erase(T);
 | 
						|
  }
 | 
						|
  return Erased;
 | 
						|
}
 | 
						|
 | 
						|
// --- TypeSetByHwMode
 | 
						|
 | 
						|
// This is a parameterized type-set class. For each mode there is a list
 | 
						|
// of types that are currently possible for a given tree node. Type
 | 
						|
// inference will apply to each mode separately.
 | 
						|
 | 
						|
TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
 | 
						|
  for (const ValueTypeByHwMode &VVT : VTList) {
 | 
						|
    insert(VVT);
 | 
						|
    AddrSpaces.push_back(VVT.PtrAddrSpace);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
 | 
						|
  for (const auto &I : *this) {
 | 
						|
    if (I.second.size() > 1)
 | 
						|
      return false;
 | 
						|
    if (!AllowEmpty && I.second.empty())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
 | 
						|
  assert(isValueTypeByHwMode(true) &&
 | 
						|
         "The type set has multiple types for at least one HW mode");
 | 
						|
  ValueTypeByHwMode VVT;
 | 
						|
  auto ASI = AddrSpaces.begin();
 | 
						|
 | 
						|
  for (const auto &I : *this) {
 | 
						|
    MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
 | 
						|
    VVT.getOrCreateTypeForMode(I.first, T);
 | 
						|
    if (ASI != AddrSpaces.end())
 | 
						|
      VVT.PtrAddrSpace = *ASI++;
 | 
						|
  }
 | 
						|
  return VVT;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeSetByHwMode::isPossible() const {
 | 
						|
  for (const auto &I : *this)
 | 
						|
    if (!I.second.empty())
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
 | 
						|
  bool Changed = false;
 | 
						|
  bool ContainsDefault = false;
 | 
						|
  MVT DT = MVT::Other;
 | 
						|
 | 
						|
  SmallDenseSet<unsigned, 4> Modes;
 | 
						|
  for (const auto &P : VVT) {
 | 
						|
    unsigned M = P.first;
 | 
						|
    Modes.insert(M);
 | 
						|
    // Make sure there exists a set for each specific mode from VVT.
 | 
						|
    Changed |= getOrCreate(M).insert(P.second).second;
 | 
						|
    // Cache VVT's default mode.
 | 
						|
    if (DefaultMode == M) {
 | 
						|
      ContainsDefault = true;
 | 
						|
      DT = P.second;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If VVT has a default mode, add the corresponding type to all
 | 
						|
  // modes in "this" that do not exist in VVT.
 | 
						|
  if (ContainsDefault)
 | 
						|
    for (auto &I : *this)
 | 
						|
      if (!Modes.count(I.first))
 | 
						|
        Changed |= I.second.insert(DT).second;
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// Constrain the type set to be the intersection with VTS.
 | 
						|
bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
 | 
						|
  bool Changed = false;
 | 
						|
  if (hasDefault()) {
 | 
						|
    for (const auto &I : VTS) {
 | 
						|
      unsigned M = I.first;
 | 
						|
      if (M == DefaultMode || hasMode(M))
 | 
						|
        continue;
 | 
						|
      Map.insert({M, Map.at(DefaultMode)});
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto &I : *this) {
 | 
						|
    unsigned M = I.first;
 | 
						|
    SetType &S = I.second;
 | 
						|
    if (VTS.hasMode(M) || VTS.hasDefault()) {
 | 
						|
      Changed |= intersect(I.second, VTS.get(M));
 | 
						|
    } else if (!S.empty()) {
 | 
						|
      S.clear();
 | 
						|
      Changed = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Predicate>
 | 
						|
bool TypeSetByHwMode::constrain(Predicate P) {
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto &I : *this)
 | 
						|
    Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Predicate>
 | 
						|
bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
 | 
						|
  assert(empty());
 | 
						|
  for (const auto &I : VTS) {
 | 
						|
    SetType &S = getOrCreate(I.first);
 | 
						|
    for (auto J : I.second)
 | 
						|
      if (P(J))
 | 
						|
        S.insert(J);
 | 
						|
  }
 | 
						|
  return !empty();
 | 
						|
}
 | 
						|
 | 
						|
void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
 | 
						|
  SmallVector<unsigned, 4> Modes;
 | 
						|
  Modes.reserve(Map.size());
 | 
						|
 | 
						|
  for (const auto &I : *this)
 | 
						|
    Modes.push_back(I.first);
 | 
						|
  if (Modes.empty()) {
 | 
						|
    OS << "{}";
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  array_pod_sort(Modes.begin(), Modes.end());
 | 
						|
 | 
						|
  OS << '{';
 | 
						|
  for (unsigned M : Modes) {
 | 
						|
    OS << ' ' << getModeName(M) << ':';
 | 
						|
    writeToStream(get(M), OS);
 | 
						|
  }
 | 
						|
  OS << " }";
 | 
						|
}
 | 
						|
 | 
						|
void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
 | 
						|
  SmallVector<MVT, 4> Types(S.begin(), S.end());
 | 
						|
  array_pod_sort(Types.begin(), Types.end());
 | 
						|
 | 
						|
  OS << '[';
 | 
						|
  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
 | 
						|
    OS << ValueTypeByHwMode::getMVTName(Types[i]);
 | 
						|
    if (i != e-1)
 | 
						|
      OS << ' ';
 | 
						|
  }
 | 
						|
  OS << ']';
 | 
						|
}
 | 
						|
 | 
						|
bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
 | 
						|
  // The isSimple call is much quicker than hasDefault - check this first.
 | 
						|
  bool IsSimple = isSimple();
 | 
						|
  bool VTSIsSimple = VTS.isSimple();
 | 
						|
  if (IsSimple && VTSIsSimple)
 | 
						|
    return *begin() == *VTS.begin();
 | 
						|
 | 
						|
  // Speedup: We have a default if the set is simple.
 | 
						|
  bool HaveDefault = IsSimple || hasDefault();
 | 
						|
  bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
 | 
						|
  if (HaveDefault != VTSHaveDefault)
 | 
						|
    return false;
 | 
						|
 | 
						|
  SmallDenseSet<unsigned, 4> Modes;
 | 
						|
  for (auto &I : *this)
 | 
						|
    Modes.insert(I.first);
 | 
						|
  for (const auto &I : VTS)
 | 
						|
    Modes.insert(I.first);
 | 
						|
 | 
						|
  if (HaveDefault) {
 | 
						|
    // Both sets have default mode.
 | 
						|
    for (unsigned M : Modes) {
 | 
						|
      if (get(M) != VTS.get(M))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Neither set has default mode.
 | 
						|
    for (unsigned M : Modes) {
 | 
						|
      // If there is no default mode, an empty set is equivalent to not having
 | 
						|
      // the corresponding mode.
 | 
						|
      bool NoModeThis = !hasMode(M) || get(M).empty();
 | 
						|
      bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
 | 
						|
      if (NoModeThis != NoModeVTS)
 | 
						|
        return false;
 | 
						|
      if (!NoModeThis)
 | 
						|
        if (get(M) != VTS.get(M))
 | 
						|
          return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
  raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
 | 
						|
    T.writeToStream(OS);
 | 
						|
    return OS;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
LLVM_DUMP_METHOD
 | 
						|
void TypeSetByHwMode::dump() const {
 | 
						|
  dbgs() << *this << '\n';
 | 
						|
}
 | 
						|
 | 
						|
bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
 | 
						|
  bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
 | 
						|
  auto Int = [&In](MVT T) -> bool { return !In.count(T); };
 | 
						|
 | 
						|
  if (OutP == InP)
 | 
						|
    return berase_if(Out, Int);
 | 
						|
 | 
						|
  // Compute the intersection of scalars separately to account for only
 | 
						|
  // one set containing iPTR.
 | 
						|
  // The itersection of iPTR with a set of integer scalar types that does not
 | 
						|
  // include iPTR will result in the most specific scalar type:
 | 
						|
  // - iPTR is more specific than any set with two elements or more
 | 
						|
  // - iPTR is less specific than any single integer scalar type.
 | 
						|
  // For example
 | 
						|
  // { iPTR } * { i32 }     -> { i32 }
 | 
						|
  // { iPTR } * { i32 i64 } -> { iPTR }
 | 
						|
  // and
 | 
						|
  // { iPTR i32 } * { i32 }          -> { i32 }
 | 
						|
  // { iPTR i32 } * { i32 i64 }      -> { i32 i64 }
 | 
						|
  // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
 | 
						|
 | 
						|
  // Compute the difference between the two sets in such a way that the
 | 
						|
  // iPTR is in the set that is being subtracted. This is to see if there
 | 
						|
  // are any extra scalars in the set without iPTR that are not in the
 | 
						|
  // set containing iPTR. Then the iPTR could be considered a "wildcard"
 | 
						|
  // matching these scalars. If there is only one such scalar, it would
 | 
						|
  // replace the iPTR, if there are more, the iPTR would be retained.
 | 
						|
  SetType Diff;
 | 
						|
  if (InP) {
 | 
						|
    Diff = Out;
 | 
						|
    berase_if(Diff, [&In](MVT T) { return In.count(T); });
 | 
						|
    // Pre-remove these elements and rely only on InP/OutP to determine
 | 
						|
    // whether a change has been made.
 | 
						|
    berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
 | 
						|
  } else {
 | 
						|
    Diff = In;
 | 
						|
    berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
 | 
						|
    Out.erase(MVT::iPTR);
 | 
						|
  }
 | 
						|
 | 
						|
  // The actual intersection.
 | 
						|
  bool Changed = berase_if(Out, Int);
 | 
						|
  unsigned NumD = Diff.size();
 | 
						|
  if (NumD == 0)
 | 
						|
    return Changed;
 | 
						|
 | 
						|
  if (NumD == 1) {
 | 
						|
    Out.insert(*Diff.begin());
 | 
						|
    // This is a change only if Out was the one with iPTR (which is now
 | 
						|
    // being replaced).
 | 
						|
    Changed |= OutP;
 | 
						|
  } else {
 | 
						|
    // Multiple elements from Out are now replaced with iPTR.
 | 
						|
    Out.insert(MVT::iPTR);
 | 
						|
    Changed |= !OutP;
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeSetByHwMode::validate() const {
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (empty())
 | 
						|
    return true;
 | 
						|
  bool AllEmpty = true;
 | 
						|
  for (const auto &I : *this)
 | 
						|
    AllEmpty &= I.second.empty();
 | 
						|
  return !AllEmpty;
 | 
						|
#endif
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// --- TypeInfer
 | 
						|
 | 
						|
bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
 | 
						|
                                const TypeSetByHwMode &In) {
 | 
						|
  ValidateOnExit _1(Out, *this);
 | 
						|
  In.validate();
 | 
						|
  if (In.empty() || Out == In || TP.hasError())
 | 
						|
    return false;
 | 
						|
  if (Out.empty()) {
 | 
						|
    Out = In;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  bool Changed = Out.constrain(In);
 | 
						|
  if (Changed && Out.empty())
 | 
						|
    TP.error("Type contradiction");
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
 | 
						|
  ValidateOnExit _1(Out, *this);
 | 
						|
  if (TP.hasError())
 | 
						|
    return false;
 | 
						|
  assert(!Out.empty() && "cannot pick from an empty set");
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  for (auto &I : Out) {
 | 
						|
    TypeSetByHwMode::SetType &S = I.second;
 | 
						|
    if (S.size() <= 1)
 | 
						|
      continue;
 | 
						|
    MVT T = *S.begin(); // Pick the first element.
 | 
						|
    S.clear();
 | 
						|
    S.insert(T);
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
 | 
						|
  ValidateOnExit _1(Out, *this);
 | 
						|
  if (TP.hasError())
 | 
						|
    return false;
 | 
						|
  if (!Out.empty())
 | 
						|
    return Out.constrain(isIntegerOrPtr);
 | 
						|
 | 
						|
  return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
 | 
						|
}
 | 
						|
 | 
						|
bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
 | 
						|
  ValidateOnExit _1(Out, *this);
 | 
						|
  if (TP.hasError())
 | 
						|
    return false;
 | 
						|
  if (!Out.empty())
 | 
						|
    return Out.constrain(isFloatingPoint);
 | 
						|
 | 
						|
  return Out.assign_if(getLegalTypes(), isFloatingPoint);
 | 
						|
}
 | 
						|
 | 
						|
bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
 | 
						|
  ValidateOnExit _1(Out, *this);
 | 
						|
  if (TP.hasError())
 | 
						|
    return false;
 | 
						|
  if (!Out.empty())
 | 
						|
    return Out.constrain(isScalar);
 | 
						|
 | 
						|
  return Out.assign_if(getLegalTypes(), isScalar);
 | 
						|
}
 | 
						|
 | 
						|
bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
 | 
						|
  ValidateOnExit _1(Out, *this);
 | 
						|
  if (TP.hasError())
 | 
						|
    return false;
 | 
						|
  if (!Out.empty())
 | 
						|
    return Out.constrain(isVector);
 | 
						|
 | 
						|
  return Out.assign_if(getLegalTypes(), isVector);
 | 
						|
}
 | 
						|
 | 
						|
bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
 | 
						|
  ValidateOnExit _1(Out, *this);
 | 
						|
  if (TP.hasError() || !Out.empty())
 | 
						|
    return false;
 | 
						|
 | 
						|
  Out = getLegalTypes();
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Iter, typename Pred, typename Less>
 | 
						|
static Iter min_if(Iter B, Iter E, Pred P, Less L) {
 | 
						|
  if (B == E)
 | 
						|
    return E;
 | 
						|
  Iter Min = E;
 | 
						|
  for (Iter I = B; I != E; ++I) {
 | 
						|
    if (!P(*I))
 | 
						|
      continue;
 | 
						|
    if (Min == E || L(*I, *Min))
 | 
						|
      Min = I;
 | 
						|
  }
 | 
						|
  return Min;
 | 
						|
}
 | 
						|
 | 
						|
template <typename Iter, typename Pred, typename Less>
 | 
						|
static Iter max_if(Iter B, Iter E, Pred P, Less L) {
 | 
						|
  if (B == E)
 | 
						|
    return E;
 | 
						|
  Iter Max = E;
 | 
						|
  for (Iter I = B; I != E; ++I) {
 | 
						|
    if (!P(*I))
 | 
						|
      continue;
 | 
						|
    if (Max == E || L(*Max, *I))
 | 
						|
      Max = I;
 | 
						|
  }
 | 
						|
  return Max;
 | 
						|
}
 | 
						|
 | 
						|
/// Make sure that for each type in Small, there exists a larger type in Big.
 | 
						|
bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
 | 
						|
                                   TypeSetByHwMode &Big) {
 | 
						|
  ValidateOnExit _1(Small, *this), _2(Big, *this);
 | 
						|
  if (TP.hasError())
 | 
						|
    return false;
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  if (Small.empty())
 | 
						|
    Changed |= EnforceAny(Small);
 | 
						|
  if (Big.empty())
 | 
						|
    Changed |= EnforceAny(Big);
 | 
						|
 | 
						|
  assert(Small.hasDefault() && Big.hasDefault());
 | 
						|
 | 
						|
  std::vector<unsigned> Modes = union_modes(Small, Big);
 | 
						|
 | 
						|
  // 1. Only allow integer or floating point types and make sure that
 | 
						|
  //    both sides are both integer or both floating point.
 | 
						|
  // 2. Make sure that either both sides have vector types, or neither
 | 
						|
  //    of them does.
 | 
						|
  for (unsigned M : Modes) {
 | 
						|
    TypeSetByHwMode::SetType &S = Small.get(M);
 | 
						|
    TypeSetByHwMode::SetType &B = Big.get(M);
 | 
						|
 | 
						|
    if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
 | 
						|
      auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
 | 
						|
      Changed |= berase_if(S, NotInt) |
 | 
						|
                 berase_if(B, NotInt);
 | 
						|
    } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
 | 
						|
      auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
 | 
						|
      Changed |= berase_if(S, NotFP) |
 | 
						|
                 berase_if(B, NotFP);
 | 
						|
    } else if (S.empty() || B.empty()) {
 | 
						|
      Changed = !S.empty() || !B.empty();
 | 
						|
      S.clear();
 | 
						|
      B.clear();
 | 
						|
    } else {
 | 
						|
      TP.error("Incompatible types");
 | 
						|
      return Changed;
 | 
						|
    }
 | 
						|
 | 
						|
    if (none_of(S, isVector) || none_of(B, isVector)) {
 | 
						|
      Changed |= berase_if(S, isVector) |
 | 
						|
                 berase_if(B, isVector);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  auto LT = [](MVT A, MVT B) -> bool {
 | 
						|
    return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
 | 
						|
           (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
 | 
						|
            A.getSizeInBits() < B.getSizeInBits());
 | 
						|
  };
 | 
						|
  auto LE = [<](MVT A, MVT B) -> bool {
 | 
						|
    // This function is used when removing elements: when a vector is compared
 | 
						|
    // to a non-vector, it should return false (to avoid removal).
 | 
						|
    if (A.isVector() != B.isVector())
 | 
						|
      return false;
 | 
						|
 | 
						|
    return LT(A, B) || (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
 | 
						|
                        A.getSizeInBits() == B.getSizeInBits());
 | 
						|
  };
 | 
						|
 | 
						|
  for (unsigned M : Modes) {
 | 
						|
    TypeSetByHwMode::SetType &S = Small.get(M);
 | 
						|
    TypeSetByHwMode::SetType &B = Big.get(M);
 | 
						|
    // MinS = min scalar in Small, remove all scalars from Big that are
 | 
						|
    // smaller-or-equal than MinS.
 | 
						|
    auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
 | 
						|
    if (MinS != S.end())
 | 
						|
      Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS));
 | 
						|
 | 
						|
    // MaxS = max scalar in Big, remove all scalars from Small that are
 | 
						|
    // larger than MaxS.
 | 
						|
    auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
 | 
						|
    if (MaxS != B.end())
 | 
						|
      Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1));
 | 
						|
 | 
						|
    // MinV = min vector in Small, remove all vectors from Big that are
 | 
						|
    // smaller-or-equal than MinV.
 | 
						|
    auto MinV = min_if(S.begin(), S.end(), isVector, LT);
 | 
						|
    if (MinV != S.end())
 | 
						|
      Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV));
 | 
						|
 | 
						|
    // MaxV = max vector in Big, remove all vectors from Small that are
 | 
						|
    // larger than MaxV.
 | 
						|
    auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
 | 
						|
    if (MaxV != B.end())
 | 
						|
      Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1));
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// 1. Ensure that for each type T in Vec, T is a vector type, and that
 | 
						|
///    for each type U in Elem, U is a scalar type.
 | 
						|
/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
 | 
						|
///    type T in Vec, such that U is the element type of T.
 | 
						|
bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
 | 
						|
                                       TypeSetByHwMode &Elem) {
 | 
						|
  ValidateOnExit _1(Vec, *this), _2(Elem, *this);
 | 
						|
  if (TP.hasError())
 | 
						|
    return false;
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  if (Vec.empty())
 | 
						|
    Changed |= EnforceVector(Vec);
 | 
						|
  if (Elem.empty())
 | 
						|
    Changed |= EnforceScalar(Elem);
 | 
						|
 | 
						|
  for (unsigned M : union_modes(Vec, Elem)) {
 | 
						|
    TypeSetByHwMode::SetType &V = Vec.get(M);
 | 
						|
    TypeSetByHwMode::SetType &E = Elem.get(M);
 | 
						|
 | 
						|
    Changed |= berase_if(V, isScalar);  // Scalar = !vector
 | 
						|
    Changed |= berase_if(E, isVector);  // Vector = !scalar
 | 
						|
    assert(!V.empty() && !E.empty());
 | 
						|
 | 
						|
    SmallSet<MVT,4> VT, ST;
 | 
						|
    // Collect element types from the "vector" set.
 | 
						|
    for (MVT T : V)
 | 
						|
      VT.insert(T.getVectorElementType());
 | 
						|
    // Collect scalar types from the "element" set.
 | 
						|
    for (MVT T : E)
 | 
						|
      ST.insert(T);
 | 
						|
 | 
						|
    // Remove from V all (vector) types whose element type is not in S.
 | 
						|
    Changed |= berase_if(V, [&ST](MVT T) -> bool {
 | 
						|
                              return !ST.count(T.getVectorElementType());
 | 
						|
                            });
 | 
						|
    // Remove from E all (scalar) types, for which there is no corresponding
 | 
						|
    // type in V.
 | 
						|
    Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
 | 
						|
                                       const ValueTypeByHwMode &VVT) {
 | 
						|
  TypeSetByHwMode Tmp(VVT);
 | 
						|
  ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
 | 
						|
  return EnforceVectorEltTypeIs(Vec, Tmp);
 | 
						|
}
 | 
						|
 | 
						|
/// Ensure that for each type T in Sub, T is a vector type, and there
 | 
						|
/// exists a type U in Vec such that U is a vector type with the same
 | 
						|
/// element type as T and at least as many elements as T.
 | 
						|
bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
 | 
						|
                                             TypeSetByHwMode &Sub) {
 | 
						|
  ValidateOnExit _1(Vec, *this), _2(Sub, *this);
 | 
						|
  if (TP.hasError())
 | 
						|
    return false;
 | 
						|
 | 
						|
  /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
 | 
						|
  auto IsSubVec = [](MVT B, MVT P) -> bool {
 | 
						|
    if (!B.isVector() || !P.isVector())
 | 
						|
      return false;
 | 
						|
    // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
 | 
						|
    // but until there are obvious use-cases for this, keep the
 | 
						|
    // types separate.
 | 
						|
    if (B.isScalableVector() != P.isScalableVector())
 | 
						|
      return false;
 | 
						|
    if (B.getVectorElementType() != P.getVectorElementType())
 | 
						|
      return false;
 | 
						|
    return B.getVectorNumElements() < P.getVectorNumElements();
 | 
						|
  };
 | 
						|
 | 
						|
  /// Return true if S has no element (vector type) that T is a sub-vector of,
 | 
						|
  /// i.e. has the same element type as T and more elements.
 | 
						|
  auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
 | 
						|
    for (const auto &I : S)
 | 
						|
      if (IsSubVec(T, I))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  /// Return true if S has no element (vector type) that T is a super-vector
 | 
						|
  /// of, i.e. has the same element type as T and fewer elements.
 | 
						|
  auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
 | 
						|
    for (const auto &I : S)
 | 
						|
      if (IsSubVec(I, T))
 | 
						|
        return false;
 | 
						|
    return true;
 | 
						|
  };
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  if (Vec.empty())
 | 
						|
    Changed |= EnforceVector(Vec);
 | 
						|
  if (Sub.empty())
 | 
						|
    Changed |= EnforceVector(Sub);
 | 
						|
 | 
						|
  for (unsigned M : union_modes(Vec, Sub)) {
 | 
						|
    TypeSetByHwMode::SetType &S = Sub.get(M);
 | 
						|
    TypeSetByHwMode::SetType &V = Vec.get(M);
 | 
						|
 | 
						|
    Changed |= berase_if(S, isScalar);
 | 
						|
 | 
						|
    // Erase all types from S that are not sub-vectors of a type in V.
 | 
						|
    Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
 | 
						|
 | 
						|
    // Erase all types from V that are not super-vectors of a type in S.
 | 
						|
    Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// 1. Ensure that V has a scalar type iff W has a scalar type.
 | 
						|
/// 2. Ensure that for each vector type T in V, there exists a vector
 | 
						|
///    type U in W, such that T and U have the same number of elements.
 | 
						|
/// 3. Ensure that for each vector type U in W, there exists a vector
 | 
						|
///    type T in V, such that T and U have the same number of elements
 | 
						|
///    (reverse of 2).
 | 
						|
bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
 | 
						|
  ValidateOnExit _1(V, *this), _2(W, *this);
 | 
						|
  if (TP.hasError())
 | 
						|
    return false;
 | 
						|
 | 
						|
  bool Changed = false;
 | 
						|
  if (V.empty())
 | 
						|
    Changed |= EnforceAny(V);
 | 
						|
  if (W.empty())
 | 
						|
    Changed |= EnforceAny(W);
 | 
						|
 | 
						|
  // An actual vector type cannot have 0 elements, so we can treat scalars
 | 
						|
  // as zero-length vectors. This way both vectors and scalars can be
 | 
						|
  // processed identically.
 | 
						|
  auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
 | 
						|
    return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
 | 
						|
  };
 | 
						|
 | 
						|
  for (unsigned M : union_modes(V, W)) {
 | 
						|
    TypeSetByHwMode::SetType &VS = V.get(M);
 | 
						|
    TypeSetByHwMode::SetType &WS = W.get(M);
 | 
						|
 | 
						|
    SmallSet<unsigned,2> VN, WN;
 | 
						|
    for (MVT T : VS)
 | 
						|
      VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
 | 
						|
    for (MVT T : WS)
 | 
						|
      WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
 | 
						|
 | 
						|
    Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
 | 
						|
    Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
 | 
						|
  }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
/// 1. Ensure that for each type T in A, there exists a type U in B,
 | 
						|
///    such that T and U have equal size in bits.
 | 
						|
/// 2. Ensure that for each type U in B, there exists a type T in A
 | 
						|
///    such that T and U have equal size in bits (reverse of 1).
 | 
						|
bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
 | 
						|
  ValidateOnExit _1(A, *this), _2(B, *this);
 | 
						|
  if (TP.hasError())
 | 
						|
    return false;
 | 
						|
  bool Changed = false;
 | 
						|
  if (A.empty())
 | 
						|
    Changed |= EnforceAny(A);
 | 
						|
  if (B.empty())
 | 
						|
    Changed |= EnforceAny(B);
 | 
						|
 | 
						|
  auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool {
 | 
						|
    return !Sizes.count(T.getSizeInBits());
 | 
						|
  };
 | 
						|
 | 
						|
  for (unsigned M : union_modes(A, B)) {
 | 
						|
    TypeSetByHwMode::SetType &AS = A.get(M);
 | 
						|
    TypeSetByHwMode::SetType &BS = B.get(M);
 | 
						|
    SmallSet<unsigned,2> AN, BN;
 | 
						|
 | 
						|
    for (MVT T : AS)
 | 
						|
      AN.insert(T.getSizeInBits());
 | 
						|
    for (MVT T : BS)
 | 
						|
      BN.insert(T.getSizeInBits());
 | 
						|
 | 
						|
    Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
 | 
						|
    Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
 | 
						|
  ValidateOnExit _1(VTS, *this);
 | 
						|
  const TypeSetByHwMode &Legal = getLegalTypes();
 | 
						|
  assert(Legal.isDefaultOnly() && "Default-mode only expected");
 | 
						|
  const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
 | 
						|
 | 
						|
  for (auto &I : VTS)
 | 
						|
    expandOverloads(I.second, LegalTypes);
 | 
						|
}
 | 
						|
 | 
						|
void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
 | 
						|
                                const TypeSetByHwMode::SetType &Legal) {
 | 
						|
  std::set<MVT> Ovs;
 | 
						|
  for (MVT T : Out) {
 | 
						|
    if (!T.isOverloaded())
 | 
						|
      continue;
 | 
						|
 | 
						|
    Ovs.insert(T);
 | 
						|
    // MachineValueTypeSet allows iteration and erasing.
 | 
						|
    Out.erase(T);
 | 
						|
  }
 | 
						|
 | 
						|
  for (MVT Ov : Ovs) {
 | 
						|
    switch (Ov.SimpleTy) {
 | 
						|
      case MVT::iPTRAny:
 | 
						|
        Out.insert(MVT::iPTR);
 | 
						|
        return;
 | 
						|
      case MVT::iAny:
 | 
						|
        for (MVT T : MVT::integer_valuetypes())
 | 
						|
          if (Legal.count(T))
 | 
						|
            Out.insert(T);
 | 
						|
        for (MVT T : MVT::integer_vector_valuetypes())
 | 
						|
          if (Legal.count(T))
 | 
						|
            Out.insert(T);
 | 
						|
        return;
 | 
						|
      case MVT::fAny:
 | 
						|
        for (MVT T : MVT::fp_valuetypes())
 | 
						|
          if (Legal.count(T))
 | 
						|
            Out.insert(T);
 | 
						|
        for (MVT T : MVT::fp_vector_valuetypes())
 | 
						|
          if (Legal.count(T))
 | 
						|
            Out.insert(T);
 | 
						|
        return;
 | 
						|
      case MVT::vAny:
 | 
						|
        for (MVT T : MVT::vector_valuetypes())
 | 
						|
          if (Legal.count(T))
 | 
						|
            Out.insert(T);
 | 
						|
        return;
 | 
						|
      case MVT::Any:
 | 
						|
        for (MVT T : MVT::all_valuetypes())
 | 
						|
          if (Legal.count(T))
 | 
						|
            Out.insert(T);
 | 
						|
        return;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
const TypeSetByHwMode &TypeInfer::getLegalTypes() {
 | 
						|
  if (!LegalTypesCached) {
 | 
						|
    TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
 | 
						|
    // Stuff all types from all modes into the default mode.
 | 
						|
    const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes();
 | 
						|
    for (const auto &I : LTS)
 | 
						|
      LegalTypes.insert(I.second);
 | 
						|
    LegalTypesCached = true;
 | 
						|
  }
 | 
						|
  assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
 | 
						|
  return LegalCache;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
TypeInfer::ValidateOnExit::~ValidateOnExit() {
 | 
						|
  if (Infer.Validate && !VTS.validate()) {
 | 
						|
    dbgs() << "Type set is empty for each HW mode:\n"
 | 
						|
              "possible type contradiction in the pattern below "
 | 
						|
              "(use -print-records with llvm-tblgen to see all "
 | 
						|
              "expanded records).\n";
 | 
						|
    Infer.TP.dump();
 | 
						|
    llvm_unreachable(nullptr);
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ScopedName Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
bool ScopedName::operator==(const ScopedName &o) const {
 | 
						|
  return Scope == o.Scope && Identifier == o.Identifier;
 | 
						|
}
 | 
						|
 | 
						|
bool ScopedName::operator!=(const ScopedName &o) const {
 | 
						|
  return !(*this == o);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TreePredicateFn Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
/// TreePredicateFn constructor.  Here 'N' is a subclass of PatFrag.
 | 
						|
TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
 | 
						|
  assert(
 | 
						|
      (!hasPredCode() || !hasImmCode()) &&
 | 
						|
      ".td file corrupt: can't have a node predicate *and* an imm predicate");
 | 
						|
}
 | 
						|
 | 
						|
bool TreePredicateFn::hasPredCode() const {
 | 
						|
  return isLoad() || isStore() || isAtomic() ||
 | 
						|
         !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
 | 
						|
}
 | 
						|
 | 
						|
std::string TreePredicateFn::getPredCode() const {
 | 
						|
  std::string Code = "";
 | 
						|
 | 
						|
  if (!isLoad() && !isStore() && !isAtomic()) {
 | 
						|
    Record *MemoryVT = getMemoryVT();
 | 
						|
 | 
						|
    if (MemoryVT)
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "MemoryVT requires IsLoad or IsStore");
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isLoad() && !isStore()) {
 | 
						|
    if (isUnindexed())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsUnindexed requires IsLoad or IsStore");
 | 
						|
 | 
						|
    Record *ScalarMemoryVT = getScalarMemoryVT();
 | 
						|
 | 
						|
    if (ScalarMemoryVT)
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "ScalarMemoryVT requires IsLoad or IsStore");
 | 
						|
  }
 | 
						|
 | 
						|
  if (isLoad() + isStore() + isAtomic() > 1)
 | 
						|
    PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                    "IsLoad, IsStore, and IsAtomic are mutually exclusive");
 | 
						|
 | 
						|
  if (isLoad()) {
 | 
						|
    if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
 | 
						|
        !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
 | 
						|
        getScalarMemoryVT() == nullptr)
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsLoad cannot be used by itself");
 | 
						|
  } else {
 | 
						|
    if (isNonExtLoad())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsNonExtLoad requires IsLoad");
 | 
						|
    if (isAnyExtLoad())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsAnyExtLoad requires IsLoad");
 | 
						|
    if (isSignExtLoad())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsSignExtLoad requires IsLoad");
 | 
						|
    if (isZeroExtLoad())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsZeroExtLoad requires IsLoad");
 | 
						|
  }
 | 
						|
 | 
						|
  if (isStore()) {
 | 
						|
    if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
 | 
						|
        getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr)
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsStore cannot be used by itself");
 | 
						|
  } else {
 | 
						|
    if (isNonTruncStore())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsNonTruncStore requires IsStore");
 | 
						|
    if (isTruncStore())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsTruncStore requires IsStore");
 | 
						|
  }
 | 
						|
 | 
						|
  if (isAtomic()) {
 | 
						|
    if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
 | 
						|
        !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
 | 
						|
        !isAtomicOrderingAcquireRelease() &&
 | 
						|
        !isAtomicOrderingSequentiallyConsistent() &&
 | 
						|
        !isAtomicOrderingAcquireOrStronger() &&
 | 
						|
        !isAtomicOrderingReleaseOrStronger() &&
 | 
						|
        !isAtomicOrderingWeakerThanAcquire() &&
 | 
						|
        !isAtomicOrderingWeakerThanRelease())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsAtomic cannot be used by itself");
 | 
						|
  } else {
 | 
						|
    if (isAtomicOrderingMonotonic())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsAtomicOrderingMonotonic requires IsAtomic");
 | 
						|
    if (isAtomicOrderingAcquire())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsAtomicOrderingAcquire requires IsAtomic");
 | 
						|
    if (isAtomicOrderingRelease())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsAtomicOrderingRelease requires IsAtomic");
 | 
						|
    if (isAtomicOrderingAcquireRelease())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsAtomicOrderingAcquireRelease requires IsAtomic");
 | 
						|
    if (isAtomicOrderingSequentiallyConsistent())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
 | 
						|
    if (isAtomicOrderingAcquireOrStronger())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
 | 
						|
    if (isAtomicOrderingReleaseOrStronger())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
 | 
						|
    if (isAtomicOrderingWeakerThanAcquire())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
 | 
						|
  }
 | 
						|
 | 
						|
  if (isLoad() || isStore() || isAtomic()) {
 | 
						|
    StringRef SDNodeName =
 | 
						|
        isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode";
 | 
						|
 | 
						|
    Record *MemoryVT = getMemoryVT();
 | 
						|
 | 
						|
    if (MemoryVT)
 | 
						|
      Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" +
 | 
						|
               MemoryVT->getName() + ") return false;\n")
 | 
						|
                  .str();
 | 
						|
  }
 | 
						|
 | 
						|
  if (isAtomic() && isAtomicOrderingMonotonic())
 | 
						|
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
 | 
						|
            "AtomicOrdering::Monotonic) return false;\n";
 | 
						|
  if (isAtomic() && isAtomicOrderingAcquire())
 | 
						|
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
 | 
						|
            "AtomicOrdering::Acquire) return false;\n";
 | 
						|
  if (isAtomic() && isAtomicOrderingRelease())
 | 
						|
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
 | 
						|
            "AtomicOrdering::Release) return false;\n";
 | 
						|
  if (isAtomic() && isAtomicOrderingAcquireRelease())
 | 
						|
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
 | 
						|
            "AtomicOrdering::AcquireRelease) return false;\n";
 | 
						|
  if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
 | 
						|
    Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
 | 
						|
            "AtomicOrdering::SequentiallyConsistent) return false;\n";
 | 
						|
 | 
						|
  if (isAtomic() && isAtomicOrderingAcquireOrStronger())
 | 
						|
    Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
 | 
						|
            "return false;\n";
 | 
						|
  if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
 | 
						|
    Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
 | 
						|
            "return false;\n";
 | 
						|
 | 
						|
  if (isAtomic() && isAtomicOrderingReleaseOrStronger())
 | 
						|
    Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
 | 
						|
            "return false;\n";
 | 
						|
  if (isAtomic() && isAtomicOrderingWeakerThanRelease())
 | 
						|
    Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
 | 
						|
            "return false;\n";
 | 
						|
 | 
						|
  if (isLoad() || isStore()) {
 | 
						|
    StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
 | 
						|
 | 
						|
    if (isUnindexed())
 | 
						|
      Code += ("if (cast<" + SDNodeName +
 | 
						|
               ">(N)->getAddressingMode() != ISD::UNINDEXED) "
 | 
						|
               "return false;\n")
 | 
						|
                  .str();
 | 
						|
 | 
						|
    if (isLoad()) {
 | 
						|
      if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
 | 
						|
           isZeroExtLoad()) > 1)
 | 
						|
        PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                        "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
 | 
						|
                        "IsZeroExtLoad are mutually exclusive");
 | 
						|
      if (isNonExtLoad())
 | 
						|
        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
 | 
						|
                "ISD::NON_EXTLOAD) return false;\n";
 | 
						|
      if (isAnyExtLoad())
 | 
						|
        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
 | 
						|
                "return false;\n";
 | 
						|
      if (isSignExtLoad())
 | 
						|
        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
 | 
						|
                "return false;\n";
 | 
						|
      if (isZeroExtLoad())
 | 
						|
        Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
 | 
						|
                "return false;\n";
 | 
						|
    } else {
 | 
						|
      if ((isNonTruncStore() + isTruncStore()) > 1)
 | 
						|
        PrintFatalError(
 | 
						|
            getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
            "IsNonTruncStore, and IsTruncStore are mutually exclusive");
 | 
						|
      if (isNonTruncStore())
 | 
						|
        Code +=
 | 
						|
            " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
 | 
						|
      if (isTruncStore())
 | 
						|
        Code +=
 | 
						|
            " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
 | 
						|
    }
 | 
						|
 | 
						|
    Record *ScalarMemoryVT = getScalarMemoryVT();
 | 
						|
 | 
						|
    if (ScalarMemoryVT)
 | 
						|
      Code += ("if (cast<" + SDNodeName +
 | 
						|
               ">(N)->getMemoryVT().getScalarType() != MVT::" +
 | 
						|
               ScalarMemoryVT->getName() + ") return false;\n")
 | 
						|
                  .str();
 | 
						|
  }
 | 
						|
 | 
						|
  std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode");
 | 
						|
 | 
						|
  Code += PredicateCode;
 | 
						|
 | 
						|
  if (PredicateCode.empty() && !Code.empty())
 | 
						|
    Code += "return true;\n";
 | 
						|
 | 
						|
  return Code;
 | 
						|
}
 | 
						|
 | 
						|
bool TreePredicateFn::hasImmCode() const {
 | 
						|
  return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
 | 
						|
}
 | 
						|
 | 
						|
std::string TreePredicateFn::getImmCode() const {
 | 
						|
  return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
 | 
						|
}
 | 
						|
 | 
						|
bool TreePredicateFn::immCodeUsesAPInt() const {
 | 
						|
  return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
 | 
						|
}
 | 
						|
 | 
						|
bool TreePredicateFn::immCodeUsesAPFloat() const {
 | 
						|
  bool Unset;
 | 
						|
  // The return value will be false when IsAPFloat is unset.
 | 
						|
  return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
 | 
						|
                                                                   Unset);
 | 
						|
}
 | 
						|
 | 
						|
bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
 | 
						|
                                                   bool Value) const {
 | 
						|
  bool Unset;
 | 
						|
  bool Result =
 | 
						|
      getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
 | 
						|
  if (Unset)
 | 
						|
    return false;
 | 
						|
  return Result == Value;
 | 
						|
}
 | 
						|
bool TreePredicateFn::usesOperands() const {
 | 
						|
  return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isLoad() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsLoad", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isStore() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsStore", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isAtomic() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsAtomic", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isUnindexed() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsUnindexed", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isNonExtLoad() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isAnyExtLoad() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isSignExtLoad() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isZeroExtLoad() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isNonTruncStore() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsTruncStore", false);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isTruncStore() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsTruncStore", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isAtomicOrderingMonotonic() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isAtomicOrderingAcquire() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isAtomicOrderingRelease() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
 | 
						|
                                      true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
 | 
						|
}
 | 
						|
bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
 | 
						|
  return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
 | 
						|
}
 | 
						|
Record *TreePredicateFn::getMemoryVT() const {
 | 
						|
  Record *R = getOrigPatFragRecord()->getRecord();
 | 
						|
  if (R->isValueUnset("MemoryVT"))
 | 
						|
    return nullptr;
 | 
						|
  return R->getValueAsDef("MemoryVT");
 | 
						|
}
 | 
						|
Record *TreePredicateFn::getScalarMemoryVT() const {
 | 
						|
  Record *R = getOrigPatFragRecord()->getRecord();
 | 
						|
  if (R->isValueUnset("ScalarMemoryVT"))
 | 
						|
    return nullptr;
 | 
						|
  return R->getValueAsDef("ScalarMemoryVT");
 | 
						|
}
 | 
						|
bool TreePredicateFn::hasGISelPredicateCode() const {
 | 
						|
  return !PatFragRec->getRecord()
 | 
						|
              ->getValueAsString("GISelPredicateCode")
 | 
						|
              .empty();
 | 
						|
}
 | 
						|
std::string TreePredicateFn::getGISelPredicateCode() const {
 | 
						|
  return PatFragRec->getRecord()->getValueAsString("GISelPredicateCode");
 | 
						|
}
 | 
						|
 | 
						|
StringRef TreePredicateFn::getImmType() const {
 | 
						|
  if (immCodeUsesAPInt())
 | 
						|
    return "const APInt &";
 | 
						|
  if (immCodeUsesAPFloat())
 | 
						|
    return "const APFloat &";
 | 
						|
  return "int64_t";
 | 
						|
}
 | 
						|
 | 
						|
StringRef TreePredicateFn::getImmTypeIdentifier() const {
 | 
						|
  if (immCodeUsesAPInt())
 | 
						|
    return "APInt";
 | 
						|
  else if (immCodeUsesAPFloat())
 | 
						|
    return "APFloat";
 | 
						|
  return "I64";
 | 
						|
}
 | 
						|
 | 
						|
/// isAlwaysTrue - Return true if this is a noop predicate.
 | 
						|
bool TreePredicateFn::isAlwaysTrue() const {
 | 
						|
  return !hasPredCode() && !hasImmCode();
 | 
						|
}
 | 
						|
 | 
						|
/// Return the name to use in the generated code to reference this, this is
 | 
						|
/// "Predicate_foo" if from a pattern fragment "foo".
 | 
						|
std::string TreePredicateFn::getFnName() const {
 | 
						|
  return "Predicate_" + PatFragRec->getRecord()->getName().str();
 | 
						|
}
 | 
						|
 | 
						|
/// getCodeToRunOnSDNode - Return the code for the function body that
 | 
						|
/// evaluates this predicate.  The argument is expected to be in "Node",
 | 
						|
/// not N.  This handles casting and conversion to a concrete node type as
 | 
						|
/// appropriate.
 | 
						|
std::string TreePredicateFn::getCodeToRunOnSDNode() const {
 | 
						|
  // Handle immediate predicates first.
 | 
						|
  std::string ImmCode = getImmCode();
 | 
						|
  if (!ImmCode.empty()) {
 | 
						|
    if (isLoad())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsLoad cannot be used with ImmLeaf or its subclasses");
 | 
						|
    if (isStore())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "IsStore cannot be used with ImmLeaf or its subclasses");
 | 
						|
    if (isUnindexed())
 | 
						|
      PrintFatalError(
 | 
						|
          getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
          "IsUnindexed cannot be used with ImmLeaf or its subclasses");
 | 
						|
    if (isNonExtLoad())
 | 
						|
      PrintFatalError(
 | 
						|
          getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
          "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
 | 
						|
    if (isAnyExtLoad())
 | 
						|
      PrintFatalError(
 | 
						|
          getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
          "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
 | 
						|
    if (isSignExtLoad())
 | 
						|
      PrintFatalError(
 | 
						|
          getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
          "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
 | 
						|
    if (isZeroExtLoad())
 | 
						|
      PrintFatalError(
 | 
						|
          getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
          "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
 | 
						|
    if (isNonTruncStore())
 | 
						|
      PrintFatalError(
 | 
						|
          getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
          "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
 | 
						|
    if (isTruncStore())
 | 
						|
      PrintFatalError(
 | 
						|
          getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
          "IsTruncStore cannot be used with ImmLeaf or its subclasses");
 | 
						|
    if (getMemoryVT())
 | 
						|
      PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
                      "MemoryVT cannot be used with ImmLeaf or its subclasses");
 | 
						|
    if (getScalarMemoryVT())
 | 
						|
      PrintFatalError(
 | 
						|
          getOrigPatFragRecord()->getRecord()->getLoc(),
 | 
						|
          "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
 | 
						|
 | 
						|
    std::string Result = ("    " + getImmType() + " Imm = ").str();
 | 
						|
    if (immCodeUsesAPFloat())
 | 
						|
      Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
 | 
						|
    else if (immCodeUsesAPInt())
 | 
						|
      Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
 | 
						|
    else
 | 
						|
      Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
 | 
						|
    return Result + ImmCode;
 | 
						|
  }
 | 
						|
 | 
						|
  // Handle arbitrary node predicates.
 | 
						|
  assert(hasPredCode() && "Don't have any predicate code!");
 | 
						|
  StringRef ClassName;
 | 
						|
  if (PatFragRec->getOnlyTree()->isLeaf())
 | 
						|
    ClassName = "SDNode";
 | 
						|
  else {
 | 
						|
    Record *Op = PatFragRec->getOnlyTree()->getOperator();
 | 
						|
    ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
 | 
						|
  }
 | 
						|
  std::string Result;
 | 
						|
  if (ClassName == "SDNode")
 | 
						|
    Result = "    SDNode *N = Node;\n";
 | 
						|
  else
 | 
						|
    Result = "    auto *N = cast<" + ClassName.str() + ">(Node);\n";
 | 
						|
 | 
						|
  return (Twine(Result) + "    (void)N;\n" + getPredCode()).str();
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// PatternToMatch implementation
 | 
						|
//
 | 
						|
 | 
						|
static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
 | 
						|
  if (!P->isLeaf())
 | 
						|
    return false;
 | 
						|
  DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
 | 
						|
  if (!DI)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Record *R = DI->getDef();
 | 
						|
  return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
 | 
						|
}
 | 
						|
 | 
						|
/// getPatternSize - Return the 'size' of this pattern.  We want to match large
 | 
						|
/// patterns before small ones.  This is used to determine the size of a
 | 
						|
/// pattern.
 | 
						|
static unsigned getPatternSize(const TreePatternNode *P,
 | 
						|
                               const CodeGenDAGPatterns &CGP) {
 | 
						|
  unsigned Size = 3;  // The node itself.
 | 
						|
  // If the root node is a ConstantSDNode, increases its size.
 | 
						|
  // e.g. (set R32:$dst, 0).
 | 
						|
  if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
 | 
						|
    Size += 2;
 | 
						|
 | 
						|
  if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
 | 
						|
    Size += AM->getComplexity();
 | 
						|
    // We don't want to count any children twice, so return early.
 | 
						|
    return Size;
 | 
						|
  }
 | 
						|
 | 
						|
  // If this node has some predicate function that must match, it adds to the
 | 
						|
  // complexity of this node.
 | 
						|
  if (!P->getPredicateCalls().empty())
 | 
						|
    ++Size;
 | 
						|
 | 
						|
  // Count children in the count if they are also nodes.
 | 
						|
  for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
 | 
						|
    const TreePatternNode *Child = P->getChild(i);
 | 
						|
    if (!Child->isLeaf() && Child->getNumTypes()) {
 | 
						|
      const TypeSetByHwMode &T0 = Child->getExtType(0);
 | 
						|
      // At this point, all variable type sets should be simple, i.e. only
 | 
						|
      // have a default mode.
 | 
						|
      if (T0.getMachineValueType() != MVT::Other) {
 | 
						|
        Size += getPatternSize(Child, CGP);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (Child->isLeaf()) {
 | 
						|
      if (isa<IntInit>(Child->getLeafValue()))
 | 
						|
        Size += 5;  // Matches a ConstantSDNode (+3) and a specific value (+2).
 | 
						|
      else if (Child->getComplexPatternInfo(CGP))
 | 
						|
        Size += getPatternSize(Child, CGP);
 | 
						|
      else if (isImmAllOnesAllZerosMatch(Child))
 | 
						|
        Size += 4; // Matches a build_vector(+3) and a predicate (+1).
 | 
						|
      else if (!Child->getPredicateCalls().empty())
 | 
						|
        ++Size;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Size;
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the complexity metric for the input pattern.  This roughly
 | 
						|
/// corresponds to the number of nodes that are covered.
 | 
						|
int PatternToMatch::
 | 
						|
getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
 | 
						|
  return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
 | 
						|
}
 | 
						|
 | 
						|
/// getPredicateCheck - Return a single string containing all of this
 | 
						|
/// pattern's predicates concatenated with "&&" operators.
 | 
						|
///
 | 
						|
std::string PatternToMatch::getPredicateCheck() const {
 | 
						|
  SmallVector<const Predicate*,4> PredList;
 | 
						|
  for (const Predicate &P : Predicates)
 | 
						|
    PredList.push_back(&P);
 | 
						|
  llvm::sort(PredList, deref<llvm::less>());
 | 
						|
 | 
						|
  std::string Check;
 | 
						|
  for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
 | 
						|
    if (i != 0)
 | 
						|
      Check += " && ";
 | 
						|
    Check += '(' + PredList[i]->getCondString() + ')';
 | 
						|
  }
 | 
						|
  return Check;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SDTypeConstraint implementation
 | 
						|
//
 | 
						|
 | 
						|
SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
 | 
						|
  OperandNo = R->getValueAsInt("OperandNum");
 | 
						|
 | 
						|
  if (R->isSubClassOf("SDTCisVT")) {
 | 
						|
    ConstraintType = SDTCisVT;
 | 
						|
    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
 | 
						|
    for (const auto &P : VVT)
 | 
						|
      if (P.second == MVT::isVoid)
 | 
						|
        PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
 | 
						|
  } else if (R->isSubClassOf("SDTCisPtrTy")) {
 | 
						|
    ConstraintType = SDTCisPtrTy;
 | 
						|
  } else if (R->isSubClassOf("SDTCisInt")) {
 | 
						|
    ConstraintType = SDTCisInt;
 | 
						|
  } else if (R->isSubClassOf("SDTCisFP")) {
 | 
						|
    ConstraintType = SDTCisFP;
 | 
						|
  } else if (R->isSubClassOf("SDTCisVec")) {
 | 
						|
    ConstraintType = SDTCisVec;
 | 
						|
  } else if (R->isSubClassOf("SDTCisSameAs")) {
 | 
						|
    ConstraintType = SDTCisSameAs;
 | 
						|
    x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
 | 
						|
  } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
 | 
						|
    ConstraintType = SDTCisVTSmallerThanOp;
 | 
						|
    x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
 | 
						|
      R->getValueAsInt("OtherOperandNum");
 | 
						|
  } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
 | 
						|
    ConstraintType = SDTCisOpSmallerThanOp;
 | 
						|
    x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
 | 
						|
      R->getValueAsInt("BigOperandNum");
 | 
						|
  } else if (R->isSubClassOf("SDTCisEltOfVec")) {
 | 
						|
    ConstraintType = SDTCisEltOfVec;
 | 
						|
    x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
 | 
						|
  } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
 | 
						|
    ConstraintType = SDTCisSubVecOfVec;
 | 
						|
    x.SDTCisSubVecOfVec_Info.OtherOperandNum =
 | 
						|
      R->getValueAsInt("OtherOpNum");
 | 
						|
  } else if (R->isSubClassOf("SDTCVecEltisVT")) {
 | 
						|
    ConstraintType = SDTCVecEltisVT;
 | 
						|
    VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
 | 
						|
    for (const auto &P : VVT) {
 | 
						|
      MVT T = P.second;
 | 
						|
      if (T.isVector())
 | 
						|
        PrintFatalError(R->getLoc(),
 | 
						|
                        "Cannot use vector type as SDTCVecEltisVT");
 | 
						|
      if (!T.isInteger() && !T.isFloatingPoint())
 | 
						|
        PrintFatalError(R->getLoc(), "Must use integer or floating point type "
 | 
						|
                                     "as SDTCVecEltisVT");
 | 
						|
    }
 | 
						|
  } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
 | 
						|
    ConstraintType = SDTCisSameNumEltsAs;
 | 
						|
    x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
 | 
						|
      R->getValueAsInt("OtherOperandNum");
 | 
						|
  } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
 | 
						|
    ConstraintType = SDTCisSameSizeAs;
 | 
						|
    x.SDTCisSameSizeAs_Info.OtherOperandNum =
 | 
						|
      R->getValueAsInt("OtherOperandNum");
 | 
						|
  } else {
 | 
						|
    PrintFatalError(R->getLoc(),
 | 
						|
                    "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
 | 
						|
/// N, and the result number in ResNo.
 | 
						|
static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
 | 
						|
                                      const SDNodeInfo &NodeInfo,
 | 
						|
                                      unsigned &ResNo) {
 | 
						|
  unsigned NumResults = NodeInfo.getNumResults();
 | 
						|
  if (OpNo < NumResults) {
 | 
						|
    ResNo = OpNo;
 | 
						|
    return N;
 | 
						|
  }
 | 
						|
 | 
						|
  OpNo -= NumResults;
 | 
						|
 | 
						|
  if (OpNo >= N->getNumChildren()) {
 | 
						|
    std::string S;
 | 
						|
    raw_string_ostream OS(S);
 | 
						|
    OS << "Invalid operand number in type constraint "
 | 
						|
           << (OpNo+NumResults) << " ";
 | 
						|
    N->print(OS);
 | 
						|
    PrintFatalError(OS.str());
 | 
						|
  }
 | 
						|
 | 
						|
  return N->getChild(OpNo);
 | 
						|
}
 | 
						|
 | 
						|
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
 | 
						|
/// constraint to the nodes operands.  This returns true if it makes a
 | 
						|
/// change, false otherwise.  If a type contradiction is found, flag an error.
 | 
						|
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
 | 
						|
                                           const SDNodeInfo &NodeInfo,
 | 
						|
                                           TreePattern &TP) const {
 | 
						|
  if (TP.hasError())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned ResNo = 0; // The result number being referenced.
 | 
						|
  TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
 | 
						|
  TypeInfer &TI = TP.getInfer();
 | 
						|
 | 
						|
  switch (ConstraintType) {
 | 
						|
  case SDTCisVT:
 | 
						|
    // Operand must be a particular type.
 | 
						|
    return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
 | 
						|
  case SDTCisPtrTy:
 | 
						|
    // Operand must be same as target pointer type.
 | 
						|
    return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
 | 
						|
  case SDTCisInt:
 | 
						|
    // Require it to be one of the legal integer VTs.
 | 
						|
     return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
 | 
						|
  case SDTCisFP:
 | 
						|
    // Require it to be one of the legal fp VTs.
 | 
						|
    return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
 | 
						|
  case SDTCisVec:
 | 
						|
    // Require it to be one of the legal vector VTs.
 | 
						|
    return TI.EnforceVector(NodeToApply->getExtType(ResNo));
 | 
						|
  case SDTCisSameAs: {
 | 
						|
    unsigned OResNo = 0;
 | 
						|
    TreePatternNode *OtherNode =
 | 
						|
      getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
 | 
						|
    return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
 | 
						|
           OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
 | 
						|
  }
 | 
						|
  case SDTCisVTSmallerThanOp: {
 | 
						|
    // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must
 | 
						|
    // have an integer type that is smaller than the VT.
 | 
						|
    if (!NodeToApply->isLeaf() ||
 | 
						|
        !isa<DefInit>(NodeToApply->getLeafValue()) ||
 | 
						|
        !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
 | 
						|
               ->isSubClassOf("ValueType")) {
 | 
						|
      TP.error(N->getOperator()->getName() + " expects a VT operand!");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
 | 
						|
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | 
						|
    auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
 | 
						|
    TypeSetByHwMode TypeListTmp(VVT);
 | 
						|
 | 
						|
    unsigned OResNo = 0;
 | 
						|
    TreePatternNode *OtherNode =
 | 
						|
      getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
 | 
						|
                    OResNo);
 | 
						|
 | 
						|
    return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
 | 
						|
  }
 | 
						|
  case SDTCisOpSmallerThanOp: {
 | 
						|
    unsigned BResNo = 0;
 | 
						|
    TreePatternNode *BigOperand =
 | 
						|
      getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
 | 
						|
                    BResNo);
 | 
						|
    return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
 | 
						|
                                 BigOperand->getExtType(BResNo));
 | 
						|
  }
 | 
						|
  case SDTCisEltOfVec: {
 | 
						|
    unsigned VResNo = 0;
 | 
						|
    TreePatternNode *VecOperand =
 | 
						|
      getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
 | 
						|
                    VResNo);
 | 
						|
    // Filter vector types out of VecOperand that don't have the right element
 | 
						|
    // type.
 | 
						|
    return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
 | 
						|
                                     NodeToApply->getExtType(ResNo));
 | 
						|
  }
 | 
						|
  case SDTCisSubVecOfVec: {
 | 
						|
    unsigned VResNo = 0;
 | 
						|
    TreePatternNode *BigVecOperand =
 | 
						|
      getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
 | 
						|
                    VResNo);
 | 
						|
 | 
						|
    // Filter vector types out of BigVecOperand that don't have the
 | 
						|
    // right subvector type.
 | 
						|
    return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
 | 
						|
                                           NodeToApply->getExtType(ResNo));
 | 
						|
  }
 | 
						|
  case SDTCVecEltisVT: {
 | 
						|
    return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
 | 
						|
  }
 | 
						|
  case SDTCisSameNumEltsAs: {
 | 
						|
    unsigned OResNo = 0;
 | 
						|
    TreePatternNode *OtherNode =
 | 
						|
      getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
 | 
						|
                    N, NodeInfo, OResNo);
 | 
						|
    return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
 | 
						|
                                 NodeToApply->getExtType(ResNo));
 | 
						|
  }
 | 
						|
  case SDTCisSameSizeAs: {
 | 
						|
    unsigned OResNo = 0;
 | 
						|
    TreePatternNode *OtherNode =
 | 
						|
      getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
 | 
						|
                    N, NodeInfo, OResNo);
 | 
						|
    return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
 | 
						|
                              NodeToApply->getExtType(ResNo));
 | 
						|
  }
 | 
						|
  }
 | 
						|
  llvm_unreachable("Invalid ConstraintType!");
 | 
						|
}
 | 
						|
 | 
						|
// Update the node type to match an instruction operand or result as specified
 | 
						|
// in the ins or outs lists on the instruction definition. Return true if the
 | 
						|
// type was actually changed.
 | 
						|
bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
 | 
						|
                                             Record *Operand,
 | 
						|
                                             TreePattern &TP) {
 | 
						|
  // The 'unknown' operand indicates that types should be inferred from the
 | 
						|
  // context.
 | 
						|
  if (Operand->isSubClassOf("unknown_class"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The Operand class specifies a type directly.
 | 
						|
  if (Operand->isSubClassOf("Operand")) {
 | 
						|
    Record *R = Operand->getValueAsDef("Type");
 | 
						|
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | 
						|
    return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
 | 
						|
  }
 | 
						|
 | 
						|
  // PointerLikeRegClass has a type that is determined at runtime.
 | 
						|
  if (Operand->isSubClassOf("PointerLikeRegClass"))
 | 
						|
    return UpdateNodeType(ResNo, MVT::iPTR, TP);
 | 
						|
 | 
						|
  // Both RegisterClass and RegisterOperand operands derive their types from a
 | 
						|
  // register class def.
 | 
						|
  Record *RC = nullptr;
 | 
						|
  if (Operand->isSubClassOf("RegisterClass"))
 | 
						|
    RC = Operand;
 | 
						|
  else if (Operand->isSubClassOf("RegisterOperand"))
 | 
						|
    RC = Operand->getValueAsDef("RegClass");
 | 
						|
 | 
						|
  assert(RC && "Unknown operand type");
 | 
						|
  CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
 | 
						|
  return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
 | 
						|
}
 | 
						|
 | 
						|
bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
 | 
						|
  for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | 
						|
    if (!TP.getInfer().isConcrete(Types[i], true))
 | 
						|
      return true;
 | 
						|
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
    if (getChild(i)->ContainsUnresolvedType(TP))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TreePatternNode::hasProperTypeByHwMode() const {
 | 
						|
  for (const TypeSetByHwMode &S : Types)
 | 
						|
    if (!S.isDefaultOnly())
 | 
						|
      return true;
 | 
						|
  for (const TreePatternNodePtr &C : Children)
 | 
						|
    if (C->hasProperTypeByHwMode())
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool TreePatternNode::hasPossibleType() const {
 | 
						|
  for (const TypeSetByHwMode &S : Types)
 | 
						|
    if (!S.isPossible())
 | 
						|
      return false;
 | 
						|
  for (const TreePatternNodePtr &C : Children)
 | 
						|
    if (!C->hasPossibleType())
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool TreePatternNode::setDefaultMode(unsigned Mode) {
 | 
						|
  for (TypeSetByHwMode &S : Types) {
 | 
						|
    S.makeSimple(Mode);
 | 
						|
    // Check if the selected mode had a type conflict.
 | 
						|
    if (S.get(DefaultMode).empty())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  for (const TreePatternNodePtr &C : Children)
 | 
						|
    if (!C->setDefaultMode(Mode))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// SDNodeInfo implementation
 | 
						|
//
 | 
						|
SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
 | 
						|
  EnumName    = R->getValueAsString("Opcode");
 | 
						|
  SDClassName = R->getValueAsString("SDClass");
 | 
						|
  Record *TypeProfile = R->getValueAsDef("TypeProfile");
 | 
						|
  NumResults = TypeProfile->getValueAsInt("NumResults");
 | 
						|
  NumOperands = TypeProfile->getValueAsInt("NumOperands");
 | 
						|
 | 
						|
  // Parse the properties.
 | 
						|
  Properties = parseSDPatternOperatorProperties(R);
 | 
						|
 | 
						|
  // Parse the type constraints.
 | 
						|
  std::vector<Record*> ConstraintList =
 | 
						|
    TypeProfile->getValueAsListOfDefs("Constraints");
 | 
						|
  for (Record *R : ConstraintList)
 | 
						|
    TypeConstraints.emplace_back(R, CGH);
 | 
						|
}
 | 
						|
 | 
						|
/// getKnownType - If the type constraints on this node imply a fixed type
 | 
						|
/// (e.g. all stores return void, etc), then return it as an
 | 
						|
/// MVT::SimpleValueType.  Otherwise, return EEVT::Other.
 | 
						|
MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
 | 
						|
  unsigned NumResults = getNumResults();
 | 
						|
  assert(NumResults <= 1 &&
 | 
						|
         "We only work with nodes with zero or one result so far!");
 | 
						|
  assert(ResNo == 0 && "Only handles single result nodes so far");
 | 
						|
 | 
						|
  for (const SDTypeConstraint &Constraint : TypeConstraints) {
 | 
						|
    // Make sure that this applies to the correct node result.
 | 
						|
    if (Constraint.OperandNo >= NumResults)  // FIXME: need value #
 | 
						|
      continue;
 | 
						|
 | 
						|
    switch (Constraint.ConstraintType) {
 | 
						|
    default: break;
 | 
						|
    case SDTypeConstraint::SDTCisVT:
 | 
						|
      if (Constraint.VVT.isSimple())
 | 
						|
        return Constraint.VVT.getSimple().SimpleTy;
 | 
						|
      break;
 | 
						|
    case SDTypeConstraint::SDTCisPtrTy:
 | 
						|
      return MVT::iPTR;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return MVT::Other;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TreePatternNode implementation
 | 
						|
//
 | 
						|
 | 
						|
static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
 | 
						|
  if (Operator->getName() == "set" ||
 | 
						|
      Operator->getName() == "implicit")
 | 
						|
    return 0;  // All return nothing.
 | 
						|
 | 
						|
  if (Operator->isSubClassOf("Intrinsic"))
 | 
						|
    return CDP.getIntrinsic(Operator).IS.RetVTs.size();
 | 
						|
 | 
						|
  if (Operator->isSubClassOf("SDNode"))
 | 
						|
    return CDP.getSDNodeInfo(Operator).getNumResults();
 | 
						|
 | 
						|
  if (Operator->isSubClassOf("PatFrags")) {
 | 
						|
    // If we've already parsed this pattern fragment, get it.  Otherwise, handle
 | 
						|
    // the forward reference case where one pattern fragment references another
 | 
						|
    // before it is processed.
 | 
						|
    if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
 | 
						|
      // The number of results of a fragment with alternative records is the
 | 
						|
      // maximum number of results across all alternatives.
 | 
						|
      unsigned NumResults = 0;
 | 
						|
      for (auto T : PFRec->getTrees())
 | 
						|
        NumResults = std::max(NumResults, T->getNumTypes());
 | 
						|
      return NumResults;
 | 
						|
    }
 | 
						|
 | 
						|
    ListInit *LI = Operator->getValueAsListInit("Fragments");
 | 
						|
    assert(LI && "Invalid Fragment");
 | 
						|
    unsigned NumResults = 0;
 | 
						|
    for (Init *I : LI->getValues()) {
 | 
						|
      Record *Op = nullptr;
 | 
						|
      if (DagInit *Dag = dyn_cast<DagInit>(I))
 | 
						|
        if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
 | 
						|
          Op = DI->getDef();
 | 
						|
      assert(Op && "Invalid Fragment");
 | 
						|
      NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
 | 
						|
    }
 | 
						|
    return NumResults;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Operator->isSubClassOf("Instruction")) {
 | 
						|
    CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
 | 
						|
 | 
						|
    unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
 | 
						|
 | 
						|
    // Subtract any defaulted outputs.
 | 
						|
    for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
 | 
						|
      Record *OperandNode = InstInfo.Operands[i].Rec;
 | 
						|
 | 
						|
      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
 | 
						|
          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
 | 
						|
        --NumDefsToAdd;
 | 
						|
    }
 | 
						|
 | 
						|
    // Add on one implicit def if it has a resolvable type.
 | 
						|
    if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
 | 
						|
      ++NumDefsToAdd;
 | 
						|
    return NumDefsToAdd;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Operator->isSubClassOf("SDNodeXForm"))
 | 
						|
    return 1;  // FIXME: Generalize SDNodeXForm
 | 
						|
 | 
						|
  if (Operator->isSubClassOf("ValueType"))
 | 
						|
    return 1;  // A type-cast of one result.
 | 
						|
 | 
						|
  if (Operator->isSubClassOf("ComplexPattern"))
 | 
						|
    return 1;
 | 
						|
 | 
						|
  errs() << *Operator;
 | 
						|
  PrintFatalError("Unhandled node in GetNumNodeResults");
 | 
						|
}
 | 
						|
 | 
						|
void TreePatternNode::print(raw_ostream &OS) const {
 | 
						|
  if (isLeaf())
 | 
						|
    OS << *getLeafValue();
 | 
						|
  else
 | 
						|
    OS << '(' << getOperator()->getName();
 | 
						|
 | 
						|
  for (unsigned i = 0, e = Types.size(); i != e; ++i) {
 | 
						|
    OS << ':';
 | 
						|
    getExtType(i).writeToStream(OS);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!isLeaf()) {
 | 
						|
    if (getNumChildren() != 0) {
 | 
						|
      OS << " ";
 | 
						|
      getChild(0)->print(OS);
 | 
						|
      for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
 | 
						|
        OS << ", ";
 | 
						|
        getChild(i)->print(OS);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    OS << ")";
 | 
						|
  }
 | 
						|
 | 
						|
  for (const TreePredicateCall &Pred : PredicateCalls) {
 | 
						|
    OS << "<<P:";
 | 
						|
    if (Pred.Scope)
 | 
						|
      OS << Pred.Scope << ":";
 | 
						|
    OS << Pred.Fn.getFnName() << ">>";
 | 
						|
  }
 | 
						|
  if (TransformFn)
 | 
						|
    OS << "<<X:" << TransformFn->getName() << ">>";
 | 
						|
  if (!getName().empty())
 | 
						|
    OS << ":$" << getName();
 | 
						|
 | 
						|
  for (const ScopedName &Name : NamesAsPredicateArg)
 | 
						|
    OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
 | 
						|
}
 | 
						|
void TreePatternNode::dump() const {
 | 
						|
  print(errs());
 | 
						|
}
 | 
						|
 | 
						|
/// isIsomorphicTo - Return true if this node is recursively
 | 
						|
/// isomorphic to the specified node.  For this comparison, the node's
 | 
						|
/// entire state is considered. The assigned name is ignored, since
 | 
						|
/// nodes with differing names are considered isomorphic. However, if
 | 
						|
/// the assigned name is present in the dependent variable set, then
 | 
						|
/// the assigned name is considered significant and the node is
 | 
						|
/// isomorphic if the names match.
 | 
						|
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
 | 
						|
                                     const MultipleUseVarSet &DepVars) const {
 | 
						|
  if (N == this) return true;
 | 
						|
  if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
 | 
						|
      getPredicateCalls() != N->getPredicateCalls() ||
 | 
						|
      getTransformFn() != N->getTransformFn())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (isLeaf()) {
 | 
						|
    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
 | 
						|
      if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
 | 
						|
        return ((DI->getDef() == NDI->getDef())
 | 
						|
                && (DepVars.find(getName()) == DepVars.end()
 | 
						|
                    || getName() == N->getName()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    return getLeafValue() == N->getLeafValue();
 | 
						|
  }
 | 
						|
 | 
						|
  if (N->getOperator() != getOperator() ||
 | 
						|
      N->getNumChildren() != getNumChildren()) return false;
 | 
						|
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
    if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
 | 
						|
      return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// clone - Make a copy of this tree and all of its children.
 | 
						|
///
 | 
						|
TreePatternNodePtr TreePatternNode::clone() const {
 | 
						|
  TreePatternNodePtr New;
 | 
						|
  if (isLeaf()) {
 | 
						|
    New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
 | 
						|
  } else {
 | 
						|
    std::vector<TreePatternNodePtr> CChildren;
 | 
						|
    CChildren.reserve(Children.size());
 | 
						|
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
      CChildren.push_back(getChild(i)->clone());
 | 
						|
    New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
 | 
						|
                                            getNumTypes());
 | 
						|
  }
 | 
						|
  New->setName(getName());
 | 
						|
  New->setNamesAsPredicateArg(getNamesAsPredicateArg());
 | 
						|
  New->Types = Types;
 | 
						|
  New->setPredicateCalls(getPredicateCalls());
 | 
						|
  New->setTransformFn(getTransformFn());
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveAllTypes - Recursively strip all the types of this tree.
 | 
						|
void TreePatternNode::RemoveAllTypes() {
 | 
						|
  // Reset to unknown type.
 | 
						|
  std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
 | 
						|
  if (isLeaf()) return;
 | 
						|
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
    getChild(i)->RemoveAllTypes();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// SubstituteFormalArguments - Replace the formal arguments in this tree
 | 
						|
/// with actual values specified by ArgMap.
 | 
						|
void TreePatternNode::SubstituteFormalArguments(
 | 
						|
    std::map<std::string, TreePatternNodePtr> &ArgMap) {
 | 
						|
  if (isLeaf()) return;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
 | 
						|
    TreePatternNode *Child = getChild(i);
 | 
						|
    if (Child->isLeaf()) {
 | 
						|
      Init *Val = Child->getLeafValue();
 | 
						|
      // Note that, when substituting into an output pattern, Val might be an
 | 
						|
      // UnsetInit.
 | 
						|
      if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
 | 
						|
          cast<DefInit>(Val)->getDef()->getName() == "node")) {
 | 
						|
        // We found a use of a formal argument, replace it with its value.
 | 
						|
        TreePatternNodePtr NewChild = ArgMap[Child->getName()];
 | 
						|
        assert(NewChild && "Couldn't find formal argument!");
 | 
						|
        assert((Child->getPredicateCalls().empty() ||
 | 
						|
                NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
 | 
						|
               "Non-empty child predicate clobbered!");
 | 
						|
        setChild(i, std::move(NewChild));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      getChild(i)->SubstituteFormalArguments(ArgMap);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// InlinePatternFragments - If this pattern refers to any pattern
 | 
						|
/// fragments, return the set of inlined versions (this can be more than
 | 
						|
/// one if a PatFrags record has multiple alternatives).
 | 
						|
void TreePatternNode::InlinePatternFragments(
 | 
						|
  TreePatternNodePtr T, TreePattern &TP,
 | 
						|
  std::vector<TreePatternNodePtr> &OutAlternatives) {
 | 
						|
 | 
						|
  if (TP.hasError())
 | 
						|
    return;
 | 
						|
 | 
						|
  if (isLeaf()) {
 | 
						|
    OutAlternatives.push_back(T);  // nothing to do.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  Record *Op = getOperator();
 | 
						|
 | 
						|
  if (!Op->isSubClassOf("PatFrags")) {
 | 
						|
    if (getNumChildren() == 0) {
 | 
						|
      OutAlternatives.push_back(T);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Recursively inline children nodes.
 | 
						|
    std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
 | 
						|
    ChildAlternatives.resize(getNumChildren());
 | 
						|
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
 | 
						|
      TreePatternNodePtr Child = getChildShared(i);
 | 
						|
      Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
 | 
						|
      // If there are no alternatives for any child, there are no
 | 
						|
      // alternatives for this expression as whole.
 | 
						|
      if (ChildAlternatives[i].empty())
 | 
						|
        return;
 | 
						|
 | 
						|
      for (auto NewChild : ChildAlternatives[i])
 | 
						|
        assert((Child->getPredicateCalls().empty() ||
 | 
						|
                NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
 | 
						|
               "Non-empty child predicate clobbered!");
 | 
						|
    }
 | 
						|
 | 
						|
    // The end result is an all-pairs construction of the resultant pattern.
 | 
						|
    std::vector<unsigned> Idxs;
 | 
						|
    Idxs.resize(ChildAlternatives.size());
 | 
						|
    bool NotDone;
 | 
						|
    do {
 | 
						|
      // Create the variant and add it to the output list.
 | 
						|
      std::vector<TreePatternNodePtr> NewChildren;
 | 
						|
      for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
 | 
						|
        NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
 | 
						|
      TreePatternNodePtr R = std::make_shared<TreePatternNode>(
 | 
						|
          getOperator(), std::move(NewChildren), getNumTypes());
 | 
						|
 | 
						|
      // Copy over properties.
 | 
						|
      R->setName(getName());
 | 
						|
      R->setNamesAsPredicateArg(getNamesAsPredicateArg());
 | 
						|
      R->setPredicateCalls(getPredicateCalls());
 | 
						|
      R->setTransformFn(getTransformFn());
 | 
						|
      for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
 | 
						|
        R->setType(i, getExtType(i));
 | 
						|
      for (unsigned i = 0, e = getNumResults(); i != e; ++i)
 | 
						|
        R->setResultIndex(i, getResultIndex(i));
 | 
						|
 | 
						|
      // Register alternative.
 | 
						|
      OutAlternatives.push_back(R);
 | 
						|
 | 
						|
      // Increment indices to the next permutation by incrementing the
 | 
						|
      // indices from last index backward, e.g., generate the sequence
 | 
						|
      // [0, 0], [0, 1], [1, 0], [1, 1].
 | 
						|
      int IdxsIdx;
 | 
						|
      for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
 | 
						|
        if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
 | 
						|
          Idxs[IdxsIdx] = 0;
 | 
						|
        else
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      NotDone = (IdxsIdx >= 0);
 | 
						|
    } while (NotDone);
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, we found a reference to a fragment.  First, look up its
 | 
						|
  // TreePattern record.
 | 
						|
  TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
 | 
						|
 | 
						|
  // Verify that we are passing the right number of operands.
 | 
						|
  if (Frag->getNumArgs() != Children.size()) {
 | 
						|
    TP.error("'" + Op->getName() + "' fragment requires " +
 | 
						|
             Twine(Frag->getNumArgs()) + " operands!");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  TreePredicateFn PredFn(Frag);
 | 
						|
  unsigned Scope = 0;
 | 
						|
  if (TreePredicateFn(Frag).usesOperands())
 | 
						|
    Scope = TP.getDAGPatterns().allocateScope();
 | 
						|
 | 
						|
  // Compute the map of formal to actual arguments.
 | 
						|
  std::map<std::string, TreePatternNodePtr> ArgMap;
 | 
						|
  for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
 | 
						|
    TreePatternNodePtr Child = getChildShared(i);
 | 
						|
    if (Scope != 0) {
 | 
						|
      Child = Child->clone();
 | 
						|
      Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
 | 
						|
    }
 | 
						|
    ArgMap[Frag->getArgName(i)] = Child;
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over all fragment alternatives.
 | 
						|
  for (auto Alternative : Frag->getTrees()) {
 | 
						|
    TreePatternNodePtr FragTree = Alternative->clone();
 | 
						|
 | 
						|
    if (!PredFn.isAlwaysTrue())
 | 
						|
      FragTree->addPredicateCall(PredFn, Scope);
 | 
						|
 | 
						|
    // Resolve formal arguments to their actual value.
 | 
						|
    if (Frag->getNumArgs())
 | 
						|
      FragTree->SubstituteFormalArguments(ArgMap);
 | 
						|
 | 
						|
    // Transfer types.  Note that the resolved alternative may have fewer
 | 
						|
    // (but not more) results than the PatFrags node.
 | 
						|
    FragTree->setName(getName());
 | 
						|
    for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
 | 
						|
      FragTree->UpdateNodeType(i, getExtType(i), TP);
 | 
						|
 | 
						|
    // Transfer in the old predicates.
 | 
						|
    for (const TreePredicateCall &Pred : getPredicateCalls())
 | 
						|
      FragTree->addPredicateCall(Pred);
 | 
						|
 | 
						|
    // The fragment we inlined could have recursive inlining that is needed.  See
 | 
						|
    // if there are any pattern fragments in it and inline them as needed.
 | 
						|
    FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getImplicitType - Check to see if the specified record has an implicit
 | 
						|
/// type which should be applied to it.  This will infer the type of register
 | 
						|
/// references from the register file information, for example.
 | 
						|
///
 | 
						|
/// When Unnamed is set, return the type of a DAG operand with no name, such as
 | 
						|
/// the F8RC register class argument in:
 | 
						|
///
 | 
						|
///   (COPY_TO_REGCLASS GPR:$src, F8RC)
 | 
						|
///
 | 
						|
/// When Unnamed is false, return the type of a named DAG operand such as the
 | 
						|
/// GPR:$src operand above.
 | 
						|
///
 | 
						|
static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
 | 
						|
                                       bool NotRegisters,
 | 
						|
                                       bool Unnamed,
 | 
						|
                                       TreePattern &TP) {
 | 
						|
  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
 | 
						|
 | 
						|
  // Check to see if this is a register operand.
 | 
						|
  if (R->isSubClassOf("RegisterOperand")) {
 | 
						|
    assert(ResNo == 0 && "Regoperand ref only has one result!");
 | 
						|
    if (NotRegisters)
 | 
						|
      return TypeSetByHwMode(); // Unknown.
 | 
						|
    Record *RegClass = R->getValueAsDef("RegClass");
 | 
						|
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | 
						|
    return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to see if this is a register or a register class.
 | 
						|
  if (R->isSubClassOf("RegisterClass")) {
 | 
						|
    assert(ResNo == 0 && "Regclass ref only has one result!");
 | 
						|
    // An unnamed register class represents itself as an i32 immediate, for
 | 
						|
    // example on a COPY_TO_REGCLASS instruction.
 | 
						|
    if (Unnamed)
 | 
						|
      return TypeSetByHwMode(MVT::i32);
 | 
						|
 | 
						|
    // In a named operand, the register class provides the possible set of
 | 
						|
    // types.
 | 
						|
    if (NotRegisters)
 | 
						|
      return TypeSetByHwMode(); // Unknown.
 | 
						|
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | 
						|
    return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
 | 
						|
  }
 | 
						|
 | 
						|
  if (R->isSubClassOf("PatFrags")) {
 | 
						|
    assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
 | 
						|
    // Pattern fragment types will be resolved when they are inlined.
 | 
						|
    return TypeSetByHwMode(); // Unknown.
 | 
						|
  }
 | 
						|
 | 
						|
  if (R->isSubClassOf("Register")) {
 | 
						|
    assert(ResNo == 0 && "Registers only produce one result!");
 | 
						|
    if (NotRegisters)
 | 
						|
      return TypeSetByHwMode(); // Unknown.
 | 
						|
    const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
 | 
						|
    return TypeSetByHwMode(T.getRegisterVTs(R));
 | 
						|
  }
 | 
						|
 | 
						|
  if (R->isSubClassOf("SubRegIndex")) {
 | 
						|
    assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
 | 
						|
    return TypeSetByHwMode(MVT::i32);
 | 
						|
  }
 | 
						|
 | 
						|
  if (R->isSubClassOf("ValueType")) {
 | 
						|
    assert(ResNo == 0 && "This node only has one result!");
 | 
						|
    // An unnamed VTSDNode represents itself as an MVT::Other immediate.
 | 
						|
    //
 | 
						|
    //   (sext_inreg GPR:$src, i16)
 | 
						|
    //                         ~~~
 | 
						|
    if (Unnamed)
 | 
						|
      return TypeSetByHwMode(MVT::Other);
 | 
						|
    // With a name, the ValueType simply provides the type of the named
 | 
						|
    // variable.
 | 
						|
    //
 | 
						|
    //   (sext_inreg i32:$src, i16)
 | 
						|
    //               ~~~~~~~~
 | 
						|
    if (NotRegisters)
 | 
						|
      return TypeSetByHwMode(); // Unknown.
 | 
						|
    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
 | 
						|
    return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
 | 
						|
  }
 | 
						|
 | 
						|
  if (R->isSubClassOf("CondCode")) {
 | 
						|
    assert(ResNo == 0 && "This node only has one result!");
 | 
						|
    // Using a CondCodeSDNode.
 | 
						|
    return TypeSetByHwMode(MVT::Other);
 | 
						|
  }
 | 
						|
 | 
						|
  if (R->isSubClassOf("ComplexPattern")) {
 | 
						|
    assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
 | 
						|
    if (NotRegisters)
 | 
						|
      return TypeSetByHwMode(); // Unknown.
 | 
						|
    return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
 | 
						|
  }
 | 
						|
  if (R->isSubClassOf("PointerLikeRegClass")) {
 | 
						|
    assert(ResNo == 0 && "Regclass can only have one result!");
 | 
						|
    TypeSetByHwMode VTS(MVT::iPTR);
 | 
						|
    TP.getInfer().expandOverloads(VTS);
 | 
						|
    return VTS;
 | 
						|
  }
 | 
						|
 | 
						|
  if (R->getName() == "node" || R->getName() == "srcvalue" ||
 | 
						|
      R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
 | 
						|
      R->getName() == "immAllZerosV") {
 | 
						|
    // Placeholder.
 | 
						|
    return TypeSetByHwMode(); // Unknown.
 | 
						|
  }
 | 
						|
 | 
						|
  if (R->isSubClassOf("Operand")) {
 | 
						|
    const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
 | 
						|
    Record *T = R->getValueAsDef("Type");
 | 
						|
    return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
 | 
						|
  }
 | 
						|
 | 
						|
  TP.error("Unknown node flavor used in pattern: " + R->getName());
 | 
						|
  return TypeSetByHwMode(MVT::Other);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
 | 
						|
/// CodeGenIntrinsic information for it, otherwise return a null pointer.
 | 
						|
const CodeGenIntrinsic *TreePatternNode::
 | 
						|
getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
 | 
						|
  if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
 | 
						|
      getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
 | 
						|
      getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
 | 
						|
    return nullptr;
 | 
						|
 | 
						|
  unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
 | 
						|
  return &CDP.getIntrinsicInfo(IID);
 | 
						|
}
 | 
						|
 | 
						|
/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
 | 
						|
/// return the ComplexPattern information, otherwise return null.
 | 
						|
const ComplexPattern *
 | 
						|
TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
 | 
						|
  Record *Rec;
 | 
						|
  if (isLeaf()) {
 | 
						|
    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
 | 
						|
    if (!DI)
 | 
						|
      return nullptr;
 | 
						|
    Rec = DI->getDef();
 | 
						|
  } else
 | 
						|
    Rec = getOperator();
 | 
						|
 | 
						|
  if (!Rec->isSubClassOf("ComplexPattern"))
 | 
						|
    return nullptr;
 | 
						|
  return &CGP.getComplexPattern(Rec);
 | 
						|
}
 | 
						|
 | 
						|
unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
 | 
						|
  // A ComplexPattern specifically declares how many results it fills in.
 | 
						|
  if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
 | 
						|
    return CP->getNumOperands();
 | 
						|
 | 
						|
  // If MIOperandInfo is specified, that gives the count.
 | 
						|
  if (isLeaf()) {
 | 
						|
    DefInit *DI = dyn_cast<DefInit>(getLeafValue());
 | 
						|
    if (DI && DI->getDef()->isSubClassOf("Operand")) {
 | 
						|
      DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
 | 
						|
      if (MIOps->getNumArgs())
 | 
						|
        return MIOps->getNumArgs();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise there is just one result.
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
/// NodeHasProperty - Return true if this node has the specified property.
 | 
						|
bool TreePatternNode::NodeHasProperty(SDNP Property,
 | 
						|
                                      const CodeGenDAGPatterns &CGP) const {
 | 
						|
  if (isLeaf()) {
 | 
						|
    if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
 | 
						|
      return CP->hasProperty(Property);
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Property != SDNPHasChain) {
 | 
						|
    // The chain proprety is already present on the different intrinsic node
 | 
						|
    // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
 | 
						|
    // on the intrinsic. Anything else is specific to the individual intrinsic.
 | 
						|
    if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
 | 
						|
      return Int->hasProperty(Property);
 | 
						|
  }
 | 
						|
 | 
						|
  if (!Operator->isSubClassOf("SDPatternOperator"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return CGP.getSDNodeInfo(Operator).hasProperty(Property);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// TreeHasProperty - Return true if any node in this tree has the specified
 | 
						|
/// property.
 | 
						|
bool TreePatternNode::TreeHasProperty(SDNP Property,
 | 
						|
                                      const CodeGenDAGPatterns &CGP) const {
 | 
						|
  if (NodeHasProperty(Property, CGP))
 | 
						|
    return true;
 | 
						|
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
    if (getChild(i)->TreeHasProperty(Property, CGP))
 | 
						|
      return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// isCommutativeIntrinsic - Return true if the node corresponds to a
 | 
						|
/// commutative intrinsic.
 | 
						|
bool
 | 
						|
TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
 | 
						|
  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
 | 
						|
    return Int->isCommutative;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
 | 
						|
  if (!N->isLeaf())
 | 
						|
    return N->getOperator()->isSubClassOf(Class);
 | 
						|
 | 
						|
  DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
 | 
						|
  if (DI && DI->getDef()->isSubClassOf(Class))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static void emitTooManyOperandsError(TreePattern &TP,
 | 
						|
                                     StringRef InstName,
 | 
						|
                                     unsigned Expected,
 | 
						|
                                     unsigned Actual) {
 | 
						|
  TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
 | 
						|
           " operands but expected only " + Twine(Expected) + "!");
 | 
						|
}
 | 
						|
 | 
						|
static void emitTooFewOperandsError(TreePattern &TP,
 | 
						|
                                    StringRef InstName,
 | 
						|
                                    unsigned Actual) {
 | 
						|
  TP.error("Instruction '" + InstName +
 | 
						|
           "' expects more than the provided " + Twine(Actual) + " operands!");
 | 
						|
}
 | 
						|
 | 
						|
/// ApplyTypeConstraints - Apply all of the type constraints relevant to
 | 
						|
/// this node and its children in the tree.  This returns true if it makes a
 | 
						|
/// change, false otherwise.  If a type contradiction is found, flag an error.
 | 
						|
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
 | 
						|
  if (TP.hasError())
 | 
						|
    return false;
 | 
						|
 | 
						|
  CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
 | 
						|
  if (isLeaf()) {
 | 
						|
    if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
 | 
						|
      // If it's a regclass or something else known, include the type.
 | 
						|
      bool MadeChange = false;
 | 
						|
      for (unsigned i = 0, e = Types.size(); i != e; ++i)
 | 
						|
        MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
 | 
						|
                                                        NotRegisters,
 | 
						|
                                                        !hasName(), TP), TP);
 | 
						|
      return MadeChange;
 | 
						|
    }
 | 
						|
 | 
						|
    if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
 | 
						|
      assert(Types.size() == 1 && "Invalid IntInit");
 | 
						|
 | 
						|
      // Int inits are always integers. :)
 | 
						|
      bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
 | 
						|
 | 
						|
      if (!TP.getInfer().isConcrete(Types[0], false))
 | 
						|
        return MadeChange;
 | 
						|
 | 
						|
      ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
 | 
						|
      for (auto &P : VVT) {
 | 
						|
        MVT::SimpleValueType VT = P.second.SimpleTy;
 | 
						|
        if (VT == MVT::iPTR || VT == MVT::iPTRAny)
 | 
						|
          continue;
 | 
						|
        unsigned Size = MVT(VT).getSizeInBits();
 | 
						|
        // Make sure that the value is representable for this type.
 | 
						|
        if (Size >= 32)
 | 
						|
          continue;
 | 
						|
        // Check that the value doesn't use more bits than we have. It must
 | 
						|
        // either be a sign- or zero-extended equivalent of the original.
 | 
						|
        int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
 | 
						|
        if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
 | 
						|
            SignBitAndAbove == 1)
 | 
						|
          continue;
 | 
						|
 | 
						|
        TP.error("Integer value '" + Twine(II->getValue()) +
 | 
						|
                 "' is out of range for type '" + getEnumName(VT) + "'!");
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      return MadeChange;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
 | 
						|
    bool MadeChange = false;
 | 
						|
 | 
						|
    // Apply the result type to the node.
 | 
						|
    unsigned NumRetVTs = Int->IS.RetVTs.size();
 | 
						|
    unsigned NumParamVTs = Int->IS.ParamVTs.size();
 | 
						|
 | 
						|
    for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
 | 
						|
      MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
 | 
						|
 | 
						|
    if (getNumChildren() != NumParamVTs + 1) {
 | 
						|
      TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
 | 
						|
               " operands, not " + Twine(getNumChildren() - 1) + " operands!");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    // Apply type info to the intrinsic ID.
 | 
						|
    MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
 | 
						|
 | 
						|
    for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
 | 
						|
      MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
 | 
						|
 | 
						|
      MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
 | 
						|
      assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
 | 
						|
      MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
 | 
						|
    }
 | 
						|
    return MadeChange;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getOperator()->isSubClassOf("SDNode")) {
 | 
						|
    const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
 | 
						|
 | 
						|
    // Check that the number of operands is sane.  Negative operands -> varargs.
 | 
						|
    if (NI.getNumOperands() >= 0 &&
 | 
						|
        getNumChildren() != (unsigned)NI.getNumOperands()) {
 | 
						|
      TP.error(getOperator()->getName() + " node requires exactly " +
 | 
						|
               Twine(NI.getNumOperands()) + " operands!");
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    bool MadeChange = false;
 | 
						|
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | 
						|
    MadeChange |= NI.ApplyTypeConstraints(this, TP);
 | 
						|
    return MadeChange;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getOperator()->isSubClassOf("Instruction")) {
 | 
						|
    const DAGInstruction &Inst = CDP.getInstruction(getOperator());
 | 
						|
    CodeGenInstruction &InstInfo =
 | 
						|
      CDP.getTargetInfo().getInstruction(getOperator());
 | 
						|
 | 
						|
    bool MadeChange = false;
 | 
						|
 | 
						|
    // Apply the result types to the node, these come from the things in the
 | 
						|
    // (outs) list of the instruction.
 | 
						|
    unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
 | 
						|
                                        Inst.getNumResults());
 | 
						|
    for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
 | 
						|
      MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
 | 
						|
 | 
						|
    // If the instruction has implicit defs, we apply the first one as a result.
 | 
						|
    // FIXME: This sucks, it should apply all implicit defs.
 | 
						|
    if (!InstInfo.ImplicitDefs.empty()) {
 | 
						|
      unsigned ResNo = NumResultsToAdd;
 | 
						|
 | 
						|
      // FIXME: Generalize to multiple possible types and multiple possible
 | 
						|
      // ImplicitDefs.
 | 
						|
      MVT::SimpleValueType VT =
 | 
						|
        InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
 | 
						|
 | 
						|
      if (VT != MVT::Other)
 | 
						|
        MadeChange |= UpdateNodeType(ResNo, VT, TP);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is an INSERT_SUBREG, constrain the source and destination VTs to
 | 
						|
    // be the same.
 | 
						|
    if (getOperator()->getName() == "INSERT_SUBREG") {
 | 
						|
      assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
 | 
						|
      MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
 | 
						|
      MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
 | 
						|
    } else if (getOperator()->getName() == "REG_SEQUENCE") {
 | 
						|
      // We need to do extra, custom typechecking for REG_SEQUENCE since it is
 | 
						|
      // variadic.
 | 
						|
 | 
						|
      unsigned NChild = getNumChildren();
 | 
						|
      if (NChild < 3) {
 | 
						|
        TP.error("REG_SEQUENCE requires at least 3 operands!");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      if (NChild % 2 == 0) {
 | 
						|
        TP.error("REG_SEQUENCE requires an odd number of operands!");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!isOperandClass(getChild(0), "RegisterClass")) {
 | 
						|
        TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      for (unsigned I = 1; I < NChild; I += 2) {
 | 
						|
        TreePatternNode *SubIdxChild = getChild(I + 1);
 | 
						|
        if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
 | 
						|
          TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
 | 
						|
                   Twine(I + 1) + "!");
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned ChildNo = 0;
 | 
						|
    for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
 | 
						|
      Record *OperandNode = Inst.getOperand(i);
 | 
						|
 | 
						|
      // If the instruction expects a predicate or optional def operand, we
 | 
						|
      // codegen this by setting the operand to it's default value if it has a
 | 
						|
      // non-empty DefaultOps field.
 | 
						|
      if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
 | 
						|
          !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Verify that we didn't run out of provided operands.
 | 
						|
      if (ChildNo >= getNumChildren()) {
 | 
						|
        emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
 | 
						|
      TreePatternNode *Child = getChild(ChildNo++);
 | 
						|
      unsigned ChildResNo = 0;  // Instructions always use res #0 of their op.
 | 
						|
 | 
						|
      // If the operand has sub-operands, they may be provided by distinct
 | 
						|
      // child patterns, so attempt to match each sub-operand separately.
 | 
						|
      if (OperandNode->isSubClassOf("Operand")) {
 | 
						|
        DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
 | 
						|
        if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
 | 
						|
          // But don't do that if the whole operand is being provided by
 | 
						|
          // a single ComplexPattern-related Operand.
 | 
						|
 | 
						|
          if (Child->getNumMIResults(CDP) < NumArgs) {
 | 
						|
            // Match first sub-operand against the child we already have.
 | 
						|
            Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
 | 
						|
            MadeChange |=
 | 
						|
              Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
 | 
						|
 | 
						|
            // And the remaining sub-operands against subsequent children.
 | 
						|
            for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
 | 
						|
              if (ChildNo >= getNumChildren()) {
 | 
						|
                emitTooFewOperandsError(TP, getOperator()->getName(),
 | 
						|
                                        getNumChildren());
 | 
						|
                return false;
 | 
						|
              }
 | 
						|
              Child = getChild(ChildNo++);
 | 
						|
 | 
						|
              SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
 | 
						|
              MadeChange |=
 | 
						|
                Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
 | 
						|
            }
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If we didn't match by pieces above, attempt to match the whole
 | 
						|
      // operand now.
 | 
						|
      MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
 | 
						|
      emitTooManyOperandsError(TP, getOperator()->getName(),
 | 
						|
                               ChildNo, getNumChildren());
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | 
						|
    return MadeChange;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getOperator()->isSubClassOf("ComplexPattern")) {
 | 
						|
    bool MadeChange = false;
 | 
						|
 | 
						|
    for (unsigned i = 0; i < getNumChildren(); ++i)
 | 
						|
      MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
 | 
						|
 | 
						|
    return MadeChange;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
 | 
						|
 | 
						|
  // Node transforms always take one operand.
 | 
						|
  if (getNumChildren() != 1) {
 | 
						|
    TP.error("Node transform '" + getOperator()->getName() +
 | 
						|
             "' requires one operand!");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
 | 
						|
/// RHS of a commutative operation, not the on LHS.
 | 
						|
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
 | 
						|
  if (!N->isLeaf() && N->getOperator()->getName() == "imm")
 | 
						|
    return true;
 | 
						|
  if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// canPatternMatch - If it is impossible for this pattern to match on this
 | 
						|
/// target, fill in Reason and return false.  Otherwise, return true.  This is
 | 
						|
/// used as a sanity check for .td files (to prevent people from writing stuff
 | 
						|
/// that can never possibly work), and to prevent the pattern permuter from
 | 
						|
/// generating stuff that is useless.
 | 
						|
bool TreePatternNode::canPatternMatch(std::string &Reason,
 | 
						|
                                      const CodeGenDAGPatterns &CDP) {
 | 
						|
  if (isLeaf()) return true;
 | 
						|
 | 
						|
  for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
 | 
						|
    if (!getChild(i)->canPatternMatch(Reason, CDP))
 | 
						|
      return false;
 | 
						|
 | 
						|
  // If this is an intrinsic, handle cases that would make it not match.  For
 | 
						|
  // example, if an operand is required to be an immediate.
 | 
						|
  if (getOperator()->isSubClassOf("Intrinsic")) {
 | 
						|
    // TODO:
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (getOperator()->isSubClassOf("ComplexPattern"))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // If this node is a commutative operator, check that the LHS isn't an
 | 
						|
  // immediate.
 | 
						|
  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
 | 
						|
  bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
 | 
						|
  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
 | 
						|
    // Scan all of the operands of the node and make sure that only the last one
 | 
						|
    // is a constant node, unless the RHS also is.
 | 
						|
    if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
 | 
						|
      unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
 | 
						|
      for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
 | 
						|
        if (OnlyOnRHSOfCommutative(getChild(i))) {
 | 
						|
          Reason="Immediate value must be on the RHS of commutative operators!";
 | 
						|
          return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// TreePattern implementation
 | 
						|
//
 | 
						|
 | 
						|
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
 | 
						|
                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
 | 
						|
                         isInputPattern(isInput), HasError(false),
 | 
						|
                         Infer(*this) {
 | 
						|
  for (Init *I : RawPat->getValues())
 | 
						|
    Trees.push_back(ParseTreePattern(I, ""));
 | 
						|
}
 | 
						|
 | 
						|
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
 | 
						|
                         CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
 | 
						|
                         isInputPattern(isInput), HasError(false),
 | 
						|
                         Infer(*this) {
 | 
						|
  Trees.push_back(ParseTreePattern(Pat, ""));
 | 
						|
}
 | 
						|
 | 
						|
TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
 | 
						|
                         CodeGenDAGPatterns &cdp)
 | 
						|
    : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
 | 
						|
      Infer(*this) {
 | 
						|
  Trees.push_back(Pat);
 | 
						|
}
 | 
						|
 | 
						|
void TreePattern::error(const Twine &Msg) {
 | 
						|
  if (HasError)
 | 
						|
    return;
 | 
						|
  dump();
 | 
						|
  PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
 | 
						|
  HasError = true;
 | 
						|
}
 | 
						|
 | 
						|
void TreePattern::ComputeNamedNodes() {
 | 
						|
  for (TreePatternNodePtr &Tree : Trees)
 | 
						|
    ComputeNamedNodes(Tree.get());
 | 
						|
}
 | 
						|
 | 
						|
void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
 | 
						|
  if (!N->getName().empty())
 | 
						|
    NamedNodes[N->getName()].push_back(N);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | 
						|
    ComputeNamedNodes(N->getChild(i));
 | 
						|
}
 | 
						|
 | 
						|
TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
 | 
						|
                                                 StringRef OpName) {
 | 
						|
  if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
 | 
						|
    Record *R = DI->getDef();
 | 
						|
 | 
						|
    // Direct reference to a leaf DagNode or PatFrag?  Turn it into a
 | 
						|
    // TreePatternNode of its own.  For example:
 | 
						|
    ///   (foo GPR, imm) -> (foo GPR, (imm))
 | 
						|
    if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
 | 
						|
      return ParseTreePattern(
 | 
						|
        DagInit::get(DI, nullptr,
 | 
						|
                     std::vector<std::pair<Init*, StringInit*> >()),
 | 
						|
        OpName);
 | 
						|
 | 
						|
    // Input argument?
 | 
						|
    TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
 | 
						|
    if (R->getName() == "node" && !OpName.empty()) {
 | 
						|
      if (OpName.empty())
 | 
						|
        error("'node' argument requires a name to match with operand list");
 | 
						|
      Args.push_back(OpName);
 | 
						|
    }
 | 
						|
 | 
						|
    Res->setName(OpName);
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  // ?:$name or just $name.
 | 
						|
  if (isa<UnsetInit>(TheInit)) {
 | 
						|
    if (OpName.empty())
 | 
						|
      error("'?' argument requires a name to match with operand list");
 | 
						|
    TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
 | 
						|
    Args.push_back(OpName);
 | 
						|
    Res->setName(OpName);
 | 
						|
    return Res;
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
 | 
						|
    if (!OpName.empty())
 | 
						|
      error("Constant int or bit argument should not have a name!");
 | 
						|
    if (isa<BitInit>(TheInit))
 | 
						|
      TheInit = TheInit->convertInitializerTo(IntRecTy::get());
 | 
						|
    return std::make_shared<TreePatternNode>(TheInit, 1);
 | 
						|
  }
 | 
						|
 | 
						|
  if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
 | 
						|
    // Turn this into an IntInit.
 | 
						|
    Init *II = BI->convertInitializerTo(IntRecTy::get());
 | 
						|
    if (!II || !isa<IntInit>(II))
 | 
						|
      error("Bits value must be constants!");
 | 
						|
    return ParseTreePattern(II, OpName);
 | 
						|
  }
 | 
						|
 | 
						|
  DagInit *Dag = dyn_cast<DagInit>(TheInit);
 | 
						|
  if (!Dag) {
 | 
						|
    TheInit->print(errs());
 | 
						|
    error("Pattern has unexpected init kind!");
 | 
						|
  }
 | 
						|
  DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
 | 
						|
  if (!OpDef) error("Pattern has unexpected operator type!");
 | 
						|
  Record *Operator = OpDef->getDef();
 | 
						|
 | 
						|
  if (Operator->isSubClassOf("ValueType")) {
 | 
						|
    // If the operator is a ValueType, then this must be "type cast" of a leaf
 | 
						|
    // node.
 | 
						|
    if (Dag->getNumArgs() != 1)
 | 
						|
      error("Type cast only takes one operand!");
 | 
						|
 | 
						|
    TreePatternNodePtr New =
 | 
						|
        ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
 | 
						|
 | 
						|
    // Apply the type cast.
 | 
						|
    assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
 | 
						|
    const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
 | 
						|
    New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
 | 
						|
 | 
						|
    if (!OpName.empty())
 | 
						|
      error("ValueType cast should not have a name!");
 | 
						|
    return New;
 | 
						|
  }
 | 
						|
 | 
						|
  // Verify that this is something that makes sense for an operator.
 | 
						|
  if (!Operator->isSubClassOf("PatFrags") &&
 | 
						|
      !Operator->isSubClassOf("SDNode") &&
 | 
						|
      !Operator->isSubClassOf("Instruction") &&
 | 
						|
      !Operator->isSubClassOf("SDNodeXForm") &&
 | 
						|
      !Operator->isSubClassOf("Intrinsic") &&
 | 
						|
      !Operator->isSubClassOf("ComplexPattern") &&
 | 
						|
      Operator->getName() != "set" &&
 | 
						|
      Operator->getName() != "implicit")
 | 
						|
    error("Unrecognized node '" + Operator->getName() + "'!");
 | 
						|
 | 
						|
  //  Check to see if this is something that is illegal in an input pattern.
 | 
						|
  if (isInputPattern) {
 | 
						|
    if (Operator->isSubClassOf("Instruction") ||
 | 
						|
        Operator->isSubClassOf("SDNodeXForm"))
 | 
						|
      error("Cannot use '" + Operator->getName() + "' in an input pattern!");
 | 
						|
  } else {
 | 
						|
    if (Operator->isSubClassOf("Intrinsic"))
 | 
						|
      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
 | 
						|
 | 
						|
    if (Operator->isSubClassOf("SDNode") &&
 | 
						|
        Operator->getName() != "imm" &&
 | 
						|
        Operator->getName() != "fpimm" &&
 | 
						|
        Operator->getName() != "tglobaltlsaddr" &&
 | 
						|
        Operator->getName() != "tconstpool" &&
 | 
						|
        Operator->getName() != "tjumptable" &&
 | 
						|
        Operator->getName() != "tframeindex" &&
 | 
						|
        Operator->getName() != "texternalsym" &&
 | 
						|
        Operator->getName() != "tblockaddress" &&
 | 
						|
        Operator->getName() != "tglobaladdr" &&
 | 
						|
        Operator->getName() != "bb" &&
 | 
						|
        Operator->getName() != "vt" &&
 | 
						|
        Operator->getName() != "mcsym")
 | 
						|
      error("Cannot use '" + Operator->getName() + "' in an output pattern!");
 | 
						|
  }
 | 
						|
 | 
						|
  std::vector<TreePatternNodePtr> Children;
 | 
						|
 | 
						|
  // Parse all the operands.
 | 
						|
  for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
 | 
						|
    Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
 | 
						|
 | 
						|
  // Get the actual number of results before Operator is converted to an intrinsic
 | 
						|
  // node (which is hard-coded to have either zero or one result).
 | 
						|
  unsigned NumResults = GetNumNodeResults(Operator, CDP);
 | 
						|
 | 
						|
  // If the operator is an intrinsic, then this is just syntactic sugar for
 | 
						|
  // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and
 | 
						|
  // convert the intrinsic name to a number.
 | 
						|
  if (Operator->isSubClassOf("Intrinsic")) {
 | 
						|
    const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
 | 
						|
    unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
 | 
						|
 | 
						|
    // If this intrinsic returns void, it must have side-effects and thus a
 | 
						|
    // chain.
 | 
						|
    if (Int.IS.RetVTs.empty())
 | 
						|
      Operator = getDAGPatterns().get_intrinsic_void_sdnode();
 | 
						|
    else if (Int.ModRef != CodeGenIntrinsic::NoMem)
 | 
						|
      // Has side-effects, requires chain.
 | 
						|
      Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
 | 
						|
    else // Otherwise, no chain.
 | 
						|
      Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
 | 
						|
 | 
						|
    Children.insert(Children.begin(),
 | 
						|
                    std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
 | 
						|
  }
 | 
						|
 | 
						|
  if (Operator->isSubClassOf("ComplexPattern")) {
 | 
						|
    for (unsigned i = 0; i < Children.size(); ++i) {
 | 
						|
      TreePatternNodePtr Child = Children[i];
 | 
						|
 | 
						|
      if (Child->getName().empty())
 | 
						|
        error("All arguments to a ComplexPattern must be named");
 | 
						|
 | 
						|
      // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
 | 
						|
      // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
 | 
						|
      // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
 | 
						|
      auto OperandId = std::make_pair(Operator, i);
 | 
						|
      auto PrevOp = ComplexPatternOperands.find(Child->getName());
 | 
						|
      if (PrevOp != ComplexPatternOperands.end()) {
 | 
						|
        if (PrevOp->getValue() != OperandId)
 | 
						|
          error("All ComplexPattern operands must appear consistently: "
 | 
						|
                "in the same order in just one ComplexPattern instance.");
 | 
						|
      } else
 | 
						|
        ComplexPatternOperands[Child->getName()] = OperandId;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  TreePatternNodePtr Result =
 | 
						|
      std::make_shared<TreePatternNode>(Operator, std::move(Children),
 | 
						|
                                        NumResults);
 | 
						|
  Result->setName(OpName);
 | 
						|
 | 
						|
  if (Dag->getName()) {
 | 
						|
    assert(Result->getName().empty());
 | 
						|
    Result->setName(Dag->getNameStr());
 | 
						|
  }
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
/// SimplifyTree - See if we can simplify this tree to eliminate something that
 | 
						|
/// will never match in favor of something obvious that will.  This is here
 | 
						|
/// strictly as a convenience to target authors because it allows them to write
 | 
						|
/// more type generic things and have useless type casts fold away.
 | 
						|
///
 | 
						|
/// This returns true if any change is made.
 | 
						|
static bool SimplifyTree(TreePatternNodePtr &N) {
 | 
						|
  if (N->isLeaf())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If we have a bitconvert with a resolved type and if the source and
 | 
						|
  // destination types are the same, then the bitconvert is useless, remove it.
 | 
						|
  if (N->getOperator()->getName() == "bitconvert" &&
 | 
						|
      N->getExtType(0).isValueTypeByHwMode(false) &&
 | 
						|
      N->getExtType(0) == N->getChild(0)->getExtType(0) &&
 | 
						|
      N->getName().empty()) {
 | 
						|
    N = N->getChildShared(0);
 | 
						|
    SimplifyTree(N);
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Walk all children.
 | 
						|
  bool MadeChange = false;
 | 
						|
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
 | 
						|
    TreePatternNodePtr Child = N->getChildShared(i);
 | 
						|
    MadeChange |= SimplifyTree(Child);
 | 
						|
    N->setChild(i, std::move(Child));
 | 
						|
  }
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// InferAllTypes - Infer/propagate as many types throughout the expression
 | 
						|
/// patterns as possible.  Return true if all types are inferred, false
 | 
						|
/// otherwise.  Flags an error if a type contradiction is found.
 | 
						|
bool TreePattern::
 | 
						|
InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
 | 
						|
  if (NamedNodes.empty())
 | 
						|
    ComputeNamedNodes();
 | 
						|
 | 
						|
  bool MadeChange = true;
 | 
						|
  while (MadeChange) {
 | 
						|
    MadeChange = false;
 | 
						|
    for (TreePatternNodePtr &Tree : Trees) {
 | 
						|
      MadeChange |= Tree->ApplyTypeConstraints(*this, false);
 | 
						|
      MadeChange |= SimplifyTree(Tree);
 | 
						|
    }
 | 
						|
 | 
						|
    // If there are constraints on our named nodes, apply them.
 | 
						|
    for (auto &Entry : NamedNodes) {
 | 
						|
      SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
 | 
						|
 | 
						|
      // If we have input named node types, propagate their types to the named
 | 
						|
      // values here.
 | 
						|
      if (InNamedTypes) {
 | 
						|
        if (!InNamedTypes->count(Entry.getKey())) {
 | 
						|
          error("Node '" + std::string(Entry.getKey()) +
 | 
						|
                "' in output pattern but not input pattern");
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
 | 
						|
        const SmallVectorImpl<TreePatternNode*> &InNodes =
 | 
						|
          InNamedTypes->find(Entry.getKey())->second;
 | 
						|
 | 
						|
        // The input types should be fully resolved by now.
 | 
						|
        for (TreePatternNode *Node : Nodes) {
 | 
						|
          // If this node is a register class, and it is the root of the pattern
 | 
						|
          // then we're mapping something onto an input register.  We allow
 | 
						|
          // changing the type of the input register in this case.  This allows
 | 
						|
          // us to match things like:
 | 
						|
          //  def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
 | 
						|
          if (Node == Trees[0].get() && Node->isLeaf()) {
 | 
						|
            DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
 | 
						|
            if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
 | 
						|
                       DI->getDef()->isSubClassOf("RegisterOperand")))
 | 
						|
              continue;
 | 
						|
          }
 | 
						|
 | 
						|
          assert(Node->getNumTypes() == 1 &&
 | 
						|
                 InNodes[0]->getNumTypes() == 1 &&
 | 
						|
                 "FIXME: cannot name multiple result nodes yet");
 | 
						|
          MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
 | 
						|
                                             *this);
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      // If there are multiple nodes with the same name, they must all have the
 | 
						|
      // same type.
 | 
						|
      if (Entry.second.size() > 1) {
 | 
						|
        for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
 | 
						|
          TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
 | 
						|
          assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
 | 
						|
                 "FIXME: cannot name multiple result nodes yet");
 | 
						|
 | 
						|
          MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
 | 
						|
          MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  bool HasUnresolvedTypes = false;
 | 
						|
  for (const TreePatternNodePtr &Tree : Trees)
 | 
						|
    HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
 | 
						|
  return !HasUnresolvedTypes;
 | 
						|
}
 | 
						|
 | 
						|
void TreePattern::print(raw_ostream &OS) const {
 | 
						|
  OS << getRecord()->getName();
 | 
						|
  if (!Args.empty()) {
 | 
						|
    OS << "(" << Args[0];
 | 
						|
    for (unsigned i = 1, e = Args.size(); i != e; ++i)
 | 
						|
      OS << ", " << Args[i];
 | 
						|
    OS << ")";
 | 
						|
  }
 | 
						|
  OS << ": ";
 | 
						|
 | 
						|
  if (Trees.size() > 1)
 | 
						|
    OS << "[\n";
 | 
						|
  for (const TreePatternNodePtr &Tree : Trees) {
 | 
						|
    OS << "\t";
 | 
						|
    Tree->print(OS);
 | 
						|
    OS << "\n";
 | 
						|
  }
 | 
						|
 | 
						|
  if (Trees.size() > 1)
 | 
						|
    OS << "]\n";
 | 
						|
}
 | 
						|
 | 
						|
void TreePattern::dump() const { print(errs()); }
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// CodeGenDAGPatterns implementation
 | 
						|
//
 | 
						|
 | 
						|
CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
 | 
						|
                                       PatternRewriterFn PatternRewriter)
 | 
						|
    : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
 | 
						|
      PatternRewriter(PatternRewriter) {
 | 
						|
 | 
						|
  Intrinsics = CodeGenIntrinsicTable(Records, false);
 | 
						|
  TgtIntrinsics = CodeGenIntrinsicTable(Records, true);
 | 
						|
  ParseNodeInfo();
 | 
						|
  ParseNodeTransforms();
 | 
						|
  ParseComplexPatterns();
 | 
						|
  ParsePatternFragments();
 | 
						|
  ParseDefaultOperands();
 | 
						|
  ParseInstructions();
 | 
						|
  ParsePatternFragments(/*OutFrags*/true);
 | 
						|
  ParsePatterns();
 | 
						|
 | 
						|
  // Break patterns with parameterized types into a series of patterns,
 | 
						|
  // where each one has a fixed type and is predicated on the conditions
 | 
						|
  // of the associated HW mode.
 | 
						|
  ExpandHwModeBasedTypes();
 | 
						|
 | 
						|
  // Generate variants.  For example, commutative patterns can match
 | 
						|
  // multiple ways.  Add them to PatternsToMatch as well.
 | 
						|
  GenerateVariants();
 | 
						|
 | 
						|
  // Infer instruction flags.  For example, we can detect loads,
 | 
						|
  // stores, and side effects in many cases by examining an
 | 
						|
  // instruction's pattern.
 | 
						|
  InferInstructionFlags();
 | 
						|
 | 
						|
  // Verify that instruction flags match the patterns.
 | 
						|
  VerifyInstructionFlags();
 | 
						|
}
 | 
						|
 | 
						|
Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
 | 
						|
  Record *N = Records.getDef(Name);
 | 
						|
  if (!N || !N->isSubClassOf("SDNode"))
 | 
						|
    PrintFatalError("Error getting SDNode '" + Name + "'!");
 | 
						|
 | 
						|
  return N;
 | 
						|
}
 | 
						|
 | 
						|
// Parse all of the SDNode definitions for the target, populating SDNodes.
 | 
						|
void CodeGenDAGPatterns::ParseNodeInfo() {
 | 
						|
  std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
 | 
						|
  const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
 | 
						|
 | 
						|
  while (!Nodes.empty()) {
 | 
						|
    Record *R = Nodes.back();
 | 
						|
    SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
 | 
						|
    Nodes.pop_back();
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the builtin intrinsic nodes.
 | 
						|
  intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void");
 | 
						|
  intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain");
 | 
						|
  intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
 | 
						|
}
 | 
						|
 | 
						|
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
 | 
						|
/// map, and emit them to the file as functions.
 | 
						|
void CodeGenDAGPatterns::ParseNodeTransforms() {
 | 
						|
  std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
 | 
						|
  while (!Xforms.empty()) {
 | 
						|
    Record *XFormNode = Xforms.back();
 | 
						|
    Record *SDNode = XFormNode->getValueAsDef("Opcode");
 | 
						|
    StringRef Code = XFormNode->getValueAsString("XFormFunction");
 | 
						|
    SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
 | 
						|
 | 
						|
    Xforms.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenDAGPatterns::ParseComplexPatterns() {
 | 
						|
  std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
 | 
						|
  while (!AMs.empty()) {
 | 
						|
    ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
 | 
						|
    AMs.pop_back();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
 | 
						|
/// file, building up the PatternFragments map.  After we've collected them all,
 | 
						|
/// inline fragments together as necessary, so that there are no references left
 | 
						|
/// inside a pattern fragment to a pattern fragment.
 | 
						|
///
 | 
						|
void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
 | 
						|
  std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
 | 
						|
 | 
						|
  // First step, parse all of the fragments.
 | 
						|
  for (Record *Frag : Fragments) {
 | 
						|
    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
 | 
						|
      continue;
 | 
						|
 | 
						|
    ListInit *LI = Frag->getValueAsListInit("Fragments");
 | 
						|
    TreePattern *P =
 | 
						|
        (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
 | 
						|
             Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
 | 
						|
             *this)).get();
 | 
						|
 | 
						|
    // Validate the argument list, converting it to set, to discard duplicates.
 | 
						|
    std::vector<std::string> &Args = P->getArgList();
 | 
						|
    // Copy the args so we can take StringRefs to them.
 | 
						|
    auto ArgsCopy = Args;
 | 
						|
    SmallDenseSet<StringRef, 4> OperandsSet;
 | 
						|
    OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
 | 
						|
 | 
						|
    if (OperandsSet.count(""))
 | 
						|
      P->error("Cannot have unnamed 'node' values in pattern fragment!");
 | 
						|
 | 
						|
    // Parse the operands list.
 | 
						|
    DagInit *OpsList = Frag->getValueAsDag("Operands");
 | 
						|
    DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
 | 
						|
    // Special cases: ops == outs == ins. Different names are used to
 | 
						|
    // improve readability.
 | 
						|
    if (!OpsOp ||
 | 
						|
        (OpsOp->getDef()->getName() != "ops" &&
 | 
						|
         OpsOp->getDef()->getName() != "outs" &&
 | 
						|
         OpsOp->getDef()->getName() != "ins"))
 | 
						|
      P->error("Operands list should start with '(ops ... '!");
 | 
						|
 | 
						|
    // Copy over the arguments.
 | 
						|
    Args.clear();
 | 
						|
    for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
 | 
						|
      if (!isa<DefInit>(OpsList->getArg(j)) ||
 | 
						|
          cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
 | 
						|
        P->error("Operands list should all be 'node' values.");
 | 
						|
      if (!OpsList->getArgName(j))
 | 
						|
        P->error("Operands list should have names for each operand!");
 | 
						|
      StringRef ArgNameStr = OpsList->getArgNameStr(j);
 | 
						|
      if (!OperandsSet.count(ArgNameStr))
 | 
						|
        P->error("'" + ArgNameStr +
 | 
						|
                 "' does not occur in pattern or was multiply specified!");
 | 
						|
      OperandsSet.erase(ArgNameStr);
 | 
						|
      Args.push_back(ArgNameStr);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!OperandsSet.empty())
 | 
						|
      P->error("Operands list does not contain an entry for operand '" +
 | 
						|
               *OperandsSet.begin() + "'!");
 | 
						|
 | 
						|
    // If there is a node transformation corresponding to this, keep track of
 | 
						|
    // it.
 | 
						|
    Record *Transform = Frag->getValueAsDef("OperandTransform");
 | 
						|
    if (!getSDNodeTransform(Transform).second.empty())    // not noop xform?
 | 
						|
      for (auto T : P->getTrees())
 | 
						|
        T->setTransformFn(Transform);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we've parsed all of the tree fragments, do a closure on them so
 | 
						|
  // that there are not references to PatFrags left inside of them.
 | 
						|
  for (Record *Frag : Fragments) {
 | 
						|
    if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
 | 
						|
      continue;
 | 
						|
 | 
						|
    TreePattern &ThePat = *PatternFragments[Frag];
 | 
						|
    ThePat.InlinePatternFragments();
 | 
						|
 | 
						|
    // Infer as many types as possible.  Don't worry about it if we don't infer
 | 
						|
    // all of them, some may depend on the inputs of the pattern.  Also, don't
 | 
						|
    // validate type sets; validation may cause spurious failures e.g. if a
 | 
						|
    // fragment needs floating-point types but the current target does not have
 | 
						|
    // any (this is only an error if that fragment is ever used!).
 | 
						|
    {
 | 
						|
      TypeInfer::SuppressValidation SV(ThePat.getInfer());
 | 
						|
      ThePat.InferAllTypes();
 | 
						|
      ThePat.resetError();
 | 
						|
    }
 | 
						|
 | 
						|
    // If debugging, print out the pattern fragment result.
 | 
						|
    LLVM_DEBUG(ThePat.dump());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenDAGPatterns::ParseDefaultOperands() {
 | 
						|
  std::vector<Record*> DefaultOps;
 | 
						|
  DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
 | 
						|
 | 
						|
  // Find some SDNode.
 | 
						|
  assert(!SDNodes.empty() && "No SDNodes parsed?");
 | 
						|
  Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
 | 
						|
    DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
 | 
						|
 | 
						|
    // Clone the DefaultInfo dag node, changing the operator from 'ops' to
 | 
						|
    // SomeSDnode so that we can parse this.
 | 
						|
    std::vector<std::pair<Init*, StringInit*> > Ops;
 | 
						|
    for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
 | 
						|
      Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
 | 
						|
                                   DefaultInfo->getArgName(op)));
 | 
						|
    DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
 | 
						|
 | 
						|
    // Create a TreePattern to parse this.
 | 
						|
    TreePattern P(DefaultOps[i], DI, false, *this);
 | 
						|
    assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
 | 
						|
 | 
						|
    // Copy the operands over into a DAGDefaultOperand.
 | 
						|
    DAGDefaultOperand DefaultOpInfo;
 | 
						|
 | 
						|
    const TreePatternNodePtr &T = P.getTree(0);
 | 
						|
    for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
 | 
						|
      TreePatternNodePtr TPN = T->getChildShared(op);
 | 
						|
      while (TPN->ApplyTypeConstraints(P, false))
 | 
						|
        /* Resolve all types */;
 | 
						|
 | 
						|
      if (TPN->ContainsUnresolvedType(P)) {
 | 
						|
        PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
 | 
						|
                        DefaultOps[i]->getName() +
 | 
						|
                        "' doesn't have a concrete type!");
 | 
						|
      }
 | 
						|
      DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
 | 
						|
    }
 | 
						|
 | 
						|
    // Insert it into the DefaultOperands map so we can find it later.
 | 
						|
    DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
 | 
						|
/// instruction input.  Return true if this is a real use.
 | 
						|
static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
 | 
						|
                      std::map<std::string, TreePatternNodePtr> &InstInputs) {
 | 
						|
  // No name -> not interesting.
 | 
						|
  if (Pat->getName().empty()) {
 | 
						|
    if (Pat->isLeaf()) {
 | 
						|
      DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
 | 
						|
      if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
 | 
						|
                 DI->getDef()->isSubClassOf("RegisterOperand")))
 | 
						|
        I.error("Input " + DI->getDef()->getName() + " must be named!");
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  Record *Rec;
 | 
						|
  if (Pat->isLeaf()) {
 | 
						|
    DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
 | 
						|
    if (!DI)
 | 
						|
      I.error("Input $" + Pat->getName() + " must be an identifier!");
 | 
						|
    Rec = DI->getDef();
 | 
						|
  } else {
 | 
						|
    Rec = Pat->getOperator();
 | 
						|
  }
 | 
						|
 | 
						|
  // SRCVALUE nodes are ignored.
 | 
						|
  if (Rec->getName() == "srcvalue")
 | 
						|
    return false;
 | 
						|
 | 
						|
  TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
 | 
						|
  if (!Slot) {
 | 
						|
    Slot = Pat;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  Record *SlotRec;
 | 
						|
  if (Slot->isLeaf()) {
 | 
						|
    SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
 | 
						|
  } else {
 | 
						|
    assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
 | 
						|
    SlotRec = Slot->getOperator();
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure that the inputs agree if we've already seen this input.
 | 
						|
  if (Rec != SlotRec)
 | 
						|
    I.error("All $" + Pat->getName() + " inputs must agree with each other");
 | 
						|
  // Ensure that the types can agree as well.
 | 
						|
  Slot->UpdateNodeType(0, Pat->getExtType(0), I);
 | 
						|
  Pat->UpdateNodeType(0, Slot->getExtType(0), I);
 | 
						|
  if (Slot->getExtTypes() != Pat->getExtTypes())
 | 
						|
    I.error("All $" + Pat->getName() + " inputs must agree with each other");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
 | 
						|
/// part of "I", the instruction), computing the set of inputs and outputs of
 | 
						|
/// the pattern.  Report errors if we see anything naughty.
 | 
						|
void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
 | 
						|
    TreePattern &I, TreePatternNodePtr Pat,
 | 
						|
    std::map<std::string, TreePatternNodePtr> &InstInputs,
 | 
						|
    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
 | 
						|
        &InstResults,
 | 
						|
    std::vector<Record *> &InstImpResults) {
 | 
						|
 | 
						|
  // The instruction pattern still has unresolved fragments.  For *named*
 | 
						|
  // nodes we must resolve those here.  This may not result in multiple
 | 
						|
  // alternatives.
 | 
						|
  if (!Pat->getName().empty()) {
 | 
						|
    TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
 | 
						|
    SrcPattern.InlinePatternFragments();
 | 
						|
    SrcPattern.InferAllTypes();
 | 
						|
    Pat = SrcPattern.getOnlyTree();
 | 
						|
  }
 | 
						|
 | 
						|
  if (Pat->isLeaf()) {
 | 
						|
    bool isUse = HandleUse(I, Pat, InstInputs);
 | 
						|
    if (!isUse && Pat->getTransformFn())
 | 
						|
      I.error("Cannot specify a transform function for a non-input value!");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Pat->getOperator()->getName() == "implicit") {
 | 
						|
    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
 | 
						|
      TreePatternNode *Dest = Pat->getChild(i);
 | 
						|
      if (!Dest->isLeaf())
 | 
						|
        I.error("implicitly defined value should be a register!");
 | 
						|
 | 
						|
      DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
 | 
						|
      if (!Val || !Val->getDef()->isSubClassOf("Register"))
 | 
						|
        I.error("implicitly defined value should be a register!");
 | 
						|
      InstImpResults.push_back(Val->getDef());
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Pat->getOperator()->getName() != "set") {
 | 
						|
    // If this is not a set, verify that the children nodes are not void typed,
 | 
						|
    // and recurse.
 | 
						|
    for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
 | 
						|
      if (Pat->getChild(i)->getNumTypes() == 0)
 | 
						|
        I.error("Cannot have void nodes inside of patterns!");
 | 
						|
      FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
 | 
						|
                                  InstResults, InstImpResults);
 | 
						|
    }
 | 
						|
 | 
						|
    // If this is a non-leaf node with no children, treat it basically as if
 | 
						|
    // it were a leaf.  This handles nodes like (imm).
 | 
						|
    bool isUse = HandleUse(I, Pat, InstInputs);
 | 
						|
 | 
						|
    if (!isUse && Pat->getTransformFn())
 | 
						|
      I.error("Cannot specify a transform function for a non-input value!");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Otherwise, this is a set, validate and collect instruction results.
 | 
						|
  if (Pat->getNumChildren() == 0)
 | 
						|
    I.error("set requires operands!");
 | 
						|
 | 
						|
  if (Pat->getTransformFn())
 | 
						|
    I.error("Cannot specify a transform function on a set node!");
 | 
						|
 | 
						|
  // Check the set destinations.
 | 
						|
  unsigned NumDests = Pat->getNumChildren()-1;
 | 
						|
  for (unsigned i = 0; i != NumDests; ++i) {
 | 
						|
    TreePatternNodePtr Dest = Pat->getChildShared(i);
 | 
						|
    // For set destinations we also must resolve fragments here.
 | 
						|
    TreePattern DestPattern(I.getRecord(), Dest, false, *this);
 | 
						|
    DestPattern.InlinePatternFragments();
 | 
						|
    DestPattern.InferAllTypes();
 | 
						|
    Dest = DestPattern.getOnlyTree();
 | 
						|
 | 
						|
    if (!Dest->isLeaf())
 | 
						|
      I.error("set destination should be a register!");
 | 
						|
 | 
						|
    DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
 | 
						|
    if (!Val) {
 | 
						|
      I.error("set destination should be a register!");
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (Val->getDef()->isSubClassOf("RegisterClass") ||
 | 
						|
        Val->getDef()->isSubClassOf("ValueType") ||
 | 
						|
        Val->getDef()->isSubClassOf("RegisterOperand") ||
 | 
						|
        Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
 | 
						|
      if (Dest->getName().empty())
 | 
						|
        I.error("set destination must have a name!");
 | 
						|
      if (InstResults.count(Dest->getName()))
 | 
						|
        I.error("cannot set '" + Dest->getName() + "' multiple times");
 | 
						|
      InstResults[Dest->getName()] = Dest;
 | 
						|
    } else if (Val->getDef()->isSubClassOf("Register")) {
 | 
						|
      InstImpResults.push_back(Val->getDef());
 | 
						|
    } else {
 | 
						|
      I.error("set destination should be a register!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Verify and collect info from the computation.
 | 
						|
  FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
 | 
						|
                              InstResults, InstImpResults);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Instruction Analysis
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
class InstAnalyzer {
 | 
						|
  const CodeGenDAGPatterns &CDP;
 | 
						|
public:
 | 
						|
  bool hasSideEffects;
 | 
						|
  bool mayStore;
 | 
						|
  bool mayLoad;
 | 
						|
  bool isBitcast;
 | 
						|
  bool isVariadic;
 | 
						|
  bool hasChain;
 | 
						|
 | 
						|
  InstAnalyzer(const CodeGenDAGPatterns &cdp)
 | 
						|
    : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
 | 
						|
      isBitcast(false), isVariadic(false), hasChain(false) {}
 | 
						|
 | 
						|
  void Analyze(const PatternToMatch &Pat) {
 | 
						|
    const TreePatternNode *N = Pat.getSrcPattern();
 | 
						|
    AnalyzeNode(N);
 | 
						|
    // These properties are detected only on the root node.
 | 
						|
    isBitcast = IsNodeBitcast(N);
 | 
						|
  }
 | 
						|
 | 
						|
private:
 | 
						|
  bool IsNodeBitcast(const TreePatternNode *N) const {
 | 
						|
    if (hasSideEffects || mayLoad || mayStore || isVariadic)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (N->isLeaf())
 | 
						|
      return false;
 | 
						|
    if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
 | 
						|
      return false;
 | 
						|
 | 
						|
    const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
 | 
						|
    if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
 | 
						|
      return false;
 | 
						|
    return OpInfo.getEnumName() == "ISD::BITCAST";
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  void AnalyzeNode(const TreePatternNode *N) {
 | 
						|
    if (N->isLeaf()) {
 | 
						|
      if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
 | 
						|
        Record *LeafRec = DI->getDef();
 | 
						|
        // Handle ComplexPattern leaves.
 | 
						|
        if (LeafRec->isSubClassOf("ComplexPattern")) {
 | 
						|
          const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
 | 
						|
          if (CP.hasProperty(SDNPMayStore)) mayStore = true;
 | 
						|
          if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
 | 
						|
          if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    // Analyze children.
 | 
						|
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | 
						|
      AnalyzeNode(N->getChild(i));
 | 
						|
 | 
						|
    // Notice properties of the node.
 | 
						|
    if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
 | 
						|
    if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
 | 
						|
    if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
 | 
						|
    if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
 | 
						|
    if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
 | 
						|
 | 
						|
    if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
 | 
						|
      // If this is an intrinsic, analyze it.
 | 
						|
      if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
 | 
						|
        mayLoad = true;// These may load memory.
 | 
						|
 | 
						|
      if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
 | 
						|
        mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
 | 
						|
 | 
						|
      if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
 | 
						|
          IntInfo->hasSideEffects)
 | 
						|
        // ReadWriteMem intrinsics can have other strange effects.
 | 
						|
        hasSideEffects = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
};
 | 
						|
 | 
						|
static bool InferFromPattern(CodeGenInstruction &InstInfo,
 | 
						|
                             const InstAnalyzer &PatInfo,
 | 
						|
                             Record *PatDef) {
 | 
						|
  bool Error = false;
 | 
						|
 | 
						|
  // Remember where InstInfo got its flags.
 | 
						|
  if (InstInfo.hasUndefFlags())
 | 
						|
      InstInfo.InferredFrom = PatDef;
 | 
						|
 | 
						|
  // Check explicitly set flags for consistency.
 | 
						|
  if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
 | 
						|
      !InstInfo.hasSideEffects_Unset) {
 | 
						|
    // Allow explicitly setting hasSideEffects = 1 on instructions, even when
 | 
						|
    // the pattern has no side effects. That could be useful for div/rem
 | 
						|
    // instructions that may trap.
 | 
						|
    if (!InstInfo.hasSideEffects) {
 | 
						|
      Error = true;
 | 
						|
      PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
 | 
						|
                 Twine(InstInfo.hasSideEffects));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
 | 
						|
    Error = true;
 | 
						|
    PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
 | 
						|
               Twine(InstInfo.mayStore));
 | 
						|
  }
 | 
						|
 | 
						|
  if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
 | 
						|
    // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
 | 
						|
    // Some targets translate immediates to loads.
 | 
						|
    if (!InstInfo.mayLoad) {
 | 
						|
      Error = true;
 | 
						|
      PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
 | 
						|
                 Twine(InstInfo.mayLoad));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Transfer inferred flags.
 | 
						|
  InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
 | 
						|
  InstInfo.mayStore |= PatInfo.mayStore;
 | 
						|
  InstInfo.mayLoad |= PatInfo.mayLoad;
 | 
						|
 | 
						|
  // These flags are silently added without any verification.
 | 
						|
  // FIXME: To match historical behavior of TableGen, for now add those flags
 | 
						|
  // only when we're inferring from the primary instruction pattern.
 | 
						|
  if (PatDef->isSubClassOf("Instruction")) {
 | 
						|
    InstInfo.isBitcast |= PatInfo.isBitcast;
 | 
						|
    InstInfo.hasChain |= PatInfo.hasChain;
 | 
						|
    InstInfo.hasChain_Inferred = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Don't infer isVariadic. This flag means something different on SDNodes and
 | 
						|
  // instructions. For example, a CALL SDNode is variadic because it has the
 | 
						|
  // call arguments as operands, but a CALL instruction is not variadic - it
 | 
						|
  // has argument registers as implicit, not explicit uses.
 | 
						|
 | 
						|
  return Error;
 | 
						|
}
 | 
						|
 | 
						|
/// hasNullFragReference - Return true if the DAG has any reference to the
 | 
						|
/// null_frag operator.
 | 
						|
static bool hasNullFragReference(DagInit *DI) {
 | 
						|
  DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
 | 
						|
  if (!OpDef) return false;
 | 
						|
  Record *Operator = OpDef->getDef();
 | 
						|
 | 
						|
  // If this is the null fragment, return true.
 | 
						|
  if (Operator->getName() == "null_frag") return true;
 | 
						|
  // If any of the arguments reference the null fragment, return true.
 | 
						|
  for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
 | 
						|
    DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
 | 
						|
    if (Arg && hasNullFragReference(Arg))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// hasNullFragReference - Return true if any DAG in the list references
 | 
						|
/// the null_frag operator.
 | 
						|
static bool hasNullFragReference(ListInit *LI) {
 | 
						|
  for (Init *I : LI->getValues()) {
 | 
						|
    DagInit *DI = dyn_cast<DagInit>(I);
 | 
						|
    assert(DI && "non-dag in an instruction Pattern list?!");
 | 
						|
    if (hasNullFragReference(DI))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Get all the instructions in a tree.
 | 
						|
static void
 | 
						|
getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
 | 
						|
  if (Tree->isLeaf())
 | 
						|
    return;
 | 
						|
  if (Tree->getOperator()->isSubClassOf("Instruction"))
 | 
						|
    Instrs.push_back(Tree->getOperator());
 | 
						|
  for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
 | 
						|
    getInstructionsInTree(Tree->getChild(i), Instrs);
 | 
						|
}
 | 
						|
 | 
						|
/// Check the class of a pattern leaf node against the instruction operand it
 | 
						|
/// represents.
 | 
						|
static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
 | 
						|
                              Record *Leaf) {
 | 
						|
  if (OI.Rec == Leaf)
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Allow direct value types to be used in instruction set patterns.
 | 
						|
  // The type will be checked later.
 | 
						|
  if (Leaf->isSubClassOf("ValueType"))
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Patterns can also be ComplexPattern instances.
 | 
						|
  if (Leaf->isSubClassOf("ComplexPattern"))
 | 
						|
    return true;
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenDAGPatterns::parseInstructionPattern(
 | 
						|
    CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
 | 
						|
 | 
						|
  assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
 | 
						|
 | 
						|
  // Parse the instruction.
 | 
						|
  TreePattern I(CGI.TheDef, Pat, true, *this);
 | 
						|
 | 
						|
  // InstInputs - Keep track of all of the inputs of the instruction, along
 | 
						|
  // with the record they are declared as.
 | 
						|
  std::map<std::string, TreePatternNodePtr> InstInputs;
 | 
						|
 | 
						|
  // InstResults - Keep track of all the virtual registers that are 'set'
 | 
						|
  // in the instruction, including what reg class they are.
 | 
						|
  MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
 | 
						|
      InstResults;
 | 
						|
 | 
						|
  std::vector<Record*> InstImpResults;
 | 
						|
 | 
						|
  // Verify that the top-level forms in the instruction are of void type, and
 | 
						|
  // fill in the InstResults map.
 | 
						|
  SmallString<32> TypesString;
 | 
						|
  for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
 | 
						|
    TypesString.clear();
 | 
						|
    TreePatternNodePtr Pat = I.getTree(j);
 | 
						|
    if (Pat->getNumTypes() != 0) {
 | 
						|
      raw_svector_ostream OS(TypesString);
 | 
						|
      for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
 | 
						|
        if (k > 0)
 | 
						|
          OS << ", ";
 | 
						|
        Pat->getExtType(k).writeToStream(OS);
 | 
						|
      }
 | 
						|
      I.error("Top-level forms in instruction pattern should have"
 | 
						|
               " void types, has types " +
 | 
						|
               OS.str());
 | 
						|
    }
 | 
						|
 | 
						|
    // Find inputs and outputs, and verify the structure of the uses/defs.
 | 
						|
    FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
 | 
						|
                                InstImpResults);
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we have inputs and outputs of the pattern, inspect the operands
 | 
						|
  // list for the instruction.  This determines the order that operands are
 | 
						|
  // added to the machine instruction the node corresponds to.
 | 
						|
  unsigned NumResults = InstResults.size();
 | 
						|
 | 
						|
  // Parse the operands list from the (ops) list, validating it.
 | 
						|
  assert(I.getArgList().empty() && "Args list should still be empty here!");
 | 
						|
 | 
						|
  // Check that all of the results occur first in the list.
 | 
						|
  std::vector<Record*> Results;
 | 
						|
  std::vector<unsigned> ResultIndices;
 | 
						|
  SmallVector<TreePatternNodePtr, 2> ResNodes;
 | 
						|
  for (unsigned i = 0; i != NumResults; ++i) {
 | 
						|
    if (i == CGI.Operands.size()) {
 | 
						|
      const std::string &OpName =
 | 
						|
          std::find_if(InstResults.begin(), InstResults.end(),
 | 
						|
                       [](const std::pair<std::string, TreePatternNodePtr> &P) {
 | 
						|
                         return P.second;
 | 
						|
                       })
 | 
						|
              ->first;
 | 
						|
 | 
						|
      I.error("'" + OpName + "' set but does not appear in operand list!");
 | 
						|
    }
 | 
						|
 | 
						|
    const std::string &OpName = CGI.Operands[i].Name;
 | 
						|
 | 
						|
    // Check that it exists in InstResults.
 | 
						|
    auto InstResultIter = InstResults.find(OpName);
 | 
						|
    if (InstResultIter == InstResults.end() || !InstResultIter->second)
 | 
						|
      I.error("Operand $" + OpName + " does not exist in operand list!");
 | 
						|
 | 
						|
    TreePatternNodePtr RNode = InstResultIter->second;
 | 
						|
    Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
 | 
						|
    ResNodes.push_back(std::move(RNode));
 | 
						|
    if (!R)
 | 
						|
      I.error("Operand $" + OpName + " should be a set destination: all "
 | 
						|
               "outputs must occur before inputs in operand list!");
 | 
						|
 | 
						|
    if (!checkOperandClass(CGI.Operands[i], R))
 | 
						|
      I.error("Operand $" + OpName + " class mismatch!");
 | 
						|
 | 
						|
    // Remember the return type.
 | 
						|
    Results.push_back(CGI.Operands[i].Rec);
 | 
						|
 | 
						|
    // Remember the result index.
 | 
						|
    ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
 | 
						|
 | 
						|
    // Okay, this one checks out.
 | 
						|
    InstResultIter->second = nullptr;
 | 
						|
  }
 | 
						|
 | 
						|
  // Loop over the inputs next.
 | 
						|
  std::vector<TreePatternNodePtr> ResultNodeOperands;
 | 
						|
  std::vector<Record*> Operands;
 | 
						|
  for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
 | 
						|
    CGIOperandList::OperandInfo &Op = CGI.Operands[i];
 | 
						|
    const std::string &OpName = Op.Name;
 | 
						|
    if (OpName.empty())
 | 
						|
      I.error("Operand #" + Twine(i) + " in operands list has no name!");
 | 
						|
 | 
						|
    if (!InstInputs.count(OpName)) {
 | 
						|
      // If this is an operand with a DefaultOps set filled in, we can ignore
 | 
						|
      // this.  When we codegen it, we will do so as always executed.
 | 
						|
      if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
 | 
						|
        // Does it have a non-empty DefaultOps field?  If so, ignore this
 | 
						|
        // operand.
 | 
						|
        if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
 | 
						|
          continue;
 | 
						|
      }
 | 
						|
      I.error("Operand $" + OpName +
 | 
						|
               " does not appear in the instruction pattern");
 | 
						|
    }
 | 
						|
    TreePatternNodePtr InVal = InstInputs[OpName];
 | 
						|
    InstInputs.erase(OpName);   // It occurred, remove from map.
 | 
						|
 | 
						|
    if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
 | 
						|
      Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
 | 
						|
      if (!checkOperandClass(Op, InRec))
 | 
						|
        I.error("Operand $" + OpName + "'s register class disagrees"
 | 
						|
                 " between the operand and pattern");
 | 
						|
    }
 | 
						|
    Operands.push_back(Op.Rec);
 | 
						|
 | 
						|
    // Construct the result for the dest-pattern operand list.
 | 
						|
    TreePatternNodePtr OpNode = InVal->clone();
 | 
						|
 | 
						|
    // No predicate is useful on the result.
 | 
						|
    OpNode->clearPredicateCalls();
 | 
						|
 | 
						|
    // Promote the xform function to be an explicit node if set.
 | 
						|
    if (Record *Xform = OpNode->getTransformFn()) {
 | 
						|
      OpNode->setTransformFn(nullptr);
 | 
						|
      std::vector<TreePatternNodePtr> Children;
 | 
						|
      Children.push_back(OpNode);
 | 
						|
      OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
 | 
						|
                                                 OpNode->getNumTypes());
 | 
						|
    }
 | 
						|
 | 
						|
    ResultNodeOperands.push_back(std::move(OpNode));
 | 
						|
  }
 | 
						|
 | 
						|
  if (!InstInputs.empty())
 | 
						|
    I.error("Input operand $" + InstInputs.begin()->first +
 | 
						|
            " occurs in pattern but not in operands list!");
 | 
						|
 | 
						|
  TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
 | 
						|
      I.getRecord(), std::move(ResultNodeOperands),
 | 
						|
      GetNumNodeResults(I.getRecord(), *this));
 | 
						|
  // Copy fully inferred output node types to instruction result pattern.
 | 
						|
  for (unsigned i = 0; i != NumResults; ++i) {
 | 
						|
    assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
 | 
						|
    ResultPattern->setType(i, ResNodes[i]->getExtType(0));
 | 
						|
    ResultPattern->setResultIndex(i, ResultIndices[i]);
 | 
						|
  }
 | 
						|
 | 
						|
  // FIXME: Assume only the first tree is the pattern. The others are clobber
 | 
						|
  // nodes.
 | 
						|
  TreePatternNodePtr Pattern = I.getTree(0);
 | 
						|
  TreePatternNodePtr SrcPattern;
 | 
						|
  if (Pattern->getOperator()->getName() == "set") {
 | 
						|
    SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
 | 
						|
  } else{
 | 
						|
    // Not a set (store or something?)
 | 
						|
    SrcPattern = Pattern;
 | 
						|
  }
 | 
						|
 | 
						|
  // Create and insert the instruction.
 | 
						|
  // FIXME: InstImpResults should not be part of DAGInstruction.
 | 
						|
  Record *R = I.getRecord();
 | 
						|
  DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
 | 
						|
                   std::forward_as_tuple(Results, Operands, InstImpResults,
 | 
						|
                                         SrcPattern, ResultPattern));
 | 
						|
 | 
						|
  LLVM_DEBUG(I.dump());
 | 
						|
}
 | 
						|
 | 
						|
/// ParseInstructions - Parse all of the instructions, inlining and resolving
 | 
						|
/// any fragments involved.  This populates the Instructions list with fully
 | 
						|
/// resolved instructions.
 | 
						|
void CodeGenDAGPatterns::ParseInstructions() {
 | 
						|
  std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
 | 
						|
 | 
						|
  for (Record *Instr : Instrs) {
 | 
						|
    ListInit *LI = nullptr;
 | 
						|
 | 
						|
    if (isa<ListInit>(Instr->getValueInit("Pattern")))
 | 
						|
      LI = Instr->getValueAsListInit("Pattern");
 | 
						|
 | 
						|
    // If there is no pattern, only collect minimal information about the
 | 
						|
    // instruction for its operand list.  We have to assume that there is one
 | 
						|
    // result, as we have no detailed info. A pattern which references the
 | 
						|
    // null_frag operator is as-if no pattern were specified. Normally this
 | 
						|
    // is from a multiclass expansion w/ a SDPatternOperator passed in as
 | 
						|
    // null_frag.
 | 
						|
    if (!LI || LI->empty() || hasNullFragReference(LI)) {
 | 
						|
      std::vector<Record*> Results;
 | 
						|
      std::vector<Record*> Operands;
 | 
						|
 | 
						|
      CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
 | 
						|
 | 
						|
      if (InstInfo.Operands.size() != 0) {
 | 
						|
        for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
 | 
						|
          Results.push_back(InstInfo.Operands[j].Rec);
 | 
						|
 | 
						|
        // The rest are inputs.
 | 
						|
        for (unsigned j = InstInfo.Operands.NumDefs,
 | 
						|
               e = InstInfo.Operands.size(); j < e; ++j)
 | 
						|
          Operands.push_back(InstInfo.Operands[j].Rec);
 | 
						|
      }
 | 
						|
 | 
						|
      // Create and insert the instruction.
 | 
						|
      std::vector<Record*> ImpResults;
 | 
						|
      Instructions.insert(std::make_pair(Instr,
 | 
						|
                            DAGInstruction(Results, Operands, ImpResults)));
 | 
						|
      continue;  // no pattern.
 | 
						|
    }
 | 
						|
 | 
						|
    CodeGenInstruction &CGI = Target.getInstruction(Instr);
 | 
						|
    parseInstructionPattern(CGI, LI, Instructions);
 | 
						|
  }
 | 
						|
 | 
						|
  // If we can, convert the instructions to be patterns that are matched!
 | 
						|
  for (auto &Entry : Instructions) {
 | 
						|
    Record *Instr = Entry.first;
 | 
						|
    DAGInstruction &TheInst = Entry.second;
 | 
						|
    TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
 | 
						|
    TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
 | 
						|
 | 
						|
    if (SrcPattern && ResultPattern) {
 | 
						|
      TreePattern Pattern(Instr, SrcPattern, true, *this);
 | 
						|
      TreePattern Result(Instr, ResultPattern, false, *this);
 | 
						|
      ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
typedef std::pair<TreePatternNode *, unsigned> NameRecord;
 | 
						|
 | 
						|
static void FindNames(TreePatternNode *P,
 | 
						|
                      std::map<std::string, NameRecord> &Names,
 | 
						|
                      TreePattern *PatternTop) {
 | 
						|
  if (!P->getName().empty()) {
 | 
						|
    NameRecord &Rec = Names[P->getName()];
 | 
						|
    // If this is the first instance of the name, remember the node.
 | 
						|
    if (Rec.second++ == 0)
 | 
						|
      Rec.first = P;
 | 
						|
    else if (Rec.first->getExtTypes() != P->getExtTypes())
 | 
						|
      PatternTop->error("repetition of value: $" + P->getName() +
 | 
						|
                        " where different uses have different types!");
 | 
						|
  }
 | 
						|
 | 
						|
  if (!P->isLeaf()) {
 | 
						|
    for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
 | 
						|
      FindNames(P->getChild(i), Names, PatternTop);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
 | 
						|
  std::vector<Predicate> Preds;
 | 
						|
  for (Init *I : L->getValues()) {
 | 
						|
    if (DefInit *Pred = dyn_cast<DefInit>(I))
 | 
						|
      Preds.push_back(Pred->getDef());
 | 
						|
    else
 | 
						|
      llvm_unreachable("Non-def on the list");
 | 
						|
  }
 | 
						|
 | 
						|
  // Sort so that different orders get canonicalized to the same string.
 | 
						|
  llvm::sort(Preds);
 | 
						|
  return Preds;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
 | 
						|
                                           PatternToMatch &&PTM) {
 | 
						|
  // Do some sanity checking on the pattern we're about to match.
 | 
						|
  std::string Reason;
 | 
						|
  if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
 | 
						|
    PrintWarning(Pattern->getRecord()->getLoc(),
 | 
						|
      Twine("Pattern can never match: ") + Reason);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the source pattern's root is a complex pattern, that complex pattern
 | 
						|
  // must specify the nodes it can potentially match.
 | 
						|
  if (const ComplexPattern *CP =
 | 
						|
        PTM.getSrcPattern()->getComplexPatternInfo(*this))
 | 
						|
    if (CP->getRootNodes().empty())
 | 
						|
      Pattern->error("ComplexPattern at root must specify list of opcodes it"
 | 
						|
                     " could match");
 | 
						|
 | 
						|
 | 
						|
  // Find all of the named values in the input and output, ensure they have the
 | 
						|
  // same type.
 | 
						|
  std::map<std::string, NameRecord> SrcNames, DstNames;
 | 
						|
  FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
 | 
						|
  FindNames(PTM.getDstPattern(), DstNames, Pattern);
 | 
						|
 | 
						|
  // Scan all of the named values in the destination pattern, rejecting them if
 | 
						|
  // they don't exist in the input pattern.
 | 
						|
  for (const auto &Entry : DstNames) {
 | 
						|
    if (SrcNames[Entry.first].first == nullptr)
 | 
						|
      Pattern->error("Pattern has input without matching name in output: $" +
 | 
						|
                     Entry.first);
 | 
						|
  }
 | 
						|
 | 
						|
  // Scan all of the named values in the source pattern, rejecting them if the
 | 
						|
  // name isn't used in the dest, and isn't used to tie two values together.
 | 
						|
  for (const auto &Entry : SrcNames)
 | 
						|
    if (DstNames[Entry.first].first == nullptr &&
 | 
						|
        SrcNames[Entry.first].second == 1)
 | 
						|
      Pattern->error("Pattern has dead named input: $" + Entry.first);
 | 
						|
 | 
						|
  PatternsToMatch.push_back(PTM);
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenDAGPatterns::InferInstructionFlags() {
 | 
						|
  ArrayRef<const CodeGenInstruction*> Instructions =
 | 
						|
    Target.getInstructionsByEnumValue();
 | 
						|
 | 
						|
  unsigned Errors = 0;
 | 
						|
 | 
						|
  // Try to infer flags from all patterns in PatternToMatch.  These include
 | 
						|
  // both the primary instruction patterns (which always come first) and
 | 
						|
  // patterns defined outside the instruction.
 | 
						|
  for (const PatternToMatch &PTM : ptms()) {
 | 
						|
    // We can only infer from single-instruction patterns, otherwise we won't
 | 
						|
    // know which instruction should get the flags.
 | 
						|
    SmallVector<Record*, 8> PatInstrs;
 | 
						|
    getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
 | 
						|
    if (PatInstrs.size() != 1)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Get the single instruction.
 | 
						|
    CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
 | 
						|
 | 
						|
    // Only infer properties from the first pattern. We'll verify the others.
 | 
						|
    if (InstInfo.InferredFrom)
 | 
						|
      continue;
 | 
						|
 | 
						|
    InstAnalyzer PatInfo(*this);
 | 
						|
    PatInfo.Analyze(PTM);
 | 
						|
    Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
 | 
						|
  }
 | 
						|
 | 
						|
  if (Errors)
 | 
						|
    PrintFatalError("pattern conflicts");
 | 
						|
 | 
						|
  // If requested by the target, guess any undefined properties.
 | 
						|
  if (Target.guessInstructionProperties()) {
 | 
						|
    for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
 | 
						|
      CodeGenInstruction *InstInfo =
 | 
						|
        const_cast<CodeGenInstruction *>(Instructions[i]);
 | 
						|
      if (InstInfo->InferredFrom)
 | 
						|
        continue;
 | 
						|
      // The mayLoad and mayStore flags default to false.
 | 
						|
      // Conservatively assume hasSideEffects if it wasn't explicit.
 | 
						|
      if (InstInfo->hasSideEffects_Unset)
 | 
						|
        InstInfo->hasSideEffects = true;
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Complain about any flags that are still undefined.
 | 
						|
  for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
 | 
						|
    CodeGenInstruction *InstInfo =
 | 
						|
      const_cast<CodeGenInstruction *>(Instructions[i]);
 | 
						|
    if (InstInfo->InferredFrom)
 | 
						|
      continue;
 | 
						|
    if (InstInfo->hasSideEffects_Unset)
 | 
						|
      PrintError(InstInfo->TheDef->getLoc(),
 | 
						|
                 "Can't infer hasSideEffects from patterns");
 | 
						|
    if (InstInfo->mayStore_Unset)
 | 
						|
      PrintError(InstInfo->TheDef->getLoc(),
 | 
						|
                 "Can't infer mayStore from patterns");
 | 
						|
    if (InstInfo->mayLoad_Unset)
 | 
						|
      PrintError(InstInfo->TheDef->getLoc(),
 | 
						|
                 "Can't infer mayLoad from patterns");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Verify instruction flags against pattern node properties.
 | 
						|
void CodeGenDAGPatterns::VerifyInstructionFlags() {
 | 
						|
  unsigned Errors = 0;
 | 
						|
  for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
 | 
						|
    const PatternToMatch &PTM = *I;
 | 
						|
    SmallVector<Record*, 8> Instrs;
 | 
						|
    getInstructionsInTree(PTM.getDstPattern(), Instrs);
 | 
						|
    if (Instrs.empty())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Count the number of instructions with each flag set.
 | 
						|
    unsigned NumSideEffects = 0;
 | 
						|
    unsigned NumStores = 0;
 | 
						|
    unsigned NumLoads = 0;
 | 
						|
    for (const Record *Instr : Instrs) {
 | 
						|
      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
 | 
						|
      NumSideEffects += InstInfo.hasSideEffects;
 | 
						|
      NumStores += InstInfo.mayStore;
 | 
						|
      NumLoads += InstInfo.mayLoad;
 | 
						|
    }
 | 
						|
 | 
						|
    // Analyze the source pattern.
 | 
						|
    InstAnalyzer PatInfo(*this);
 | 
						|
    PatInfo.Analyze(PTM);
 | 
						|
 | 
						|
    // Collect error messages.
 | 
						|
    SmallVector<std::string, 4> Msgs;
 | 
						|
 | 
						|
    // Check for missing flags in the output.
 | 
						|
    // Permit extra flags for now at least.
 | 
						|
    if (PatInfo.hasSideEffects && !NumSideEffects)
 | 
						|
      Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
 | 
						|
 | 
						|
    // Don't verify store flags on instructions with side effects. At least for
 | 
						|
    // intrinsics, side effects implies mayStore.
 | 
						|
    if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
 | 
						|
      Msgs.push_back("pattern may store, but mayStore isn't set");
 | 
						|
 | 
						|
    // Similarly, mayStore implies mayLoad on intrinsics.
 | 
						|
    if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
 | 
						|
      Msgs.push_back("pattern may load, but mayLoad isn't set");
 | 
						|
 | 
						|
    // Print error messages.
 | 
						|
    if (Msgs.empty())
 | 
						|
      continue;
 | 
						|
    ++Errors;
 | 
						|
 | 
						|
    for (const std::string &Msg : Msgs)
 | 
						|
      PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
 | 
						|
                 (Instrs.size() == 1 ?
 | 
						|
                  "instruction" : "output instructions"));
 | 
						|
    // Provide the location of the relevant instruction definitions.
 | 
						|
    for (const Record *Instr : Instrs) {
 | 
						|
      if (Instr != PTM.getSrcRecord())
 | 
						|
        PrintError(Instr->getLoc(), "defined here");
 | 
						|
      const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
 | 
						|
      if (InstInfo.InferredFrom &&
 | 
						|
          InstInfo.InferredFrom != InstInfo.TheDef &&
 | 
						|
          InstInfo.InferredFrom != PTM.getSrcRecord())
 | 
						|
        PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (Errors)
 | 
						|
    PrintFatalError("Errors in DAG patterns");
 | 
						|
}
 | 
						|
 | 
						|
/// Given a pattern result with an unresolved type, see if we can find one
 | 
						|
/// instruction with an unresolved result type.  Force this result type to an
 | 
						|
/// arbitrary element if it's possible types to converge results.
 | 
						|
static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
 | 
						|
  if (N->isLeaf())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Analyze children.
 | 
						|
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | 
						|
    if (ForceArbitraryInstResultType(N->getChild(i), TP))
 | 
						|
      return true;
 | 
						|
 | 
						|
  if (!N->getOperator()->isSubClassOf("Instruction"))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If this type is already concrete or completely unknown we can't do
 | 
						|
  // anything.
 | 
						|
  TypeInfer &TI = TP.getInfer();
 | 
						|
  for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
 | 
						|
    if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Otherwise, force its type to an arbitrary choice.
 | 
						|
    if (TI.forceArbitrary(N->getExtType(i)))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// Promote xform function to be an explicit node wherever set.
 | 
						|
static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
 | 
						|
  if (Record *Xform = N->getTransformFn()) {
 | 
						|
      N->setTransformFn(nullptr);
 | 
						|
      std::vector<TreePatternNodePtr> Children;
 | 
						|
      Children.push_back(PromoteXForms(N));
 | 
						|
      return std::make_shared<TreePatternNode>(Xform, std::move(Children),
 | 
						|
                                               N->getNumTypes());
 | 
						|
  }
 | 
						|
 | 
						|
  if (!N->isLeaf())
 | 
						|
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
 | 
						|
      TreePatternNodePtr Child = N->getChildShared(i);
 | 
						|
      N->setChild(i, PromoteXForms(Child));
 | 
						|
    }
 | 
						|
  return N;
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
 | 
						|
       TreePattern &Pattern, TreePattern &Result,
 | 
						|
       const std::vector<Record *> &InstImpResults) {
 | 
						|
 | 
						|
  // Inline pattern fragments and expand multiple alternatives.
 | 
						|
  Pattern.InlinePatternFragments();
 | 
						|
  Result.InlinePatternFragments();
 | 
						|
 | 
						|
  if (Result.getNumTrees() != 1)
 | 
						|
    Result.error("Cannot use multi-alternative fragments in result pattern!");
 | 
						|
 | 
						|
  // Infer types.
 | 
						|
  bool IterateInference;
 | 
						|
  bool InferredAllPatternTypes, InferredAllResultTypes;
 | 
						|
  do {
 | 
						|
    // Infer as many types as possible.  If we cannot infer all of them, we
 | 
						|
    // can never do anything with this pattern: report it to the user.
 | 
						|
    InferredAllPatternTypes =
 | 
						|
        Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
 | 
						|
 | 
						|
    // Infer as many types as possible.  If we cannot infer all of them, we
 | 
						|
    // can never do anything with this pattern: report it to the user.
 | 
						|
    InferredAllResultTypes =
 | 
						|
        Result.InferAllTypes(&Pattern.getNamedNodesMap());
 | 
						|
 | 
						|
    IterateInference = false;
 | 
						|
 | 
						|
    // Apply the type of the result to the source pattern.  This helps us
 | 
						|
    // resolve cases where the input type is known to be a pointer type (which
 | 
						|
    // is considered resolved), but the result knows it needs to be 32- or
 | 
						|
    // 64-bits.  Infer the other way for good measure.
 | 
						|
    for (auto T : Pattern.getTrees())
 | 
						|
      for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
 | 
						|
                                        T->getNumTypes());
 | 
						|
         i != e; ++i) {
 | 
						|
        IterateInference |= T->UpdateNodeType(
 | 
						|
            i, Result.getOnlyTree()->getExtType(i), Result);
 | 
						|
        IterateInference |= Result.getOnlyTree()->UpdateNodeType(
 | 
						|
            i, T->getExtType(i), Result);
 | 
						|
      }
 | 
						|
 | 
						|
    // If our iteration has converged and the input pattern's types are fully
 | 
						|
    // resolved but the result pattern is not fully resolved, we may have a
 | 
						|
    // situation where we have two instructions in the result pattern and
 | 
						|
    // the instructions require a common register class, but don't care about
 | 
						|
    // what actual MVT is used.  This is actually a bug in our modelling:
 | 
						|
    // output patterns should have register classes, not MVTs.
 | 
						|
    //
 | 
						|
    // In any case, to handle this, we just go through and disambiguate some
 | 
						|
    // arbitrary types to the result pattern's nodes.
 | 
						|
    if (!IterateInference && InferredAllPatternTypes &&
 | 
						|
        !InferredAllResultTypes)
 | 
						|
      IterateInference =
 | 
						|
          ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
 | 
						|
  } while (IterateInference);
 | 
						|
 | 
						|
  // Verify that we inferred enough types that we can do something with the
 | 
						|
  // pattern and result.  If these fire the user has to add type casts.
 | 
						|
  if (!InferredAllPatternTypes)
 | 
						|
    Pattern.error("Could not infer all types in pattern!");
 | 
						|
  if (!InferredAllResultTypes) {
 | 
						|
    Pattern.dump();
 | 
						|
    Result.error("Could not infer all types in pattern result!");
 | 
						|
  }
 | 
						|
 | 
						|
  // Promote xform function to be an explicit node wherever set.
 | 
						|
  TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
 | 
						|
 | 
						|
  TreePattern Temp(Result.getRecord(), DstShared, false, *this);
 | 
						|
  Temp.InferAllTypes();
 | 
						|
 | 
						|
  ListInit *Preds = TheDef->getValueAsListInit("Predicates");
 | 
						|
  int Complexity = TheDef->getValueAsInt("AddedComplexity");
 | 
						|
 | 
						|
  if (PatternRewriter)
 | 
						|
    PatternRewriter(&Pattern);
 | 
						|
 | 
						|
  // A pattern may end up with an "impossible" type, i.e. a situation
 | 
						|
  // where all types have been eliminated for some node in this pattern.
 | 
						|
  // This could occur for intrinsics that only make sense for a specific
 | 
						|
  // value type, and use a specific register class. If, for some mode,
 | 
						|
  // that register class does not accept that type, the type inference
 | 
						|
  // will lead to a contradiction, which is not an error however, but
 | 
						|
  // a sign that this pattern will simply never match.
 | 
						|
  if (Temp.getOnlyTree()->hasPossibleType())
 | 
						|
    for (auto T : Pattern.getTrees())
 | 
						|
      if (T->hasPossibleType())
 | 
						|
        AddPatternToMatch(&Pattern,
 | 
						|
                          PatternToMatch(TheDef, makePredList(Preds),
 | 
						|
                                         T, Temp.getOnlyTree(),
 | 
						|
                                         InstImpResults, Complexity,
 | 
						|
                                         TheDef->getID()));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenDAGPatterns::ParsePatterns() {
 | 
						|
  std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
 | 
						|
 | 
						|
  for (Record *CurPattern : Patterns) {
 | 
						|
    DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
 | 
						|
 | 
						|
    // If the pattern references the null_frag, there's nothing to do.
 | 
						|
    if (hasNullFragReference(Tree))
 | 
						|
      continue;
 | 
						|
 | 
						|
    TreePattern Pattern(CurPattern, Tree, true, *this);
 | 
						|
 | 
						|
    ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
 | 
						|
    if (LI->empty()) continue;  // no pattern.
 | 
						|
 | 
						|
    // Parse the instruction.
 | 
						|
    TreePattern Result(CurPattern, LI, false, *this);
 | 
						|
 | 
						|
    if (Result.getNumTrees() != 1)
 | 
						|
      Result.error("Cannot handle instructions producing instructions "
 | 
						|
                   "with temporaries yet!");
 | 
						|
 | 
						|
    // Validate that the input pattern is correct.
 | 
						|
    std::map<std::string, TreePatternNodePtr> InstInputs;
 | 
						|
    MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
 | 
						|
        InstResults;
 | 
						|
    std::vector<Record*> InstImpResults;
 | 
						|
    for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
 | 
						|
      FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
 | 
						|
                                  InstResults, InstImpResults);
 | 
						|
 | 
						|
    ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
 | 
						|
  for (const TypeSetByHwMode &VTS : N->getExtTypes())
 | 
						|
    for (const auto &I : VTS)
 | 
						|
      Modes.insert(I.first);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | 
						|
    collectModes(Modes, N->getChild(i));
 | 
						|
}
 | 
						|
 | 
						|
void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
 | 
						|
  const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
 | 
						|
  std::map<unsigned,std::vector<Predicate>> ModeChecks;
 | 
						|
  std::vector<PatternToMatch> Copy = PatternsToMatch;
 | 
						|
  PatternsToMatch.clear();
 | 
						|
 | 
						|
  auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
 | 
						|
    TreePatternNodePtr NewSrc = P.SrcPattern->clone();
 | 
						|
    TreePatternNodePtr NewDst = P.DstPattern->clone();
 | 
						|
    if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
 | 
						|
    std::vector<Predicate> Preds = P.Predicates;
 | 
						|
    const std::vector<Predicate> &MC = ModeChecks[Mode];
 | 
						|
    Preds.insert(Preds.end(), MC.begin(), MC.end());
 | 
						|
    PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
 | 
						|
                                 std::move(NewDst), P.getDstRegs(),
 | 
						|
                                 P.getAddedComplexity(), Record::getNewUID(),
 | 
						|
                                 Mode);
 | 
						|
  };
 | 
						|
 | 
						|
  for (PatternToMatch &P : Copy) {
 | 
						|
    TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
 | 
						|
    if (P.SrcPattern->hasProperTypeByHwMode())
 | 
						|
      SrcP = P.SrcPattern;
 | 
						|
    if (P.DstPattern->hasProperTypeByHwMode())
 | 
						|
      DstP = P.DstPattern;
 | 
						|
    if (!SrcP && !DstP) {
 | 
						|
      PatternsToMatch.push_back(P);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    std::set<unsigned> Modes;
 | 
						|
    if (SrcP)
 | 
						|
      collectModes(Modes, SrcP.get());
 | 
						|
    if (DstP)
 | 
						|
      collectModes(Modes, DstP.get());
 | 
						|
 | 
						|
    // The predicate for the default mode needs to be constructed for each
 | 
						|
    // pattern separately.
 | 
						|
    // Since not all modes must be present in each pattern, if a mode m is
 | 
						|
    // absent, then there is no point in constructing a check for m. If such
 | 
						|
    // a check was created, it would be equivalent to checking the default
 | 
						|
    // mode, except not all modes' predicates would be a part of the checking
 | 
						|
    // code. The subsequently generated check for the default mode would then
 | 
						|
    // have the exact same patterns, but a different predicate code. To avoid
 | 
						|
    // duplicated patterns with different predicate checks, construct the
 | 
						|
    // default check as a negation of all predicates that are actually present
 | 
						|
    // in the source/destination patterns.
 | 
						|
    std::vector<Predicate> DefaultPred;
 | 
						|
 | 
						|
    for (unsigned M : Modes) {
 | 
						|
      if (M == DefaultMode)
 | 
						|
        continue;
 | 
						|
      if (ModeChecks.find(M) != ModeChecks.end())
 | 
						|
        continue;
 | 
						|
 | 
						|
      // Fill the map entry for this mode.
 | 
						|
      const HwMode &HM = CGH.getMode(M);
 | 
						|
      ModeChecks[M].emplace_back(Predicate(HM.Features, true));
 | 
						|
 | 
						|
      // Add negations of the HM's predicates to the default predicate.
 | 
						|
      DefaultPred.emplace_back(Predicate(HM.Features, false));
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned M : Modes) {
 | 
						|
      if (M == DefaultMode)
 | 
						|
        continue;
 | 
						|
      AppendPattern(P, M);
 | 
						|
    }
 | 
						|
 | 
						|
    bool HasDefault = Modes.count(DefaultMode);
 | 
						|
    if (HasDefault)
 | 
						|
      AppendPattern(P, DefaultMode);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Dependent variable map for CodeGenDAGPattern variant generation
 | 
						|
typedef StringMap<int> DepVarMap;
 | 
						|
 | 
						|
static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
 | 
						|
  if (N->isLeaf()) {
 | 
						|
    if (N->hasName() && isa<DefInit>(N->getLeafValue()))
 | 
						|
      DepMap[N->getName()]++;
 | 
						|
  } else {
 | 
						|
    for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
 | 
						|
      FindDepVarsOf(N->getChild(i), DepMap);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Find dependent variables within child patterns
 | 
						|
static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
 | 
						|
  DepVarMap depcounts;
 | 
						|
  FindDepVarsOf(N, depcounts);
 | 
						|
  for (const auto &Pair : depcounts) {
 | 
						|
    if (Pair.getValue() > 1)
 | 
						|
      DepVars.insert(Pair.getKey());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// Dump the dependent variable set:
 | 
						|
static void DumpDepVars(MultipleUseVarSet &DepVars) {
 | 
						|
  if (DepVars.empty()) {
 | 
						|
    LLVM_DEBUG(errs() << "<empty set>");
 | 
						|
  } else {
 | 
						|
    LLVM_DEBUG(errs() << "[ ");
 | 
						|
    for (const auto &DepVar : DepVars) {
 | 
						|
      LLVM_DEBUG(errs() << DepVar.getKey() << " ");
 | 
						|
    }
 | 
						|
    LLVM_DEBUG(errs() << "]");
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/// CombineChildVariants - Given a bunch of permutations of each child of the
 | 
						|
/// 'operator' node, put them together in all possible ways.
 | 
						|
static void CombineChildVariants(
 | 
						|
    TreePatternNodePtr Orig,
 | 
						|
    const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
 | 
						|
    std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
 | 
						|
    const MultipleUseVarSet &DepVars) {
 | 
						|
  // Make sure that each operand has at least one variant to choose from.
 | 
						|
  for (const auto &Variants : ChildVariants)
 | 
						|
    if (Variants.empty())
 | 
						|
      return;
 | 
						|
 | 
						|
  // The end result is an all-pairs construction of the resultant pattern.
 | 
						|
  std::vector<unsigned> Idxs;
 | 
						|
  Idxs.resize(ChildVariants.size());
 | 
						|
  bool NotDone;
 | 
						|
  do {
 | 
						|
#ifndef NDEBUG
 | 
						|
    LLVM_DEBUG(if (!Idxs.empty()) {
 | 
						|
      errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
 | 
						|
      for (unsigned Idx : Idxs) {
 | 
						|
        errs() << Idx << " ";
 | 
						|
      }
 | 
						|
      errs() << "]\n";
 | 
						|
    });
 | 
						|
#endif
 | 
						|
    // Create the variant and add it to the output list.
 | 
						|
    std::vector<TreePatternNodePtr> NewChildren;
 | 
						|
    for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
 | 
						|
      NewChildren.push_back(ChildVariants[i][Idxs[i]]);
 | 
						|
    TreePatternNodePtr R = std::make_shared<TreePatternNode>(
 | 
						|
        Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
 | 
						|
 | 
						|
    // Copy over properties.
 | 
						|
    R->setName(Orig->getName());
 | 
						|
    R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
 | 
						|
    R->setPredicateCalls(Orig->getPredicateCalls());
 | 
						|
    R->setTransformFn(Orig->getTransformFn());
 | 
						|
    for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
 | 
						|
      R->setType(i, Orig->getExtType(i));
 | 
						|
 | 
						|
    // If this pattern cannot match, do not include it as a variant.
 | 
						|
    std::string ErrString;
 | 
						|
    // Scan to see if this pattern has already been emitted.  We can get
 | 
						|
    // duplication due to things like commuting:
 | 
						|
    //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
 | 
						|
    // which are the same pattern.  Ignore the dups.
 | 
						|
    if (R->canPatternMatch(ErrString, CDP) &&
 | 
						|
        none_of(OutVariants, [&](TreePatternNodePtr Variant) {
 | 
						|
          return R->isIsomorphicTo(Variant.get(), DepVars);
 | 
						|
        }))
 | 
						|
      OutVariants.push_back(R);
 | 
						|
 | 
						|
    // Increment indices to the next permutation by incrementing the
 | 
						|
    // indices from last index backward, e.g., generate the sequence
 | 
						|
    // [0, 0], [0, 1], [1, 0], [1, 1].
 | 
						|
    int IdxsIdx;
 | 
						|
    for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
 | 
						|
      if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
 | 
						|
        Idxs[IdxsIdx] = 0;
 | 
						|
      else
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    NotDone = (IdxsIdx >= 0);
 | 
						|
  } while (NotDone);
 | 
						|
}
 | 
						|
 | 
						|
/// CombineChildVariants - A helper function for binary operators.
 | 
						|
///
 | 
						|
static void CombineChildVariants(TreePatternNodePtr Orig,
 | 
						|
                                 const std::vector<TreePatternNodePtr> &LHS,
 | 
						|
                                 const std::vector<TreePatternNodePtr> &RHS,
 | 
						|
                                 std::vector<TreePatternNodePtr> &OutVariants,
 | 
						|
                                 CodeGenDAGPatterns &CDP,
 | 
						|
                                 const MultipleUseVarSet &DepVars) {
 | 
						|
  std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
 | 
						|
  ChildVariants.push_back(LHS);
 | 
						|
  ChildVariants.push_back(RHS);
 | 
						|
  CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
 | 
						|
                                  std::vector<TreePatternNodePtr> &Children) {
 | 
						|
  assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
 | 
						|
  Record *Operator = N->getOperator();
 | 
						|
 | 
						|
  // Only permit raw nodes.
 | 
						|
  if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
 | 
						|
      N->getTransformFn()) {
 | 
						|
    Children.push_back(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
 | 
						|
    Children.push_back(N->getChildShared(0));
 | 
						|
  else
 | 
						|
    GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
 | 
						|
 | 
						|
  if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
 | 
						|
    Children.push_back(N->getChildShared(1));
 | 
						|
  else
 | 
						|
    GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
 | 
						|
}
 | 
						|
 | 
						|
/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
 | 
						|
/// the (potentially recursive) pattern by using algebraic laws.
 | 
						|
///
 | 
						|
static void GenerateVariantsOf(TreePatternNodePtr N,
 | 
						|
                               std::vector<TreePatternNodePtr> &OutVariants,
 | 
						|
                               CodeGenDAGPatterns &CDP,
 | 
						|
                               const MultipleUseVarSet &DepVars) {
 | 
						|
  // We cannot permute leaves or ComplexPattern uses.
 | 
						|
  if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
 | 
						|
    OutVariants.push_back(N);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Look up interesting info about the node.
 | 
						|
  const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
 | 
						|
 | 
						|
  // If this node is associative, re-associate.
 | 
						|
  if (NodeInfo.hasProperty(SDNPAssociative)) {
 | 
						|
    // Re-associate by pulling together all of the linked operators
 | 
						|
    std::vector<TreePatternNodePtr> MaximalChildren;
 | 
						|
    GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
 | 
						|
 | 
						|
    // Only handle child sizes of 3.  Otherwise we'll end up trying too many
 | 
						|
    // permutations.
 | 
						|
    if (MaximalChildren.size() == 3) {
 | 
						|
      // Find the variants of all of our maximal children.
 | 
						|
      std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
 | 
						|
      GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
 | 
						|
      GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
 | 
						|
      GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
 | 
						|
 | 
						|
      // There are only two ways we can permute the tree:
 | 
						|
      //   (A op B) op C    and    A op (B op C)
 | 
						|
      // Within these forms, we can also permute A/B/C.
 | 
						|
 | 
						|
      // Generate legal pair permutations of A/B/C.
 | 
						|
      std::vector<TreePatternNodePtr> ABVariants;
 | 
						|
      std::vector<TreePatternNodePtr> BAVariants;
 | 
						|
      std::vector<TreePatternNodePtr> ACVariants;
 | 
						|
      std::vector<TreePatternNodePtr> CAVariants;
 | 
						|
      std::vector<TreePatternNodePtr> BCVariants;
 | 
						|
      std::vector<TreePatternNodePtr> CBVariants;
 | 
						|
      CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
 | 
						|
 | 
						|
      // Combine those into the result: (x op x) op x
 | 
						|
      CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
 | 
						|
 | 
						|
      // Combine those into the result: x op (x op x)
 | 
						|
      CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
 | 
						|
      CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
 | 
						|
      return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute permutations of all children.
 | 
						|
  std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
 | 
						|
  ChildVariants.resize(N->getNumChildren());
 | 
						|
  for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
 | 
						|
    GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
 | 
						|
 | 
						|
  // Build all permutations based on how the children were formed.
 | 
						|
  CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
 | 
						|
 | 
						|
  // If this node is commutative, consider the commuted order.
 | 
						|
  bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
 | 
						|
  if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
 | 
						|
    assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
 | 
						|
           "Commutative but doesn't have 2 children!");
 | 
						|
    // Don't count children which are actually register references.
 | 
						|
    unsigned NC = 0;
 | 
						|
    for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
 | 
						|
      TreePatternNode *Child = N->getChild(i);
 | 
						|
      if (Child->isLeaf())
 | 
						|
        if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
 | 
						|
          Record *RR = DI->getDef();
 | 
						|
          if (RR->isSubClassOf("Register"))
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
      NC++;
 | 
						|
    }
 | 
						|
    // Consider the commuted order.
 | 
						|
    if (isCommIntrinsic) {
 | 
						|
      // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
 | 
						|
      // operands are the commutative operands, and there might be more operands
 | 
						|
      // after those.
 | 
						|
      assert(NC >= 3 &&
 | 
						|
             "Commutative intrinsic should have at least 3 children!");
 | 
						|
      std::vector<std::vector<TreePatternNodePtr>> Variants;
 | 
						|
      Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
 | 
						|
      Variants.push_back(std::move(ChildVariants[2]));
 | 
						|
      Variants.push_back(std::move(ChildVariants[1]));
 | 
						|
      for (unsigned i = 3; i != NC; ++i)
 | 
						|
        Variants.push_back(std::move(ChildVariants[i]));
 | 
						|
      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
 | 
						|
    } else if (NC == N->getNumChildren()) {
 | 
						|
      std::vector<std::vector<TreePatternNodePtr>> Variants;
 | 
						|
      Variants.push_back(std::move(ChildVariants[1]));
 | 
						|
      Variants.push_back(std::move(ChildVariants[0]));
 | 
						|
      for (unsigned i = 2; i != NC; ++i)
 | 
						|
        Variants.push_back(std::move(ChildVariants[i]));
 | 
						|
      CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// GenerateVariants - Generate variants.  For example, commutative patterns can
 | 
						|
// match multiple ways.  Add them to PatternsToMatch as well.
 | 
						|
void CodeGenDAGPatterns::GenerateVariants() {
 | 
						|
  LLVM_DEBUG(errs() << "Generating instruction variants.\n");
 | 
						|
 | 
						|
  // Loop over all of the patterns we've collected, checking to see if we can
 | 
						|
  // generate variants of the instruction, through the exploitation of
 | 
						|
  // identities.  This permits the target to provide aggressive matching without
 | 
						|
  // the .td file having to contain tons of variants of instructions.
 | 
						|
  //
 | 
						|
  // Note that this loop adds new patterns to the PatternsToMatch list, but we
 | 
						|
  // intentionally do not reconsider these.  Any variants of added patterns have
 | 
						|
  // already been added.
 | 
						|
  //
 | 
						|
  const unsigned NumOriginalPatterns = PatternsToMatch.size();
 | 
						|
  BitVector MatchedPatterns(NumOriginalPatterns);
 | 
						|
  std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
 | 
						|
                                           BitVector(NumOriginalPatterns));
 | 
						|
 | 
						|
  typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
 | 
						|
      DepsAndVariants;
 | 
						|
  std::map<unsigned, DepsAndVariants> PatternsWithVariants;
 | 
						|
 | 
						|
  // Collect patterns with more than one variant.
 | 
						|
  for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
 | 
						|
    MultipleUseVarSet DepVars;
 | 
						|
    std::vector<TreePatternNodePtr> Variants;
 | 
						|
    FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
 | 
						|
    LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
 | 
						|
    LLVM_DEBUG(DumpDepVars(DepVars));
 | 
						|
    LLVM_DEBUG(errs() << "\n");
 | 
						|
    GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
 | 
						|
                       *this, DepVars);
 | 
						|
 | 
						|
    assert(!Variants.empty() && "Must create at least original variant!");
 | 
						|
    if (Variants.size() == 1) // No additional variants for this pattern.
 | 
						|
      continue;
 | 
						|
 | 
						|
    LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
 | 
						|
               PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
 | 
						|
 | 
						|
    PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
 | 
						|
 | 
						|
    // Cache matching predicates.
 | 
						|
    if (MatchedPatterns[i])
 | 
						|
      continue;
 | 
						|
 | 
						|
    const std::vector<Predicate> &Predicates =
 | 
						|
        PatternsToMatch[i].getPredicates();
 | 
						|
 | 
						|
    BitVector &Matches = MatchedPredicates[i];
 | 
						|
    MatchedPatterns.set(i);
 | 
						|
    Matches.set(i);
 | 
						|
 | 
						|
    // Don't test patterns that have already been cached - it won't match.
 | 
						|
    for (unsigned p = 0; p != NumOriginalPatterns; ++p)
 | 
						|
      if (!MatchedPatterns[p])
 | 
						|
        Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
 | 
						|
 | 
						|
    // Copy this to all the matching patterns.
 | 
						|
    for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
 | 
						|
      if (p != (int)i) {
 | 
						|
        MatchedPatterns.set(p);
 | 
						|
        MatchedPredicates[p] = Matches;
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  for (auto it : PatternsWithVariants) {
 | 
						|
    unsigned i = it.first;
 | 
						|
    const MultipleUseVarSet &DepVars = it.second.first;
 | 
						|
    const std::vector<TreePatternNodePtr> &Variants = it.second.second;
 | 
						|
 | 
						|
    for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
 | 
						|
      TreePatternNodePtr Variant = Variants[v];
 | 
						|
      BitVector &Matches = MatchedPredicates[i];
 | 
						|
 | 
						|
      LLVM_DEBUG(errs() << "  VAR#" << v << ": "; Variant->dump();
 | 
						|
                 errs() << "\n");
 | 
						|
 | 
						|
      // Scan to see if an instruction or explicit pattern already matches this.
 | 
						|
      bool AlreadyExists = false;
 | 
						|
      for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
 | 
						|
        // Skip if the top level predicates do not match.
 | 
						|
        if (!Matches[p])
 | 
						|
          continue;
 | 
						|
        // Check to see if this variant already exists.
 | 
						|
        if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
 | 
						|
                                    DepVars)) {
 | 
						|
          LLVM_DEBUG(errs() << "  *** ALREADY EXISTS, ignoring variant.\n");
 | 
						|
          AlreadyExists = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If we already have it, ignore the variant.
 | 
						|
      if (AlreadyExists) continue;
 | 
						|
 | 
						|
      // Otherwise, add it to the list of patterns we have.
 | 
						|
      PatternsToMatch.push_back(PatternToMatch(
 | 
						|
          PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
 | 
						|
          Variant, PatternsToMatch[i].getDstPatternShared(),
 | 
						|
          PatternsToMatch[i].getDstRegs(),
 | 
						|
          PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
 | 
						|
      MatchedPredicates.push_back(Matches);
 | 
						|
 | 
						|
      // Add a new match the same as this pattern.
 | 
						|
      for (auto &P : MatchedPredicates)
 | 
						|
        P.push_back(P[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    LLVM_DEBUG(errs() << "\n");
 | 
						|
  }
 | 
						|
}
 |